Choosability of the square of planar subcubic graphs with large girth

F. Havet

Projet Mascotte, CNRS/UNSA/INRIA, INRIA Sophia-Antipolis, 2004 route des Lucioles BP 93, 06902 Sophia-Antipolis Cedex, France

Received 30 March 2006; accepted 17 December 2007
Available online 14 February 2008

Abstract

We show that the choice number of the square of a subcubic graph with maximum average degree less than \(18/7\) is at most 6. As a corollary, we get that the choice number of the square of a subcubic planar graph with girth at least 9 is at most 6. We then show that the choice number of the square of a subcubic planar graph with girth at least 13 is at most 5.

© 2008 Elsevier B.V. All rights reserved.

Keywords: List colouring; Square of a graph; Bounded density; Planar graph

1. Introduction

Let \(G\) be a (simple) graph. The neighbourhood of a vertex \(v\) of \(G\), denoted \(N_G(v)\), is the set of its neighbours, i.e. the set of vertices \(y\) such that \(xy\) is an edge. The degree of a vertex \(v\) in \(G\), denoted \(d_G(v)\), is its number of neighbours. Often, when the graph \(G\) is clearly understood from the context, we omit the subscript \(G\). A graph is subcubic if every vertex has degree at most 3.

Let \(p : V(G) \rightarrow \mathbb{N}\). A \(p\)-list-assignment is a list-assignment \(L\) such that \(|L(v)| = p(v)\) for any \(v \in V(G)\). \(G\) is \(p\)-choosable if it is \(L\)-colourable for any \(p\)-list-assignment. By extension, if \(k\) is an integer, we say that \(G\) is \(k\)-choosable if it is \(p\)-choosable when \(p\) is the constant function with value \(k\) (i.e. \(p(v) = k\) for all \(v \in V\)). The choice number of \(G\), denoted \(ch(G)\), is the smallest integer \(k\) such that \(G\) is \(k\)-choosable. Clearly the choice number of \(G\) is at least as large as \(\chi(G)\), the chromatic number of \(G\).

The square of \(G\) is the graph \(G^2\) with vertex set \(V(G)\) such that two vertices are linked by an edge of \(G^2\) if and only if \(x\) and \(y\) are at distance at most 2 in \(G\). A graph is called planar if it can be embedded in the plane. Wegner [9] proved that the square of a subcubic planar graph is 8-colourable. He also conjectured that it is 7-colourable. Recently, this conjecture was proved by Thomassen [8].

Theorem 1 (Thomassen [8]). Let \(G\) be a subcubic planar graph. Then \(\chi(G^2) \leq 7\).

Kostochka and Woodall [6] conjectured that, for every square of a graph, the chromatic number equals the choice number.

Conjecture 2 (Kostochka and Woodall [6]). For all \(G\), \(ch(G^2) = \chi(G^2)\).
If true, this conjecture together with Theorem 1 implies that every subcubic planar graph is 7-choosable. Very recently, Cranston and Kim [2] showed that the square of every subcubic graph (non-necessarily planar) other than the Petersen graph is 8-choosable.

The average degree of G, denoted $Ad(G)$ is $\frac{\sum_{v \in V(G)} d(v)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$. The maximum average degree of G, denoted $\text{Mad}(G)$, is $\max\{Ad(H), H \text{ subgraph of } G\}$. In [3], Dvořák, Škrekovski and Tancer proved that the choice number of the square of a subcubic graph G is at most 4 if $\text{Mad}(G) < 24/11$ and G has no 5-cycle, at most 5 if $\text{Mad}(G) < 7/3$ and at most 6 if $\text{Mad}(G) < 5/2$.

The girth of a graph is the smallest length of a cycle in G. Planar graphs with prescribed girth have bounded maximum average degree:

Proposition 3. Every planar graph with girth at least g has maximum average degree less than $2 + \frac{4}{g-2}$.

Hence the results of Dvořák, Škrekovski and Tancer imply that the choice number of the square of a planar graph with girth g is at most 6 if $g \geq 10$, at most 5 if $g \geq 14$ and at most 4 if $g \geq 24$. The two latter results had been previously proved by Montassier and Raspaud [7].

In this paper, we improve some of these results. We first show (Theorem 4) that the choice number of the square of a subcubic graph with maximum average degree less than 18/7 is at most 6. As a corollary, we get that the choice number of the square of a subcubic planar graph with girth at least 9 is at most 6. Note that this corollary has been proved later and independently by Cranston and Kim [2]. We then show (Theorem 9) that the choice number of the square of a subcubic planar graph with girth at least 13 is at most 5.

2. The main results

The general frame of the proofs is classical. We consider a k-minimal graph, that is a subcubic graph such that its square is not k-choosable but the square of every proper subgraph is k-choosable. We prove that some configurations (i.e. induced subgraphs) are forbidden in such a graph and then deduce a contradiction. To do so, we will need the following definitions:

An i-vertex is a vertex of degree i. We denote by V_i the set of i-vertices of G and by v_i its cardinality. Let v be a vertex. An i-neighbour of v is a neighbour of v with degree i. The i-neighbourhood of v is $N_i(v) = N(v) \cap V_i$ and its i-degree is $d_i(v) = |N_i(v)|$.

Some properties of 6- and 5-minimal graphs have already been proved in [3]. The easy first one is that $V_0 \cup V_1 = \emptyset$, so G has minimum degree 2. This will allow us to use the following definitions for 6- and 5-minimal graphs.

Let G be a subcubic graph with minimum degree 2. A thread of G is a path whose endvertices are 3-vertices and whose internal vertices are 2-vertices. The kernel of G is the weighted graph K_G such that $V(K_G) = V_3(G)$ and xy is an edge in K_G with weight l if and only if x and y are connected by a thread of length l in G. An edge of weight l is also called l-edge. Let x be a 3-vertex of G. The type of x is the triple (l_1, l_2, l_3) such that $l_1 \leq l_2 \leq l_3$ and the three edges (a loop being counted twice) incident to x have weight l_1, l_2 and l_3 in K_G. We denote by Y_{l_1, l_2, l_3} the set of 3-vertices of type (l_1, l_2, l_3) and y_{l_1, l_2, l_3} its cardinality. Moreover, for every integer i, we define $Z_i : = \bigcup_{l_1 + l_2 + l_3 = i} Y_{l_1, l_2, l_3}$ and $z_i = |Z_i|$. The number of vertices and edges and thus the average degree of G may be easily expressed in terms of the z_i:

$$|V(G)| = \sum_{i \geq 3} \frac{i-1}{2} z_i$$

$$2|E(G)| = \sum_{i \geq 3} i z_i$$

$$Ad(G) = \frac{\sum_{i \geq 3} i z_i}{\sum_{i \geq 3} \frac{i-1}{2} z_i}.$$ \hspace{1cm} (1)

2.1. 6-choosability

The aim of this subsection is to prove the following result.
Theorem 4. Let G be a subcubic graph of maximum average degree $d < 18/7$. Then G^2 is 6-choosable.

Remark 5. Theorem 4 is tight. Indeed, the graph J_7 depicted in Fig. 1 has average degree $18/7$ and its square is the complete graph on seven vertices K_7 which is not 6-choosable (nor 6-colourable).

Theorem 4 and Proposition 3 yield that the square of a subcubic planar graph with girth at least 9 is 6-choosable.

Corollary 6. The square of a subcubic planar graph with girth at least 9 is 6-choosable.

In order to prove Theorem 4, we need to establish some properties of 6-minimal graphs. Some of them have been proved in [3].

Lemma 7 (Dvořák, Škrekovski and Tancer [3]). Let G be a 6-minimal graph. Then the following hold:

(i) all the edges of K_G have weight at most 2;
(ii) every 3-cycle of G has its vertices in V_3;
(iii) every 4-cycle of G has at least three vertices in V_3;
(iv) a vertex of $Y_{2,2,2}$ is not adjacent in K_G to a vertex of $Y_{1,2,2} \cup Y_{2,2,2}$.

We will prove in Section 3.2 some new properties.

Lemma 8. Let G be a 6-minimal graph. Then the following hold:

(i) if $(v_1, v_2, v_3, v_4, v_1)$ is a 4-cycle with $v_2 \in V_2$ then v_1 or v_3 is not in $Y_{1,2,2}$;
(ii) a vertex of $Y_{1,2,2}$ is adjacent in K_G to at most one vertex of $Y_{1,2,2}$ by 2-edges.

Proof of Theorem 4. Let G be a 6-minimal planar graph. G has minimum degree 2, so its kernel K_G is defined. Moreover by Lemma 7(i), Z_i is empty for $i \geq 7$ and $Z_6 = Y_{2,2,2}$ and $Z_5 = Y_{1,2,2}$.

Let us consider a vertex of $Z_4 = Y_{1,1,2}$. Its neighbour in K_G via the 2-edge is in $Z_4 \cup Z_5 \cup Z_6$ because a vertex of $Z_3 = Y_{1,1,1}$ is incident to no edge of weight 2. For $i = 4, 5, 6$, let Z_i' be the set of vertices of Z_i which are adjacent to a vertex of Z_i by their unique 2-edge and z_i' its cardinality. (Z_4', Z_5', Z_6') is a partition of Z_4 so $z_4 = z_4' + z_5 + z_6'$. Hence Eq. (1) becomes

$$
Ad(G) = \frac{6z_6 + 5z_5 + 4z_4 + 4z_6^5 + 4z_4^5 + 3z_3}{2z_6 + 2z_5 + \frac{3}{2}z_4 + \frac{3}{2}z_4 + \frac{3}{2}z_4 + z_3}.
$$

By Lemma 7(iv), the three neighbours in K_G of a vertex of Z_6 are not in $Z_6 \cup Z_5$. So they must be in Z_6'. It follows that $3z_6 = z_6'$. So

$$
Ad(G) = \frac{5z_5 + 6z_6 + 4z_4 + 4z_4^2 + 3z_3}{2z_5 + \frac{7}{3}z_4 + \frac{3}{2}z_4 + \frac{3}{2}z_4 + z_3}.
$$

By Lemma 8(ii), a vertex of Z_5 is adjacent to at least one vertex of Z_4'. Thus $z_5 \geq z_5'$. But $Ad(G)$ is decreasing as a function of z_5 since $z_6' + z_4' + z_4' + z_3$ are non-negative. It follows that

$$
Ad(G) \geq \frac{6z_4^6 + 9z_5 + 4z_4^2 + 3z_3}{\frac{5}{3}z_4 + \frac{7}{3}z_4 + \frac{3}{2}z_4 + z_3} \geq \frac{18}{7}. \quad \square
$$
2.2. 5-choosability

Dvořák, Škrekovski and Tancer [3] proved that the square of a subcubic graph \(G \) with maximum average degree less than \(7/3 \) is 5-choosable. This result is tight since the graph \(J_6 \) depicted in Fig. 2 has average degree \(7/3 \) and its square is the complete graph on six vertices \(K_6 \) which is not 5-choosable (nor 5-colourable). However, we will prove that the square of a subcubic planar graph with girth at least 13 is 5-choosable, which improves the result of Montassier and Raspaud.

Theorem 9. The square of a subcubic planar graph with girth at least 13 is 5-choosable.

In order to prove this theorem, we need to establish some properties of 5-minimal graphs. Some of them have been proved in [3].

Lemma 10 (Dvořák, Škrekovski and Tancer [3]). Let \(G \) be a 5-minimal graph. Then the following hold:

(i) all the edges of \(K_G \) have weight at most 3;
(ii) if \(i \geq 8 \), \(Z_i \) is empty.

We will prove in Section 3.3 some new properties.

Lemma 11. Let \(G \) be a 5-minimal graph of girth at least 13. Then in \(K_G \) the following hold:

(i) a vertex of \(Y_{2,2,3} \) and a vertex of \(Y_{1,2,3} \cup Y_{2,2,3} \) are not linked by a 2-edge;
(ii) a vertex of \(Y_{1,3,3} \) and a vertex of \(Y_{1,2,3} \cup Y_{1,3,3} \) are not linked by a 1-edge;
(iii) a vertex of \(Y_{2,2,2} \) is not adjacent in \(K_G \) to three vertices of \(Y_{2,2,3} \) (by 2-edges).

Proof of Theorem 9. Let \(G \) be a 5-minimal planar graph with girth at least 13. \(G \) has minimum degree 2, so its kernel \(K_G \) is defined. Moreover, by Lemma 10(i), \(Z_7 = Y_{2,2,3} \cup Y_{1,3,3} \), so

\[
z_7 = y_{2,2,3} + y_{1,3,3}. \tag{2}
\]

Let us count the number \(e_2 \) of 2-edges incident to vertices of \(Y_{2,2,3} \). Recall that \(Z_4 = Y_{1,1,2} \) and \(Z_3 = Y_{1,1,1} \). Since 2-edges may not link two vertices of type \((2, 2, 3)\) according to Lemma 11(i), we have \(e_2 = 2y_{2,2,3} \). Moreover, the ends of such edges which are not in \(Y_{2,2,3} \) have to be in \(Y_{2,2,2} \cup Y_{1,2,2} \cup Z_4 \) by Lemmas 10 and 11(i). Furthermore, a vertex of \(Y_{2,2,2} \) is incident to at most two edges of \(e_2 \) according to Lemma 11(iii) and a vertex of \(Y_{1,2,2} \) (resp. \(Z_4 \)) is incident to at most two (resp. one) 2-edges. Therefore \(e_2 \leq 2y_{2,2,2} + 2y_{1,2,2} + y_4 \). So,

\[
2y_{2,2,3} \leq 2y_{2,2,2} + 2y_{1,2,2} + z_4. \tag{3}
\]

Let us now count the number \(e_1 \) of 1-edges incident to vertices of \(Y_{1,3,3} \). Since 1-edges may not link two vertices of type \((1, 3, 3)\) according to Lemma 11(ii), we have \(e_1 = y_{1,3,3} \). Moreover, the ends of such edges which are not in \(Y_{1,1,3} \) have to be in \(Y_{1,2,2} \cup Y_{1,1,3} \cup Z_4 \cup Z_3 \) by Lemmas 10 and 11(ii). Furthermore, vertices of \(Y_{1,2,2} \) (resp. \(Y_{1,1,3} \cup Z_4, Z_3 \)) are incident to at most one (resp. two, three) 1-edges. Thus \(e_1 \leq y_{1,2,2} + 2y_{1,1,3} + 2z_4 + 3z_3 \). So,

\[
y_{1,3,3} \leq y_{1,1,2} + 2y_{1,1,3} + 2z_4 + 3z_3. \tag{4}
\]

\[2 \times (4) + (3) \] yields

\[
2y_{2,2,3} + 2y_{1,3,3} \leq 2y_{2,2,2} + 4y_{1,2,2} + 4y_{1,1,3} + 5z_4 + 6z_3. \]

Hence, by Eq. (2), \(2z_7 \leq 2z_6 + 4z_5 + 5z_4 + 6z_3 \), so

\[
z_7 \leq z_6 + 2z_5 + \frac{5}{2}z_4 + 3z_3.
\]
Now by Eq. (1) the average degree of G is
\[Ad(G) = \frac{7z_7 + 6z_6 + 5z_5 + 4z_4 + 3z_3}{3z_7 + \frac{5}{2}z_6 + 2z_5 + \frac{3}{2}z_4 + z_3}. \]

As a function of z_7, this is a decreasing function (on \mathbb{R}^+); so it is minimum when z_7 is maximum that is equal to $z_6 + 2z_5 + \frac{5}{2}z_4 + 3z_3$. So,
\[Ad(G) \geq \frac{13z_6 + 19z_5 + \frac{43}{2}z_4 + 24z_3}{11z_6 + 8z_5 + 9z_4 + 10z_3} \geq \frac{26}{11}. \]

This contradicts the fact that G has girth 13 by Proposition 3. \hfill \Box

Remark 12. It is very likely that using the method below, one can prove that a graph G with maximum average degree less than $\frac{26}{11}$ is 5-choosable unless it contains J_6 as an induced subgraph. However, this will require the tedious study of a large number of configurations.

3. Proofs of Lemmas 8 and 11

In order to prove Lemmas 8 and 11, we need the following lemma proved in [3]. Let S be a set of vertices of a k-minimal graph G. The function $p_S : S \to \mathbb{N}$ is defined by $p_S(v) = k - |N_G^2(v) \setminus S|$. Then $p_S(v)$ represents the minimum number of available colours at a vertex $v \in S$ once we have precoloured the square of $G - S$. Hence if $(G - S)^2$ is k-choosable, $(G - S)^2 = G^2 - S$ and $G^2[S]$ is p_S-choosable, one can extend any k-list-colouring of $G - S$ into a k-list-colouring of G, which is a contradiction.

Lemma 13 (Dvořák, Škrekovski and Tancer [3]). Let S be a set of vertices of a k-minimal graph G. If $(G - S)^2 = G^2 - S$, then $G^2[S]$ is not p_S-choosable.

In order to use Lemma 13, we need some results on the choosability of some graphs.

3.1. Some choosability tools

Definition 14. Let x and y be two vertices of a graph G. An $(x - y)$-ordering of G is an ordering of the vertices such that x is the minimum and y the maximum. An $(x, y - z)$-ordering is an ordering of the vertices such that x is minimum, y is the second minimum and z is maximum.

Let $\sigma = (v_1 < v_2 < \cdots < v_n)$ be an ordering of the vertices of G and p a function $V(G) \to \mathbb{N}$. σ is p-greedy if, for every i, $|N(v_i) \cap \{v_1, \ldots, v_{i-1}\}| < p(v_i)$. It is p-nice if, for every i except n, $|N(v_i) \cap \{v_1, \ldots, v_{i-1}\}| < p(v_i)$ and $d(v_n) = p(v_n)$. It is p-good if, for every $3 \leq i \leq n$, $|N(v_i) \cap \{v_1, \ldots, v_{i-1}\}| - \epsilon(v_i) < p(v_i)$ with $\epsilon(v_i) = 1$ if v_i is adjacent to both v_1 and v_2 and $\epsilon(v_i) = 0$ otherwise. By extension, if k is an integer, we say that σ is k-greedy (resp. k-nice, k-good) if it is p-greedy (resp. p-nice, p-good) when p is the constant function with value k (i.e. $p(v_i) = k$ for every $1 \leq i \leq n$).

The greedy algorithm according to greedy, nice and good orderings yields the following three lemmas.

Lemma 15. If G has a p-greedy ordering then G is p-choosable. **Proof.** Applying the greedy algorithm according to the p-greedy ordering gives the desired colouring. \hfill \Box

Lemma 16. Let xy be an edge of graph G and L be a p-list-assignment of G. If $L(x) \notin L(y)$ and G has a p-nice $(x - y)$-ordering, then G is L-colourable. **Proof.** Let a be a colour in $L(x) \setminus L(y)$. Assign a to x and proceed the greedy algorithm according to the p-nice $(x - y)$-ordering. The only vertex which has not more colour in its list than previously coloured neighbours is y for which $|L(y)| = d(y)$. But since $a \notin L(y)$, at most $d(y) - 1$ colours of $L(y)$ are assigned to the neighbours of y. Hence one can colour y. \hfill \Box
Lemma 17. Let x, y and z be three vertices of a graph $G = (V, E)$ such that $xy \notin E$. If $L(x) \cap L(y) \neq \emptyset$ and G has a p-good $(x, y - z)$-ordering, then G is L-colourable.

Proof. Let a be a colour in $L(x) \cap L(y)$ and $\sigma = (v_1 < v_2 < \cdots < v_n)$ be a p-good $(x, y - z)$-ordering. (In particular, $v_1 = x$, $v_2 = y$ and $v_n = z$.) Assign a to x and y and proceed the greedy algorithm according to σ. For every $3 \leq i \leq n$, the number of colours assigned to already coloured neighbours of v_i is at most $|N(v_i) \cap \{v_1, \ldots, v_{i-1}\}| - \epsilon(v_i)$ since v_1 and v_2 are coloured the same. Hence the greedy algorithm gives an L-colouring. □

Remark 18. Note that if $xz, yz \in E$, a p-nice $(x, y - z)$-ordering is also p-good.

Definition 19. The blocks of a graph are its maximal 2-connected components. A connected graph is said to be a Gallai tree if each of its blocks is either a complete graph or an odd cycle.

The following theorem was proved independently by Borodin [1] and Erdős, Rubin and Taylor [4]:

Theorem 20 (Borodin [1], Erdős, Rubin and Taylor [4]). Let G be a connected graph and d_G the degree function in G. Then G is d_G-choosable if and only if G is not a Gallai tree.

Lemma 21. Let $G = (V, E)$ be a graph and $p : V(G) \to \mathbb{N}$. Let S be a set of vertices such that $p(v) \geq d(v)$ for all $v \in S$. If $G[S]$ is not a Gallai tree and $G - S$ is p-choosable then G is p-choosable.

Proof. Let L be a p-list-assignment of G. Since $G - S$ is p-choosable, it admits an L-colouring. Let us now extend it to S. The list $I(v) = L(v) \setminus \{c(w), w \in N(v) \setminus S\}$ of available colours of a vertex $v \in S$ is of size at least $p'(v) = p(v) - |N(v) \setminus S| \geq d_{G[S]}(v)$. Since $G[S]$ is not a Gallai tree, by Theorem 20, $G[S]$ is p'-choosable and thus I-colourable. So, G is L-colourable. □

A 4-regular graph G is cycle + triangles if it is the edge union of a Hamiltonian cycle C and a 2-factor consisting of triangles. In other words, the graph induced by the edges of $E(G) \setminus E(C)$ is the disjoint union of 3-cycles.

Theorem 22 (Fleischner and Stiebitz [5]). Every cycle + triangles graph is 3-choosable.

3.2. Proof of Lemma 8

Lemma 23. Let $q \geq 2$ and $C_{4q} = (v_1, \ldots, v_{4q}, v_1)$ be the $4q$-cycle and p defined by $p(v_i) = 4$ if i is odd and $p(v_i) = 2$ otherwise. Then C_{4q}^2 is p-choosable.

Proof. The set S of vertices v for which $p(v) \geq d_{C_{4q}^2}(v)$ is the set of v_i with odd indices. $C_{4q}^2[S]$ is a $2q$-cycle and thus is not a Gallai tree. Moreover $C_{4q}^2 - S$ is also a $2q$-cycle and is 2-choosable. Hence Lemma 21 gives the result. □

Proposition 24. Let $P_7 = (v_1, \ldots, v_7)$ be a path and p the function defined by $p(v_1) = p(v_2) = p(v_6) = p(v_7) = 2$, $p(v_3) = p(v_5) = 4$ and $p(v_4) = 3$. Then P_7^2 is p-choosable.

Proof. Let L be a p-list-assignment of P_7^2. Since $(v_2 < v_4 < v_6 < v_7 < v_5 < v_3 < v_1)$ is a p-nice ordering of P_7^2, by Lemma 16, we may assume that $L(v_1) = L(v_2)$, and by symmetry of P_7 and p that $L(v_6) = L(v_7)$.

Since $(v_1 < v_4 < v_2 < v_6 < v_7 < v_5 < v_3)$ is p-good, by Lemma 17, we may assume that $L(v_1) \cap L(v_4) = \emptyset$, and by symmetry $L(v_7) \cap L(v_4) = \emptyset$.

Now one can find $c(v_1) \in L(v_1)$, $c(v_2) \in L(v_1) \setminus \{c(v_1)\}$, $c(v_6) \in L(v_6)$, $c(v_7) \in L(v_7) \setminus \{c(v_6)\}$, $c(v_3) \in L(v_3) \setminus \{c(v_1)\}$, $c(v_5) \in L(v_5) \setminus \{c(v_3)\}$, $c(v_6) \in L(v_6)$, and $c(v_7) \in L(v_7) \setminus \{c(v_6)\}$. Now since $L(v_1) \cap L(v_4) = \emptyset$ and $L(v_1) = L(v_2)$, $c(v_2) \notin L(v_4)$. Analogously, $c(v_6) \notin L(v_4)$. Hence, $L(v_4) \setminus \{c(v_2), c(v_3), c(v_5), c(v_6)\} = L(v_4) \setminus \{c(v_3), c(v_5)\} \neq \emptyset$. So, one can choose $c(v_6)$ in this set to get an L-colouring of P_7^2. □

Lemma 25. For $1 \leq i \leq 17$, let F_i be the graphs and p_i be the functions depicted in Fig. 3.

(i) $F_i^2 \cup \{v_5v_6\}$ is p_i-choosable.
Fig. 3. The graphs F_i and functions p_i for $1 \leq i \leq 13$.

(ii) $F_2^2 \cup \{v_1 v_4\}$ and $F_2^2 \cup \{v_4 v_7\}$ are p_2-choosable.
(iii) $F_3^3 \cup \{v_4 v_8\}$ is p_3-choosable.
(iv) F_4^2 is 6-choosable.
(v) $F_5^2 \cup \{v_1 v_4, v_1 v_6\}$ is p_5-choosable.
(vi) F_6^5 is p_6-choosable.
(vii) $F_7^2 \cup \{v_9 v_{10}\}$ is p_7-choosable.
(viii) F_8^2 is p_8-choosable.
(ix) $F_9^2 \cup \{v_2 v_9\}$ and $F_9^2 \cup \{v_6 v_9\}$ are p_9-choosable.
(x) $F_{10}^2 \cup \{v_4 v_8\}$ is p_{10}-choosable.
(xi) $F_{11}^2 \cup \{v_4 v_8, v_8 v_9\}, F_{11}^2 \cup \{v_4 v_8, v_9 v_4\}$ and $F_{11}^2 \cup \{v_8 v_9, v_9 v_4\}$ are p_{11}-choosable and $F_{11}^2 \cup \{v_4 v_8, v_8 v_9, v_9 v_4\}$ is 5-choosable.
(xii) $F_{12}^2 \cup \{v_4 v_8\}$ is p_{12}-choosable.
(xiii) F_{13}^2 is 6-choosable.

Proof. (i) In $F_1^2 \cup \{v_5 v_6\}$, $(v_6 < v_5 < v_4 < v_3 < v_1 < v_2)$ is p_1-greedy. So, by Lemma 15, $F_1^2 \cup \{v_5 v_6\}$ is p_1-choosable.

(ii) In $F_2^2 \cup \{v_4 v_7\}$, $(v_2 < v_4 < v_7 < v_6 < v_5 < v_3 < v_1)$ is p_2-nice and $p_2(v_2) > p_2(v_1)$. So, by Lemma 16, $F_2^2 \cup \{v_4 v_7\}$ is p_2-choosable.

By symmetry, one shows that $F_i^2 \cup \{v_1 v_4\}$ is p_2-choosable.
(iii) In $F_3^2 \cup \{v_4v_8\}$, $(v_2 < v_8 < v_4 < v_7 < v_6 < v_5 < v_3 < v_1)$ is p_3-nice and $p_3(v_2) > p_3(v_1)$. So, by Lemma 16, $F_3^2 \cup \{v_4v_8\}$ is p_3-choosable.

(iv) Let L be a 6-list-assignment of F_4^2. Every ordering with maximum v_1 and second maximum v_7 is 6-nice. Thus, by Lemma 16, we may assume that $L(v_j) = L(v_1)$ for $j \in \{2, 3, 4, 5, 6, 8\}$. Analogously, we may assume that $L(v_j) = L(v_7)$ for $j \in \{2, 3, 4, 5, 6, 8\}$. Hence all the lists are the same, say $\{1, 2, 3, 4, 5, 6\}$. Now $c(v_1) = c(v_3) = 1$, $c(v_2) = 2$, $c(v_3) = c(v_7) = 3$, $c(v_4) = 4$, $c(v_6) = 5$ and $c(v_8) = 6$ are the L-colouring of F_4^2.

(v) In $F_2^2 \cup \{v_1v_4, v_1v_6\}$, $(v_7 < v_6 < v_1 < v_4 < v_2 < v_3 < v_5)$ is p_5-nice and $p_5(v_7) > p_5(v_5)$. So, by Lemma 15, $F_2^2 \cup \{v_1v_5\}$ is p_5-choosable.

(vi) In F_6^2, $(v_4 < v_2 < v_5 < v_1 < v_3 < v_5)$ is p_6-nice and $p_6(v_4) > p_6(v_5)$. So, by Lemma 16, F_6^2 is p_6-choosable.

(vii) Let L be a p_7-list-assignment of $F_2^2 \cup \{v_9v_{10}\}$. $(v_2 < v_9 < v_{10} < v_8 < v_6 < v_4 < v_7 < v_5 < v_3 < v_1)$, $(v_2 < v_9 < v_{10} < v_8 < v_6 < v_4 < v_5 < v_7 < v_1 < v_3)$ and $(v_4 < v_9 < v_{10} < v_8 < v_6 < v_2 < v_5 < v_7 < v_1 < v_3)$ are p_7-nice. Thus, by Lemma 16, we may assume that $L(v_2) \subset L(v_1), L(v_2) \subset L(v_3)$ and $L(v_4) \subset L(v_3)$. It follows that $L(v_1) \cap L(v_4) \neq \emptyset$. Since $(v_1 < v_4 < v_{10} < v_9 < v_2 < v_8 < v_6 < v_7 < v_5 < v_3)$ is p_7-good, by Lemma 17, $F_2^2 \cup \{v_9v_{10}\}$ is L-colourable.

(viii) In F_8^2, $(v_6 < v_5 < v_7 < v_9 < v_8 < v_4 < v_3 < v_2 < v_1)$ is p_8-greedy. So, by Lemma 15, F_8^2 is p_8-choosable.

(ix) Let L be a p_9-list-assignment of $F_2^2 \cup \{v_2v_9\}$. Then $(v_2 < v_9 < v_6 < v_4 < v_5 < v_3 < v_1)$ and $(v_2 < v_9 < v_6 < v_4 < v_5 < v_3 < v_1)$ are p_9-nice so by Lemma 16, we may assume that $L(v_2) \subset L(v_3) \cap L(v_1)$. Moreover, $(v_4 < v_9 < v_6 < v_4 < v_5 < v_3 < v_1)$ is p_9-nice so by Lemma 16, we may assume that $L(v_4) = L(v_3)$. It follows that $L(v_1) \cap L(v_4) \neq \emptyset$. Thus, by Lemma 17, since $(v_1 < v_4 < v_9 < v_6 < v_4 < v_5 < v_3 < v_1)$ is p_9-good, $F_2^2 \cup \{v_2v_9\}$ is L-colourable.

By symmetry, one shows that $F_9^2 \cup \{v_6v_9\}$ is p_9-choosable.

(x) In $F_{10}^2 \cup \{v_4v_8\}$, $(v_2 < v_9 < v_4 < v_6 < v_7 < v_5 < v_3 < v_1)$ is p_{10}-nice and $p_{10}(v_2) > p_{10}(v_1)$. So, by Lemma 16, $F_{10}^2 \cup \{v_4v_8\}$ is p_{10}-choosable.

(xi) Let $F \in \{F_2^2 \cup \{v_4v_8, v_5v_9\}, F_{11}^2 \cup \{v_4v_8, v_5v_9\}, F_{11}^2 \cup \{v_4v_9, v_6v_9\}, F_{11}^2 \cup \{v_5v_9, v_6v_9\}\}$ and L be a 5-list-assignment if $F = F_{11}^2 \cup \{v_4v_9, v_6v_9\}$ and a p_{11}-list-assignment of F otherwise.

Then $(v_1 < v_4 < v_9 < v_6 < v_7 < v_5 < v_3 < v_1)$ and $(v_7 < v_9 < v_6 < v_4 < v_6 < v_2 < v_1 < v_5 < v_3)$ are p-nice in F. So by Lemma 16, we may assume that $L(v_1) = L(v_3) = L(v_5) = L(v_7)$.

If $L(v_8) \notin L(v_2)$, let us colour v_8 with $c_8 \in L(v_8) \setminus L(v_2)$, v_4 with $c_4 \in L(v_4) \setminus \{c_5\}$, v_5 with $c_5 \in L(v_5)$ and v_1 with the same colour $c_1 \in L(v_1) \setminus \{c_4, c_8, c_9\}$, v_3 with $c_3 \in L(v_3)$ and v_7 with the same colour $c_7 \in L(v_7) \setminus \{c_1, c_4, c_8, c_9\}$. This gives an L-colouring of F. So we may assume that $L(v_8) \cap L(v_2)$. Exchanging the role of c_4 in c_8 in the preceding argument, we may assume that $L(v_4) \subset L(v_2)$. Moreover by symmetry, we may assume that $L(v_9) \cup L(v_4) \subset L(v_9)$. In particular, this implies that the sets $L(v_8) \cap L(v_9), L(v_8) \cap L(v_9), L(v_9) \cap L(v_4)$ and $L(v_2) \cap L(v_6)$ are non-empty.

If $F = F_{11}^2 \cup \{v_5v_9, v_6v_9\}$ then $v_9v_8 \notin F$. Hence $(v_8 < v_9 < v_4 < v_2 < v_6 < v_7 < v_5 < v_3 < v_1)$ is p_{11}-good, so by Lemma 17, F is L-colourable.

If $F = F_{11}^2 \cup \{v_4v_8, v_6v_9\}$ then $v_8v_9 \notin F$. Hence $(v_4 < v_8 < v_9 < v_1 < v_2 < v_6 < v_7 < v_3 < v_5)$ is p_{11}-good, so by Lemma 17, F is L-colourable.

If $F = F_{11}^2 \cup \{v_4v_8, v_9v_4\}$ then $v_9v_4 \notin F$. Hence $(v_4 < v_9 < v_8 < v_1 < v_2 < v_6 < v_7 < v_3 < v_5)$ is p_{11}-good, so by Lemma 17, F is L-colourable.

If $F = F_{11}^2 \cup \{v_4v_8, v_9v_4\}$, then $(v_2 < v_6 < v_4 < v_8 < v_9 < v_7 < v_5 < v_3 < v_1)$ is 5-good. So, by Lemma 17, F is L-colourable.

(xii) In $F_{12}^2 \cup \{v_4v_5\}$, $(v_6 < v_8 < v_4 < v_2 < v_1 < v_3 < v_5 < v_7)$ is p_{12}-nice and $p_{12}(v_6) > p_{12}(v_7)$. So by Lemma 16, $F_{12}^2 \cup \{v_4v_8\}$ is p_{12}-choosable.

(xiii) Let L be a 6-list-assignment of F_{13}^2. $(v_2 < v_9 < v_{10} < v_8 < v_6 < v_4 < v_7 < v_5 < v_3 < v_1)$, $(v_2 < v_9 < v_{10} < v_8 < v_6 < v_4 < v_5 < v_7 < v_1 < v_3)$ and $(v_4 < v_9 < v_{10} < v_8 < v_6 < v_2 < v_5 < v_7 < v_1 < v_3)$ are 6-nice. Thus, by Lemma 16, we may assume that $L(v_1) = L(v_2) = L(v_3) = L(v_4)$. Because $(v_1 < v_4 < v_{10} < v_9 < v_2 < v_8 < v_6 < v_7 < v_5 < v_3)$ is 6-good, by Lemma 17, F_{13}^2 is L-colourable.
Proof of Lemma 8. To prove this lemma, we will suppose for a contradiction that it does not hold. Then we will find a set X of vertices contradicting Lemma 25. Indeed Lemma 25 will show that $G^2[X]$ is p_X-choosable and for each set X we consider, every vertex of X has at most one neighbour in $G - X$, so $(G - X)^2 = G^2 - X$. Lemma 13 completes the proof.

(i) Suppose for a contradiction that v_1 and v_3 are in $Y_{1,2,2}$. Let v_5 (resp. v_6) be the neighbour of v_1 (resp. v_3) distinct from v_2 and v_4. By Lemma 7(iv), v_4 is in V_3 and $v_5 \neq v_6$. Set $S = \{v_1, v_2, v_3, v_4, v_5, v_6\}$. Then $G[S] = F_1$, $p_S \geq p_1$ and $G^2[S] \subset F_7^2 \cup \{v_5v_6\}$. So Lemma 25 contradicts Lemma 13.

(ii) Suppose for a contradiction that, in K_G, a vertex v_4 of $Y_{1,2,2}$ is adjacent to two vertices of $Y_{1,2,2}v_2$ and v_6 by 2-edges. According to Lemma 7(iii), $v_2 \neq v_6$. Let v_3 and v_5 be the 2-neighbours of v_4 common with v_2 and v_6 respectively, and v_1 (resp. v_7) be the 2-neighbour of v_2 (resp. v_6) not adjacent to v_4. Set $S = \{v_1, \ldots, v_7\}$.

We first claim that $v_1 \neq v_7$. Suppose not. Then $(v_1, v_2, v_3, v_4, v_5, v_6, v_7)$ is a cycle C. It has no chord by Lemma 7(ii), so $C^2 = G^2[S]$. Moreover, $p_S(v_i) \geq 4$ if i is even and $p_S(v_i) \geq 3$ otherwise. C^2 is a cycle + triangle graph, thus, by Theorem 22, it is 3-choosable and so p_S-choosable. This contradicts Lemma 13.

Let w_1 (resp. w_7) be the neighbour of v_1 (resp. v_7) distinct from v_2 (resp. v_6) and for $i \in \{2, 4, 6\}$, let w_i be the neighbour of v_i not in $\{v_{i-1}, v_{i+1}\}$. Let $W = \{w_1, w_2, w_4, w_6, w_7\}$.

We claim that $W \cap S = \emptyset$. Indeed, suppose for a contradiction that $W \cap S \neq \emptyset$. Since G is simple, $w_1 \neq v_2$ and $w_7 \neq v_6$. Moreover by Lemma 7(i), w_1 and w_7 are in V_3, so $w_1 \neq v_7$ and $w_7 \neq v_1$. Furthermore, by Lemma 7(ii), $w_2 \neq v_4$ and $w_6 \neq v_4$ and by Lemma 7(iii), $w_1 \neq v_4$ and $w_7 \neq v_4$. Last, we may not have $w_1 = v_6$ and $w_2 = v_7$ otherwise the 4-cycle $(v_1, v_6, v_7, v_2, v_1)$ would contradict Lemma 7(iii). Then, by symmetry, we only need to consider the cases $w_2 = v_6$, $w_2 = v_7$.

- Assume that $w_2 = v_6$. Then $G[S] = F_2$, $p_S \geq p_2$ and $G^2[S] \subset F_2^2 \cup \{v_1v_4, v_4v_7, v_1v_7\}$. Thus, by Lemmas 25 and 13, $F_2^2 \cup \{v_1v_7\} \subset G^2[S]$, so $w_1 = w_7 = v_8$. Let $T = S \cup \{v_8\}$. If $v_8 \neq w_4$, then $G[T] = F_3$ and $p_T \geq p_3$ and $G^2[T] \subset F_3^2 \cup \{v_4v_8\}$. So Lemma 25 contradicts Lemma 13. If not then $G[T] = G = F_4$, so G is 6-choosable, by Lemma 25. This is a contradiction.

- Suppose that $w_2 = v_7$. Then $G[S] = F_3$, $p_S \geq p_3$ and $G^2[S] \subset F_3^2 \cup \{v_1v_4, v_1v_6\}$. Thus Lemma 25 contradicts Lemma 13.

This proves the claim.

Note that by Lemma 7(ii), $w_1 \neq w_2$ and $w_6 \neq w_7$.

Suppose $w_1 = w_4 = v_8$. Then let $R = \{v_1, v_2, v_3, v_4, v_5, v_8\}$ and w_8 be the neighbour of v_8. Then $(G[R], p_R) = (F_6, p_6)$ and $G^2[R] = F_6^2$. Thus Lemma 25 contradicts Lemma 13. Therefore, $w_1 \neq w_4$ and, by symmetry, $w_4 \neq w_7$.

Suppose $w_1 = w_7 = v_8$. Let $T = S \cup \{v_8\}$. Then $G[T]$ is the cycle C_8 and p_T is greater or equal to the function p defined in Lemma 23. So, by Lemmas 23 and 13, $G^2[T] \neq C_8^2$. It follows that either $w_2 = w_6$ or $w_4 = w_8$ with w_8 be the neighbour of v_8 not in S.

- Suppose $w_2 = w_6 = v_9$, and $w_4 = w_8 = v_{10}$. Set $W = \{v_1, \ldots, v_{10}\}$. If $v_9v_{10} \not\in E(G)$ then $G[W] = F_7$, $p_W \geq p_7$ and $G^2[W] \subset F_7^2 \cup \{v_9v_{10}\}$; so Lemma 25 contradicts Lemma 13. If not, $G = G[W] = F_{13}$, so G^2 is 6-choosable, according to Lemma 25, a contradiction.

- Suppose $w_2 = w_4 = w_6 = v_9$. Setting $U = \{v_1, \ldots, v_9\}$, we have $(G[U], p_U) = (F_8, p_8)$ and $G^2[U] = F_8^2$. Hence Lemma 25 contradicts Lemma 13.

By symmetry, we get a contradiction if $w_2 = w_6 = v_8$, $w_2 = w_4 = v_8$ or $w_4 = w_6 = v_8$.

- Suppose $w_4 = w_8 = v_9$, $w_2 \neq v_9$, $w_6 \neq v_9$ and $w_2 \neq w_6$. Setting $U = \{v_1, \ldots, v_9\}$, we have $G[U] = F_9$, $p_U \geq p_9$ and $G^2[U] \subset F_9^2 \cup \{v_2v_9\}$ or $G^2[U] \subset F_9^2 \cup \{v_6v_9\}$. Hence Lemma 25 contradicts Lemma 13.

By symmetry, we get a contradiction if $w_2 = w_6 = v_9$, $w_4 \neq v_9$, $w_8 \neq v_9$ and $w_4 \neq w_8$.

Therefore, $w_1 \neq w_7$.

Suppose that $w_2 = w_6 = v_8$. Let $T = S \cup \{v_8\}$. Then $G[T] = F_{10}$, $p_T \geq p_{10}$, and $G^2[T] \subset F_{10}^2 \cup \{v_4v_8\}$, since w_1, w_4 and w_7 are distinct vertices. Hence Lemma 25 contradicts Lemma 13.

Therefore, $w_2 \neq w_6$.

Suppose that $w_1 = w_6 = v_8$ and $w_2 = w_7 = v_9$. Let $U = S \cup \{v_8, v_9\}$. Then $G[U] = F_{11}$ and $G^2[U]$ is a subgraph of $F_{11}^2 \cup \{v_4v_8, v_8v_9, v_9v_4\}$. Moreover $p_U \geq p_{11}$ and, if $G^2[U] = F_{11}^2 \cup \{v_4v_8, v_8v_9, v_9v_4\}$, $p_U(v_1) = 5$ for $1 \leq i \leq 9$. Hence Lemma 25 contradicts Lemma 13.
Lemma 13

Fig. 4. The graphs I_j and functions q_j, $1 \leq j \leq 4$.

Therefore, $w_1 \neq w_6$ or $w_2 \neq w_7$. By symmetry, $w_2 \neq w_6$.

Suppose $w_1 = w_6 = w_8$. Let $T = S \cup \{v_8\}$ and let u_8 be the neighbour of v_8 not in S. Then $G[T] = F_{12}$, $p_T \geq p_{12}$ and $G^2[T] \subseteq F^2_{12} \cup \{v_4v_8\}$. Hence Lemma 25 contradicts Lemma 13.

Therefore, $u_8 \neq w_6$.

Hence all the w_i are distinct, so $G[S]^2 = G^2[S]$. Thus Proposition 24 contradicts Lemma 13. □

Remark 26. The proof of Lemma 8 in the case of planar graphs of girth at least 9 is simpler and shorter because all the configurations considered in the above proof (except the path P_7) have girth less than 9. Thus Corollary 6 has a short direct proof which requires only Proposition 24.

3.3. Proof of Lemma 11

Definition 27. For $1 \leq j \leq 4$, let I_j and q_j be the graphs and functions depicted in Fig. 4.

Lemma 28. For $1 \leq j \leq 4$, I_j^2 is q_j-choosable.

Proof. Let L be a q_1-list-assignment of I_1^2. The orderings $(v_4 < v_3 < v_1 < v_2)$ and $(v_1 < v_3 < v_4 < v_2)$ are q_1-nice. So, by Lemma 16, we may assume that $L(v_1) \cup L(v_4) \subset L(v_2)$. Hence $L(v_1) \cap L(v_4) \neq \emptyset$. But $(v_4 < v_1 < v_3 < v_2)$ is q_1-good. Thus, by Lemma 17, I_1^2 is L-colourable.

• Let L be a q_2-list-assignment of I_2^2.

Suppose first that $L(v_3) \not\subseteq L(v_1) \cup L(v_6)$. Then choose $c(v_3) \in L(v_3) \setminus (L(v_1) \cup L(v_6))$ and $c(v_4) \in L(v_4) \setminus \{c(v_3)\}$. Since I_2^2 is q_1-choosable, one can extend c to $\{v_5, v_6, v_7, v_8\}$. Then one can find $c(v_2) \in L(v_2) \setminus \{c(v_3), c(v_4), c(v_5)\}$ and $c(v_1) \in L(v_1) \setminus \{c(v_2), c(v_3)\} = L(v_1) \setminus \{c(v_2)\}$. Hence we may assume that $L(v_3) \subset L(v_1) \cup L(v_6)$, so $L(v_3) = L(v_1) \cup L(v_6)$ and $L(v_1) \cap L(v_6) = \emptyset$.

Suppose now that $L(v_4) \cap L(v_6) \neq \emptyset$. Then colour v_4 and v_6 with the same colour $c(v_4) = c(v_6) \in L(v_4) \cap L(v_6)$. Choose $c(v_8) \in L(v_8) \setminus \{c(v_6)\}$ and $c(v_7) \in L(v_7) \setminus \{c(v_6), c(v_8)\}$. Now since I_2^2 is q_1-choosable, one can extend c into an L-colouring of I_2^2. So we may assume that $L(v_4) \cap L(v_6) = \emptyset$. Now $(v_4 < v_1 < v_6 < v_8 < v_7 < v_5 < v_3 < v_2)$ is q_2-good so, by Lemma 17, we may assume that $L(v_4) \cap L(v_1) = \emptyset$. It follows that $L(v_4) \cap L(v_3) = \emptyset$ since $L(v_3) = L(v_1) \cup L(v_6)$.

The ordering $(v_4 < v_8 < v_6 < v_7 < v_5 < v_3 < v_2)$ is q_2-nice so, by Lemma 16, we may assume that $L(v_4) \subset L(v_2)$. Then one may assign $c(v_4) \in L(v_4)$ and $c(v_2) \in L(v_2) \setminus \{c(v_4)\}$ to the vertices v_4 and v_2. Now, because $L(v_4) \cap L(v_3) = \emptyset$, one can extend c into an L-colouring of I_2^2 by colouring greedily according to the ordering $(v_1 < v_8 < v_6 < v_7 < v_5 < v_3)$.

• Let L be a q_3-list-assignment of I_3^2. Assign to v_5 a colour c_5 in $L(v_5) \setminus (L(v_1) \cup L(v_9))$ and to v_6 a colour in $L(v_6) \setminus (L(v_8) \cup \{c_5\})$. Then colour the remaining vertices greedily according to $(v_3 < v_4 < v_2 < v_1 < v_9 < v_7 < v_8)$ to get an L-colouring of I_3^2.

• Let L be q_4-list-assignment of I_4^2. Pick $c(y_1) \in L(y_1) \setminus L(w_1)$, $c(y_2) \in L(y_2) \setminus (L(w_2) \cup \{c(y_1)\})$, $c(y_3) \in L(y_3) \setminus (L(w_3) \cup \{c(y_1), c(y_2)\})$ and $c(x) \in L(x) \setminus \{c(y_1), c(y_2), c(y_3)\}$. Since I_4^2 is q_1-choosable, one can extend c to a colouring of I_4^2. □
Proof of Lemma 11. (i) Suppose that a vertex v_3 of $Y_{2,2,3}$ and v_6 of $Y_{1,2,3} \cup Y_{2,2,3}$ are adjacent via a 2-edge in K_G. Then the subgraph of G induced by v_3, v_6 and the 2-vertices of their incident threads contains I_2 as an induced subgraph. (It is I_2 if v_6 is in $Y_{1,2,3}$ and has one extra vertex otherwise.) Since G has girth at least 13, then $G^2[V(I_2)] = I_2^2$, $(G - V(I_2))^2 = G^2 - V(I_2)$ and $p_{V[I_2]} = q_2$, so Lemma 28 contradicts Lemma 13.

(ii) Suppose that a vertex v_5 of $Y_{1,3,3}$ and v_6 of $Y_{1,2,3} \cup Y_{1,3,3}$ are adjacent via a 1-edge in K_G. Then the subgraph of G induced by v_5, v_6 and the 2-vertices of their incident threads contains I_3. So Lemma 28 contradicts Lemma 13.

(iii) Suppose that a vertex x of $Y_{2,2,2}$ is adjacent to three vertices v_1, v_2 and v_3 of $Y_{2,2,3}$ in K_G. Then the subgraph of G induced by x, v_1, v_2, v_3 and the 2-vertices of their incident threads is I_4. So Lemma 28 contradicts Lemma 13. □

Acknowledgements

The author would like to thank André Raspaud and Riste Škrekovski for the stimulating discussions. He is also grateful to the two anonymous referees whose comments helped very much to improve the presentation of this paper. The author is partially supported by the European Project IST AELUS.

References