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1. Introduction

Consider the following second-order Hamiltonian system

ü(t) − L(t)u(t) + Wu
(
t, u(t)

) = 0, t ∈ R, (HS)

where u = (u1, u2, . . . , uN ) ∈ R
N , W ∈ C1(R × R

N ,R), and L ∈ C(R,R
N×N ) is a symmetric matrix-valued function. As usual

we say that a solution u of (HS) is homoclinic (to 0) if u ∈ C2(R,R
N×N ), u �= 0, u(t) → 0 and u̇(t) → 0 as |t| → ∞.

Inspired by the excellent monographs [1,2], by now, the existence and multiplicity of periodic and homoclinic solutions
for second-order Hamiltonian systems have been extensively investigated in many papers (see [3–19] and the references
therein) via variational methods. Also second-order Hamiltonian systems with impulses via variational methods have been
recently considered in [20–22].

More precisely, many authors studied the existence and multiplicity of homoclinic solutions for (HS), such as [7–19].
Some of them treated the case where L(t) and W (t, u) are either independent of t or periodic in t , see for instance [7–9],
and a more general case is considered in the recent paper [9]. In this case, the existence of homoclinic solutions can be
obtained by going to the limit of periodic solutions of approximating problems.

If L(t) is neither a constant nor periodic in t , the problem of existence of homoclinic solutions for (HS) is quite different
from the one just described, due to the lack of compactness of the Sobolev embedding. After the work of Rabinowitz and
Tanaka [10], many results [11–19] were obtained for the case where L(t) is neither a constant nor periodic in t . More
precisely, recently, Zhang and Yuan [17] studied existence of homoclinic solutions for (HS) and obtained the existence of a
nontrivial homoclinic solution for (HS) by using a standard minimizing argument.
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Theorem 1.1. (See [17, Theorem 1.1].) Assume that L and W satisfy the following conditions:

(H1) L ∈ C(R,R
N×N ) and L(t) is a symmetric and positive definite matrix for all t ∈ R and there is a continuous function α : R → R

such that α(t) > 0 for all t ∈ R and (L(t)u, u) � α(t)|u|2 and α(t) → +∞ as |t| → +∞;

(H2) W (t, u) = a(t)|u|γ where a : R → R
+ is a positive continuous function such that a ∈ L2(R,R) ∩ L

2
2−γ (R,R) and 1 < γ < 2 is

a constant.

Then (HS) possesses a nontrivial homoclinic solution.

In [17], authors pointed out that under the assumptions of Theorem 1.1, they were not sure whether (HS) has infinitely
many homoclinic solutions, though W (t, u) is even with respect to u. Motivated by the above fact, in this paper our aim
is to study the existence of infinitely many homoclinic solutions for (HS) under some conditions weaker than those in the
previous theorem. Our tool is the variant fountain theorem established in [23].

Now, we state our main result.

Theorem 1.2. Let the above condition (H1) holds. Moreover, assume that the following condition holds:

(H2)
′ W (t, u) = a(t)|u|γ where a : R → R

+ is a continuous function such that a(t) ∈ L
2

2−γ (R,R) and 1 < γ < 2 is a constant.

Then (HS) possesses infinitely many homoclinic solutions.

Remark 1.1. Obviously, the condition (H2)
′ is weaker than the condition (H2), and it also implies that inft∈R a(t) = 0. Indeed,

if we choose a(t) = (1 + |t|)− 1
2 , then a ∈ L

2
2−γ (R,R) and inft∈R a(t) = 0, but a /∈ L2(R,R). In addition, we obtain infinitely

many homoclinic solutions for (HS), not a nontrivial homoclinic solution. So we generalize and significantly improve Theo-
rem 1.1 in [17].

Remark 1.2. Compared with the case where W (t, u) is superquadratic as |u| → +∞, the case where W (t, u) is subquadratic
as |u| → +∞ has been considered only by a few authors. For example, in [12,19] the authors studied this case. They all
obtained (HS) has infinitely many homoclinic solutions. But due to inft∈R a(t) = 0, there is no constant b > 0 such that
W (t, u) = a(t)|u|γ � b|u|γ for any (t, u) ∈ R × R

N . W (t, u) = a(t)|u|γ does not satisfy the conditions (W3) and (W5)

in [12]. Also W does not satisfy the conditions (W3) and (W4) in [19]. Therefore we also extend Theorem 1.2 in [12] and
Theorem 1.1 in [19].

The remainder of this paper is organized as follows. In Section 2, some preliminary results are presented. In Section 3,
we give the proof of Theorem 1.2 and an example is also given to illustrate our main results.

2. Preliminaries

In this section, the following theorem will be needed in our argument. Let E be a Banach space with the norm ‖ · ‖
and E = ⊕

j∈N
X j with dim X j < ∞ for any j ∈ N. Set Yk = ⊕k

j=0 X j , Zk = ⊕∞
j=k X j . Consider the following C1-functional

ϕλ : E → R defined by

ϕλ(u) = A(u) − λB(u), λ ∈ [1,2].

Theorem 2.1. (See [23, Theorem 2.2].) Suppose that the functional ϕλ(u) defined above satisfies:

(C1) ϕλ maps bounded sets to bounded sets uniformly for λ ∈ [1,2]. Furthermore, ϕλ(−u) = ϕλ(u) for all (λ, u) ∈ [1,2] × E.
(C2) B(u) � 0; B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace of E.
(C3) There exist ρk > rk > 0 such that ak(λ) := infu∈Zk,‖u‖=ρk ϕλ(u) � 0 > bk(λ) := maxu∈Yk,‖u‖=rk ϕλ(u) for λ ∈ [1,2], dk(λ) :=

infu∈Zk,‖u‖�ρk ϕλ(u) → 0 as k → ∞ uniformly for λ ∈ [1,2].

Then there exist λn → 1, u(λn) ∈ Yn such that ϕ′
λn

|Yn (u(λn)) = 0,ϕλn (u(λn)) → ck ∈ [dk(2),bk(1)] as n → ∞. In particular, if
{u(λn)} has a convergent subsequence for every k, then ϕ1 has infinitely many nontrivial critical points {uk} ⊂ E \ {0} satisfying
ϕ1(uk) → 0− as k → ∞.

Like in [17], let

E =
{

u ∈ H1(
R,R

N)
:

∫ [∣∣u̇(t)
∣∣2 + (

L(t)u(t), u(t)
)]

dt < +∞
}
.

R
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Then the space E is a Hilbert space with the inner product

〈u, v〉 =
∫
R

(
u̇(t), v̇(t)

) + (
L(t)u(t), v(t)

)
dt,

where (·,·) denotes the inner product in R
N . Denote by E∗ its dual space with the associated operator norm ‖ · ‖E∗ . Note

that E is continuously embedded into L p(R,R
N ) for all p ∈ [2,+∞]. Therefore, there exists a constant C > 0 such that

‖u‖p � C‖u‖, ∀u ∈ E. (2.1)

Lemma 2.1. (See [11, Lemma 1].) Suppose that L(t) satisfies (H1). Then the embedding of E in L2(R,R
N ) is compact.

Lemma 2.2. Suppose that (H1) and (H2)
′ are satisfied. If uk ⇀ u (weakly) in E, then Wu(t, uk) → Wu(t, u) in L2(R,R

N ).

Proof. Assume that uk ⇀ u in E . Then uk → u in L2(R,R
N ) by Lemma 2.1, passing to a subsequence if necessary, we have

‖uk − u‖2 → 0, as k → ∞.

So it can be assumed that
∞∑

k=1

‖uk − u‖2 < +∞,

which implies that uk(t) → u(t) for almost every t ∈ R and

∞∑
k=1

∣∣uk(t) − u(t)
∣∣ = h(t) ∈ L2(R,R). (2.2)

Furthermore, by the fact that W u(t, u) = γ a(t)|u|γ −2u, one has∣∣Wu(t, uk) − Wu(t, u)
∣∣ � γ a(t)

(|uk|γ −1 + |u|γ −1),
which yields that∣∣Wu(t, uk) − Wu(t, u)

∣∣2 � 2γ 2a(t)2(|uk|2γ −2 + |u|2γ −2)
� 2γ 2a(t)2(|uk − u|2γ −2 + 2|u|2γ −2). (2.3)

Therefore, by (2.2) and (2.3), we have∣∣Wu(t, uk) − Wu(t, u)
∣∣2 � 2γ 2a(t)2(∣∣h(t)

∣∣2γ −2 + 2|u|2γ −2),
which yields that, combining (2.1) and the Hölder inequality,∫

R

∣∣Wu(t, uk) − Wu(t, u)
∣∣2

dt � 2γ 2
∫
R

a(t)2(∣∣h(t)
∣∣2γ −2 + 2|u|2γ −2)

� 2γ 2‖a‖2
2

2−γ

(‖h‖2γ −2
2 + 2‖u‖2γ −2

2

)
� 2γ 2‖a‖2

2
2−γ

(‖h‖2γ −2
2 + 2C2γ −2‖u‖2γ −2).

By using the Lebesgue dominated convergence theorem, the lemma is proved. �
Define the functional ϕ on E by

ϕ(u) = 1

2

∫
R

[∣∣u̇(t)
∣∣2 + (

L(t)u(t), u(t)
)]

dt −
∫
R

W
(
t, u(t)

)
dt

= 1

2
‖u‖2 −

∫
R

W
(
t, u(t)

)
dt

= 1

2
‖u‖2 − Φ(u), (2.4)

where Φ(u) := ∫
W (t, u(t))dt .
R
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Lemma 2.3. Under the conditions (H1) and (H2)
′ , we have

ϕ′(u)v =
∫
R

[(
u̇(t), v̇(t)

) + (
L(t)u(t), v(t)

)]
dt −

∫
R

(
Wu

(
t, u(t)

)
, v(t)

)
dt

=
∫
R

[(
u̇(t), v̇(t)

) + (
L(t)u(t), v(t)

)]
dt − Φ ′(u)v (2.5)

for any u, v ∈ E, which yields that

ϕ′(u)u = ‖u‖2 −
∫
R

(
Wu

(
t, u(t)

)
, u(t)

)
dt. (2.6)

Moreover, ϕ ∈ C1(E,R),Φ ′ : E → E∗ is compact, and any critical point of ϕ on E is a classical solution of (HS) satisfying u(t) → 0
and u̇(t) → 0 as |t| → +∞.

Proof. We firstly show that ϕ : E → R. By (2.1) and the Hölder inequality, we have

0 �
∫
R

W
(
t, u(t)

)
dt =

∫
R

a(t)
∣∣q(t)

∣∣γ dt � ‖a‖ 2
2−γ

‖u‖γ
2 � Cγ ‖a‖ 2

2−γ
‖u‖γ . (2.7)

Combining (2.4) and (2.7), we show that ϕ : E → R.
Next we prove that ϕ ∈ C1(E,R). By (2.4) we have

ϕ(u) = 1

2
‖u‖2 − Φ(u),

where

Φ(u) =
∫
R

W
(
t, u(t)

)
dt.

It is sufficient to show that Φ ∈ C1(E,R). In the process we will see that

Φ ′(u)v =
∫
R

(
Wu

(
t, u(t)

)
, v(t)

)
dt, (2.8)

which is defined for all u, v ∈ E . For any given u ∈ E , let us define J (u) : E → R as follows:

J (u)v =
∫
R

(
Wu

(
t, u(t)

)
, v(t)

)
dt, v ∈ E.

It is clear that J (u) is linear. Now we show that J (u) is bounded. Indeed, for any given u ∈ E , by (2.1) and the Hölder
inequality, we obtain

∣∣ J (u)v
∣∣ =

∣∣∣∣
∫
R

(
Wu

(
t, u(t)

)
, v(t)

)
dt

∣∣∣∣ �
∫
R

a(t)
∣∣u(t)

∣∣γ −1∣∣v(t)
∣∣dt

�
(∫

R

a(t)
∣∣u(t)

∣∣γ −1
dt

) 1
2

‖v‖2

� ‖a‖ 2
2−γ

‖u‖γ −1
2 ‖v‖2

� Cγ ‖a‖ 2
2−γ

‖u‖γ −1‖v‖. (2.9)

Moreover, for any u, v ∈ E , by the Mean Value Theorem, we have∫
R

W
(
t, u(t) + v(t)

)
dt −

∫
R

W
(
t, u(t)

)
dt =

∫
R

(
Wu

(
t, u(t) + θ(t)v(t)

)
, v(t)

)
dt,

where θ(t) ∈ (0,1). Therefore, by Lemma 2.2 and the Hölder inequality, one has
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∫
R

(
Wu

(
t, u(t) + θ(t)v(t)

)
, v(t)

)
dt −

∫
R

(
Wu

(
t, u(t)

)
, v(t)

)
dt

=
∫
R

(
Wu

(
t, u(t) + θ(t)v(t)

) − Wu
(
t, u(t)

)
, v(t)

)
dt → 0 (2.10)

as v → 0 in E . Combining (2.9) and (2.10), we see that (2.8) holds. Similar to the proof of Lemma 3.1 in [17], we obtain Φ ′
is continuous. Therefore, ϕ ∈ C1(E,R) and

ϕ′(u)v =
∫
R

[(
u̇(t), v̇(t)

) + (
L(t)u(t), v(t)

)]
dt −

∫
R

(
Wu

(
t, u(t)

)
, v(t)

)
dt

for any u, v ∈ E , which yields that

ϕ′(u)u = ‖u‖2 −
∫
R

(
Wu

(
t, u(t)

)
, u(t)

)
dt.

Now we verify that Φ ′ : E → E∗ is compact. Letting uk ⇀ u (weakly) in E , by Lemma 2.2, we have W u(t, uk) → Wu(t, u) in
L2(R,R

N ), i.e.,(∫
R

∣∣Wu(t, uk) − Wu(t, u)
∣∣2

dt

) 1
2

→ 0, as k → ∞. (2.11)

Then by (2.1), (2.11) and the Hölder inequality, we have∥∥Φ ′(uk) − Φ ′(u)
∥∥

E∗ = sup
‖v‖=1

∥∥(
Φ ′(uk) − Φ ′(u)

)
v
∥∥

= sup
‖v‖=1

∣∣∣∣
∫
R

〈
Wu(t, uk) − Wu(t, u), v

〉
dt

∣∣∣∣
� sup

‖v‖=1

[(∫
R

∣∣Wu(t, uk) − Wu(t, u)
∣∣2

dt

) 1
2

‖v‖2

]

� C

(∫
R

∣∣Wu(t, uk) − Wu(t, u)
∣∣2

dt

) 1
2

→ 0, as k → ∞.

Consequently, Φ ′ is weakly continuous. Therefore, Φ ′ is compact by the weakly continuity of Φ ′ since E is a Hilbert space.
Finally, as the discussion in Lemma 3.1 of [17], we obtain that the critical points of ϕ are classical solutions of (HS)

satisfying u ∈ C2(R,R
N ), u(t) → 0 and u̇(t) → 0 as |t| → ∞. The proof is complete. �

3. Main results

In order to apply Theorem 2.1, we define the functionals A, B and ϕλ on our working space E by

A(u) = 1

2
‖u‖2, B(u) =

∫
R

W (t, u)dt,

and

ϕλ(u) = A(u) − λB(u)

= 1

2
‖u‖2 − λ

∫
R

W (t, u)dt

for all u ∈ E and λ ∈ [1,2]. From Lemma 2.3, we know that ϕλ(u) ∈ C1(E,R) for all λ ∈ [1,2]. We choose a completely
orthonormal basis {e j} of E and define X j := Re j . Then Zk, Yk can be defined as that in the beginning of Section 2. Note
that ϕ1 = ϕ , where ϕ is the functional defined in (2.4).

Lemma 3.1. Let (H1) and (H2)
′ be satisfied, then B(u) � 0. Moreover, B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace

of E.
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Proof. Obviously, B(u) � 0 follows by the definition of the functional B and (H2)
′ . Now we claim that B(u) → ∞ as

‖u‖ → ∞ on any finite dimensional subspace of E . Due to inft∈R a(t) = 0, there is no constant b > 0 such that W (t, u) =
a(t)|u|γ � b|u|γ for any (t, u) ∈ R × R

N . Therefore, we have to find another way to overcome this difficulty. For any finite
dimensional subspace F ⊂ E , there exists ε1 > 0 such that

meas
{

t ∈ R: a(t)
∣∣u(t)

∣∣γ � ε1‖u‖γ
}

� ε1, ∀u ∈ F \ {0}. (3.1)

Otherwise, for any positive integer n, there exists un ∈ F \ {0} such that

meas

{
t ∈ R: a(t)

∣∣un(t)
∣∣γ � 1

n
‖un‖γ

}
<

1

n
.

Set vn(t) := un(t)
‖un‖ ∈ F \ {0}, then ‖vn‖ = 1 for all n ∈ N and

meas

{
t ∈ R: a(t)

∣∣vn(t)
∣∣γ � 1

n

}
<

1

n
. (3.2)

Since dim F < ∞, it follows from the compactness of the unit sphere of F that there exists a subsequence, say {vn}, such
that vn converges to some v0 in F . Hence, we have ‖v0‖ = 1. By the equivalence of the norms on the finite dimensional
space F , we have vn → v0 in L2(R,R

N ), i.e.,∫
R

|vn − v0|2 dt → 0, as n → ∞. (3.3)

By (3.3) and the Hölder inequality, we have

∫
R

a(t)|vn − v0|γ dt �
(∫

R

a(t)
2

2−γ dt

) 2−γ
2

(∫
R

|vn − v0|2 dt

) γ
2

= ‖a‖ 2
2−γ

(∫
R

|vn − v0|2 dt

) γ
2

→ 0, as n → ∞. (3.4)

Thus there exist ξ1, ξ2 > 0 such that

meas
{

t ∈ R: a(t)
∣∣v0(t)

∣∣γ � ξ1
}

� ξ2. (3.5)

In fact, if not, for all positive integers n, we have

meas

{
t ∈ R: a(t)

∣∣v0(t)
∣∣γ � 1

n

}
= 0.

It implies that

0 �
∫
R

a(t)
∣∣v0(t)

∣∣γ +2
dt <

1

n
‖v0‖2

2 � C2

n
‖v0‖2 = C2

n
→ 0,

as n → ∞ by (2.1). Hence v0 = 0 which contradicts that ‖v0‖ = 1. Therefore, (3.5) holds.
Now let

Ω0 = {
t ∈ R: a(t)

∣∣v0(t)
∣∣γ � ξ1

}
, Ωn =

{
t ∈ R: a(t)

∣∣vn(t)
∣∣γ <

1

n

}

and Ωc
n = R \ Ωn = {t ∈ R: a(t)|vn(t)|γ � 1

n }. By (3.2) and (3.5), we have

meas(Ωn ∩ Ω0) = meas
(
Ω0 \ (

Ωc
n ∩ Ω0

))
� meas(Ω0) − meas

(
Ωc

n ∩ Ω0
)

� ξ2 − 1

n

for all positive integers n. Let n be large enough such that ξ2 − 1 � 1 ξ2 and 1
γ −1 ξ1 − 1 � 1

γ ξ1. Then we have
n 2 2 n 2
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∫
R

a(t)|vn − v0|γ dt �
∫

Ωn∩Ω0

a(t)|vn − v0|γ dt

� 1

2γ −1

∫
Ωn∩Ω0

a(t)|v0|γ dt −
∫

Ωn∩Ω0

a(t)|vn|γ dt

�
(

1

2γ −1
ξ1 − 1

n

)
meas(Ωn ∩ Ω0)

� ξ1

2γ
· ξ2

2
= ξ1ξ2

2γ +1
> 0

for all large n, which is a contradiction to (3.4). Therefore, (3.1) holds. For the ε1 given in (3.1), let

Ωu = {
t ∈ R: a(t)

∣∣u(t)
∣∣γ � ε1‖u‖γ

}
, ∀u ∈ F \ {0}. (3.6)

Then by (3.1),

meas(Ωu) � ε1, ∀u ∈ F \ {0}. (3.7)

Combining (H2)
′ and (3.7), for any u ∈ F \ {0}, we have

B(u) =
∫
R

W (t, u)dt =
∫
R

a(t)
∣∣u(t)

∣∣γ dt

�
∫
Ωu

a(t)
∣∣u(t)

∣∣γ dt

� ε1‖u‖γ meas(Ωu) � ε2
1‖u‖γ .

This implies B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace of E . The proof is complete. �
Lemma 3.2. Under the assumptions of Theorem 1.2, there exists a sequence ρk → 0+ as k → ∞ such that

ak(λ) := inf
u∈Zk,‖u‖=ρk

ϕλ(u) � 0,

and

dk(λ) := inf
u∈Zk,‖u‖�ρk

ϕλ(u) → 0, as k → ∞ uniformly for λ ∈ [1,2],

where Zk = ⊕∞
j=k X j = span{ek, . . .} for all k ∈ N.

Proof. Set βk := supu∈Zk,‖u‖=1 ‖u‖2. Then βk → 0 as k → ∞. Indeed, it is clear that 0 < βk+1 � βk , so that βk → β � 0, as
k → ∞. For every k � 0, there exists uk ∈ Zk such that ‖uk‖ = 1 and ‖uk‖2 > βk/2. By definition of Zk , uk ⇀ 0 in E . Then it
implies that uk → 0 in L2(R,R

N ) by Lemma 2.1. Thus we have proved that β = 0. By (H2)
′ and the Hölder inequality, we

have

ϕλ(u) = 1

2
‖u‖2 − λ

∫
R

W (t, u)dt

� 1

2
‖u‖2 − 2

∫
R

W (t, u)dt

� 1

2
‖u‖2 − 2‖a‖ 2

2−γ
‖u‖γ

2

� 1

2
‖u‖2 − 2β

γ
k ‖a‖ 2

2−γ
‖u‖γ . (3.8)

Let ρk = (8β
γ
k ‖a‖ 2

2−γ
)1/(2−γ ) . Obviously, ρk → 0 as k → ∞. Combining this with (3.8), straightforward computation shows

that

ak(λ) := inf ϕλ(u) � 1
ρ2

k > 0.

u∈Zk,‖u‖=ρk 4
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Furthermore, by (3.8), for any u ∈ Zk with ‖u‖ � ρk , we have

ϕλ(u) � −2β
γ
k ‖a‖ 2

2−γ
‖u‖γ .

Therefore,

0 � inf
u∈Zk,‖u‖�ρk

ϕλ(u) � −2β
γ
k ‖a‖ 2

2−γ
‖u‖γ .

Since βk,ρk → 0 as k → ∞, we have

dk(λ) := inf
u∈Zk,‖u‖�ρk

ϕλ(u) → 0, as k → ∞ uniformly for λ ∈ [1,2].

The proof is complete. �
Lemma 3.3. Under the assumptions of Theorem 1.2, for the sequence {ρk}k∈N obtained in Lemma 3.2, there exist 0 < rk < ρk for all
k ∈ N such that

bk(λ) := max
u∈Yk,‖u‖=rk

ϕλ(u) < 0 for all λ ∈ [1,2],

where Yk = ⊕k
j=1 X j = span{e1, . . . , ek} for all k ∈ N.

Proof. For any u ∈ Yk (a finite dimensional subspace of E) and λ ∈ [1,2], by (H2)
′ , (3.6) and (3.7), we have

ϕλ(u) = 1

2
‖u‖2 − λ

∫
R

W (t, u)dt

� 1

2
‖u‖2 −

∫
Ωu

a(t)
∣∣u(t)

∣∣γ dt

� 1

2
‖u‖2 − ε1‖u‖γ meas(Ωu)

� 1

2
‖u‖2 − ε2

1‖u‖γ . (3.9)

Choose 0 < rk < min{ρk, ε
2

2−γ

1 }. By (3.9), direct computation shows that

bk(λ) := max
u∈Yk,‖u‖=rk

ϕλ(u) � − r2
k

2
< 0, ∀k ∈ N.

The proof is complete. �
Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Evidently, the condition (C1) in Theorem 2.1 holds. By Lemmas 3.1, 3.2 and 3.3, conditions (C2) and
(C3) in Theorem 2.1 are also satisfied. Therefore, by Theorem 2.1 there exist λn → 1, u(λn) ∈ Yn such that

ϕ′
λn

∣∣
Yn

(
u(λn)

) = 0, ϕλn

(
u(λn)

) → ck ∈ [
dk(2),bk(1)

]
, as n → ∞. (3.10)

For the sake of notational simplicity, in what follows we always set un = uλn for all n ∈ N.
Now we show that {un} is bounded in E . Indeed, by (H2)

′ , (2.1), (3.10) and the Hölder inequality, we have

‖un‖2 = 2ϕλn(un) + 2λn

∫
R

a(t)
∣∣un(t)

∣∣γ dt

� M + 4‖a‖ 2
2−γ

‖un‖γ
2

� M + 4Cγ ‖a‖ 2
2−γ

‖un‖γ , ∀n ∈ N, (3.11)

for some M > 0. Since 1 < γ < 2, (3.11) yields {un} is bounded in E .
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Finally, we show that {un} possesses a strong convergent subsequence in E . In fact, in view of the boundedness of {un},
without loss of generality, we may assume

un ⇀ u0, as n → ∞, (3.12)

for some u0 ∈ E . By virtue of the Riesz Representation Theorem, ϕ′
λn

|Yn : Yn → Y ∗
n and Φ ′ : E → E∗ can be viewed as

ϕ′
λn

|Yn : Yn → Yn and Φ ′ : E → E respectively, where Y ∗
n is the dual space of Yn . Note that

0 = ϕ′
λn

∣∣
Yn

(un) = un − λn PnΦ
′(un), ∀n ∈ N,

where Pn : E → Yn is the orthogonal projection for all n ∈ N. That is,

un = λn PnΦ
′(un), ∀n ∈ N. (3.13)

By Lemma 2.3, we obtain Φ ′ : E → E is also compact. Combining this with the boundedness of {un} and (3.12), one has the
right-hand side of (3.13) converges strongly in E and hence un → u0 in E .

Now from the last assertion of Theorem 2.1, we know that ϕ = ϕ1 has infinitely many nontrivial critical points. Therefore,
(HS) possesses infinitely many nontrivial homoclinic solutions by Lemma 2.3. The proof of Theorem 1.2 is complete. �
Example 3.1. Consider the following Hamiltonian system with N = 3:

ü(t) − L(t)u(t) + Wu
(
t, u(t)

) = 0, ∀t ∈ R, (3.14)

where

L(t) =
(1 + t2 0 0

0 1 + t2 0
0 0 1 + t2

)
, W (t, u) =

(
1

1 + |t|
) 1

2

|u| 3
2 .

Let α(t) = t2, γ = 3
2 and

a(t) =
(

1

1 + |t|
) 1

2

.

Clearly, (H1) and (H2)
′ in Theorem 1.2 hold. Therefore, by applying Theorem 1.2, we obtain that Hamiltonian system (3.14)

possesses infinitely many homoclinic solutions. However, it is easy to see that (H2) in Theorem 1.1 is not satisfied. So we
cannot obtain the existence of homoclinic solutions for Hamiltonian system (3.14) by Theorem 1.1.
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