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SUMMARY

SMG1, a PI3K-related kinase, plays a critical role in
nonsense-mediated mRNA decay (NMD) in mam-
mals. SMG1-mediated phosphorylation of the UPF1
helicase is an essential step during NMD initiation.
Both SMG1 and UPF1 are presumably activated by
UPF2, but this regulation is incompletely understood.
Here we reveal that SMG1C (a complex containing
SMG1, SMG8, and SMG9) contributes to regulate
NMD by recruiting UPF1 and UPF2 to distinct sites
in the vicinity of the kinase domain. UPF2 binds
SMG1 in an UPF1-independent manner in vivo, and
the SMG1C-UPF2 structure shows UPF2 recognizes
the FRB domain, a region that regulates the related
mTOR kinase. The molecular architectures of several
SMG1C-UPFs complexes, obtained by combining
electron microscopy with in vivo and in vitro inter-
action analyses, competition experiments, and mu-
tations, suggest that UPF2 can be transferred to
UPF1 within SMG1C, inducing UPF2-dependent
conformational changes required to activate UPF1
within an SMG1C-UPF1-UPF2 complex.

INTRODUCTION

SMG1 kinase is a large protein (410 kDa) that belongs to the

phosphatidylinositol (PI) 3-kinase-related kinase (PIKK) family.

PIKKs comprise six members in mammals including mammalian

target of rapamycin (mTOR), DNA-dependent protein kinase

catalytic subunit (DNA-PKcs), ataxia telangiectasia mutated

(ATM), and ATM- and Rad3-related (ATR) kinases (Izumi et al.,

2012; Yamashita, 2013; Yamashita et al., 2001). Structural anal-

ysis using X-ray crystallography and electronmicroscopy (EM) of

several kinases in the PIKK family including SMG1, revealed that

the entire C terminus containing three conserved regions, the

FRAP, ATM, and TRRAP (FAT) domain followed by a catalytic
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domain with homology to PI3-kinases (PIKK domain hereafter)

and ending in a short FAT C-terminal (FATC) domain (Figure 1A),

forms a globular region (Figures 1B and 1C) (Arias-Palomo et al.,

2011; Sibanda et al., 2010; Yang et al., 2013). The N terminus in

all PIKKs is made of a long stretch of helical repeats, mostly the

huntington, elongation factor 3, A subunit of PP2A, and TOR1

(HEAT) repeats, forming a helical scaffold that is thought to be

involved in protein binding, which protrudes from the globular

C terminus, as revealed in the crystal structure of DNA-PKcs

(Sibanda et al., 2010) (Figure 1C). SMG1 also contains a unique

long insertion between the catalytic and FATC domains, but the

function of this region is not understood. In addition, a 100-

residue FKBP12-rapamycin-binding (FRB) domain, positioned

between the FAT and PIKK, has been described for some but

not all PIKKs, including mTOR and SMG1 (Yang et al., 2013).

The atomic structure of the 1,500-amino acid C-terminal region

of mTOR revealed that the FRB regulates the access of sub-

strates to the active site of the kinase domain (Yang et al.,

2013) (Figure 1B).

SMG1 forms the so-called SMG1 complex (SMG1C) with

SMG8 and SMG9 and plays an essential role in an mRNA quality

control mechanism called nonsense-mediated mRNA decay

(NMD) by phosphorylating UPF1, a central regulator of NMD.

UPF1 is an RNA helicase containing two RecA-like domains in

tandem at its C terminus (Chakrabarti et al., 2011; Clerici et al.,

2009). In its closed conformation, an N-terminal cysteine-histi-

dine-rich (CH) domain inhibits the helicase activity (Chakrabarti

et al., 2011). NMD targets transcripts harboring premature termi-

nation codons (PTCs) resulting from germline mutations in many

genetic disorders and during mRNA processing (Kervestin and

Jacobson, 2012; Schweingruber et al., 2013; Yamashita,

2013). NMD is also estimated to regulate expression of a signif-

icant fraction of physiological mRNAs (Hansen et al., 2009; Men-

dell et al., 2004; Weischenfeldt et al., 2012).

In a current model of PTCs recognition in mammals, aberrant

translation termination induces the interaction of UPF1 with the

terminating ribosome to assemble a complex containing UPF1,

release factors eRF1 and eRF3, and SMG1, known as the

SMG1-UPF1-eRF1-eRF3 (SURF) complex (Kashima et al.,

2006). The SURF complex forms independently of UPF2, and
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Figure 1. In Vitro Reconstitution of SMG1C-UPF1, SMG1C-UPF2, and SMG1C-UPF1-UPF2

(A) Schematic representation of SMG1, SMG8, SMG9, UPF1, and UPF2 used in this study. Color codes and abbreviations for each domain are maintained

throughout the figures. Individual domains of SMG1 (HEAT repeats in light purple; FAT domain in dark purple; FRB domain in green; PIKK domain in red; SMG1

specific insertion in gray; FATC domain in pale yellow), SMG8 (two conserved regions among metazoans CR1 and CR2 in gray), SMG9 (NTPase domain in gray),

UPF1 (CH, 1B, and 1C domains, and two RecA-like domains RecA1 and RecA2 in yellow), and UPF2 (three predicted MIF4G domains MIF4G1, MIF4G2, and

MIF4G3 and the C-terminal region in blue) are indicated.

(legend continued on next page)
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theSMG1activity inSURF is downregulated bySMG8andSMG9

(Yamashita et al., 2009; Arias-Palomo et al., 2011). If an exon

junction complex (EJC) is located 50–55 or more nucleotides

downstream from the termination codon, the SURF complex

physically associates with the downstream EJC through UPF2

andUPF3, two evolutionally conservedNMD factors. The associ-

ation between SURF and UPF2-UPF3-EJCwould induce SMG1-

mediated UPF1 phosphorylation (Kashima et al., 2006; Yama-

shita et al., 2009). Phosphorylated UPF1 recruits phopho-UPF1

recognizing protein complexes that can degrade PTC-mRNA

(Glavan et al., 2006; Loh et al., 2013; Okada-Katsuhata et al.,

2012). In addition, binding of UPF2 to the CH domain of UPF1 in-

duces a large conformational change that removes the inhibition

of the ATPase activity and activates the RNA-dependent 50 to 30

helicase activity ofUPF1(Clerici et al., 2009). This helicase activity

is thought to be required to strip the mRNP of proteins (Franks

et al., 2010) and/or to bridge the distance between the stalled

ribosome and a downstream EJC (Shigeoka et al., 2012).

SMG1-mediated UPF1 phosphorylation is an essential step in

NMD. It has been shown that overproduction of wild-type

SMG1 induced the accumulation of phosphorylated UPF1 and

enhancedmRNA decay, whereas overproduction of kinase inac-

tive SMG1 reduced the amount of phosphorylated UPF1 and

suppressed mRNA decay (Yamashita et al., 2001). Despite its

relevance, the regulation of SMG1 kinase and how the UPF1-

UPF2 complex regulates SMG1 are poorly understood. The

recruitment of substrates to the kinase domain seems to be

the main mechanism controlling phosphorylation by mTOR

(Yang et al., 2013), but thismodel cannot be directly extrapolated

to SMG1 because UPF2 and UPF3 are required to activate UPF1

phosphorylation by SMG1 in vivo (Ivanov et al., 2008; Kashima

et al., 2006). Here we provide insights into the structural basis

of NMD initiation. We have studied the architecture of several

complexes between SMG1C, UPF1, and UPF2. We reveal that

SMG1C could coordinate NMD initiation by recruiting UPF1

and UPF2 to nearby positions, facilitating their access to the

kinase domain as well as their interaction to promote a heli-

case-active conformation of UPF1.

RESULTS

UPF2 Binds SMG1 in an UPF1-Independent Manner
in Vivo
SMG1 forms a complex with UPF1 in an UPF2-independent

manner as part of SURF (Kashima et al., 2006), which we
(B) A view of the atomic structure of mTORC-terminal domains (PDB ID 4JSP) (Yan

bound to the PIKK domain. The scale bar represents 5 nm.

(C) A view of the crystal structure of DNA-PKcs (PDB ID 3KGV) (Sibanda et al., 20

within SMG1 and SMG1C (see below) and PIKK domain are shown. The rest of

(D) Pull-down assays using SBP-tagged version of UPF2 from HeLa TetOff cell

M1173E, and UPF2-E858R mutants in the presence of RNase. UPF1, UPF3b, eIF

protein.

(E) SDS-PAGE gels stained with Oriole stain of the purified proteins used in the

streptavidin Mag Sepharose. The name at the top of the gel indicates the shorte

(F) In vitro pull-down assay using Flag-tagged SMG1C. Flag-HA-SBP-MBP (a

(as control), SBP-UPF1, SBP-UPF2, and SBP-UPF2:HA-UPF1 complex (90 nM

Precipitated materials as well as 20% of input were subjected to SDS-PAGE and s

of coprecipitated proteins, BSA, and an uncharacterized contamination of Flag-H

See also Figure S1.

Structure 22, 1105
confirmed here (see below). We evaluated the UPF1-indepen-

dent binding of UPF2 to SMG1 in vivo using streptavidin-binding

peptide (SBP)-tagged versions of wild-type UPF2, UPF2-

F1113E-M1173E (UPF2-FE/ME hereafter), which is expected

to bind UPF1 poorly (Clerici et al., 2009), and UPF2-E858R,

which is affected on UPF3 binding (Kadlec et al., 2004; Kashima

et al., 2006) in HeLa TetOff cells (Figure 1D). Wild-type SBP-

UPF2 precipitated SMG1, UPF1, UPF3b, eRF1, and eIF4A3,

whereas SBP-UPF2-E858R bound UPF1 but not UPF3b. SBP-

UPF2-FE/ME also precipitated SMG1 but failed to bind UPF1,

confirming that SMG1 can bind UPF2 independently of UPF1

in mammalian cells.

In Vitro Reconstitution of SMG1C-UPF1, SMG1C-UPF2,
and SMG1C-UPF1-UPF2
We reconstituted in vitro the various complexes that can form

SMG1Cwith UPF1 and UPF2 to determine their molecular archi-

tecture. For this, we first purified the SMG1C complex (SMG1-

SMG8-SMG9), UPF1, UPF2, and a complex between UPF1

and UPF2 (Figure 1E). SMG1C was preassembled after cotrans-

fecting full-length Flag-HA-SBP-SMG1 (residues 1–3657),

HA-SMG9 (residues 2–520), and HA-SMG8 (residues 2–991),

and the complex, Flag-HA-SBP-SMG1C hereafter, was ob-

tained by affinity chromatography using the SBP tag in SMG1

as described before (Arias-Palomo et al., 2011). SMG1 activity

is suppressed by SMG8 and SMG9 in this complex (Arias-Pal-

omo et al., 2011). UPF1 (including the disordered N- and C-ter-

minal tails) and full-length UPF2 were produced as SBP-tagged

versions expressed and purified from human cells. In addition,

the UPF1-UPF2 complex was preassembled after cotransfec-

tion of HA-UPF1 and SBP-UPF2.

Then we tested whether Flag-HA-SBP-SMG1C interacted

with SBP-UPF1 or SBP-UPF2 using anti-Flag beads. SBP-

UPF1 and SBP-UPF2 were pulled down only when Flag-HA-

SBP-SMG1C was present in the input mixture (Figure 1F, lanes

14 and 15, coprecipitated proteins labeled with a red dot),

compared with the experiments with Flag-HA-SBP-tagged

maltose-binding protein (MBP; Figure 1F, lanes 9–12). SMG8

and SMG9 were also detected as part of the precipitated com-

plexes, suggesting that an intact SMG1C interacts with UPF1

and UPF2, as we later confirmed by EM. In addition, we found

that SMG1C could also interact with both proteins when forming

the UPF1-UPF2 complex (Figure 1F, lane 16, coprecipitated pro-

teins labeled with a red dot). In this experiment, the signals for

HA-UPF1 and SBP-UPF2 were roughly similar in the input
g et al., 2013) represented as ribbons. ATP is displayed as a solid black density

10) represented as ribbons. The section of the helical HEAT repeats used to fit

the crystal structure is shown in gray. The scale bar represents 5 nm.

lysates. Experiments were carried out using wild-type UPF2, UPF2-F1113E-

4A3, SMG1, and eRF1 were detected by WB using specific antibodies for each

biochemical analyses. Proteins were expressed in 293T cells and purified by

ned name that will be used through the text.

s control) or Flag-HA-SBP-SMG1C (30 nM each) incubated with SBP-eGFP

each). After incubation, the mixtures were pulled down using anti-Flag beads.

tained with Oriole stain. Red dots, asterisk (*), and hash (#) indicate the position

A-SBP-SMG1C, respectively.
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Figure 2. Molecular Architecture of SMG1 and SMG1C

(A) A gallery of four representative images of SMG1molecules and two representative 2D averages of SMG1. The images revealed that SMG1was structured into

a compact head (at the top of each molecule in these panels) and a thinner arm (at the bottom of each molecule in these panels). The scale bar represents 10 nm.

(B) Three approximately orthogonal views (labeled i, ii, and iii) of the EM structure of SMG1 (gray transparent density) fitted with a HEAT repeat segment of DNA-

PKcs (PDB ID 3KGV) (Sibanda et al., 2010) and the catalytic region of mTOR crystal structures (PDB ID 4JSP) (Yang et al., 2013). Domains are named and colored

as described in Figure 1A. The scale bar represents 5 nm.

(C) A gallery of four representative images of SMG1C complexes and two representative 2D averages of SMG1C. The scale bar represents 10 nm.

(D) Three approximately orthogonal views (labeled i, ii, and iii) of the EM structure of SMG1C (gray transparent density). Domains are named and colored as

described in (B). To facilitate the comparison, the three views of SMG1C represent a roughly similar orientation to that of SMG1 in the corresponding top panel.

The SMG1C view in (i) is slightly tilted compared to the corresponding view of SMG1 to facilitate the observation of SMG8-SMG9 bound to SMG1. Asterisks (*)

indicate those regions of SMG1C where the arm has rotated compared to its position in SMG1. The scale bar represents 5 nm.

(E) A top view of SMG1C represented as in (D) highlighting the location of several domains.

(F) Difference map obtained after subtracting the structure of SMG1 to SMG1C. The difference is shown as a grid represented on the structure of SMG1. This

difference maps SMG8-SMG9 in SMG1C and a conformational change.

(G) 2D averages of several images of immunocomplexes resulting from the incubation of SMG1C with anti-SMG8 Fab fragments. The immunocomplexes

showed a similar structure than SMG1C, but a density of dimensions compatible with a Fab was detected in contact with SMG1C. To help comparisons, a view

of the 3D structure and a 2D average of SMG1C and a view of a 3D model of a Fab fragment bound to SMG1C are shown. The scale bar of the EM images

represents 10 nm.

(legend continued on next page)
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material, as expected for a 1:1 complex, but SBP-UPF2 was

recovered more efficiently than HA-UPF1 in the precipitate.

Overall our data indicated that SMG1C could interact with

UPF1, UPF2, and also with an UPF1-UPF2 complex.

We next explored the structural basis for these interactions by

reconstituting several SMG1C-UPFs complexes in vitro and

determining their structure using EM (see below). For all

structural analysis, we purified highly homogenous protein prep-

arations (Figure S1A available online), and complexes were

assembled in vitro by incubating purified SMG1Cwith an excess

of UPF1, UPF2, or UPF1-UPF2. Mixtures were analyzed by EM

(Figures S1B–S1H). The final yield of purified complexes was

low, precluding the preparation of vitrified specimens but suffi-

cient for a study using negative staining. We also observed

that a mild stabilization of the interactions using 0.02% glutaral-

dehyde significantly improved the yield of images corresponding

to SMG1C-UPFs. For all complexes, we used image processing

and classification techniques to sort out all images into subsets

corresponding to homogenous structural species. Those images

corresponding to SMG1C-UPFs complexes were identified and

used to determine their 3D structures (details in Experimental

Procedures).

SMG1 Is Regulated by Large Conformational Changes
We first defined the molecular architecture of SMG1 and

SMG1C, resolved at �21 Å resolution (Figure 2), required to

interpret the structures of the SMG1C-UPFs complexes. The

structure of SMG1 comprised a globular ‘‘head’’ region and a

thinner ‘‘arm,’’ which our modeling revealed to correspond to

the C- and N-terminal segments of the protein, respectively (Fig-

ures 2A and 2B). The atomic structure of the C-terminal domains

mTOR (Yang et al., 2013) fitted extraordinarily well within the

head (cross correlation = 0.90), and we obtained only one high

correlating solution due to constrains during the fitting experi-

ment introduced by a protrusion at the EM structure assigned

to the FRB domain (Figures 2A and 2B). Thus, the SMG1 head

comprises the C-terminal region of the protein, and the catalytic

PIKK, FAT, FRB, and FATC domains were located in their

approximate positions by comparison with mTOR. The SMG1

specific insertion connects the PIKK and FATC domains (Fig-

ure 1A), but this region is not present in mTOR (Yang et al.,

2013). Predictions of secondary structure suggested that the

SMG1-specific insertion contains several large a helices (not

shown), but the confidence values for these predictions were

low. Nonetheless, they were an indication suggesting that this

domain is probably mostly folded. We evaluated whether the

3D structure of SMG1 could accommodate the SMG1-specific

insertion in the C terminus (Figure S2). Our analysis revealed

that the atomic structure of mTOR did not justify all the density

at the head of SMG1, and there is probably sufficient density

left to fit the SMG1-specific insertion (Figure S2). The SMG1

arm could be fitted with a defined HEAT repeat segment

(Figure 2B) corresponding to the predicted N-terminal end of
(H) The interaction of SMG8-SMG9 to SMG1 induced a large clockwise rotation

shown in gray. The movement that could take place from SMG1 to SMG1C was m

and SMG1C are showed slightly tilted to help visualizing the conformational cha

See also Figure S2.
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the 6.6 Å resolution crystal structure of DNA-PKcs (cross corre-

lation = 0.93) (Sibanda et al., 2010).

The head of SMG1C was roughly similar to SMG1 (Figures 2C

and 2D), and the active site formed a cleft with the FRB domain

located in the vicinity as in mTOR (Yang et al., 2013) (Figure 2E).

SMG8 and SMG9 were mapped in SMG1C after aligning and

subtracting the structure of SMG1 to SMG1C (Figure 2F). The

difference map revealed a small difference in the arm region

because of conformational changes (see below), and a major

density corresponding to the SMG8-SMG9 complex. SMG9 is

required to recruit SMG8 to SMG1C (Arias-Palomo et al.,

2011), suggesting that SMG9 probably locates in closer contact

with SMG1within the SMG8-SMG9 density. SMG8wasmapped

at the other end by immunolabeling using Fab fragments derived

from polyclonal antibodies targeting SMG8 (Figure 2G). The

comparison of SMG1 with SMG1C reveals that the interaction

of SMG8-SMG9 with SMG1 induces a large rotation in the N-ter-

minal end of the HEAT repeats arm region (Figure 2D, labeled

with asterisks; Figure 2H; Movies S1 and S2).

SMG1C Positions UPF1 in the Proximity of the PIKK
Domain
We next reconstituted a complex containing SMG1C and UPF1

by incubating SMG1C (71 nM final concentration) and an excess

of UPF1 (1:5 molar ratio), and the mixture was observed in the

electron microscope and analyzed by image processing (Fig-

ure 3A and Figure S1). UPF1 appeared in the electron micro-

scope as a roughly square-shaped density with several lobes,

as could be expected for the closed conformation (Chakrabarti

et al., 2011) (Figure 3B). A density of similar dimensions was

consistently positioned in contact with a distinct region of

SMG1C in 40% of the images in the data set, which was inter-

preted as UPF1 binding to a defined site of SMG1C (Figures

3A and 3B). Similar images of the complex, but with a signifi-

cantly improved yield (63%), were obtained after a mild stabiliza-

tion with 0.02% glutaraldehyde (Figure 3B).

UPF1 was mapped within the 3D structure of SMG1C-UPF1

and solved at �21 Å resolution (Figures 3C and 3D) by aligning

and subtracting the structure of SMG1C to SMG1C-UPF1 (Fig-

ure 3E). The comparison of SMG1C and SMG1C-UPF1 also

allowed extrapolating the structural model for SMG1C to

SMG1C-UPF1. UPF1 binds to regions in the proximities of the

PIKK domain (Figures 3C and 3D), in a conformationmore similar

to the closed conformation described in the crystal structure of

the helicase-inhibited UPF1 than the open conformation (cross

correlations = 0.92 versus 0.75) (Chakrabarti et al., 2011; Clerici

et al., 2009) (Figure 3E). The limited resolution precluded the

description of a precise orientation of UPF1 within the complex

to define what part of UPF1 contacts SMG1. Thus, we analyzed

the interaction of two purified SBP-tagged fragments comprising

residues 2–295 (corresponding to the CH domain) and residues

291–1118 (including the two RecA-like domains) of UPF1 with

SMG1 (Figure S3). We detected a weak but significant
of the arm, highlighted in red within the EM structures of SMG1 and SMG1C

odeled, and the figure represents several hypothetical transient states. SMG1

nge. A full movie can be seen in Movie S1.
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Figure 3. Structure of SMG1C-UPF1

(A) A gallery of four representative images of SMG1C-UPF1 complexes. The scale bar represents 10 nm.

(B) Representative 2D averages of UPF1, SMG1C, and SMG1C-UPF1. Averages of SMG1C-UPF1 obtained before and after a mild stabilization with glutaral-

dehyde (GA) are shown. The comparison of SMG1C, UPF1, and SMG1C-UPF1 identified UPF1 as a density bound to the head of SMG1, which has been

highlighted within a circle. The scale bar represents 10 nm.

(C) Three approximately orthogonal views (labeled i, ii, and iii) of the EM structure of SMG1C-UPF1 (gray transparent density) fitted with segments of DNA-PKcs

(Sibanda et al., 2010) and mTOR (Yang et al., 2013). The scale bar represents 5 nm.

(D) A top view of the SMG1C-UPF1 complex represented as in (C).

(E) Difference map obtained after subtracting SMG1C to SMG1C-UPF1, represented as a grid on the structure of SMG1C. The difference locates UPF1 in the

complex, and this density was fitted with the crystal structures of UPF1 in the closed and open conformations (Chakrabarti et al., 2011; Clerici et al., 2009).
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interaction of SBP-UPF1291–1118 with Flag-HA-SBP-SMG1C

(Figure 4A). This result was confirmed after detecting the inter-

action of SBP-UPF1291–1,118 with MBP-SMG11808–2743 (residues

1808–2743, comprising the FRB and PIKK domains, and part of

the SMG1-specific insertion) (Figure 4B). Together, these results

suggested that UPF1 binds the SMG1 C-terminal region through

some part of the two RecA-like domains.

The SMG1 FRB Domain Recruits UPF2
We also reconstituted an SMG1C-UPF2 complex in vitro from

purified SMG1C (49 nM final concentration) and recombinant

UPF2 produced in Escherichia coli (1:3.5 molar ratio) (Figure S1).

Processing of EM images obtained for this incubation revealed a

mixture of species that included SMG1C-UPF2 complexes

(20%) (Figures 5A and 5B). These complexes were enriched to

a significant proportion (47%) after stabilization with a mild

fixation, and 18,716 images were classified as SMG1C-UPF2

by image processing. UPF2 and SMG1C were mapped within

the structure of SMG1C-UPF2 and solved at �22 Å resolution

(Figures 5C and 5D) after aligning and subtracting the structure

of SMG1C to SMG1C-UPF2 (Figure 5E). UPF2 is recruited by
1110 Structure 22, 1105–1119, August 5, 2014 ª2014 Elsevier Ltd Al
the FRB domain of SMG1 at a proximal but distinct site to where

UPF1 binds. UPF2 appeared in the complex as an open ring that

could be fitted with three copies of a middle domain of eIF4G

(MIF4G) (Kadlec et al., 2004) (cross correlation = 0.93), each

end of the ring possibly corresponding to the N and C termini

of UPF2, in agreement with previous data (Clerici et al., 2014;

Melero et al., 2012) (Figure 5E). Only one of these ends contacted

with SMG1, but the limited resolution impeded defining the three

MIF4G domains in the structure. Then we analyzed the inter-

action of SBP-UPF22–775 (residues 2–775: comprising MIG4G1

and MIF4G2 domains) and SBP-UPF2770–1272 (residues 770–

1272: including MIF4G3 domain) (Figure S3) with Flag-HA-

SBP-SMG1C (Figure 6A) and MBP-SMG11808–2743 (Figure 6B).

These results suggested that both ends of UPF2 have the poten-

tial to recognize SMG1.

UPF1 and UPF2 Can Interact in the Context of SMG1C
The complex containing SMG1C, UPF1, and UPF2was reconsti-

tuted in vitro by incubating purified SMG1C (14 nM final concen-

tration) and the preassembled UPF1-UPF2 subcomplexes in a

1:4.5 molar ratio to favor the interaction, and the mixture was
l rights reserved
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Figure 4. Interaction of N- and C-Terminal Fragments of UPF1 with SMG1C

(A) Pull-down assay testing the interaction of SMG1C and fragments of UPF1. Flag-HA-SBP-MBP (as control) or Flag-HA-SBP-SMG1C (30 nM each) were

incubated with SBP-eGFP (as control), SBP-UPF12–295, and SBP-UPF1291–1118 (90 nM each). A cartoon for these fragments can be seen in (B). Precipitated

materials as well as 10% of input were subjected to SDS-PAGE and stained with Oriole stain; 10% of precipitated materials, as well as 1% of input, was analyzed

by WB against the SBP tag.

(B) Pull-down assay testing the interaction of fragments of SMG1 and of UPF1. MBP-eGFP (as control) or MBP-SMG11808–2743 (90 nM each) were incubated with

the SBP-eGFP (as control), SBP-UPF12–295, and SBP-UPF1291–1118 (270 nM each); 10%of input and 150%of precipitatedmaterials subjected to SDS-PAGE and

stained with Oriole stain; 1% of input and 15% of precipitated materials were analyzed by WB.

Red dots, asterisk (*), hash (#), HC, and LC indicate the positions of coprecipitated proteins, BSA, uncharacterized contamination, IgG heavy chain, and IgG light

chain, respectively (A and B). Preparation of the protein fragments used is shown in Figure S3.
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Figure 5. Structure of SMG1C-UPF2

(A) A gallery of four representative images of SMG1C-UPF2 complexes. The scale bar represents 10 nm.

(B) Representative 2D averages of UPF2, SMG1C, and SMG1C-UPF2. Averages of SMG1C-UPF2 obtained before and after a mild stabilization with glutaral-

dehyde (GA) are shown. The comparison of SMG1C, UPF2, and SMG1C-UPF2 identified UPF2 as a density bound to the head of SMG1, which has been

highlighted within a circle. The scale bar represents 10 nm.

(C) Three approximately orthogonal views (labeled i, ii, and iii) of the EM structure of SMG1C-UPF2 (gray transparent density) fitted with segments of DNA-PKcs

(Sibanda et al., 2010) and mTOR (Yang et al., 2013). The scale bar represents 5 nm.

(D) A top view of the SMG1C-UPF2 complex represented as in (C).

(E) Difference map obtained after subtracting SMG1C to SMG1C-UPF2, represented as a grid on the structure of SMG1C. The difference locates UPF2 in the

complex, and this density was fitted with three copies of the crystal structure of the MIF4G3 domain (Kadlec et al., 2004).
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analyzed by EM (Figure 7; Figure S1). We identified 32,918

images corresponding to SMG1C-UPF1-UPF2 by a combination

of 2D and 3D classification in silico (details in Experimental Pro-

cedures). This subset behaved in image processing as a unique

complex containing SMG1C and UPF1-UPF2 (Figures 7A and

7B). These images were used to determine the 3D structure of

the complex, resolved at �20 Å resolution (Figures 7C and 7D).

SMG1 and UPF1-UPF2 components were then positioned

in SMG1C-UPF1-UPF2 after aligning and subtracting SMG1C

to SMG1C-UPF1-UPF2 (Figure 7E), and the structural model

for SMG1C was fitted within SMG1C-UPF1-UPF2 (Figures 7C

and 7D; Movie S3). UPF1-UPF2 was mapped as a closed ring

and an extension that could be fitted with a model of the

UPF1-UPF2 complex (Melero et al., 2012) (Figures 7C and 7D).

UPF2 comprises three conserved and homologous MIF4G do-

mains organized as a distorted open ring (Clerici et al., 2014; Ka-

dlec et al., 2004; Melero et al., 2012). For the model, we used

three copies of theMIF4G3 domain (Kadlec et al., 2004) because

the limited resolution did not allow resolving each MIF4G

domain. The ring structure of UPF2was a recognizable structural

feature in the complex that did not contact SMG1C directly. The

fitting of the UPF1-UPF2 model into SMG1C-UPF1-UPF2 pre-

dicted that UPF1 binds SMG1C through the RecA domains,
1112 Structure 22, 1105–1119, August 5, 2014 ª2014 Elsevier Ltd Al
which agrees with the biochemical data obtained (see below),

and that UPF1 would be in an UPF2-bound open conformation

(cross-correlation open versus closed conformation of UPF1 =

0.86 versus 0.75).

Our results showed that SMG1C could recruit UPF1 and UPF2

separately but also a preformed UPF1-UPF2 complex. Thus, we

investigated whether SMG1C could bind both proteins sepa-

rately but simultaneously and whether UPF1 and UPF2 could

interact within the context of SMG1C. For this, we analyzed

the competition of UPF1 and UPF2 for binding to SMG1C

(Figure 8). Flag-HA-SBP-SMG1C) was preincubated with SBP-

UPF1 or SBP-UPF2 to preassemble SMG1C-UPF1 or SMG1C-

UPF2, respectively. The complex was pulled down using anti-

Flag beads, and unbound SBP-UPF1 or SBP-UPF2 was washed

out. Preassembled SMG1C-UPF1 or SMG1C-UPF2 complex

was then incubated with increasing amounts of SBP-UPF2 or

SBP-UPF1, respectively, and the amount of SBP-UPF2 and

SBP-UPF1 retained by SMG1C was analyzed. SBP-UPF1 did

not compete SBP-UPF2 from its complex with SMG1C, and

SBP-UPF1 and SBP-UPF2 bound to SMG1C simultaneously

(Figure 8A). On the other hand, SBP-UPF2, which could form a

complex with SMG1C on its own (Figure 8B), competed with

SBP-UPF1 for binding to SMG1C because increasing amounts
l rights reserved
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Figure 6. Interaction of N- and C-Terminal Fragments of UPF2 with SMG1C

(A) Pull-down assay testing the interaction of SMG1C and fragments of UPF2. Flag-HA-SBP-MBP (as control) or Flag-HA-SBP-SMG1C (30 nM each) was

incubated with SBP-eGFP (as control), SBP-UPF22–775, and SBP-UPF2770–1272 (90 nM each). A carton of these fragments is shown in (B). The input and

precipitated samples were analyzed as described in Figure 4.

(B) Pull-down assay testing the interaction of fragments of SMG1 and of UPF2. MBP-eGFP (as control) or MBP-SMG11808–2743 (90 nM each) were incubated with

SBP-eGFP (as control), SBP-UPF22–775, and SBP-UPF2770–1272 (270 nM each). The input and the precipitated samples were analyzed as described in Figure 4.

Red dots, asterisk (*), hash (#), HC, and LC are as described in Figures 4A and 4B. Preparation of the protein fragments used is shown in Figure S3.

See also Figure S3.
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Figure 7. Structure of SMG1C-UPF1-UPF2

(A) EM images of the SMG1C-UPF1-UPF2 complex. The panel shows four representative images of SMG1C-UPF1-UPF2 complexes. The scale bar represents

10 nm.

(B) Representative 2D averages of images of the SMG1C-UPF1-UPF2 complex compared to an average of SMG1C. Averages before and after amild stabilization

with glutaraldehyde (GA) are also shown. The UPF1-UPF2 complex was identified as a density (highlighted within a circle) bound to SMG1C. The scale bar

represents 10 nm.

(C) Three approximately orthogonal views (labeled i, ii, and iii) of the EM structure of SMG1C-UPF1-UPF2 (gray transparent density) fitted with segments of DNA-

PKcs (Sibanda et al., 2010) and mTOR (Yang et al., 2013) crystal structures. The scale bar represents 5 nm.

(D) A top view of SMG1C-UPF1-UPF2 as in (C).

(E) Difference map obtained after subtracting SMG1C to SMG1C-UPF1-UPF2, represented as a grid on the structure of SMG1C. The difference locates UPF1-

UPF2 in the complex, and this density could be fitted with a model of the UPF1-UPF2 complex (Clerici et al., 2014; Clerici et al., 2009; Melero et al., 2012) and

using three copies of the crystal structure of the MIF4G3 domain (Kadlec et al., 2004). The CH domain of UPF1 bound to UPF2 is shown in black.
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of SBP-UPF2 and decreasing amounts of SBP-UPF1 were de-

tected in complex with Flag-HA-SBP-SMG1C (Figure 8C). Inter-

estingly the double mutant UPF2-FE/ME, which does not bind

UPF1 (Figure 1D), interacted with SMG1C (Figure 8B) but failed

to compete out UPF1 (Figure 8C), and the interaction with

SMG1C-UPF1 was greatly impaired. These results indicated

that (1) UPF1 can be loaded to SMG1C-UPF2; (2) UPF2 can

bind UPF1 in the context of the SMG1C complex, because

only UPF2 that binds UPF1 competes this out from the complex,

probably because once UPF1-UPF2 is formed, this complex dis-

assembles from SMG1C; and (3) UPF2-FE/ME binds poorly to

SMG1Cwhen occupied by UPF1, indicating at least some partial

obstruction for the simultaneous binding of UPF2 and UPF1

when they are not allowed to interact. As a whole, we interpreted

these results as suggesting that UPF1 and UPF2 can interact in

the context of SMG1C and that UPF2 in SMG1C-UPF2 can be

transferred to UPF1 to assemble an SMG1C-UPF1-UPF2

complex.

DISCUSSION

Weprovide a structural model of SMG1, revealing the core archi-

tecture of this kinase, likely shared with other members of the

PIKK family, such as ATM and ATR (Figure 2). The C terminus
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of SMG1 forms a compact globular structure with the catalytic

and the FRB domains, forming a cleft where ATP binds and

whose structure is, at low resolution, similar to the recently

reported structure of mTOR (Yang et al., 2013). We propose

that density in the SMG1 head that is not occupied by the struc-

ture of mTOR could correspond to the SMG1-specific insertion,

which would be packed with the PIKK domain (Figure S2). The N

terminus of SMG1 forms a helical scaffold protruding from the

head. HEAT repeats function as protein interaction modules,

and we do find that SMG8-SMG9 binds to this region. The com-

parison between SMG1 and DNA-PKcs uncovers interesting

features of the PIKK family. SMG1 contains one helical arm

with a similar helical twist as the proposed N-terminal arm of

DNA-PKcs. The much-extended HEAT repeat regions in DNA-

PKcs would account for its second arm, a likely adaptation to

its functions in DNA repair (Sibanda et al., 2010). The precise

orientation between the C-terminal region and the protruding

arm in SMG1 is different from that of DNA-PKcs crystal structure,

suggesting that this could vary within the PIKK family and/or

during a functional cycle.

We show that SMG1, forming the SMG1C complex with SMG8

and SMG9, functions as a platform for the recruitment of UPF1

and UPF2 and that UPF1 and UPF2 can interact when in com-

plex with SMG1C. We also found that when UPF1 and UPF2
l rights reserved



Figure 8. UPF1 and UPF2 Can Interact on the SMG1C

(A) Competition assay between SMG1C-UPF2 andUPF1. Flag-HA-SBP-SMG1C (30 nM) and SBP-UPF2 (90 nM) weremixed to form the SMG1C-UPF2 complex.

The preassembled complexes were pulled down using anti-Flag beads. After washing out unbound UPF2, increasing amounts of SBP-UPF1 (0, 9, 30, and 90 nM)

or control SBP-eGFP (90 nM) were added. The eluted proteins were analyzed by WB using the indicated antibodies.

(B) Binding activity of wild-type UPF2 (WT) or mutant UPF2 (FE/ME) to SMG1C. Flag-HA-SBP-SMG1C (30 nM) and increasing amounts of SBP-UPF2-WT (0, 9,

30, and 90 nM) or SBP-UPF2-FE/ME (0, 9, 30, and 90 nM), or control SBP-eGFP (90 nM) were mixed.

(C) Competition assay between SMG1C-UPF1 with UPF2 (WT or FE/ME). The procedure was as in (A), except that Flag-HA-SBP-SMG1C and SBP-UPF1 were

mixed to form SMG1C-UPF1, and increasing amounts of SBP-UPF2-WT or SBP-UPF2-FE/ME were added for competition. Schematic representations of these

experiments are shown (A)–(C).

(D) Possible model for the function of SMG1 as a platform for the recruitment of UPF1 and UPF2. UPF2 could bind SMG1-UPF1 directly or after its transfer from

the FRB domain. Recruitment of UPF2 to FRB could contribute to activate SMG1, possibly with the contribution of UPF3.
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are not allowed to interact (using UPF2-FE/ME), UPF1 partially

obstructs UPF2 binding despite recognizing different regions in

SMG1C, which may reflect some kind of steric clash because

of their proximity. This in turn implies that the interaction of

UPF1 to SMG1C-UPF2 probably occurs upon the transfer of

UPF2 from SMG1C to UPF1 (Figure 8D). Other models could

be conceivable if SMG1C-UPF1 is thought to assemble first.

One possible scenario is that SMG1-UPF2 forms first, and then

UPF1 binds to assemble an SMG1C-UPF1-UPF2 complex as

the one we have resolved by EM. UPF2 binding to UPF1 within

SMG1C would concomitantly release UPF2 from SMG1C

because UPF2would not be able to bind SMG1 and UPF1 simul-

taneously since both the N- and C-terminal ends in UPF2 partic-

ipate in recognition of the UPF1 CH domain (Clerici et al., 2009;

Melero et al., 2012). The structure of SMG1C-UPF1-UPF2 re-

vealed that the interaction of UPF2 to UPF1 in the complex would

promote an open conformation of UPF1 similar to that described

in the crystal structure of UPF1 bound to the CH domain (Clerici

et al., 2009).

UPF1 andUPF2 can also bind SMG1C independently because

we can reconstitute SMG1C-UPF1 and SMG1-UPF2 in vitro. In

addition, UPF1-C126S, which does not bind UPF2 (Kashima

et al., 2006), and UPF2-FE/ME, which does not bind UPF1 (Fig-

ure 1D), also bind SMG1C in vivo. Furthermore, UPF1 knock-

down did not affect the formation of a complex containing

SMG1, UPF2, and Y14 (EJC component) (Kashima et al.,

2006), and UPF2 knockdown increased the amount of the

SURF complex, containing SMG1 and UPF1 in vivo (Kashima

et al., 2006). Consistently, EM structures of SMG1C-UPF1 and

SMG1C-UPF2 revealed that each protein recognizes distinct

sites in SMG1. UPF1 is recruited to the proximities of the

SMG1 catalytic domain, and the low-resolution structure of

UPF1 bound to SMG1C matches better the helicase inactive

form of UPF1 (Chakrabarti et al., 2011) than the active open

conformation (Clerici et al., 2009). Based on these results, we

propose that UPF1 is recruited to SMG1 in a closed and inactive

conformation. On the other hand, the FRB domain in SMG1

recruits UPF2, and interestingly the FRB domain in mTOR binds

S6K1, an mTOR substrate, enhancing its phosphorylation. UPF2

when bound to SMG1 appears as an open ring similar to the low-

resolution structures of UPF2 described before (Melero et al.,

2012), with each end of the ring representing the N- and C-termi-

nal side of UPF2. Only one of the two ends is bound to SMG1, but

our biochemical experiments using N- and C-terminally trun-

cated versions of UPF2 showed that both truncated mutants

could interact with SMG1. We cannot rule out that these interac-

tions represent different complexes between UPF2 and SMG1.

Consistently, the C-terminal MIF4G3 domain of UPF2 has been

shown to bind SMG1 in vitro (Clerici et al., 2014).

The structure of mTOR suggested that recruitment of

substrates to the PIKK domain could be the main mechanism

to control phosphorylation and that the FRB domain appeared

to regulate phosphorylation by facilitating access to the active

site (Yang et al., 2013). The structures of the SMG1C-UPFs sug-

gest that the mTOR model could be, at least in some aspects,

extended to SMG1. UPF2 and UPF3 are required to activate

UPF1 phosphorylation by SMG1 in vivo because UPF1 mutants

that bind SMG1 but cannot associate with UPF2 are poorly

phosphorylated by SMG1 in mammalian cells (Ivanov et al.,
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2008; Kashima et al., 2006). UPF2 is recruited to the FRB, and

this interaction could maybe contribute to activate SMG1.

However, additional signals appear to be required to trigger

phosphorylation in SMG1. Phosphorylation of UPF1 is down-

modulated by SMG8-SMG9 (Arias-Palomo et al., 2011;

Yamashita et al., 2009). SMG8 induces a large rotation of the

N-terminal arm, a conformational change that parallels other

HEAT repeat containing proteins after ligand binding (Figure 2;

Movies S1 and S2). Themechanism of regulationmay be indirect

because we do not find an obvious contact between SMG8-

SMG9 and the kinase region. In addition, UPF2 mutants that

bind UPF1 and SMG1 but not UPF3 suppressed UPF1 phos-

phorylation (Kashima et al., 2006). UPF3 and/or the UPF3-EJC

complex binding to this complex might induce the conforma-

tional changes required for SMG1 activation. The structures of

SMG1C-UPFs, if interpreted in the context of those models

that propose that the EJC stimulates UPF1 phosphorylation,

would suggest that SMG1C would be bound to UPF1 as part

of SURF, and SURF would then interact with UPF2-UPF3-EJC

to assemble one or several transient structural intermediates.

SMG1 would bind UPF1 and UPF2 simultaneously within these

complexes, and it would facilitate UPF2 binding to UPF1,

whereas the interaction of UPF2 and/or UPF2-UPF3 with

SMG1 would activate this kinase and UPF1 phosphorylation

(Kashima et al., 2006; Yamashita et al., 2009). Indeed, it has

been shown that an SMG1-UPF2/UPF3b complex can be

formed in vitro (Clerici et al., 2014). On the other hand, some

evidence suggests that distinct but related pathways rather

than only one mechanism could activate NMD, including EJC-

independent pathways. SMG1C could maybe potentially serve

as a platform for an UPF2-dependent activation of UPF1 without

the need for an EJC.

EXPERIMENTAL PROCEDURES

Plasmids and Antibodies

pEF_Flag-HA-SBP-SMG1 (residues 1–3657), pSR_Strep-HA-SMG9 (resi-

dues 2–520), pSR_Strep-HA-SMG8 (residues 2-991), pSR_HA-UPF1,

siLentGene-puro-siSMG8cds, siLentGene-puro-siSMG9cds, and siLent-

Gene-puro-siUPF1cds plasmids were described previously (Kashima et al.,

2006; Usuki et al., 2013; Yamashita et al., 2009). pEFh_SBP-UPF1 (residues

2–1118, codon optimized), pEFh_SBP-UPF2 (residues 2-1272), pEFh_SBP-

UPF2-E858R (residues 2–1272, E858R), pEFh_SBP-UPF2-F1113E-M1173E,

pEFh_SBP-UPF12-295 (residues 2-295, codon optimized), pEFh_SBP-

UPF1291–1118 (residues 291–1118, codon optimized), pEFh_SBP-UPF22-775

(residues 2-775, codon optimized), pEFh_SBP-UPF2770–1272 (residues

770–1272, codon optimized), pEFh_SBP-eGFP (codon optimized), pEF_

Flag-HA-SBP-MBP, pEFh_MBP-SMG11808–2743 (residues 1808–2743, codon

optimized), and pEFh_MBP-eGFP plasmids were constructed cloning each

cDNA fragment following standard methods.

Antibodies against SMG1, SMG8, SMG9, UPF1, UPF2, UPF3a, and UPF3b

were described previously (Kashima et al., 2006; Yamashita et al., 2009).

Antibodies against eIF4A3 (ProteinTech), Flag (M2; Sigma), SBP (SB19-C4;

Santa Cruz), and MBP (NEB) were obtained commercially. Fab fragments of

SMG8 generated from SMG8 polyclonal antibodies were generated using

the Pierce Fab Micro Preparation Kit.

Purification of Proteins and Protein Complexes

SBP-UPF1, SBP-UPF2, SBP-UPF2-F1113E-M1173E, the SBP-UPF2:

HA-UPF1 complex (used in Figure 1), the SBP-UPF2-E858R:HA-UPF1 com-

plex (used in Figure 7), SBP-UPF12-295, SBP-UPF1291–1118, SBP-UPF22–775,

SBP-UPF2770–1272, Flag-HA-SBP-SMG1 (residues 126–3,657), Flag-

HA-SBP-SMG1C, Flag-HA-SBP-MBP, SBP-eGFP, MBP-eGFP, and
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MBP-SMG11808–2743 were purified as described before (Arias-Palomo et al.,

2011). In brief, 3 3 107 to 6 3 108 of 293T cells were cotransfected with

plasmids encoding protein listed above using LipofectaminLTX (Life Technol-

ogies) or polyethyleneimine (Polysciences). During purification of SMG1,

potential contamination by SMG8 and SMG9 was avoided by cotransfection

of siLentGene-puro-siSMG8cds and siLentGene-puro-siSMG9cds and by

immune affinity using antibodies against these two proteins. Similarly, during

purification of UPF2, UPF2-E858R, and UPF2770–1272, potential contamina-

tions by UPF1 and UPF3 were avoided by cotransfection of siLentGene-

puro-siUPF1cds and immune affinity using antibodies against UPF1, UPF3a,

and UPF3b. Two to three days after transfection, cells were lysed with a

loose-fit Potter-Elvehjem Homogenizer in NF buffer (20 mM Tris-HCl

[pH 7.5], 150 mM NaCl, 0.25 M sucrose, 0.5% NP40, 1% Tween 20, 1 mM

dithiothreitol [DTT], protease inhibitor cocktail [Nacalai Tesque], phosphatase

inhibitor cocktail [EDTA free; Nacalai Tesque]) containing 50 mg/ml RNase A.

SBP- or MBP-tagged proteins were captured by streptavidin Mag Sepharose

(GE Healthcare) or Amylose Magnetic Beads (NEB), respectively. After

washing with NF buffer, the affinity-purified protein complexes were eluted

by incubation at 4�C for 30 min with T buffer (20 mM HEPES-KOH [pH 7.5],

150 mM NaCl, 2.5 mMMgCl2, 0.05% Tween 20) containing 2 mM DTT, prote-

ase inhibitor cocktail (EDTA free; Nacalai Tesque), phosphatase inhibitor cock-

tail (Nacalai Tesque), and 2 mM biotin (for SBP; Sigma) or 20 mM maltose (for

MBP), respectively. Eluted proteins were separated by SDS-PAGE and were

stained with Oriole fluorescent gel stain (Bio-Rad). Oriole-stained protein sig-

nals were quantifiedwith a Lumino-Imager, LAS-4000, and Science Lab Image

Gauge software (Fuji Photo Film). For the reconstitution of SMG1C-UPF2 com-

plex to be analyzed in EM, we used purified UPF2 (kindly provided by Elena

Conti, Max Planck Institut) corresponding to the same preparation used before

for EM (Melero et al., 2012).

WB Analysis

All western blot (WB) experiments were detectedwith the ECLwestern blotting

detection kit (GE Biotech), Luminata Classico Western HRP substrate (Milli-

pore), Luminata Forte Western HRP substrate (Millipore), or ImmunoStar LD

(Wako) using a LuminoImager, LAS-4000, and Science Lab 2001 ImageGauge

software (Fuji Photo Film).

Pull-Down Assays Using the SBP-Tagged Version of UPF2 fromHeLa

TetOff Cells and WB Analysis

HeLa TetOff cells were transfected within indicated plasmids using Lipofect-

amine LTX (Invitrogen). Two days after transfection, cells were lysed with a

loose-fit Potter-Elvehjem homogenizer in T buffer containing 50 mg/ml RNase

A. SBP-tagged proteins were pulled down by streptavidin Mag Sepharose

(GE Healthcare). After washing with T buffer, the Mag Sepharose was eluted

by 2 mM biotin, and 23 SDS sample buffer was added. Eluted proteins

were separated by SDS-PAGE and were probed by the indicated antibodies.

Experiments were performed three times, and typical results are shown.

EM and Image Processing

Complexes were assembled after incubating SMG1C with UPF1, UPF2, or

UPF1-UPF2 at 25�C for 30 min in an excess of UPFs compared with

SMG1C as indicated in Figure S1. For some experiments, the complexes

were mildly stabilized by incubating the mixture at 25�C for another 10 min

in the presence of 0.02% glutaraldehyde. Samples of SMG1 and SMG1C

and the incubations of SMG1C with UPF1, UPF2, and UPF1-UPF2 were

adsorbed on carbon-coated grids and stained using 1% uranyl formate.

Observations were performed using a JEOL-1230 at 100 kV, and images

were collected by an automatic data collection scheme using a TVIPS F416

CMOS and a final magnification of 54,926. CTF for all micrographs were

corrected using BSOFT (Heymann and Belnap, 2007). Some images were

also collected at 20� tilting to increase the number of views during image

processing. Images of individual molecules in all samples were extracted auto-

matically and subsequently classified and averaged by a combination of

maximum-likelihood methods (Scheres et al., 2007), classification methods

implemented in XMIPP (Sorzano et al., 2004), and a multireference supervised

classification. In brief, 2D averaging and classification was used to identify and

removed those images corresponding to small particles (likely free UPF1,

UPF2 or UPF1-UPF2) and define a subset of SMG1C-contaning complexes.
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Subsequently, images corresponding to free SMG1C and the complexes

were further identified and classified in a 3D processing strategy using

maximum-likelihood methods (Scheres et al., 2007) and supervised classifica-

tions. Supervised classifications were performed by comparing each SMG1C-

like image to all projections from several 3D templates including SMG1 and

SMG1C. After classification, we isolated a subset of images corresponding

to a homogenous structural complex containing SMG1C bound to UPFs that

behaved as a unique structure during refinement (at the resolution of these

studies) because the data set could not be classified further using

maximum-likelihood methods (Scheres et al., 2007). Details on the number

of images for each step can be found in Figure S1B. After classification, images

of SMG1, SMG1C, SMG1C-UPF1, SMG1C-UPF2, and SMG1C-UPF1-UPF2

were processed independently. Images were refined using EMAN (Ludtke

et al., 1999; Ludtke, 2010). Templates for refinement were obtained using

the volume generator from EMAN2. The resolution of the structures was esti-

mated using the Fourier shell correlation method and a 0.5 correlation coeffi-

cient. These estimates were 21.9, 20.8, 21.0, 21.7, and 19.5 Å for SMG1,

SMG1C, SMG1C-UPF1, SMG1C-UPF2, and SMG1C-UPF1-UPF2, respec-

tively (Figure S2).

Difference maps between SMG1C and SMG1, as well as SMG1C and the

several SMG1C-UPF complexes, were carried out by alignment the corre-

sponding 3D structures and a subtraction using UCSF Chimera (Goddard

et al., 2007). Fitting of atomic structures corresponding to the crystal struc-

tures of DNA-PKcs (Protein Data Bank [PDB] ID 3KGV) (Sibanda et al.,

2010), mTOR (PDB ID 4JSP) (Yang et al., 2013), UPF1 (PDB ID 2XZL

and 2WJV) (Chakrabarti et al., 2011; Clerici et al., 2009), a MIF4G3 domain

(Kadlec et al., 2004), and a model of UPF2 (Melero et al., 2012) was per-

formed using UCSF Chimera (Goddard et al., 2007). The handedness of

the reconstructions was determined by the fitting of the C-terminal region

of the crystal structure of mTOR into the head region of SMG1. For the

immunolabeling experiment, Fab fragments directed against SMG8 were

incubated with SMG1C, and the immune complexes were observed in

the electron microscope and processed in 2D as described for the rest

of the complexes.

Modeling Conformational Transition from SMG1 to SMG1C

The movement that takes place from SMG1 to SMG1C can be modeled using

UCSF Chimera (Goddard et al., 2007), and Figure 2H and Movie S1 represent

several possible transient states. SMG1 and SMG1C are showed slightly tilted

to help visualizing the conformational change.

In Vitro Protein-Binding Experiments

In vitro pull-down assays were performed in T buffer [20 mM HEPES-KOH (pH

7.5), 150 mM NaCl, 2.5 mM MgCl2, 0.05% Tween 20] complemented with

1 mM MgCl2, 1 mM MnCl2, 1 mM ZnCl2, 1 mM DTT, and 0.0025% (for Flag

pull-down) or 0.005% BSA (for SBP pull-down) at 4�C. For Flag pull-down as-

says, 30 nM Flag-HA-SBP-eGFP and Flag-HA-SBP-SMG1C were incubated

with the following proteins (90 nM each): SBP-eGFP (Figures 1C, 4A, and

6A); SBP-UPF1, SBP-UPF2 and SBP-UPF2:HA-UPF1 (Figure 1);

SBP-UPF12–295 and SBP-UPF1291–1118 (Figure 4A); and SBP-UPF22–775 and

SBP-UPF2770–1272 (Figure 6A). For SBP pull-down assays, 90 nM MBP-

eGFP and MBP-SMG11807–2743 were incubated with the following proteins

(270 nM each): SBP-eGFP (Figures 4B and 6B); SBP-UPF12–295 and SBP-

UPF1291–1118 (Figure 6B); and SBP-UPF22-775 and SBP-UPF2770–1272 (Figure

6B). After 3 hr incubation, the mixtures were added to the anti-Flag-M2 Mag-

netic Beads (Sigma) or anti-SBP (SB19-C4, SantaCruz) antibody-immobilized

Dynabeads protein G (Invitrogen) and incubated for 2 hr, and the beads were

washed four times with T buffer containing 1 mM DTT. The bound proteins

were eluted with T buffer containing 1 mM DTT and 150 mg/ml 3X Flag peptide

(Sigma) (for Flag pull-down) or SDS sample buffer (for SBP pull-down). The

eluted proteins were analyzed by SDS-PAGE and stained with Oriole stain,

and WB.

In Vitro Competition Assays

Experiments were performed in T buffer complemented with 1 mM MgCl2, 1

mM MnCl2, 1 mM ZnCl2, 1 mM DTT, and 0.0025% BSA at 4�C. To prepare

the preassembled complexes, 30 nM Flag-HA-SBP-SMG1C was mixed with

90 nM SBP-UPF1 or SBP-UPF2 and incubated for 3 hr, and the preassembled
–1119, August 5, 2014 ª2014 Elsevier Ltd All rights reserved 1117
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complexes were pulled down by Flag-M2 magnetic beads (Sigma). The beads

were washed four times with T buffer containing 1 mM DTT. Then the washed

beads were incubated with the following proteins for 1 hr: 90 nMSBP-eGFP; 0,

9, 30 and 90 nM SBP-UPF2; and 0, 9, 30 and 90 nM SBP-UPF2-F1113E-

M1173E or 0, 9, 30 and 90 nM SBP-UPF1. Following incubation, the beads

were as described above, and the bound proteins were eluted with T buffer

containing 1 mM DTT and 150 mg/ml 3X Flag peptide (Sigma). The eluted pro-

teins were analyzed by SDS-PAGE and stained with Oriole stain and WB.
ACCESSION NUMBERS
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