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We study the polynomial chaotic inflation model with a single scalar field in a double well quartic 
potential which has recently been shown to be consistent with Planck data. In particular, we study the 
effects of lifting the degeneracy between the two vacua on the inflationary observables, i.e., spectral 
index ns and tensor-to-scalar perturbation ratio rT . We find that removing the degeneracy allows the 
model to satisfy the upper limit constraints on rT from Planck data, provided the field starts near the 
local maximum. We also calculate the scalar power spectrum and non-Gaussianity parameter fNL for the 
primordial scalar perturbations in this model.
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1. Introduction

Inflation is regarded as the standard cosmological paradigm to 
describe the physics of the very early Universe. It leads to a causal 
mechanism to generate almost scale invariant fluctuations on cos-
mological scales, with small deviations that follow from the pre-
cise microphysics of inflation. This prediction is consistent with 
the recently announced measurements of the cosmic microwave 
background (CMB) anisotropies by the Planck satellite. The latest 
data allow us to constrain the inflationary model besides giving a 
slightly red tilted spectral index ns = 0.9603 ± 0.0073, ruling out 
exact scale invariance ns = 1 at over 5σ [1]. The Planck data also 
provide observational bounds on primordial non-Gaussianity pa-
rameter, i.e., local fNL = 2.7 ± 5.8 at 68% confidence level for the 
reduced bispectrum [2].

Just after Planck results were announced, different scalar poten-
tials were revisited to explore concordance with these results [1]. 
The data reinforced the ruling out of single-field inflationary mod-
els V (φ) = φn with n ≥ 2, which were already disfavored or 
marginally disfavored by WMAP. (This does not apply to alterna-
tive inflationary scenarios e.g., warm inflation [3].) However Croon 
et al. [4] demonstrated that the double well degenerate potential 
V (φ) = Aφ2(v2 − 2v Bφ + φ2) is consistent with Planck data, al-
though with severe constraints on the initial condition for φ and 
on the allowed range of B . The polynomial quartic potential with 
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double well is the most studied potential in a variety of settings. It 
is also well motivated by the physics beyond the Standard Model, 
viz. supergravity and superstring theories [5]. The characteristic 
interesting features [4,6] of the potential have been the primary 
motivation for a lot of effort to explore its consistency with the 
Planck data [1].

2. Basic formalism

2.1. Slow roll parameters

We review the formalism in [4] to set up our notation. For an 
inflationary model described by the potential V (φ) = Aφ2(v2 −
2v Bφ + φ2), the slow-roll parameters are defined as

ε ≡ 1

2
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pl

(
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= 2M2
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Fig. 1. (a) An illustration of the potential for different values of B; (b) Inset in (a) 
zoomed to highlight the behavior as x → 0+ .

In terms of the slow-roll parameters, the scalar spectral index 
is expressed as

ns = 1 − 6ε + 2η (5)

and the tensor-to-scalar ratio as

rT = 16ε. (6)

Finally the number of e-folds is given by

N = − 1

M2
pl

φe∫
φi

(
V

Vφ

)
dφ (7)

where φe,i are the values of φ at the end and beginning of the 
inflationary epoch.

The scalar power spectrum P s(k) is described in terms of the 
spectral index ns(k) by

P s(k) = A exp

[
(ns − 1) ln(k/k0) + 1

2
αs ln2(k/k0)

]
(8)

where

αs ≡ dns

d ln k
(9)

which in terms of slow-roll parameters is

αs = 1

8π2

[
−ξ

4
+ 2ηε − 3ε2

]
. (10)
Fig. 2. The reproduction of the work by Nakayama et al. [5]. (a) The two curves 
correspond to N = 50 (green) and 60 (black). Each curve is generated by varying 
xi from 0.005 to 1.0 in steps of 0.012. In this plot we have fixed B = 0.93 for both 
curves. (b) The seven curves correspond to B: 0.96, 0.95, 0.94, 0.92, 0.90, 0.80, 0.70 
for N = 60. Each curve is again generated by varying xi as in (a). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

2.2. Inflaton potential and background dynamics

On parameterizing the field as φ → xv , where x is dimension-
less, for the chosen potential in [4], the inflationary observables 
reduce to1:

ε = 2M2
pl(1 + 2x2 − 3xB)2

v2x2(1 + x2 − 2xB)2
, (11)

η = 2M2
pl(1 + 6x(x − B))

v2x2(1 + x2 − 2xB)
, (12)

ξ = 24M4
pl(2x − B)(1 + 2x2 − 3xB)

v4x3(1 + x2 − 2xB)2
(13)

1 In [4], a minus sign is missing in the expression for N . Further, the power of 
(1 − x) in their Eq. (10), generalized in our Eq. (13), should be 4 and not 2. This 
error creeps into the numerical calculation (in table) also. A summary of standard 
formulae can be found in [7].
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Fig. 3. (a) The tensor-to-scalar perturbation ratio rT as a function of B for N = 50
(red), 60 (green) and 70 (blue). In this plot we have taken xi = 0.1 for all three 
curves. The horizontal line shows the upper limit for rT = 0.11. (b) Spectral in-
dex ns as a function of B with the same color coding as in (a). Two horizontal lines 
show the constraint on ns , i.e., ns = 0.9603 ± 0.0073. (c) Prediction in the (ns, rT )

plane corresponding to (a) and (b). For example, each red point in the (ns, rT ) plane 
corresponds to a value of rT (red point in (a)) and a value of ns (red point in (b)), 
both calculated for a particular value of B . (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

and

N = − v2

M2
pl

xe∫
xi

(
V

V x

)
dx. (14)

We point out that the range of possible initial field values is 
severely restricted if B >

√
8/9, as the integral for N will not con-
Fig. 4. Same as in Fig. 3, but here we have taken xi = 0.4 (near the local maximum) 
for all three curves. Note the characteristic interesting behavior when field starts 
near the local maximum. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

verge on choosing an initial field value beyond the local maximum 
(see Fig. 6). This rules out the possibility of investigation of de-
viation from slow-roll or multiphase-inflation. Punctuated inflation 
[6] is the simplest and interesting example of multi-phase-inflation 
which occurs in our model when B ∼ √

8/9 and the initial field 
value is chosen beyond the point of inflection.

We now explore the behavior of the inflationary observables, 
including P s(k) and fNL as B is varied from 1 to 0 within the slow-
roll regime. Our analysis suggests a broad range of B for which 
prediction in the (ns, rT ) plane lies within the 1σ level.
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Fig. 5. (a) The scalar power spectrum as a function of k plotted on a logarithmic 
scale for B = 0.96 and xi = 0.4 over two e-folds. (b) A plot of fNL as a function of k
on a logarithmic scale. The values of B and xi are the same as in (a).

2.3. Discussion about the potential shape

The global shape of the potential depends on the coefficient B
as shown in Fig. 1. For B = 1, there is one local maximum at 
x = 0.5 and two degenerate minima at x = 0 and 1.0. For B < 1.0, 
the minimum at x = 1.0 is lifted. As long as there is such a local 
maximum, the initial value of the inflaton field should be below 
the local maximum since otherwise the inflaton would be trapped 
in the false vacuum.

The false vacuum disappears for B <
√

8/9. Interestingly, if B
marginally satisfies the inequality, there appears a flat plateau at 
around the point of inflection. If one starts at a suitable value of 
the field beyond the point of inflection in the above potential, it is 
found that one can achieve two epochs of slow roll inflation sand-
wiching a brief period of departure from inflation (lasting for a 
little less than one e-fold), a scenario which has been dubbed as 
punctuated inflation [6]. In fact, it is the point of inflection, around 
which the potential exhibits a plateau with an extremely small cur-
vature, which permits such an evolution to be possible.
Fig. 6. Schematic plot of integrand for N for (a) B = 0.92, (b) B = 0.94 and (c) 
B = 0.97; see Eq. (14).

It needs to be kept in mind that this potential does not provide 
a single inflation model, but rather a class of the inflationary mod-
els as we vary B from 0 to 1. Fig. 1 describes the potential profile 
for four values of B . Interestingly, there are two ways to mimic the 
quadratic potential case: (a) by changing the class of potential by 
decreasing B from 1 to 0 and (b) by taking the initial field value 
very near to zero (near the first minimum) [4]. However, as shown 
in Fig. 1b, each member of the class is asymptotic to the quadratic 
case if xi < 0.12 irrespective of the value of B .
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Fig. 7. Marginalized joint 68% and 95% CL regions for ns and r0.002. Observational 1σ (dark) and 2σ (light) constraints from the Planck satellite [1] are also shown: Planck +
WMAP polarization (gray), Planck + WMAP polarization + high-	 CMB measurement (red), Planck + WMAP polarization + baryon acoustic oscillation (blue). Filled circles 
connected by line segments show the predictions from chaotic inflation with V ∝ φ3 (green), φ2 (black), φ (yellow), φ2/3 (red) and R2 inflation (orange), for N = 50 (small 
circle) – 60 (big circle). The purple band shows the prediction of natural inflation [1]. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)
3. Numerical results

We set out to explore the model for the entire range of B values 
from 0 to 1 and for an arbitrary initial field value φi (or equiva-
lently xi ). We need to keep in mind that an arbitrary large initial 
field value can be taken only for those members of the class for 
which B <

√
8/9, otherwise either deviation from slow roll will 

occur (when B = √
8/9) or the field will be trapped in the false 

vacuum (when B >
√

8/9).

3.1. Prediction in (ns, rT ) plane

Fig. 3 exhibits how our analysis differs from the past work of 
Nakayama et al. [5] (see Fig. 2), where effects mainly due to vary-
ing initial field value are considered. In contrast, we have varied B
continuously for each fixed initial field value—from the one near 
the minimum at x = 0 to the other near the local maximum—
and for three e-fold values: N = 50, 60 and 70. However, we have 
shown the analysis only for the two extreme initial field values 
because of clarity and reasons of space (see Figs. 3 and 4).

Plots only on the (ns, rT ) plane, as done in [5], hide valuable in-
formation of initial conditions for which the model lies within 1σ . 
Notice that very near to x = 0.005, predictions (i.e., points in the 
(ns, rT ) plane) start from the quadratic potential (the black line), 
found concordant with the Planck data, and then graze the con-
tour as x is increased; see Figs. 2 and 7.

From Fig. 3a, it is clear that for N = 50 (red) and 60 (green), 
this model is completely above the bound imposed by Planck 
(rT < 0.11) for the entire range of B—here the field starts near 
the origin; whereas for N = 70 (blue), the model is at the margin 
of this bound.

When we contrast the above situation with Fig. 4a, we find 
that the upper limit on rT is satisfied for sufficiently large val-
ues of B (red and green curves fall below the horizontal line for 
B � 0.75 and B � 0.65 respectively). It is emphasized that this is 
the case when the field starts near the local maximum (x ∼ 0.4). 
Fig. 4c makes this explicit, showing that even a part of the red 
curve (N = 50) is within 1σ of the Planck value. Although there is 
no appreciable disagreement between Planck and BICEP2 results as 
clarified in [8], a slightly larger tensor-to-scalar ratio (rT ∼ 1.6), as 
required by BICEP2, is within reach (e.g., when B ∼ 0.3) as shown 
in Fig. 4a. Another way to realize a large rT is by assuming the 
non-monotonicity of the slow-roll parameter ε , as considered in a 
model somewhat similar to ours [9].
3.2. Non-Gaussianity

Non-Gaussianity is now a standard cosmological observable, 
comparable to the spectral index (ns) and tensor-to-scalar ratio rT , 
and is a powerful discriminant between competing models. It is 
therefore desirable to study aspects of non-Gaussianity for this 
model too. We have numerically calculated the equilateral limit 
of the local fNL parameter [10]. In Fig. 5a, the power spectrum is 
plotted as a function of k, from which it is clear that the spec-
trum is not scale invariant on any scale (otherwise it would have 
been a horizontal straight line). In Fig. 5b, the non-Gaussianity 
parameter fNL is plotted as a function of k, from which we ob-
serve that the very low values of | fNL| (∼ 0.01) lie in the range 
predicted by Planck data for local fNL = 2.7 ± 5.8 [2]. The very 
small non-Gaussianity, inferred from BICEP2 data owing to com-
paratively larger rT [11] (see also [12]), is compatible with our re-
sults also [13]. This observation is also consistent with the fact that 
single-field slow roll models predict a very small non-Gaussianity 
[14].

4. Summary and conclusion

In this letter, we have explored in detail the (B, φi) space 
within the slow-roll regime for the quartic potential. We have ex-
plicitly shown that on varying B , interesting patterns on the vari-
ation of ns and rT arise only when field dynamics captures the 
deviation from the quadratic case, i.e., the field should start near 
the local maximum, not near the origin. Even though this parame-
ter space has been moderately studied in [5], the authors restricted 
their analysis to a few discrete values of B . Similarly Ellis et al. [15]
have carried out a statistical study with just four explicit values of 
numerical coefficient in a two field model to explore concordance 
with the preferred observational values of ns and rT .

One of the main well-known problems—constraints from Planck 
on the upper limit on rT —has been reanalyzed here and we find 
that there is no respite for the model solely due to removing de-
generacy between the vacua. On the other hand, merging varia-
tions of B with the field starting near the local maximum, the 
model’s predictions for (ns, rT ) lie well within 1σ for a large 
part of the (B, φi) space (see Fig. 4). Further, our Fig. 4a clearly 
shows that large rT can be generated when the potential is non-
degenerate and the field starts near the local maximum. On non-
Gaussianity aspects (which were not considered in previous works 
[4,5]), we have explicitly calculated the local fNL parameter for 
each mode of our interest and verified that this model indeed 
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satisfies the constraint imposed by Planck data on non-Gaussianity 
[2], and is compatible with BICEP2 measurements.

Acknowledgements

R.K. thanks Dheeraj Kumar Hazra for useful communication and 
Tarun Choudhari for assistance with Latex. We are grateful to Rud-
nei O. Ramos and Sayantan Choudhury for pointing out their works 
[3,9,12] respectively. We also thank an anonymous reviewer whose 
comments helped us highlight the subtle points of our study. The 
work of R.K. was partially supported by CSIR, New Delhi with the 
award of JRF (No. 09/045(0930)/2010-EMR-I).

Appendix A

In Fig. 6, we plot the integrand for N for 3 values of B . (As al-
ready mentioned, one minimum disappears if B <

√
8/9 = 0.9428.) 

We can clearly see how a discontinuity in V
V x

develops as B in-

creases above 
√

8/9. One cannot take any point on the x axis 
beyond the local maximum, which is near x = 0.5 with a slight 
variation as we change B (see Fig. 1).

Fig. 7 is from Planck Data on which we superimpose our 
predictions—following [4] and [5].
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