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Abstract

Building on earlier work, the dipole subtraction formalism for photonic corrections is extended to various
photon–fermion splittings where the resulting collinear singularities lead to corrections that are enhanced
by logarithms of small fermion masses. The difference to the earlier treatment of photon radiation is that
now no cancellation of final-state singularities is assumed, i.e. we allow for non-collinear-safe final-state
radiation. Moreover, we consider collinear fermion production from incoming photons, forward-scattering
of incoming fermions, and collinearly produced fermion–antifermion pairs. For all cases we also provide
the corresponding formulas for the phase-space slicing approach, and particle polarization is supported for
all relevant situations. A comparison of numerical results obtained with the proposed subtraction procedure
and the slicing method is explicitly performed for the sample process e−γ → e−μ−μ+.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Present and future collider experiments require precise predictions for particle reactions, i.e.
for most of the relevant processes radiative corrections have to be calculated. This task becomes
arbitrarily complicated if either the order in perturbation theory (loop level) or the number of
external particles is increased, or both. In recent years the needed techniques and concepts have
received an enormous boost from various directions; for a brief overview we refer to some recent
review articles [1,2].
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In this paper we focus on real emission corrections involving photons at next-to-leading order
(NLO). Apart from the integration over a many-particle phase space, here the main complication
is the proper isolation of the singular parts which originate from soft or collinear regions in phase
space. To solve this problem at NLO, two different types of methods have been developed in the
past: phase-space slicing (see, e.g., Ref. [3]) and subtraction [4–8] techniques. In the slicing
approach the singular regions are cut off from phase space in the numerical integration and
treated separately. Employing general factorization properties of squared amplitudes in the soft
or collinear regions, the singular integrations can be carried out analytically. In the limit of small
cutoff parameters the sum of the two contributions reproduces the full phase-space integral. There
is a trade-off between residual cut dependences and numerical integration errors which increase
with decreasing slicing cuts; in practice, one is forced to search for a plateau in the integrated
result within some errors by varying the slicing cut parameters.

This cumbersome procedure is not necessary within subtraction formalisms which are based
on the idea of subtracting a simple auxiliary function from the singular integrand and adding
this contribution again. This auxiliary function has to be chosen in such a way that it cancels
all singularities of the original integrand so that the phase-space integration of the difference
can be performed numerically, even over the singular regions of the original integrand. In this
difference the original matrix element can be evaluated without regulators for soft or collinear
singularities. The auxiliary function has to be simple enough so that it can be integrated over
the singular regions analytically with the help of regulators, when the subtracted contribution
is added again. This singular analytical integration can be done once and for all in a process-
independent way because of the general factorization properties of squared amplitudes in the
singular regions. At NLO several subtraction variants have been proposed in the literature [4–8],
some of which are quite general; at next-to-next-to-leading order subtraction formalisms are still
under construction [9].

The dipole subtraction formalism certainly represents the most frequently used subtraction
technique in NLO calculations. It was first proposed within massless QCD by Catani and Sey-
mour [5] and subsequently generalized to photon emission off massive fermions [6]1 and to QCD
with massive quarks [7,8]. Among the numerous applications of dipole subtraction, we merely
mention the treatment of the electroweak corrections to e+e− → 4 fermions [11], which was the
first complete treatment of a 2 → 4 particle process at NLO. The formulation [5,7,8] of dipole
subtraction for NLO QCD corrections assumes so-called infrared safety of observables, i.e. that
all soft or collinear singularities cancel against their counterparts from the virtual corrections, ei-
ther after parton-density redefinitions for initial-state singularities or due to the inclusiveness of
event selection criteria in soft or collinear configurations for final-state singularities. In Ref. [6]
the collinear singularities from photon radiation are regularized by physical fermion masses, and
only for final-state radiation these were assumed to cancel due to inclusiveness of the observable.

In the following we generalize the method of Ref. [6] by dropping the latter assumption and by
considering also other collinear-singular configurations involving photons, which are regularized
by physical fermion masses:

1. In Section 2 we deal with non-collinear-safe final-state radiation off light (anti-)fermions f ,
where collinear singularities arise from the splitting f ∗ → f γ . Here and in the following,
asterisks indicate off-shell particles. By non-collinear-safe radiation we mean that a collinear

1 The case of light fermions, where masses appear as regulators, has also been worked out in Ref. [10].
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fermion–photon system is not necessarily treated as one quasi-particle, which by contrast
is the case in any collinear-safe observable. In collinear-safe situations, which are usually
enforced by photon recombination or a jet algorithm, singularities from final-state radiation
cancel according to the well-known Kinoshita–Lee–Nauenberg (KLN) theorem [12]. Non-
collinear-safe final-state radiation off a fermion f , in general, leads to corrections ∝ α lnmf

that are enhanced by a logarithm of a small fermion mass mf .
2. Section 3 is devoted to processes with incoming photons and outgoing light fermions. Here

the collinear-singular splitting is γ → f f̄ ∗, i.e. if an outgoing (anti-)fermion f is allowed
to be scattered into the direction of the incoming photon, the cross section receives an en-
hancement ∝ lnmf from this phase-space region.

3. In Section 4 we treat processes with light fermion–antifermion pairs in the final state, i.e.
when an outgoing photon with low virtuality splits into an f f̄ pair, γ ∗ → f f̄ . If the
collinearly produced f f̄ pair can be distinguished from a plainly emitted photon (that has
not split), the considered cross section again receives an enhancement ∝ lnmf .

4. Finally, in Section 5 we concentrate on processes with forward-scattered light (anti-)fermions,
where the splitting f → f γ ∗ leads to a collinear singularity if the emitted photon is almost
real. Again this phase-space region enhances the cross section by a factor ∝ lnmf .

While Section 2 builds on the conventions and results of Ref. [6], Sections 3, 4, and 5 are self-
contained and can be read independently.

Of course, the considered situations could all be treated by fully including a non-zero fermion
mass mf in the calculation. However, if mf is small compared to typical scales in the process,
which is the case for electrons or muons in almost all present and future high-energy collider
experiments, such a procedure is very inconvenient. The presence of very small or large scale ra-
tios jeopardizes the numerical stability of phase-space integrations, and mass terms significantly
slow down the evaluation of matrix elements. The subtraction technique described in the fol-
lowing avoids these problems by completely isolating all mass singularities from squared matrix
elements, so that finally only amplitudes for a massless fermion f are needed. We support par-
ticle polarization whenever relevant, in particular for all incoming particles. In order to facilitate
cross-checks in applications, the corresponding formulas for the phase-space slicing approach
are also provided.

In our technical treatment of the various splittings involving fermions and photons we do not
distinguish between quarks and leptons, although the physical meaning of the occurring fermion
masses is rather different. While logarithms of lepton masses consistently describe physical ef-
fects, such as collinear photon radiation off initial- or final-state leptons, mass logarithms of
light quarks have no well-defined physical meaning in perturbation theory. Nevertheless light
quark masses are often convenient regulators for collinear singularities, and in this sense our
results can be used. In practice, logarithms of light-quark masses disappear from predictions for
observables. If such singularities are connected to incoming particles, they are removed by a rede-
finition of parton densities. If they are connected to outgoing particles they automatically cancel
for collinear-safe observables; in the non-collinear-safe case they can be absorbed by redefining
fragmentation functions for the final-state jets or hadrons.

In Section 6 we demonstrate the use and the performance of the methods presented in Sec-
tions 3, 4, and 5 in the example e−γ → e−μ−μ+. A summary is given in Section 7, and the
appendices provide more details on and generalizations of the formulas presented in the main
text. In particular, the derivation of the factorization formulas for processes with incoming po-
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larized photons splitting into light fermions and for the forward scattering of incoming polarized
light fermions is described there.

2. Non-collinear-safe photon radiation off final-state fermions

2.1. Dipole subtraction and non-collinear-safe observables

For any subtraction formalism the schematic form of the subtraction procedure to integrate
the squared matrix element

∑
λγ

|M1|2 (summed over photon polarizations λγ ) for real photon
radiation over the (N + 1)-particle phase space dΦ1 reads∫

dΦ1

∑
λγ

|M1|2 =
∫

dΦ1

(∑
λγ

|M1|2 − |Msub|2
)

+
∫

dΦ̃0 ⊗
(∫

[dk]|Msub|2
)

,

(2.1)

where dΦ̃0 is a phase-space element of the corresponding non-radiative process and [dk] includes
the photonic phase space that leads to the soft and collinear singularities. The two contribu-
tions involving the subtraction function |Msub|2 have to cancel each other, however, they will
be evaluated separately. The subtraction function is constructed in such a way that the differ-
ence

∑
λγ

|M1|2 − |Msub|2 can be safely integrated over dΦ1 numerically and that the singular

integration of |Msub|2 over [dk] can be carried out analytically, followed by a safe numerical
integration over dΦ̃0.

In the dipole subtraction formalism for photon radiation, the subtraction function is given
by [6]

(2.2)
∣∣Msub(Φ1;κf )

∣∣2 = −
∑
f �=f ′

Qf σf Qf ′σf ′e2g
(sub)

ff ′,τ (pf ,pf ′ , k)
∣∣M0(Φ̃0,ff ′ ; τκf )

∣∣2,
where the sum runs over all emitter–spectator pairs ff ′, which are called dipoles. For a final-
state emitter (final-state radiation), the two possible dipoles are illustrated in Fig. 1. The relative
charges are denoted Qf , Qf ′ , and the sign factors σf ,σf ′ = ±1 correspond to the charge flow
(σf = +1 for incoming fermions and outgoing antifermions, σf = −1 for outgoing fermions
and incoming antifermions). The implicitly assumed summation over τ = ± accounts for a pos-
sible flip in the helicity of the emitter f , where κf = ± is the sign of the helicity of f both
in |M1|2 and |Msub|2. The singular behaviour of the subtraction function is contained in the
radiator functions g

(sub)

ff ′,τ (pf ,pf ′ , k), which depend on the emitter, spectator, and photon mo-

menta pf , pf ′ , and k, respectively. The squared lowest-order matrix element |M0|2 of the

Fig. 1. Generic diagrams for photonic final-state radiation off an emitter i with a spectator j or a in the final or initial
state, respectively.
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corresponding non-radiative process enters the subtraction function with modified emitter and

spectator momenta p̃
(ff ′)
f and p̃

(ff ′)
f ′ . For a final-state emitter f , the momenta are related by

pf + k ± pf ′ = p̃
(ff ′)
f ± p̃

(ff ′)
f ′ , where ± refers to a spectator f ′ in the final or initial state,

and the same set {kn} of remaining particle momenta enters |M1|2 and |M0|2. The modified

momenta are constructed in such a way that p̃
(ff ′)
f → pf + k in the collinear limit (pf k → 0).

Note that no collinear singularity exists for truly massive radiating particles f , because the
invariant pf k does not tend to zero if the photon emission angle becomes small (for fixed pho-
ton energy k0). In such cases the corresponding masses are kept non-zero in all amplitudes, in
the subtraction functions, and in the kinematics, and the subtraction procedure works without
problems. Collinear (or mass) singularities result if the mass mf of a radiating particle is much
smaller than the typical scale in the process under consideration. In such cases it is desirable
to set mf to zero whenever possible. In a subtraction technique this means that mf = 0 can be
consistently used in the integral

∫
dΦ1(

∑
λγ

|M1|2 − |Msub|2), but that the readded contribu-

tion
∫ [dk] |Msub|2 contains mass-singular terms of the form α lnmf . If such mass singularities

from collinear photon radiation do not completely cancel against their counterparts in the virtual
corrections, the corresponding observable is not collinear safe. The dipole subtraction formal-
ism as described in Ref. [6] is formulated to cover possible mass singularities from initial-state
radiation, but assumes collinear safety w.r.t. final-state radiation.

In collinear-safe observables (w.r.t. final-state radiation), and only those are considered for
light fermions in Ref. [6], a collinear fermion–photon system is treated as one quasi-particle,
i.e., in the limit where f and γ become collinear only the sum pf + k enters the procedures of
implementing phase-space selection cuts or of sorting an event into a histogram bin of a differ-
ential distribution. Technically this level of inclusiveness is reached by photon recombination, a
procedure that assigns the photon to the nearest charged particle if it is close enough to it. Of
course, different variants for such an algorithm are possible, similar to jet algorithms in QCD.
The recombination guarantees that for each photon radiation cone around a charged particle f

the energy fraction

(2.3)zf = p0
f

p0
f + k0

is fully integrated over. According to the KLN theorem, no mass singularity connected with
final-state radiation remains. Collinear safety facilitates the actual application of the subtraction
procedure as indicated in Eq. (2.1). In this case the events resulting from the contributions of
|Msub|2 can be consistently regarded as N -particle final states of the non-radiative process with
particle momenta as going into |M0(Φ̃0,ff ′)|2, i.e. the emitter and spectator momenta are given

by p̃
(ff ′)
f , p̃

(ff ′)
f ′ , respectively. Owing to p̃

(ff ′)
f → pf + k in the collinear limits, the difference∑

λγ
|M1|2 − |Msub|2 can be integrated over all collinear regions, because all events that differ

only in the value of zf enter cuts or histograms in the same way. The implicit full integration
over all zf in the collinear cones, on the other hand, implies that in the analytical integration of
|Msub|2 over [dk] the zf integrations can be carried out over the whole zf range.

In non-collinear-safe observables (w.r.t. final-state radiation), not all photons within arbitrarily
narrow collinear cones around outgoing charged particles are treated inclusively. For a fixed cone
axis the integration over the corresponding variable zf is constrained by a phase-space cut or by
the boundary of a histogram bin. Consequently, mass-singular contributions of the form α lnmf
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remain in the integral. Technically this means that the information on the variables zf has to be
exploited in the subtraction procedure of Eq. (2.1). The variables that take over the role of zf

in the individual dipole contributions in |Msub|2 are called zij and zia in Ref. [6], where f = i

is a final-state emitter and j/a a final-/initial-state spectator. In the collinear limit they behave
as zij → zi and zia → zi . Thus, the integral

∫
dΦ1 (

∑
λγ

|M1|2 − |Msub|2) can be performed

over the whole phase space if the events associated with |Msub|2 are treated as (N + 1)-particle

event with momenta pf → zff ′ p̃(ff ′)
f , pf ′ → p̃

(ff ′)
f ′ , and k → (1 − zff ′)p̃(ff ′)

f . This can be
formalized by introducing a step function Θcut(pf , k,pf ′ , {kn}) on the (N + 1)-particle phase
space which is 1 if the event passes the cuts and 0 otherwise. The set {kn} simply contains the
momenta of the remaining particles in the process. Making the dependence on Θcut explicit, the
first term on the r.h.s. of Eq. (2.1) reads∫

dΦ1

[∑
λγ

|M1|2Θcut
(
pf , k,pf ′ , {kn}

)

(2.4)−
∑
f �=f ′

|Msub,ff ′ |2Θcut
(
zff ′ p̃(ff ′)

f , (1 − zff ′)p̃(ff ′)
f , p̃

(ff ′)
f ′ , {kn}

)]
,

where we have decomposed the subtraction function |Msub|2 into its subcontributions
|Msub,ff ′ |2 of specific emitter–spectator pairs ff ′. Apart from this refinement of the cut pre-
scription in the subtraction part for non-collinear-safe observables, no modification in |Msub|2
is needed. Since its construction exactly proceeds as described in Sections 3 and 4 of Ref. [6],
we do not repeat the individual steps in this paper.

However, the modification of the cut procedure requires a generalization of the evaluation of
the second subtraction term on the r.h.s. of Eq. (2.1), because now the integral over zff ′ implicitly
contained in [dk] depends on the cuts that define the observable. In the following two sections
we work out the form of the necessary modifications, where we set up the formalism in such a
way that it reduces to the procedure described in Ref. [6] for a collinear-safe situation, while the
non-collinear-safe case is covered upon including extra contributions.

2.2. Final-state emitter and final-state spectator

For a final-state emitter i and a final-state spectator j with masses mi and mj the integral of

g
(sub)
ij,τ (pi,pj , k) over [dk] is proportional to

(2.5)G
(sub)
ij,τ

(
P 2

ij

)= P̄ 4
ij

2
√

λij

y2∫
y1

dyij (1 − yij )

z2(yij )∫
z1(yij )

dzij g
(sub)
ij,τ (pi,pj , k),

where the definitions of Sections 3.1 and 4.1 of Ref. [6] are used. There the results for G
(sub)
ij,τ (P 2

ij )

with generic or light masses are given in Eqs. (4.10) and (3.7), respectively. In order to leave the
integration over zij open, the order of the two integrations has to be interchanged, and the integral
solely taken over yij is needed. Therefore, we define

(2.6)Ḡ(sub)
ij,τ

(
P 2

ij , zij

)= P̄ 4
ij

2
√

λij

y2(zij )∫
y (z )

dyij (1 − yij )g
(sub)
ij,τ (pi,pj , k).
1 ij
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Note that no finite photon mass mγ is needed in the function Ḡ(sub)
ij,τ (P 2

ij , z) in practice, because
the soft singularity appearing at z → 1 can be split off by employing a [· · ·]+ prescription in the
variable z,

(2.7)Ḡ(sub)
ij,τ

(
P 2

ij , z
)= G

(sub)
ij,τ

(
P 2

ij

)
δ(1 − z) + [

Ḡ(sub)
ij,τ

(
P 2

ij , z
)]

+.

This procedure shifts the soft singularity into the quantity G
(sub)
ij,τ (P 2

ij ), which is already known
from Ref. [6]. Moreover, the generalization to non-collinear-safe integrals simply reduces to
the extra term [Ḡ(sub)

ij,τ (P 2
ij , z)]+, which cancels out for collinear-safe integrals where the full z-

integration is carried out.
For arbitrary values of mi and mj a compact analytical result of Ḡ(sub)

ij,τ (P 2
ij , z) cannot be

achieved because of the complicated structure of the integration boundary. Note, however, that
only the limit mi → 0 of a light emitter is relevant, since for truly massive emitters no mass
singularity results. The case of a massive spectator j is presented in Appendix A; here we restrict
ourselves to the simpler but important special case mj = 0.

In the limit mi → 0 and mj = mγ = 0 the boundary of the yij integration is asymptotically
given by

(2.8)y1(z) = m2
i (1 − z)

P 2
ij z

, y2(z) = 1,

and the functions and quantities relevant in the integrand g
(sub)
ij,τ behave as

(2.9)pik = P 2
ij

2
yij , Rij (y) = 1 − y, rij (y) = 1.

The evaluation of Eq. (2.6) becomes very simple and yields

Ḡ(sub)
ij,+

(
P 2

ij , z
)= Pff (z)

[
ln

(
P 2

ij z

m2
i

)
− 1

]
+ (1 + z) ln(1 − z),

(2.10)Ḡ(sub)
ij,−

(
P 2

ij , z
)= 1 − z,

where Pff (z) is the splitting function,

(2.11)Pff (z) = 1 + z2

1 − z
.

Eq. (2.10) is correct up to terms suppressed by factors of mi . For completeness, we repeat the
form of the full integral G

(sub)
ij,τ (P 2

ij ) in the case of light masses,

(2.12)G
(sub)
ij,+

(
P 2

ij

)= L
(
P 2

ij ,m
2
i

)− π2

3
+ 1, G

(sub)
ij,−

(
P 2

ij

)= 1

2
,

with the auxiliary function

(2.13)L
(
P 2,m2)= ln

(
m2

P 2

)
ln

(
m2

γ

P 2

)
+ ln

(
m2

γ

P 2

)
− 1

2
ln2
(

m2

P 2

)
+ 1

2
ln

(
m2

P 2

)
,
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which are taken from Eqs. (3.7) and (3.8) of Ref. [6].2

Finally, we give the explicit form of the ij contribution |Msub,ij (Φ1)|2 to the phase-space
integral of the subtraction function,∫

dΦ1
∣∣Msub,ij (Φ1;κi)

∣∣2

= − α

2π
QiσiQjσj

∫
dΦ̃0,ij

1∫
0

dz
{
G

(sub)
ij,τ

(
P 2

ij

)
δ(1 − z) + [

Ḡ(sub)
ij,τ

(
P 2

ij , z
)]

+
}

(2.14)× ∣∣M0(p̃i , p̃j ; τκi)
∣∣2Θcut

(
pi = zp̃i , k = (1 − z)p̃i , p̃j , {kn}

)
,

generalizing Eq. (3.6) of Ref. [6]. While p̃i , p̃j , {kn} are the momenta corresponding to the gen-
erated phase-space point in Φ̃0,ij , the momenta pi and k result from p̃i via a simple rescaling
with the independently generated variable z. The invariant P 2

ij is calculated via P 2
ij = (p̃i + p̃j )

2

independently of z. The arguments of the step function Θcut(pi, k, p̃j , {kn}) indicate on which
momenta phase-space cuts are imposed.

For unpolarized fermions the results of this section have already been described in Ref. [13],
where electroweak radiative corrections to the processes γ γ → WW → 4 fermions were calcu-
lated. In this calculation the results for non-collinear-safe differential cross sections were also
cross-checked against results obtained with phase-space slicing. Another comparison between
the described subtraction procedure and phase-space slicing has been performed in the calcula-
tion of electroweak corrections to the Higgs decay processes H → WW/ZZ → 4 fermions [14].

2.3. Final-state emitter and initial-state spectator

For the treatment of a final-state emitter i and an initial-state spectator a, we consistently
make use of the definitions of Sections 3.2 and 4.2 of Ref. [6]. In this paper we only consider
light particles in the initial state, because the masses of incoming particles are much smaller than
the scattering energies at almost all present and future colliders. Therefore, the spectator mass
ma can be set to zero from the beginning, which simplifies the formulas considerably.

Before we consider the non-collinear-safe situation, we briefly repeat the concept of the
collinear-safe case described in Ref. [6]. Following Eqs. (4.24) and (4.27) from there, the in-
clusive integral of g

(sub)
ia,τ (pi,pa, k) over [dk] is proportional to

(2.15)G
(sub)
ia,τ

(
P 2

ia

)=
x1∫

0

dx G(sub)
ia,τ

(
P 2

ia, x
)

with

(2.16)G(sub)
ia,τ

(
P 2

ia, xia

)= − P̄ 2
ia

2

z2(xia)∫
z1(xia)

dzia g
(sub)
ia,τ (pi,pa, k),

2 If dimensional regularization is used to regularize the soft singularity instead of a finite photon mass, the photon-

mass logarithm in L has to be replaced according to ln(m2
γ ) → (4πμ2)ε(1 + ε)/ε + O(ε), where D = 4 − 2ε is the

dimension and μ the reference mass of dimensional regularization.
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where we could set the lower limit x0 of the xia-integration to zero because of ma = 0. Since,
however, the squared lowest-order matrix element |M0|2 multiplying g

(sub)
ia,τ in Eq. (2.2) depends

on the variable xia , the integration of |Msub|2 over x = xia is performed employing a [· · ·]+
prescription,

− P̄ 2
ia

2

x1∫
0

dxia

z2(xia)∫
z1(xia)

dzia g
(sub)
ia,τ (pi,pa, k) · · ·

(2.17)=
1∫

0

dx
{
G

(sub)
ia,τ

(
P 2

ia

)
δ(1 − x) + [

G(sub)
ia,τ

(
P 2

ia, x
)]

+
} · · · .

This integration, where the ellipses stand for x-dependent functions such as the squared lowest-
order matrix elements and flux factors, is usually done numerically. Since the soft and collinear
singularities occur at x → x1 = 1 − O(mγ ), the singular parts are entirely contained in

G
(sub)
ia,τ (P 2

ia) in Eq. (2.17), and the upper limit x1 could be replaced by 1 in the actual x-integration.

For completeness we give the explicit form of the functions G
(sub)
ia,τ and G(sub)

ia,τ in the limit mi → 0,

G
(sub)
ia,+

(
P 2

ia

)= L
(∣∣P 2

ia

∣∣,m2
i

)− π2

2
+ 1, G

(sub)
ia,−

(
P 2

ia

)= 1

2
,

(2.18)G(sub)
ia,+

(
P 2

ia, x
)= 1

1 − x

[
2 ln

(
2 − x

1 − x

)
− 3

2

]
, G(sub)

ia,−
(
P 2

ia, x
)= 0,

which are taken from Eqs. (3.19) and (3.20) of Ref. [6].
In a non-collinear-safe situation, the ellipses on the l.h.s. of Eq. (2.17) also involve zia-

dependent functions, as e.g. θ -functions for cuts or event selection. Thus, also the integration
over zia has to be performed numerically in this case, and we have to generalize Eq. (2.17) in an
appropriate way. To this end, we generalize the usual [· · ·]+ prescription in the following way.
Writing

(2.19)
∫

dnr
[
g(r)

](ri )
+,(a)

f (r) ≡
∫

dnrg(r)
(
f (r) − f (r)

∣∣
ri=a

)
for the [· · ·]+ prescription in the ri -integration in a multiple integral over n variables rk (k =
1, . . . , n), we can iterate this definition to two-dimensional integrals according to

∫
dnr

[
g(r)

](ri ,rj )

+,(a,b)f (r) ≡
∫

dnr
[[

g(r)
](ri )
+,(a)

](rj )

+,(b)f (r)

(2.20)=
∫

dnrg(r)
(
f (r) − f (r)

∣∣
ri=a

−f (r)
∣∣
rj =b

+f (r)
∣∣ ri=a

rj =b

)
.

In the notation [g(r)](ri )+,(a) we omit the superscript (ri) if g(r) depends only on the integration
variable ri , and we omit the subscripts (a) or (a, b) if a = 1 or a = b = 1. This obviously recovers
the usual notation for the one-dimensional prescription used above. Introducing a double [· · ·]+
prescription in x = xia and z = zia , we generalize Eq. (2.17) to
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− P̄ 2
ia

2

x1∫
0

dx

z2(x)∫
z1(x)

dz g
(sub)
ia,τ (pi,pa, k) · · ·

=
1∫

0

dx

1∫
0

dz
{
G

(sub)
ia,τ

(
P 2

ia

)
δ(1 − x)δ(1 − z) + [

G(sub)
ia,τ

(
P 2

ia, x
)]

+δ(1 − z)

(2.21)+ [
Ḡ(sub)

ia,τ

(
P 2

ia, z
)]

+δ(1 − x) + [
ḡ

(sub)
ia,τ (x, z)

](x,z)

+
} · · · .

If the functions hidden in the ellipses do not depend on z, the last two terms within the curly
brackets do not contribute and the formula reduces to Eq. (2.17).

We derive Eq. (2.21) and the explicit form of the two extra terms in two steps. In the derivation
we quantify the previous ellipses by the regular test function f (x, z). The first step introduces a
[· · ·]+ prescription in the x-integration of the l.h.s. of Eq. (2.21) after interchanging the order of
the integrations,

I [f ] ≡ − P̄ 2
ia

2

x1∫
0

dx

z2(x)∫
z1(x)

dz g
(sub)
ia,τ f (x, z)

= − P̄ 2
ia

2

1∫
0

dz

x1(z)∫
0

dx g
(sub)
ia,τ f (x, z)

(2.22)= − P̄ 2
ia

2

1∫
0

dz

x1(z)∫
0

dx
{[

g
(sub)
ia,τ

](x)

+,(x1(z))
f (x, z) + g

(sub)
ia,τ f

(
x1(z), z

)}
.

The upper limit x1(z) of the x-integration follows upon solving the explicit form of the limits
z1,2(x) (given in Eq. (4.22) of Ref. [6]) for x. The full form of x1(z) is rather complicated for
finite mγ , but in the following it is only needed for mγ = 0, where it simplifies to

(2.23)x1(z)
∣∣
mγ =0 = P̄ 2

iaz

P̄ 2
iaz − m2

i (1 − z)
.

Note that soft or collinear singularities result from the region of highest x values, x → x1 =
max{x1(z)}, so that the first term in curly brackets in Eq. (2.22) is free of such singularities owing
to the [· · ·]+ regularization. Thus, we can set mi → 0 in this part, i.e. in particular x1(z) → 1,
yielding

(2.24)I [f ] = − P̄ 2
ia

2

1∫
0

dz

{ 1∫
0

dx
[
g

(sub)
ia,τ

](x)

+ f (x, z) + f
(
x1(z), z

) x1(z)∫
0

dx g
(sub)
ia,τ

}
.

In the second step we introduce a [· · ·]+ prescription for the z-integration in both terms,
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I [f ] = − P̄ 2
ia

2

1∫
0

dz

{ 1∫
0

dx
[[

g
(sub)
ia,τ

](x)

+
](z)
+ f (x, z) +

1∫
0

dx
[
g

(sub)
ia,τ

](x)

+ f (x,1)

+ f
(
x1(z), z

)[ x1(z)∫
0

dx g
(sub)
ia,τ

](z)

+
+ f

(
x1(1),1

) x1(z)∫
0

dx g
(sub)
ia,τ

}

= − P̄ 2
ia

2

1∫
0

dx

1∫
0

dz
[
g

(sub)
ia,τ

](x,z)

+ f (x, z) − P̄ 2
ia

2

1∫
0

dx f (x,1)

[ 1∫
0

dz g
(sub)
ia,τ

](x)

+

− P̄ 2
ia

2

1∫
0

dzf
(
x1(z), z

)[ x1(z)∫
0

dx g
(sub)
ia,τ

](z)

+
− P̄ 2

ia

2
f
(
x1(1),1

) 1∫
0

dz

x1(z)∫
0

dx g
(sub)
ia,τ .

(2.25)

In the second equality we just reordered some factors and integrations. Since all integrals over
the test function f are now free of singularities, i.e. the singularities are contained in the integrals
multiplying f , we can set the regulator masses mγ and mi to zero in the arguments of f . Thus,
we can write

I [f ] =
1∫

0

dx

1∫
0

dz
[
ḡ

(sub)
ia,τ (x, z)

](x,z)

+ f (x, z) +
1∫

0

dx f (x,1)
[
G(sub)

ia,τ

(
P 2

ia, x
)]

+

(2.26)+
1∫

0

dzf (1, z)
[
Ḡ(sub)

ia,τ

(
P 2

ia, z
)]

+ + f (1,1)G
(sub)
ia,τ

(
P 2

ia

)

with the abbreviations

ḡ
(sub)
ia,τ (x, z) = − P̄ 2

ia

2
g

(sub)
ia,τ

∣∣
mγ =0
mi=0

,

G(sub)
ia,τ

(
P 2

ia, x
)= − P̄ 2

ia

2

1∫
0

dz g
(sub)
ia,τ

∣∣
mγ =0
mi=0

,

Ḡ(sub)
ia,τ

(
P 2

ia, z
)= − P̄ 2

ia

2

x1(z)∫
0

dx g
(sub)
ia,τ

∣∣
mγ =0,

(2.27)G
(sub)
ia,τ

(
P 2

ia

)= − P̄ 2
ia

2

1∫
0

dz

x1(z)∫
0

dx g
(sub)
ia,τ .

Eq. (2.26) is equivalent to the anticipated result (2.21), which was to be shown. The explicit
results for G(sub)

ia,τ (P 2
ia, x) and G

(sub)
ia,τ (P 2

ia) have already been given above in Eq. (2.18), the two
remaining functions are easily evaluated to

ḡ
(sub)
ia,+ (x, z) = 1

(
2 − 1 − z

)
, ḡ

(sub)
ia,− (x, z) = 0,
1 − x 2 − x − z



S. Dittmaier et al. / Nuclear Physics B 800 (2008) 146–189 157
Ḡ(sub)
ia,+

(
P 2

ia, z
)= Pff (z)

[
ln

(−P 2
iaz

m2
i

)
− 1

]
− 2 ln(2 − z)

1 − z
+ (1 + z) ln(1 − z),

(2.28)Ḡ(sub)
ia,−

(
P 2

ia, z
)= 1 − z.

The collinear singularity ∝ lnmi that appears in non-collinear-safe observables is contained in
the function Ḡ(sub)

ia,+ (P 2
ia, z).

The resulting ia contribution |Msub,ia(Φ1)|2 to the phase-space integral of the subtraction
function reads∫

dΦ1
∣∣Msub,ia(Φ1;κi)

∣∣2

= − α

2π
QaσaQiσi

1∫
0

dx

∫
dΦ̃0,ia

(
P 2

ia, x
) 1∫

0

dz

× Θcut
(
pi = zp̃i(x), k = (1 − z)p̃i(x),

{
k̃n(x)

})
× 1

x

{
G

(sub)
ia,τ

(
P 2

ia

)
δ(1 − x)δ(1 − z) + [

G(sub)
ia,τ

(
P 2

ia, x
)]

+δ(1 − z)

+ [
Ḡ(sub)

ia,τ

(
P 2

ia, z
)]

+δ(1 − x) + [
ḡ

(sub)
ia,τ (x, z)

](x,z)

+
}∣∣M0

(
p̃i(x), p̃a(x); τκi

)∣∣2,
(2.29)

which generalizes Eq. (3.18) of Ref. [6]. Again, the arguments of the step function Θcut(pi, k,

{k̃n}) indicate on which momenta phase-space cuts are imposed. We recall that Φ̃0,ia is the phase
space of momenta p̃i(x) and {k̃n(x)} (without final-state radiation) with rescaled incoming mo-
mentum p̃a(x) = xpa instead of the original incoming momentum pa . In the actual evaluation of
Eq. (2.29), thus, the two phase-space points Φ̃0,ia(P

2
ia, x) and Φ̃0,ia(P

2
ia, x = 1) have to be gen-

erated for each value of x owing to the plus prescription in x. The relevant value of the invariant
P 2

ia is then calculated separately via P 2
ia = (p̃i − p̃a)

2 for each of the two points, so that P 2
ia re-

sults from the momenta entering the matrix element M0 in both cases.3 The variable z, however,
is generated independently of the phase-space points and does not influence the kinematics in the
matrix element.

The combination of the subtraction procedures described in this and the previous section has
been successfully applied and compared to results obtained with phase-space slicing in the calcu-
lations of electroweak corrections to Drell–Yan-like W -boson production, pp → W → νll + X,
and to deep-inelastic neutrino scattering, νμN → νμ/μ + X, building on the calculations dis-
cussed in Refs. [15,16] and [17], respectively.

2.4. Phase-space slicing

In the phase-space slicing approach the soft and collinear phase-space regions are excluded
in the (numerical) integration of the squared amplitude of the real-emission process. In the so-
called two-cutoff slicing method the soft region is cut off by demanding that the photon energy
k0 should be larger than a lower cut �E which is much smaller than any relevant energy scale

3 For a more formal explanation of this subtle but important point we refer to the discussion at the end of Section 6.3
of Ref. [8].
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of the process. The collinear regions are excluded by demanding that each angle of the photon
with any other direction of a light charged particle should be larger than the cut value �θ 	 1.
Note that this phase-space splitting is not Lorentz invariant. In the soft and collinear regions
the photon phase space can be integrated out analytically by employing the general factorization
properties of the squared amplitudes, which are, e.g., discussed in Section 2.2 of Ref. [6] (includ-
ing polarization effects). General results for the integral over the soft region can, e.g., be found
in Refs. [18,19]. The integrals over the collinear regions for final-state radiation can be easily
obtained from intermediate results of the two previous sections as follows.

The cuts defining the collinear region for the photon–emitter system of Section 2.2 translate
into new limits for the integration variables yij and zij ,

(2.30)
m2

i (1 − zij )

P̄ 2
ij zij

< yij <
(p0

i )
2

P̄ 2
ij

1 − zij

zij

�θ2, 0 < zij < 1 − �E

p0
i

,

which are asymptotically valid up to the relevant order in mi → 0. With these new limits on yij

we evaluate the integral defined in Eq. (2.6) and obtain

(2.31)Ḡ(sli)
+

(
p0

i , z
)= Pff (z)

[
ln

(
(p0

i )
2�θ2

m2
i

)
− 1

]
, Ḡ(sli)

−
(
p0

i , z
)= 1 − z.

The integrals of these functions over z = zij are given by

(2.32)G
(sli)
+

(
p0

i

)= −
[

ln

(
�E2

(p0
i )

2

)
+ 3

2

][
ln

(
(p0

i )
2�θ2

m2
i

)
− 1

]
, G

(sli)
−

(
p0

i

)= 1

2
.

As it should be, in these results the dependence on the spectator particle j completely disappears,
because it was only needed in the phase-space parametrization. We also note that the same results
can be obtained from Section 2.3, where the limits on xia and zia are changed to

m2
i (1 − zia)

−P̄ 2
iazia + m2

i (1 − zia)
< 1 − xia <

(p0
i )

2

−P̄ 2
ia

1 − zia

zia

�θ2,

(2.33)0 < zia < 1 − �E

p0
i

.

Using the functions Ḡ(sli)
τ and G

(sli)
τ , the integral over the collinear photon emission cone

around particle i reads∫
coll,i

dΦ1
∣∣M1(Φ1;κi)

∣∣2

= α

2π
Q2

i

∫
dΦ̃0

1∫
0

dz
{
G(sli)

τ

(
p0

i

)
δ(1 − z) + [

Ḡ(sli)
τ

(
p0

i , z
)]

+
}

(2.34)× ∣∣M0(p̃i; τκi)
∣∣2Θcut

(
pi = zp̃i , k = (1 − z)p̃i , {kn}

)
,

where the momenta p̃i and {kn} belong to the phase-space point Φ̃0. Of course, apart from the
polarization issue this is a well-known result which can be found in various papers [3].4

4 Descriptions of phase-space slicing for initial-state radiation off unpolarized particles can also be found in Ref. [3];
the case of polarized incoming particles is, e.g., treated in Ref. [20].
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3. Collinear singularities from γ → f f̄ ∗ splittings

3.1. Asymptotics in the collinear limit

We consider a generic scattering process

(3.1)γ (k,λγ ) + a(pa) → f (pf ) + X,

where the momenta of the particles are indicated in parentheses and λγ = ± is the photon helic-
ity. Here a is any massless incoming particle and f is an outgoing light fermion or antifermion.
The remainder X may contain additional light fermions which can be treated in the same way
as f . For later use, we define the squared centre-of-mass energy s,

(3.2)s = (pa + k)2 = 2pak.

The collinear singularity in the squared matrix element |Mγ a→f X|2 occurs if the angle θf be-
tween f and the incoming γ becomes small; in this limit the scalar product (kpf ) is of O(m2

f ),
where mf is the small mass of f . Neglecting terms that are irrelevant in the limit mf → 0 the
squared matrix element |Mγ a→f X(k,pa,pf ;λγ )|2 for a definite photon helicity λγ = ± (but
summed over the polarizations of f ) asymptotically behaves like∣∣Mγ a→f X(k,pa,pf ;λγ )

∣∣2
(3.3)

k̃pf →0 Q2
f e2hγf

τ (k,pf )
∣∣Mf̄ a→X(pf̄ = xk,pa;κf̄ = τλγ )

∣∣2,
where x = 1 − p0

f /k0 and Qf e is the electric charge of f . The matrix element Mf̄ a→X corre-

sponds to the related process f̄ a → X that results from γ a(→ f f̄ ∗a) → f X upon cutting the
f̄ ∗ line in all diagrams involving the splitting γ → f f̄ ∗ (see also Fig. 2). The incoming mo-
menta relevant in the different matrix elements are given in parentheses. Moreover, in Eq. (3.3)
we assume a summation over τ = ±, where τ = ± refers to the two cases where the sign κf̄ of

the f̄ helicity is equal or opposite to the photon helicity λγ . The functions h
γf
τ (k,pf ), which

rule the structure of the collinear singularity, are given by

h
γf
+ (k,pf ) = 1

x(kpf )

(
Pf γ (x) + xm2

f

kpf

)
− h

γf
− (k,pf ),

(3.4)h
γf
− (k,pf ) = 1

x(kpf )
(1 − x)

(
1 − x − m2

f

2kpf

)
,

with the splitting function

(3.5)Pf γ (x) = (1 − x)2 + x2.

The derivation of this result is given in Appendix B.1.
Note that the collinear singularity for kpf → 0 can be attributed to a single external leg

(namely f̄ ) of the related hard process f̄ a → X. Thus, there is no need to construct the sub-
traction function |Msub|2 from several dipole contributions ∝ Qf Qf ′ . Instead we can construct
|Msub|2 as a single term ∝ Q2

f . Nevertheless we select a spectator f ′ to the emitter f for the
phase-space construction, which proceeds in complete analogy to the photon radiation case. We
have the freedom to choose any particle in the initial or final state as spectator. In the following
we describe the “dipole” formalism in two variants: one with a spectator from the initial state,
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Fig. 2. Generic diagrams for the splittings γ → f f̄ ∗ with an initial-state spectator a or a final-state spectator j .

another with a spectator from the final state. The two situations are illustrated in Fig. 2. Our prac-
tical experience shows that none of the two possibilities is superior to the other, but comparing
results of the two variants provides valuable cross-checks.

3.2. Initial-state spectator

The function that is subtracted from the integrand |Mγ a→f X(k,pa,pf ;λγ )|2 is defined as
follows,

(3.6)
∣∣Msub(λγ )

∣∣2 = Q2
f e2hγf,a

τ (k,pf ,pa)
∣∣Mf̄ a→X

(
p̃f̄ , pa, {k̃n};κf̄ = τλγ

)∣∣2,
with the radiator functions

h
γf,a
+ (k,pf ,pa) = 1

xf,γ a(kpf )

(
Pf γ (xf,γ a) + xf,γ am

2
f

kpf

)
− h

γf,a
− (k,pf ,pa),

(3.7)h
γf,a
− (k,pf ,pa) = 1

xf,γ a(kpf )
(1 − xf,γ a)

(
1 − xf,γ a − m2

f

2kpf

)
,

and the auxiliary quantity

(3.8)xf,γ a = pak − pf k − papf

pak
.

Here we kept the dependence on a finite mf , because it is needed in the analytical treatment
of the singular phase-space integration below. The modified momenta p̃f̄ and {k̃n} entering the
squared matrix element on the r.h.s. of Eq. (3.6) will only be needed for mf = 0 in applications
with small values of mf . In this limit they can be chosen as

(3.9)p̃
μ

f̄
(x) = xkμ, p̃

μ

f̄
= p̃

μ

f̄
(xf,γ a), k̃μ

n = Λμ
νk

ν
n

with the Lorentz transformation matrix Λμ
ν given by

(3.10)Λμ
ν = gμ

ν − (P + P̃ )μ(P + P̃ )ν

P 2 + P P̃
+ 2P̃ μPν

P 2
,

(3.11)P μ = pμ
a + kμ − p

μ
f , P̃ μ(x) = pμ

a + p̃
μ

f̄
(x), P̃ μ = pμ

a + p̃
μ

f̄
.

It is straightforward to check that |Msub|2 possesses the same asymptotic behaviour as
|Mγ a→f X|2 in Eq. (3.3) in the collinear limit with mf → 0. Thus, the difference |Mγ a→f X|2 −
|Msub|2 can be integrated numerically for mf = 0.
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The correct dependence of |Msub|2 (and the related kinematics) on a finite mf is, however,
needed when this function is integrated over θf leading to the collinear singularity for θf → 0.
The actual analytical integration can be done as described in Ref. [6] (even for finite ma and mf ).
Here we only sketch the individual steps and give the final result. The (N + 1)-particle phase
space is first split into the corresponding N -particle phase space and the integral over the re-
maining degrees of freedom that contain the singularity,∫

dφ (pf ,P ; k + pa)

(3.12)=
x1∫

0

dx

∫
dφ
(
P̃ (x); p̃f̄ (x) + pa

)∫ [
dpf (s, x, yf,γ a)

]
,

with the explicit parametrization

(3.13)
∫ [

dpf (s, x, yf,γ a)
]= s

4(2π)3

y2(x)∫
y1(x)

dyf,γ a

∫
dφf .

The upper kinematical limit of the parameter x = xf,γ a is given by

(3.14)x1 = 1 − 2mf√
s

,

but in the limit mf → 0 we can set x1 = 1. While the integration of the azimuthal angle φf of f

simply yields a factor 2π , the integration over the auxiliary parameter

(3.15)yf,γ a = kpf

kpa

= 2kpf

s

with the boundary

(3.16)y1,2(x) = 1

2

[
1 − x ∓

√
(1 − x)2 − 4m2

f

s

]

is less trivial. Defining

(3.17)Hγf,a
τ (s, x) = xs

2

y2(x)∫
y1(x)

dyf,γ a hγf,a
τ (k,pf ,pa),

the result of this straightforward integration (for mf → 0) is

Hγf,a
+ (s, x) = Pf γ (x) ln

(
s(1 − x)2

m2
f

)
+ 2x(1 − x) −Hγf,a

− (s, x),

(3.18)Hγf,a
− (s, x) = (1 − x)2 ln

(
s(1 − x)2

m2
f

)
− (1 − x)2.

For clarity we finally give the contribution σ sub
γ a→f X that has to be added to the result for the cross

section obtained from the integral of the difference |Mγ a→f X|2 − |Msub|2,
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σ sub
γ a→f X(k,pa;λγ )

(3.19)= Nc,f
Q2

f α

2π

1∫
0

dxHγf,a
τ (s, x)σf̄ a→X(pf̄ = xk,pa;κf̄ = τλγ ).

Although formulated for integrated cross sections, the previous formula can be used to calculate
any differential cross section after obvious modifications.

For the case of unpolarized photons this subtraction variant has already been briefly described
in Ref. [17], where it was applied to the contributions to deep-inelastic neutrino scattering,
νμN → νμ/μ + X, that are induced by a photon distribution function of the nucleon N . More-
over, the method presented here was successfully used in the calculation of photon-induced real
corrections to Drell–Yan-like W production (see Section 10 of Ref. [1] and Ref. [16]) and of
photon- and gluon-induced real corrections to Higgs production via vector-boson fusion at the
LHC [21]. All these results were also cross-checked against phase-space slicing.

3.3. Final-state spectator

As an alternative to the case of an initial-state spectator described in the previous section, we
here present the treatment with a possibly massive final-state spectator j with mass mj , i.e. we
consider the process

(3.20)γ (k) + a(pa) → f (pf ) + j (pj ) + X.

The initial-state particle a is assumed massless in the following, but all formulas can be gen-
eralized to ma �= 0 following closely the treatment of phase space described in Section 4.2 of
Ref. [6]. The subtraction function now is constructed as follows,

(3.21)
∣∣Msub(λγ )

∣∣2 = Q2
f e2h

γf

j,τ (k,pf ,pj )
∣∣Mf̄ a→jX(p̃f̄ , pa, p̃j ;κf̄ = τλγ )

∣∣2,
with the radiator functions

h
γf

j,+(k,pf ,pj ) = 1

xfj,γ (kpf )

(
Pf γ (xfj,γ ) + xfj,γ m2

f

kpf

)
− h

γf

j,−(k,pf ,pj ),

(3.22)h
γf

j,−(k,pf ,pj ) = 1

xfj,γ (kpf )
(1 − xfj,γ )

(
1 − xfj,γ − m2

f

2kpf

)

and the auxiliary parameter

(3.23)xfj,γ = kpj + kpf − pf pj

kpj + kpf

.

The momenta p̃f̄ and p̃j are given by

p̃
μ

f̄
(x) = xkμ, p̃

μ

f̄
= p̃

μ

f̄
(xfj,γ ), p̃

μ
j = P μ + p̃

μ

f̄
, P μ = p

μ
f + p

μ
j − kμ,

(3.24)

while the momenta of the other particles are unaffected. Note that this construction of momenta is
based on the restriction mf = 0, which is used in the integration of the difference |Mγ a→fjX|2 −
|Msub|2.
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In the integration of |Msub|2 over the collinear-singular phase space, of course, the correct
dependence on a finite mf is required. Owing to the finite spectator mass mj , this procedure
is quite involved; we sketch it in Appendix B.2. Here we only present the results needed in
practice. The cross-section contribution σ sub

γ a→fjX that has to be added to the integrated difference

|Mγ a→f X|2 − |Msub|2 is given by

σ sub
γ a→fjX(k,pa;λγ )

(3.25)= Nc,f
Q2

f α

2π

1∫
0

dxHγf

j,τ

(
P 2, x

)
σf̄ a→jX(pf̄ = xk,pa;κf̄ = τλγ ),

where the collinear singularity is again contained in the kernels

Hγf

j,+
(
P 2, x

)= −Pf γ (x) ln

[
m2

f x

(m2
j − P 2)(1 − x)

(
1 + m2

j x

(m2
j − P 2)(1 − x)

)]
+ 2x(1 − x)

−Hγf

j,−
(
P 2, x

)
,

Hγf

j,−
(
P 2, x

)= −(1 − x)2 ln

[
m2

f x

(m2
j − P 2)(1 − x)

(
1 + m2

j x

(m2
j − P 2)(1 − x)

)]
− (1 − x)2.

(3.26)

Of course, the singular contributions ∝ lnmf have the same form as in the case of an initial-state
spectator discussed in the previous section.

3.4. Phase-space slicing

From the results of the two previous sections, the corresponding formulas for the phase-space
slicing approach can be easily obtained. The collinear region, which is omitted in the phase-space
integration, is defined by the restriction θf < �θ on the fermion emission angle θf in some given
reference frame.

In Section 3.2 this constraint translates into new limits on the variable yf,γ a ,

(3.27)
m2

f

s(1 − xf,γ a)
< yf,γ a <

(k0)2(1 − xf,γ a)

s
�θ2,

which modifies the result of the integral analogously defined to Eq. (3.17) to

Hγf
+
(
k0, x

)= Pf γ (x) ln

(
(k0)2(1 − x)2�θ2

m2
f

)
+ 2x(1 − x) −Hγf

−
(
k0, x

)
,

(3.28)Hγf
−
(
k0, x

)= (1 − x)2 ln

(
(k0)2(1 − x)2�θ2

m2
f

)
− (1 − x)2.

The cross-section contribution of the collinear region of f then reads

σ
coll,f
γ a→f X(k,pa;λγ ) = Nc,f

Q2
f α

2π

1∫
0

dxHγf
τ

(
k0, x

)
σf̄ a→X(pf̄ = xk,pa;κf̄ = τλγ ).

(3.29)
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The same result is obtained from Section 3.3 with Appendix B.2, where the new limits on
zfj,γ read

(3.30)
m2

f xfj,γ

−P̄ 2(1 − xfj,γ )
< 1 − zfj,γ <

(k0)2xfj,γ (1 − xfj,γ )

−P̄ 2
�θ2.

4. Collinear singularities from γ ∗ → f f̄ splittings

4.1. Asymptotics in the collinear limit

We consider a generic scattering process

(4.1)a(pa) + b(pb) → f (pf ) + f̄ (pf̄ ) + X,

where the momenta of the particles are indicated in parentheses. Depending on the particle con-
tent of the remainder X, there may be additional, independent collinear-singular configurations,
but we are interested in the region where the invariant mass (pf + pf̄ )2 = 2m2

f + 2pf pf̄ of the

produced fermion–antifermion pair f f̄ becomes of the order O(m2
f ), where mf is small com-

pared to typical scales in the process. The singular behaviour of the full squared matrix element
|Mab→f f̄ X(pf ,pf̄ )|2 entirely originates from diagrams containing a γ ∗ → f f̄ splitting, i.e.
the singularity is related to the subprocess ab → γX. For the matrix element of this subprocess
we write Mab→γX = T

μ
ab→γX(k̃)ελγ ,μ(k̃)∗, where T

μ
ab→γX(k̃) is the amplitude without the pho-

ton polarization vector ελγ ,μ(k̃)∗. In the collinear limit pf pf̄ → 0 the light-like momentum k̃ is
equal to k = pf + pf̄ up to mass-suppressed terms. Neglecting terms that are irrelevant in the

limit mf → 0 the squared matrix element |Mab→f f̄ X(pf ,pf̄ )|2 asymptotically behaves like

∣∣Mab→f f̄ X(pf ,pf̄ )
∣∣2

p̃f pf̄ →0 Nc,f Q2
f e2hf f̄ ,μν(pf ,pf̄ )T

μ
ab→γX(k̃)∗T ν

ab→γX(k̃),

(4.2)

where

(4.3)hf f̄ ,μν(pf ,pf̄ ) = 2

(pf + pf̄ )2

[
−gμν + 4z(1 − z)

k⊥,μk⊥,ν

k2⊥ − m2
f

]
, z = p0

f

k0
,

and Nc,f is the colour multiplicity of f (Nc,lepton = 1, Nc,quark = 3). The momentum k⊥ is the
component of pf that is orthogonal to the collinear axis defined by k, i.e. kk⊥ = 0, and becomes
of O(mf ) in the collinear limit. An explicit prescription for the construction of k⊥ can, e.g.,
be found in Ref. [8], where the analogous case of the gluonic splitting into massive quarks Q,
g∗ → QQ̄, is worked out. It is important to realize that hf f̄ ,μν in Eq. (4.2) is not proportional

to the polarization sum Eμν = ∑
λγ

ελγ ,μ(k̃)∗ελγ ,ν(k̃) of the photon, so that the r.h.s. is not

proportional to the polarization-summed squared amplitude |Mab→γX|2 of the subprocess. This
spin correlation has to be taken care of in the construction of an appropriate subtraction function
in order to guarantee a point-wise cancellation of the singular behaviour in the collinear phase-
space region. The spin correlation encoded in h ¯ drops out if the average over the azimuthal
f f ,μν
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Fig. 3. Generic diagrams for the splittings γ ∗ → f f̄ with an initial-state spectator a or a final-state spectator j , where f

is a light fermion or antifermion.

angle φf of the γ ∗ → f f̄ splitting plane around the collinear axis is taken.5 Indicating this
averaging by 〈· · ·〉φf

≡ ∫
dφf /(2π), we get 〈hf f̄ ,μν〉φf

= Eμνhf f̄ with (in four space–time
dimensions)

(4.4)hf f̄ (pf ,pf̄ ) = 2

(pf + pf̄ )2

[
Pf γ (z) + 2m2

f

(pf + pf̄ )2

]

up to terms that are further suppressed by factors of mf . The averaged squared matrix element
behaves as

(4.5)
〈∣∣Mab→f f̄ X(pf ,pf̄ )

∣∣2〉
φf p̃f pf̄ →0 Nc,f Q2

f e2hf f̄ (pf ,pf̄ )
∣∣Mab→γX(k̃)

∣∣2.
Since the collinear singularity for pf pf̄ → 0 can be attributed to a single external leg (the

photon) of the related hard process ab → γX, also in this case there is no need to construct
the subtraction function |Msub|2 from several dipole contributions. The function |Msub|2 can be
chosen as a single term ∝ Q2

f . Nevertheless a spectator is selected for the phase-space construc-
tion, as in the previous section. In the following we describe the “dipole” construction in two
variants: one with a spectator from the initial state, another with a spectator from the final state.
The two situations are illustrated in Fig. 3.

4.2. Initial-state spectator

We define the subtraction function as

(4.6)|Msub|2 = Nc,f Q2
f e2ha

f f̄ ,μν
(pf ,pf̄ ,pa)T

μ
ab→γX(p̃a, k̃)∗T ν

ab→γX(p̃a, k̃)

with

h
a,μν

f f̄
(pf ,pf̄ ,pa)

= 2

(pf + pf̄ )2

[
−gμν − 4

(pf + pf̄ )2

(
zf f̄ ,ap

μ
f − z̄f f̄ ,ap

μ

f̄

)(
zf f̄ ,ap

ν
f − z̄f f̄ ,ap

ν

f̄

)]
(4.7)

5 As described in Refs. [5,8], for unpolarized situations this average can be easily obtained upon contraction with the

projector 1
2 dμν(k) = 1

2 [−gμν + (“gauge terms” involving kμ or kν)]/(1 − ε), which fulfills −gμνdμν(k) = 2(1 − ε)

and kμdμν(k) = 0 in D = 4 − 2ε space–time dimensions.
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and the auxiliary parameters

(4.8)xf f̄ ,a = papf + papf̄ − pf pf̄ − m2
f

papf + papf̄

, zf f̄ ,a = 1 − z̄f f̄ ,a = papf

papf + papf̄

.

The auxiliary momenta entering the amplitude for the related process ab → γX are given by

p̃μ
a (x) = xpμ

a , p̃μ
a = p̃μ

a (xf f̄ ,a),

(4.9)k̃μ(x) = P μ + p̃μ
a (x), k̃μ = k̃μ(xf f̄ ,a), P μ = p

μ
f + p

μ

f̄
− pμ

a ,

while the momenta of the other particles remain unchanged. In these equations we kept the
dependence on mf , but of course in the numerical integration of |Mab→f f̄ X|2 − |Msub|2 we
can set mf to zero, because we are only interested in the limit mf → 0. For the integration
of |Msub|2 over the collinear-singular region, we need the mf -dependence of the spin average
of h

a,μν

f f̄
,

(4.10)ha

f f̄
(pf ,pf̄ ,pa) = 2

(pf + pf̄ )2

[
Pf γ (zf f̄ ,a) + 2m2

f

(pf + pf̄ )2

]
,

and an appropriate phase-space splitting,

(4.11)
∫

dφ (pf ,pf̄ ;P + pa) =
x1∫

0

dx

∫
dφ

(
k̃(x);P + p̃a(x)

) ∫ [
dpf

(
P 2, x, z

)]
,

where we have used the shorthands x = xf f̄ ,a and z = zf f̄ ,a . The explicit form of
∫ [dpf ] reads

(4.12)
∫ [

dpf

(
P 2, x, z

)]= −P 2

4(2π)3

1

x

z2(x)∫
z1(x)

dz

∫
dφf

with the integration limits for the variables x and z

(4.13)x1 = P 2

P 2 − 4m2
f

, z1,2(x) = 1

2

(
1 ±

√
x1 − x

x1(1 − x)

)
.

Separating the singular contributions as described in Section 2.3, we rewrite the integral of ha

f f̄

for mf → 0 as

−P 2

2

x1∫
0

dx

z2(x)∫
z1(x)

dzha

f f̄
(pf ,pf̄ ,pa) · · ·

=
1∫

0

dx

1∫
0

dz
{
Ha

f f̄

(
P 2)δ(1 − x)δ(1 − z) + [

Ha

f f̄

(
P 2, x

)]
+δ(1 − z)

(4.14)+ [
H̄a

f f̄

(
P 2, z

)]
+δ(1 − x) + [

h̄a

f f̄
(x, z)

](x,z)

+
} · · · .
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The new functions h̄a

f f̄
, etc., defined here are obtained from obvious substitutions and straight-

forward integrations,

h̄a

f f̄
(x, z) = x

1 − x
Pf γ (z),

Ha

f f̄

(
P 2, x

)= 2x

3(1 − x)
,

H̄a

f f̄

(
P 2, z

)= Pf γ (z)

[
ln

(−P 2z(1 − z)

m2
f

)
− 1

]
+ 2z(1 − z),

(4.15)Ha

f f̄

(
P 2)= 2

3
ln

(−P 2

m2
f

)
− 16

9
.

Using these functions the phase-space integral of the subtraction function reads∫
dΦf f̄ |Msub(Φf f̄ )|2

= Nc,f
Q2

f α

2π

1∫
0

dx

∫
dΦ̃γ

(
P 2, x

) 1∫
0

dzΘcut
(
pf = zk̃(x),pf̄ = (1 − z)k̃(x),

{
k̃n(x)

})

× 1

x

{
Ha

f f̄

(
P 2)δ(1 − x)δ(1 − z) + [

Ha

f f̄

(
P 2, x

)]
+δ(1 − z)

(4.16)+ [
H̄a

f f̄

(
P 2, z

)]
+δ(1 − x) + [

h̄a

f f̄
(x, z)

](x,z)

+
}∣∣Mab→γX

(
p̃a(x), k̃(x)

)∣∣2,
where we have made explicit which momenta enter the cut function Θcut(pf ,pf̄ , {k̃n}). Concern-

ing the phase-space integration over dΦ̃γ (P 2, x) and its integration over the boost parameter x

the same comments as made after Eq. (2.29) apply. There are actually two phase-space points
for each x value to be generated (one for x < 1 and another for x = 1), each determining mo-
menta p̃a(x), k̃(x), {k̃n(x)} for the evaluation of P 2 and the matrix elements. The generation of
the parameter z proceeds independently, and the squared amplitude |Mab→γX|2 in Eq. (4.16)
does not depend on z. Thus, if the full range in z is integrated over, i.e. if the collinear f f̄ pair
is treated as a single quasiparticle in the cut procedure, the last two terms in curly brackets do
not contribute. In this case the fermion-mass logarithm is entirely contained in the Ha

f f̄
con-

tribution. According to the KLN theorem this contribution will be completely compensated by
virtual O(α) corrections to the process ab → γX if collinear f f̄ pairs are not distinguished
from emitted photons.

4.3. Final-state spectator

Since the case with a massive final-state spectator j is quite involved, we here present the
formalism for mj = 0 and give the details for the massive case in Appendix C.

For mf = mj = 0, the subtraction function can be defined as

(4.17)|Msub|2 = Nc,f Q2
f e2hf f̄ ,j,μν(pf ,pf̄ ,pj )T

μ
ab→γjX(k̃, p̃j )

∗T ν
ab→γjX(k̃, p̃j )

with
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h
μν

f f̄ ,j
(pf ,pf̄ ,pj )

(4.18)= 2

(pf + pf̄ )2

[
−gμν − 2

pf pf̄

(
zf f̄ jp

μ
f − z̄f f̄ jp

μ

f̄

)(
zf f̄ jp

ν
f − z̄f f̄ jp

ν

f̄

)]

and the auxiliary parameters

(4.19)zf f̄ j = 1 − z̄f f̄ j = pf pj

pf pj + pf̄ pj

, yf f̄ j = pf pf̄

pf pj + pf̄ pj + pf pf̄

.

The new momenta entering the amplitude for the related process ab → γjX are given by

(4.20)p̃
μ
j = p

μ
j /(1 − yf f̄ j ), k̃μ = P μ − p̃

μ
j , P μ = p

μ
f + p

μ

f̄
+ p

μ
j ,

whereas all remaining momenta kn of particles in X remain unchanged. Eq. (4.17) can be used to
integrate the difference |Mab→f f̄ jX|2 − |Msub|2 for massless fermions f . In order to integrate

|Msub|2 over the collinear-singular region, the dependence on mf has to be taken into account.
Details of this procedure can be found in Appendix C. The result can be written in the form∫

dΦf f̄

∣∣Msub(Φf f̄ )
∣∣2

= Nc,f
Q2

f α

2π

∫
dΦ̃γ

1∫
0

dzΘcut
(
pf = zk̃,pf̄ = (1 − z)k̃, p̃j , {kn}

)

(4.21)× {
Hf f̄ ,j

(
P 2)δ(1 − z) + [

H̄f f̄ ,j

(
P 2, z

)]
+
}∣∣Mab→γjX(k̃, p̃j )

∣∣2
with

H̄f f̄ ,j

(
P 2, z

)= Pf γ (z)

[
ln

(
P 2z(1 − z)

m2
f

)
− 1

]
+ 2z(1 − z),

(4.22)Hf f̄ ,j

(
P 2)= 2

3
ln

(
P 2

m2
f

)
− 16

9
.

The momenta k̃, p̃j , {kn} directly correspond to the generated phase-space point in Φ̃γ , while the
parameter z is generated independently. The comments on the z-integration made at the end of
the previous subsection apply also here. The squared amplitude |Mab→γjX|2 in Eq. (4.21) does
not depend on z, and thus, if the event selection for f and f̄ is inclusive in the collinear region
of the γ ∗ → f f̄ splitting, the integral over z trivially reduces to the factor Hf f̄ ,j (P

2).

4.4. Phase-space slicing

Here we again deduce the integral over the collinear phase-space region which is needed in
the slicing approach. This region can, e.g., be defined by restricting the angle θf f̄ between the f

and f̄ directions to small values, θf f̄ < �θ 	 1.
In Section 4.2 this restriction leads to new limits in xf f̄ ,a and zf f̄ ,a ,

m2
f

−P 2zf f̄ ,a(1 − zf f̄ ,a)
< 1 − xf f̄ ,a <

(k0)2

−P 2
zf f̄ ,a(1 − zf f̄ ,a)�θ2, 0 < zf f̄ ,a < 1,

(4.23)
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where k0 = p0
f + p0

f̄
is the energy in the f f̄ system. This modifies the integrated results to

H̄f f̄

(
k0, z

)= Pf γ (z) ln

(
(k0)2z2(1 − z)2�θ2

m2
f

)
+ 2z(1 − z),

(4.24)Hf f̄

(
k0)= 2

3
ln

(
(k0)2�θ2

m2
f

)
− 23

9
,

where H̄f f̄ and Hf f̄ are defined analogously to Eq. (4.14). The integral of the squared matrix
element over the collinear regions then reads∫

θf f̄ <�θ

dΦf f̄

∣∣Mab→f f̄ X(Φf f̄ )
∣∣2

= Nc,f
Q2

f α

2π

∫
dΦ̃γ

1∫
0

dzΘcut
(
pf = zk̃,pf̄ = (1 − z)k̃, {k̃n}

)

(4.25)× {
Hf f̄

(
k0)δ(1 − z) + [

H̄f f̄

(
k0, z

)]
+
}∣∣Mab→γX(k̃)

∣∣2.
The same results can be obtained from Section 4.3 with Appendix C, where the new limits on

the integration variables are given by

(4.26)
m2

f

P̄ 2

z2
f f̄ j

+ (1 − zf f̄ j )
2

zf f̄ j (1 − zf f̄ j )
< yf f̄ j <

(k0)2

P̄ 2
zf f̄ j (1 − zf f̄ j )�θ2, 0 < zf f̄ j < 1.

5. Collinear singularities from f → f γ ∗ splittings

5.1. Asymptotics in the collinear limit

We consider a generic scattering process

(5.1)f (pf , κf ) + a(pa) → f (p′
f ) + X,

with the momenta of the particles and the (sign of the) helicity κf = ± of the incoming fermion f

indicated in parentheses. We are interested in the region where the squared momentum trans-
fer (pf − p′

f )2 = 2m2
f − 2pf p′

f of the scattered fermion f becomes of the order O(m2
f ),

where mf is small compared to typical scales in the process. The singular behaviour of the full
squared matrix element |Mf a→f X(pf ,p′

f ;κf )|2 entirely originates from diagrams containing
an f → f γ ∗ splitting, i.e. the singularity is related to the subprocess γ a → X. For the matrix
element of this subprocess we write Mγ a→X(k̃,pa,λγ ) = T

μ
γa→X(k̃)ελγ ,μ(k̃), where T

μ
γa→X(k̃)

is the amplitude without the photon polarization vector ελγ ,μ(k̃). In the collinear limit pf p′
f → 0

the momentum k̃ is given by k = pf − p′
f up to mass-suppressed terms. Neglecting terms that

are irrelevant in the limit mf → 0 the squared matrix element |Mf a→f X(pf ,p′
f ;κf )|2 asymp-

totically behaves like∣∣Mf a→f X(pf ,pa,p
′
f ;κf )

∣∣2
(5.2)

˜p p′ →0 Nc,f Q2
f e2hff

κf ,μν(pf ,p′
f )T

μ
γa→X(k̃,pa)

∗T ν
γ a→X(k̃,pa),
f f
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where

hff
κf ,μν(pf ,p′

f ) = −1

(pf − p′
f )2

[
−gμν − 4(1 − x)

x2

k⊥,μk⊥,ν

k2⊥ − x2m2
f

+ κf

x

(
2 − x + 2x2m2

f

(pf − p′
f )2

)(
ε+,μ(k̃)∗ε+,ν(k̃) − ε−,μ(k̃)∗ε−,ν(k̃)

)]
(5.3)

with

(5.4)x = k0

p0
f

.

The momentum k⊥ is the component of k that is orthogonal to the collinear axis defined by pf ,
i.e. k⊥pf = 0, and becomes of O(mf ) in the collinear limit. A derivation of this factorization is

described in Appendix D.1. Note that h
ff
κf ,μν in Eq. (5.2) is not proportional to the polarization

sum Eμν = ∑
λγ

ελγ ,μ(k̃)∗ελγ ,ν(k̃) of the photon, so that the r.h.s. is not proportional to the

polarization-summed squared amplitude |Mγ a→X|2 of the subprocess. This spin correlation has
to be taken into account in the construction of an appropriate subtraction function in order to
guarantee a point-wise cancellation of the singular behaviour in the collinear phase-space region.
The spin correlation encoded in h

ff
κf ,μν drops out if the average over the azimuthal angle φ′

f of
the f → f γ ∗ splitting plane around the collinear axis is taken. Details of this averaging process,
which is indicated by 〈· · ·〉φ′

f
, are given in Appendix D.1. The result is

〈∣∣Mf a→f X(pf ,pa,p
′
f ;κf )

∣∣2〉
φ′

f

(5.5)
˜pf p′

f →0 Nc,f Q2
f e2hff

τ (pf ,p′
f )
∣∣Mγ a→X(k̃,pa;λγ = τκf )

∣∣2
with summation over τ = ± and

hff
τ (pf ,p′

f ) = −1

x(pf − p′
f )2

[
Pγf (x) + 2xm2

f

(pf − p′
f )2

+ τ

(
2 − x + 2x2m2

f

(pf − p′
f )2

)]
,

(5.6)

which is valid in four space–time dimensions up to terms that are further suppressed by factors
of mf . Here Pγf (x) is the splitting function

(5.7)Pγf (x) = 1 + (1 − x)2

x
.

Since the collinear singularity for pf p′
f → 0 can be attributed to a single leg (the photon) of

the related hard process γ a → X, also in this case there is no need to construct the subtraction
function |Msub|2 from several dipole contributions. The function |Msub|2 can be chosen as a
single term ∝ Q2

f , and a spectator is only used in the phase-space construction as previously.
In the following we again describe the “dipole” construction in two variants: one with a spec-
tator from the initial state, another with a spectator from the final state. The two situations are
illustrated in Fig. 4.
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Fig. 4. Generic diagrams for the splittings f → f γ ∗ with an initial-state spectator a or a final-state spectator j , where
f is a light fermion or antifermion.

5.2. Initial-state spectator

We define the subtraction function as

(5.8)
∣∣Msub(κf )

∣∣2 = Nc,f Q2
f e2hff,a

κf ,μν(pf ,p′
f ,pa)T

μ
γa→X(k̃,pa)

∗T ν
γ a→X(k̃,pa)

with

hff,a,μν
κf

(pf ,p′
f ,pa)

= −1

(pf − p′
f )2

[
−gμν − 4(1 − xf,f a)

x2
f,f a

k̃
μ
⊥k̃ν⊥

k̃2⊥ − x2
f,f am

2
f

(5.9)+ κf

x

(
2 − x + 2x2m2

f

(pf − p′
f )2

)(
ε
μ
+(k̃)∗εν+(k̃) − ε

μ
−(k̃)∗εν−(k̃)

)]

and the auxiliary parameters

(5.10)xf,f a = papf − pf p′
f − pap

′
f + m2

f

papf

, yf,f a = pf p′
f − m2

f

papf

.

Assuming again the incoming particle a to be massless and defining

(5.11)s = (pf + pa)
2 = m2

f + 2papf = s̄ + m2
f , P μ = p

μ
f + pμ

a − p
′μ
f ,

the needed auxiliary momenta for the related process γ a → X are given by

k̃μ(x) = x

(
p

μ
f − m2

f

s̄
pμ

a

)
, k̃μ = k̃μ(xf,f a), k̃

μ
⊥ = p

′μ
f − p′

f k̃

pak̃
pμ

a ,

P̃ μ(x) = k̃μ(x) + pμ
a , P̃ μ = P̃ μ(xf,f a),

(5.12)k̃μ
n = Λμ

νk
ν
n,

where the Lorentz transformation matrix Λμ
ν is constructed from the momenta P μ and P̃ μ as

in Eq. (3.10). In these equations we kept the dependence on mf , but of course in the numerical
integration of |Mf a→f X|2 − |Msub|2 we can set mf to zero if we are only interested in the
limit mf → 0. For the integration of |Msub|2 over the collinear-singular region, we need the
mf -dependence of its azimuthal average,

(5.13)
〈∣∣Msub(κf )

∣∣2〉
φ′

f
= Nc,f Q2

f e2hff,a
τ (pf ,p′

f ,pa)
∣∣Mγ a→X(k̃,pa;λγ = τκf )

∣∣2
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with summation over τ = ± and

hff,a
τ (pf ,p′

f ,pa)

(5.14)= 1

s̄xy

[
Pγf (x) − 2x(1 − x)m2

f

y[s̄(1 − x − y) − m2
f (2x + y)] + τ

(
2 − x − 2x2m2

f

s̄y

)]
,

where we have used the shorthands x = xf,f a and y = yf,f a . An appropriate phase-space split-
ting is given by

(5.15)
∫

dφ(p′
f ,P ;pf + pa) =

x1∫
0

dx

∫
dφ

(
P̃ (x); k̃(x) + pa

)∫ [
dp′

f (s, x, y)
]

with the explicit form of
∫ [dp′

f ]

(5.16)
∫ [

dp′
f (s, x, y)

]= s̄

4(2π)3

y2(x)∫
y1(x)

dy

∫
dφ′

f

and the integration limits for the variables x and y

(5.17)x1 =
√

s − mf√
s + mf

, y1,2(x) = s̄

2s

(
1 − x − 2m2

f

s̄
x ∓

√
(1 − x)2 − 4m2

f

s̄
x

)
.

In the limit mf → 0 the integral

(5.18)Hff,a
τ (s, x) = xs̄

2

y2(x)∫
y1(x)

dy hff,a
τ (pf ,p′

f ,pa)

can be easily evaluated to

(5.19)Hff,a
τ (s, x) = ln

(√
s(1 − x)

xmf

)[
Pγf (x) + τ(2 − x)

]− 1 − x

x
− τ(1 − x),

and the part to be added to the cross section reads

σ sub
f a→f X(pf ,pa;κf )

(5.20)= Q2
f α

2π

1∫
0

dxHff,a
τ (s, x)σγ a→X(k̃ = xpf ,pa;λγ = τκf ).

5.3. Final-state spectator

As an alternative to the case of an initial-state spectator, we now present the treatment with a
final-state spectator j , i.e. we consider the process

(5.21)f (pf , κf ) + a(pa) → f (p′
f ) + j (pj ) + X.
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The particles a and j are assumed massless in the following; the case of a massive spectator j is
described in Appendix D.2. The subtraction function is constructed as follows,∣∣Msub(κf )

∣∣2 = Nc,f Q2
f e2h

ff
j,κf ,μν(pf ,p′

f ,pj )T
μ
γa→jX(k̃,pa, p̃j )

∗T ν
γ a→jX(k̃,pa, p̃j )

(5.22)

with

h
ff,μν
j,κf

(pf ,p′
f ,pj ) = −1

(pf − p′
f )2

[
−gμν − 4(z̄fj,f p

′μ
f − zfj,f p

μ
j )(z̄fj,f p′ν

f − zfj,f pν
j )

(pf − p′
f )2x2

fj,f z̄fj,f

+ κf

x

(
2 − x + 2x2m2

f

(pf − p′
f )2

)(
ε
μ
+(k̃)∗εν+(k̃) − ε

μ
−(k̃)∗εν−(k̃)

)]
(5.23)

and the auxiliary parameters

(5.24)xfj,f = pf p′
f + pf pj − p′

f pj

pf p′
f + pf pj

, zfj,f = 1 − z̄fj,f = pf p′
f

pf p′
f + pf pj

.

The momenta k̃ and p̃j are given by

(5.25)k̃μ = xfj,f p
μ
f , p̃j = P μ + k̃μ, P μ = p

′μ
f + p

μ
j − p

μ
f .

Note that this construction of momenta is based on the restriction mf = 0, which is used in the
integration of the difference |Mf a→fjX|2 − |Msub|2 for mf → 0.

In the integration of |Msub|2 over the collinear-singular phase space the correct depen-
dence on a finite mf is required. We sketch this procedure in Appendix D.2 for a possibly
finite spectator mass mj , but here we give only the relevant formulas needed in applica-
tions. The cross-section contribution σ sub

f a→fjX that has to be added to the integrated difference

|Mf a→f X|2 − |Msub|2 is given by

σ sub
f a→f X(pf ,pa;κf )

(5.26)= Q2
f α

2π

1∫
0

dxHffj,τ

(
P 2, x

)
σγa→jX(k̃ = xpf ,pa;λγ = τκf ),

where the collinear singularity is contained in the kernels

(5.27)Hffj,τ

(
P 2, x

)= 1

2
ln

(−P 2(1 − x)

x3m2
f

)[
Pγf (x) + τ(2 − x)

]− 1 − x

x
− τ(1 − x).

5.4. Phase-space slicing

Finally, we derive the integral over the collinear phase-space region for the slicing approach.
This region is defined by restricting the angle θ ′

f between the outgoing and incoming f to small
values, θ ′

f < �θ 	 1.
In Section 5.2 this restriction leads to new limits in yf,f a ,

(5.28)
m2

f x2
f,f a

< yf,f a <
(p0

f )2

(1 − xf,f a)�θ2,

s 1 − xf,f a s
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Fig. 5. QED diagrams contributing to e−γ → e−μ−μ+ at tree level.

which modify the integrated result to

(5.29)Hff
τ

(
p0

f , x
)= ln

(
p0

f (1 − x)�θ

xmf

)[
Pγf (x) + τ(2 − x)

]− 1 − x

x
− τ(1 − x),

where the integral is defined analogously to Eq. (5.18). The cross-section contribution for the
collinear scattering of f is given by

(5.30)σ
coll,f
f a→f X(pf ,pa;κf ) = Q2

f α

2π

1∫
0

dxHff
τ

(
p0

f , x
)
σγa→X(k̃ = xpf ,pa;λγ = τκf ).

The same results can be obtained from Section 5.3 with Appendix D.2, where the new limits on
the integration variables are given by

(5.31)
m2

f

−P̄ 2

xfj,f [1 + (1 − xfj,f )2]
1 − xfj,f

< zfj,f <
(p0

f )2

−P̄ 2
xfj,f (1 − xfj,f )�θ2.

6. Application to the process e−γ → e−μ−μ+

In this section we illustrate the application of the methods described in Sections 3, 4, and 5
to the process e−γ → e−μ−μ+ at a centre-of-mass energy

√
s much larger than the involved

particle masses,
√

s � me,mμ. Of course, this process is not of particular importance in parti-
cle phenomenology, but it involves the three issues of (i) incoming photons splitting into light
f f̄ pairs, (ii) the collinear production of light f f̄ pairs, and (iii) forward-scattered fermions
and, thus, provides a good test process for these cases. As already mentioned in Section 2, our
treatment of non-collinear-safe final-state radiation has already been tested in other processes.

To illustrate the formalism, it is sufficient to consider the process e−γ → e−μ−μ+ in QED,
where only the four diagrams shown in Fig. 5 contribute. The corresponding helicity amplitudes,
including the full dependence on the masses me and mμ, can be obtained from the treatment
of e−γ → e−e−e+ presented in Ref. [22] after some obvious substitutions. In the following
we compare the result with the full mass dependence to results obtained with the described
subtraction and slicing methods in various kinematical situations. Denoting the polar angle of an
outgoing particle i by θi and the angle between the two outgoing muons by αμμ, we distinguish
the following cases:

(a) No collinear splittings
Angular cuts: θcut < θe− < 180◦ − θcut and θμ± < 180◦ − θcut and θcut < αμμ.
No collinear singularities are included, and the integrated cross section is well defined for
vanishing fermion masses, i.e. none of the subtraction methods has to be applied. The dif-
ference between massive and massless calculations indicates the size of the fermion mass
effects.
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(b) Collinear splitting γ → e−e+∗
Angular cuts: θcut < θe− and θμ± < 180◦ − θcut and θcut < αμμ.
The collinear splitting γ → e−e+∗ of the incoming photon is integrated over, so that the
third diagram of Fig. 5 develops a collinear singularity for backward-scattered electrons.
The methods of Section 3 are applied to the calculation with massless fermions.

(c) Collinear splittings γ → μ∓μ±∗
Angular cuts: θcut < θe− < 180◦ − θcut and θcut < αμμ.
The collinear splittings γ → μ∓μ±∗ of the incoming photon are integrated over, so that the
first two diagrams of Fig. 5 develop collinear singularities for backward-scattered muons.
The methods of Section 3 are applied to the calculation with massless fermions.

(d) Collinear splitting γ ∗ → μ−μ+
Angular cuts: θcut < θe− < 180◦ − θcut and θμ± < 180◦ − θcut.
The collinear splitting γ ∗ → μ−μ+ of an intermediate photon is integrated over, so that the
last two diagrams of Fig. 5 develop collinear singularities for collinearly produced muons.
The methods of Section 4 are applied to the calculation with massless fermions.

(e) Collinear splitting e− → e−γ ∗
Angular cuts: θe− < 180◦ − θcut and θμ± < 180◦ − θcut and θcut < αμμ.
The collinear splitting e− → e−γ ∗ of the incoming electron is integrated over, so that the
first two diagrams of Fig. 5 develop collinear singularities for forward-scattered electrons.
The methods of Section 5 are applied to the calculation with massless fermions.

For the numerical evaluation we set the fermion masses to me = 0.51099907 MeV and mμ =
0.10565839 GeV, the fine-structure constant to α = e2/(4π) = 1/137.0359895, the beam en-
ergies to E = Ee = Eγ = 250 GeV, and the angular cut to θcut = 10◦. In the subtraction and
slicing methods the masses me and mμ are neglected everywhere except for the mass-singular
logarithms, i.e. the laboratory frame defined by the above beam energies coincides with the
centre-of-mass system. For the fully massive calculation the two frames are connected by a (nu-
merically irrelevant) boost along the beam axis with a tiny boost velocity of O(m2

e/E
2). Our

numerical results for the different kinematical situations and the various methods are collected in
Table 1. In addition in Table 2 we show the analogous results for the situation where the energy
of each final-state lepton l = e−, μ± is restricted by El > 10 GeV. All results are obtained with
an integration by Vegas [24], using 25 × 106 events. While a simple phase-space parametrization
is sufficient in the subtraction formalism, dedicated phase-space mappings are required to flatten
the corresponding collinear poles in the slicing approach and when employing the full mass de-
pendence of the matrix elements. The fully massive results have been checked with the program
WHIZARD [25], where agreement within the integration errors has been found.

The results obtained with the different subtraction variants, where a spectator is chosen from
the initial state (IS) or from the final state (FS), are in mutual agreement within the integration
error, which is indicated in parentheses. Subtraction and slicing results are also consistent within
the statistical errors as long as the angular slicing cut �θ is not chosen too large. For example,
some of the slicing results for �θ = 10−1 still show a significant residual dependence on �θ . In
the chosen example, the integration errors of the subtraction and slicing results are of the same
order of magnitude. However, we would like to mention that the subtraction approach is often
more efficient, as e.g. observed in the applications of Refs. [14–17,21] mentioned above. This
superiority of the subtraction formalism typically deteriorates if complicated phase-space cuts
are applied, as in the chosen example, because the cuts act differently in the various auxiliary
phase spaces and thus introduce new peak structures in the integrand.
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Table 1
QED cross sections σκλ for e−γ → e−μ−μ+ in the various setups described in the main text, with signs κ and λ of the
helicities of the incoming e− and γ , respectively. The results are obtained with the indicated methods, where IS and FS
stand for spectators in the initial and final states, respectively

Collinear splittings Method σ+− [pb] σ++ [pb]
(a) None full mass dependence 0.50910(9) 0.47172(6)

massless case 0.51110(9) 0.47384(7)

(b) γ → e−e+∗ full mass dependence 0.52213(7) 0.56762(7)
subtraction (IS spectator) 0.52424(8) 0.57027(8)
subtraction (FS spectator) 0.52434(7) 0.57017(9)
slicing (�θ = 10−1) 0.52410(7) 0.57021(6)
slicing (�θ = 10−3) 0.52431(9) 0.57021(7)
slicing (�θ = 10−5) 0.52423(8) 0.57028(7)

(c) γ → μ∓μ±∗ full mass dependence 2.5890(5) 2.3615(4)
subtraction (IS spectator) 2.5872(3) 2.3586(5)
subtraction (FS spectator) 2.5873(8) 2.3585(5)
slicing (�θ = 10−1) 2.5883(3) 2.3609(2)
slicing (�θ = 10−3) 2.5859(8) 2.3578(8)
slicing (�θ = 10−5) 2.5876(13) 2.3572(13)

(d) γ ∗ → μ−μ+ full mass dependence 0.54076(8) 0.53357(8)
subtraction (IS spectator) 0.54309(8) 0.53597(7)
subtraction (FS spectator) 0.54306(8) 0.53603(7)
slicing (�θ = 10−1) 0.53164(19) 0.52386(16)
slicing (�θ = 10−3) 0.54287(17) 0.53624(15)
slicing (�θ = 10−5) 0.54335(18) 0.53580(18)

(e) e− → e−γ ∗ full mass dependence 5.5465(7) 4.7060(6)
subtraction (IS spectator) 5.5495(4) 4.7070(3)
subtraction (FS spectator) 5.5484(6) 4.7064(5)
slicing (�θ = 10−1) 5.5313(1) 4.6880(1)
slicing (�θ = 10−3) 5.5488(3) 4.7071(3)
slicing (�θ = 10−5) 5.5486(5) 4.7067(4)

Finally, we remark that the impact of mass-suppressed terms is significantly reduced if the cut
on the lepton energies El is applied. This cut guarantees that El � ml overall in phase space, so
that mass-suppressed terms are proportional to m2

l /Q
2 with Q � ml . Without any restriction on

El , there are at least small regions of phase space where Q is not much smaller than ml , leading
to larger mass effects. This feature is clearly visible in Tables 1 and 2 when comparing results
based on the full mass dependence in the matrix elements with the subtraction and slicing results
that are based on the asymptotic limit ml → 0.

7. Summary

The dipole subtraction formalism for photonic corrections is extended to various photon–
fermion splittings where the resulting collinear singularities lead to corrections that are enhanced
by logarithms of small fermion masses mf . Specifically, we have considered non-collinear-safe
final-state radiation, collinear fermion production from incoming photons, forward-scattered in-
coming fermions, and collinearly produced fermion–antifermion pairs. All formulas needed in
applications are provided, only the scattering matrix elements for the underlying process and
for relevant subprocesses have to be supplemented in the simple approximation of a massless
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Table 2
Same as in Table 1, but with an energy cut El > 10 GeV for all final-state leptons

Collinear splittings Method σ+− [pb] σ++ [pb]
(a) None full mass dependence 0.45780(6) 0.41699(6)

massless case 0.45779(6) 0.41704(5)

(b) γ → e−e+∗ full mass dependence 0.46995(6) 0.50351(6)
subtraction (IS spectator) 0.46999(6) 0.50345(6)
subtraction (FS spectator) 0.46995(6) 0.50348(7)
slicing (�θ = 10−1) 0.46990(7) 0.50349(5)
slicing (�θ = 10−3) 0.46992(7) 0.50352(5)
slicing (�θ = 10−5) 0.46992(7) 0.50355(6)

(c) γ → μ∓μ±∗ full mass dependence 2.4934(5) 2.2637(4)
subtraction (IS spectator) 2.4931(3) 2.2637(2)
subtraction (FS spectator) 2.4923(6) 2.2642(5)
slicing (�θ = 10−1) 2.4895(2) 2.2606(2)
slicing (�θ = 10−3) 2.4917(7) 2.2628(7)
slicing (�θ = 10−5) 2.4905(12) 2.2626(12)

(d) γ ∗ → μ−μ+ full mass dependence 0.48606(7) 0.47396(8)
subtraction (IS spectator) 0.48620(7) 0.47407(6)
subtraction (FS spectator) 0.48630(6) 0.47401(6)
slicing (�θ = 10−1) 0.47588(19) 0.46363(13)
slicing (�θ = 10−3) 0.48607(19) 0.47399(14)
slicing (�θ = 10−5) 0.48623(20) 0.47425(15)

(e) e− → e−γ ∗ full mass dependence 5.4878(6) 4.6467(5)
subtraction (IS spectator) 5.4866(3) 4.6471(3)
subtraction (FS spectator) 5.4871(5) 4.6475(5)
slicing (�θ = 10−1) 5.4690(1) 4.6278(1)
slicing (�θ = 10−3) 5.4869(3) 4.6467(3)
slicing (�θ = 10−5) 5.4862(5) 4.6466(4)

fermion f . Particle polarization is taken care of in all relevant cases, e.g., for incoming fermi-
ons and photons. For the purpose of cross-checking results in applications, we also provide the
formulas needed in the phase-space slicing method.

As an example illustrating the use and performance of the proposed methods we have explic-
itly applied the subtraction procedures to the process e−γ → e−μ−μ+ and compared the results
to those obtained with phase-space slicing. The presented subtraction variants will certainly be
used in several precision calculations needed for present and future collider experiments such as
the LHC or ILC.
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Appendix A. More details on non-collinear-safe final-state radiation

Here we generalize the results of Section 2.1, where non-collinear-safe photon radiation off
fermions is treated, to the situation where massive spectators in the final state exist. To this end,
we only have to consider the case of final-state emitter and final-state spectator.
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For mi → 0, mγ = 0, but mj �= 0, the boundary of the yij integration [given for the massless
case in Eq. (2.8)] is given by

y1(z) = m2
i (1 − z)

P̄ 2
ij z

,

(A.1)y2(z) =
[
ξ(z) + 1 +

√
ξ(z)

[
ξ(z) + 2

] ]−1
with ξ(z) = m2

j

2P̄ 2
ij z(1 − z)

,

and the functions relevant for the integrand g
(sub)
ij,τ behave as

pik = P̄ 2
ij yij

2
, P̄ 2

ij = P 2
ij − m2

j ,

(A.2)Rij (y) =
√√√√(1 − y)2 − 4m2

j y

P̄ 2
ij

, rij (y) = 1 − 2m2
j

P̄ 2
ij

y

1 − y
.

The evaluation of Eq. (2.6) now becomes non-trivial and yields

Ḡ(sub)
ij,+

(
P 2

ij , z
)= −Pff (z) ln

(
m2

i

zP̄ 2
ij

[
1 − η(z)

])+ (1 + z) ln(1 − z) − 2z

1 − z

+ (1 + z) ln

(
1 + m2

j

P̄ 2
ij η(z)

)

− 2

(1 − z)σ (z)

{
ln

(
1 + P̄ 2

ij η(z)[1 − zη(z)]
m2

j (1 − z)

)
− 2 ln

(
1 − 2zη(z)

1 + σ(z)

)

+ σ(z) ln

(
m2

j

P̄ 2
ij η(z)

(1 − z)

)}
− Ḡ(sub)

ij,−
(
P 2

ij , z
)
,

(A.3)Ḡ(sub)
ij,−

(
P 2

ij , z
)= 1 − z,

with the auxiliary functions

(A.4)σ(z) =
√√√√1 + 4m2

j

P̄ 2
ij

z(1 − z), η(z) =
{ [1 − y2(z)]z for z < 1

2 ,

[1 − y2(z)](1 − z) for z > 1
2 .

For mj → 0, the results for Ḡ(sub)
ij,τ (P 2

ij , zij ) reduce to Eq. (2.10), as can be easily seen after

realizing that η(z) =O(mj ) and σ(z) = 1 +O(m2
j ) in this limit.

Appendix B. More details on the subtraction for γ → f f̄ ∗ splittings

B.1. Factorization in the collinear limit

In this section we derive the asymptotic behaviour (3.3) of the squared amplitude |Mγ a→f X|2
for the case where the outgoing light fermion flies along the direction of the incoming photon.
We consider polarized incoming photons with momentum kμ and polarization vector ε

μ , where
λγ
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Fig. 6. Generic squared diagram for the splitting γ → f f̄ ∗ (left) and the corresponding squared diagram for the related
process with an incoming f̄ (right).

λγ = ± is the sign of its helicity. We further introduce a light-like gauge vector nμ (n2 = 0, nk �=
0), i.e. ε

μ
λγ

is characterized by

(B.1)ε
μ
−λγ

= (
ε
μ
λγ

)∗
, kελγ = nελγ = 0.

In the following we make use of the identity6

(B.2)ε
μ
±
(
εν±
)∗ = ε

μ
±εν∓ = 1

2
Eμν(k) ∓ i

2kn
εμνρσ kρnσ ,

where

(B.3)Eμν(k) = ε
μ
+εν− + ε

μ
−εν+ = −gμν + kμnν + nμkν

kn

is the polarization sum of the photon in four space–time dimensions and εμνρσ the Levi-Civita
tensor with ε0123 = +1.

In a gauge for the photon where nk = O(k0), it is easily shown by power counting that the
logarithmic singularity arising from the phase-space region kpf =O(m2

f ) (mf 	 k0) originates

from diagrams in which the incoming photon collinearly splits into a light f f̄ ∗ pair. The generic
form of such graphs is shown in Fig. 6. Assuming summation over the polarization of the outgo-
ing fermion f , the squared matrix element, thus, behaves like∣∣Mγ a→f X(k,pa,pf ;λγ )

∣∣2
k̃pf →0 Q2

f e2T̄f̄ a→X(pf̄ ,pa)
−/pf̄ + mf

p2
f̄

− m2
f

/ε∗
λγ

( /pf + mf )/ελγ

−/pf̄ + mf

p2
f̄

− m2
f

Tf̄ a→X(pf̄ ,pa),

(B.4)

6 This identity is easily proven using a representation of the polarization vectors by Weyl spinors. Employing the

conventions of Ref. [23], we have εȦB+ = ε
μ
+σ ȦB

μ = √
2nȦkB/〈kn〉 and εȦB− = ε

μ
−σ ȦB

μ = √
2kȦnB/〈kn〉∗ for the

polarization bispinors, so that

εμνρσ kρnσ = i

4

(
εȦĖεĊĠεBDεFH − εȦĊεĖĠεBF εDH

)
σ

μ

ȦB
σν
ĊD

σ
ρ

ĖF
σσ
ĠH

kρnσ

= i

4

(
kȦnĊεBDkXnX − εȦĊkBnDkẊnẊ

)
σ

μ

ȦB
σν
ĊD

= i

4

(−kȦnBnĊkD + nȦkBkĊnD
)
σ

μ

ȦB
σν
ĊD

= i

2
〈kn〉〈kn〉∗(εμ

+εν− − ε
μ
−εν+

)= i(kn)
(
ε
μ
+εν− − ε

μ
−εν+

)
.

The only non-trivial step is the third equality which follows from a twofold application of Schouten’s identity.
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where Tf̄ a→X(pf̄ ,pa) includes all information of the subamplitude indicated by the open blob

in Fig. 6 and T̄f̄ a→X = (Tf̄ a→X)†γ0. To leading order in mf → 0, the squared amplitude for the

subprocess f̄ a → X can be written as

(B.5)
∣∣Mf̄ a→X(pf̄ ,pa;κf̄ )

∣∣2 = T̄f̄ a→X(pf̄ ,pa)
[
ω−κf̄

/pf̄ +O(mf )
]
Tf̄ a→X(pf̄ ,pa),

with ω± = 1
2 (1 ± γ5) and κf̄ = ± denoting the sign of the f̄ helicity. In order to find the relation

between these squared matrix elements, we insert identity (B.2) into Eq. (B.4) and eliminate the
ε tensor via Chisholm’s identity,

(B.6)iεαβγ δγδ = (
γ αγ βγ γ − gαβγ γ + gαγ γ β − gβγ γ α

)
γ5,

i.e. we trade the ε contributions for a γ5 insertion in the spinor chain. Next, we isolate the leading
terms in the collinear limit kpf = O(m2

f ) → 0. This limit can, e.g., be parametrized by the
decomposition of the momentum of f

(B.7)p
μ
f = (1 − x)kμ + p

μ
f,⊥ + p

μ
f,r

with x = 1 − p0
f /k0, kpf,⊥ = 0, and pf,r = 0 (where boldface symbols refer the spatial parts

of momenta). In this decomposition we have O(p0
f,⊥) =O(p0

f,r ) =O(m2
f ) and p2

f,⊥ =O(m2
f ).

Thus, each component of the orthogonal 3-vector pf,⊥ is of O(mf ). After some straightforward
simplifying algebra, the result of applying the power counting to |Mγ a→f X|2 is7

∣∣Mγ a→f X(k,pa,pf ;λγ )
∣∣2

k̃pf →0

Q2
f e2

2x(kpf )
T̄f̄ a→X(pf̄ ,pa)

{[
1 − 2x(1 − x) + xm2

f

kpf

]
/pf̄

− λγ

[
2x − 1 + m2

f

kpf

]
γ5/pf̄

}
Tf̄ a→X(pf̄ ,pa)

k̃pf →0

1

2
Q2

f e2{(hγf
+ + h

γf
−
)[∣∣Mf̄ a→X(pf̄ ,pa;+)

∣∣2 + ∣∣Mf̄ a→X(pf̄ ,pa;−)
∣∣2]

(B.8)+ λγ

(
h

γf
+ − h

γf
−
)[∣∣Mf̄ a→X(pf̄ ,pa;+)

∣∣2 − ∣∣Mf̄ a→X(pf̄ ,pa;−)
∣∣2]}.

The last form results from the last but one by simply substituting |Mf̄ a→X|2 and the h
γf
± func-

tions defined in Eq. (3.4), whose arguments are suppressed in the notation. This completes our
proof of Eq. (3.3), which is a more compact version of this result.

In this section we have explicitly treated f as fermion and f̄ as antifermion. The opposite
case with f being an antifermion and f̄ a fermion is obtained analogously and leads to the
identical final result (3.3), although some signs in intermediate results are different. This fact is,
of course, to be expected, because relations between squared helicity amplitudes cannot depend
on our convention which fermion we call the antiparticle of the other.

7 Actually there are also terms proportional to λγ mf /(kpf )2T̄f̄ a→X/k/pf,⊥γ5Tf̄ a→X , which at first sight seem to

contribute in O(m−2
f

) in the limit mf → 0. Although these terms obviously disappear from the subtraction function
after setting mf to zero, they potentially contribute to the corresponding integrated subtraction terms, in which the limit
mf → 0 is taken after the singular phase-space integration. However, the integration over the azimuthal angle of pf ,
which is always assumed in our analysis, leads to a further suppression by one power of mf , so that the contribution to

the phase-space integral of |Mγ a→f X |2 is mass suppressed. Thus, these terms are irrelevant in the construction of a
subtraction function to separate mass-singular terms in the collinear cone.
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B.2. Dipole subtraction for γ → f f̄ ∗ splittings with massive final-state spectator

Here we give some details on the derivation of the integrated subtraction part presented in
Section 3.3 for the collinear splitting γ → f f̄ ∗ in the process γ a → fjX, where j is a possibly
massive spectator. We start by generalizing the form (3.24) of the new momenta upon restoring
the correct dependence on mf ,

p̃
μ

f̄
(x) =

√
λfj,γ

−P̄ 2

(
xkμ + P̄ 2

2P 2
P μ

)
− P 2 + m2

f − m2
j

2P 2
P μ, p̃

μ

f̄
= p̃

μ

f̄
(xfj,γ ),

(B.9)p̃
μ
j (x) = P μ + p̃

μ

f̄
(x), p̃

μ
j = p̃

μ
j (xfj,γ ),

where the following shorthands are used,

(B.10)P̄ 2 = P 2 − m2
f − m2

j , λfj,γ = λ
(
P 2,m2

f ,m2
j

)
,

with the auxiliary function

(B.11)λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

The new momenta satisfy the on-shell conditions p̃2
f̄

= m2
f , p̃j = m2

j and correctly behave in the

collinear limit, p̃f̄ → xk, where kpf =O(m2
f ) → 0. The splitting of the (N + 1)-particle phase

space into the corresponding N -particle phase space and the integral over the remaining singular
degrees of freedom is given by∫

dφ (pf ,pj , kX; k + pa)

(B.12)=
x1∫

0

dx

∫
dφ

(
p̃j (x), kX; p̃f̄ (x) + pa

)∫ [
dpf

(
P 2, x, zfj,γ

)]
,

with the explicit parametrization

(B.13)
∫ [

dpf

(
P 2, x, zfj,γ

)]= 1

2(2π)3

−P̄ 2(pap̃f̄ (x))

x2s

z2(x)∫
z1(x)

dzfj,γ

∫
dφf ,

and kX denoting the outgoing total momentum of X. The upper kinematical limit of the parameter
x = xfj,γ is given by

(B.14)x1 = −P̄ 2

−P̄ 2 + 2mf mj

.

The integration of the azimuthal angle φf of f simply yields a factor 2π , but the integration of
the auxiliary parameter

(B.15)zfj,γ = kpj

kpf + kpj

with the boundary

(B.16)z1,2(x) =
2m2

j x + P̄ 2(x − 1) ∓
√

P̄ 4(1 − x)2 − 4m2
f m2

j x
2

2 ¯2
2(P x − P )
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is non-trivial. The integration kernels occurring in the final result (3.25) are defined as

(B.17)Hγf

j,τ

(
P 2, x

)= −P̄ 2

2

z2(x)∫
z1(x)

dzfj,γ h
γf

j,τ (k,pf ,pj )

and can be evaluated without problems analytically (even for finite mf ) yielding Eq. (3.26) for
mf → 0.

Appendix C. More details on the subtraction for γ ∗ → f f̄ splittings

In this appendix we supplement Section 4.3, where the subtraction procedure for collinear
γ ∗ → f f̄ splittings has been described for a final-state spectator j . In the following we fully take
into account the spectator mass mj . The derivation widely follows Ref. [8], where the treatment
of the g∗ → QQ̄ splitting with a massive quark Q has been considered. Our approach differs
from the one described in Ref. [8] in the level of inclusiveness that is assumed in the collinear
limit; in contrast to that paper we do not assume a recombination of the f f̄ pair in the collinear
limit, but instead control the individual momentum flow of f and f̄ .

For arbitrary mass values mf and mj the subtraction function can be constructed as in
Eq. (4.17) with the generalized radiator function

h
μν

f f̄ ,j
(pf ,pf̄ ,pj ) = 2

(pf + pf̄ )2vj

[
−gμν

(
1 − 2κ

(
z1z2 − m2

f

(pf + pf̄ )2

))

(C.1)− 4

(pf + pf̄ )2

(
z
(m)

f f̄ j
p

μ
f − z̄

(m)

f f̄ j
p

μ

f̄

)(
z
(m)

f f̄ j
pν

f − z̄
(m)

f f̄ j
pν

f̄

)]
.

In addition to the parameters yf f̄ j and zf f̄ j , which are defined as in Eq. (4.19), we make use of
the following auxiliary quantities,

P̄ 2 = P 2 − 2m2
f − m2

j ,

vf =
√√√√ P̄ 2yf f̄ j − 2m2

f

P̄ 2yf f̄ j + 2m2
f

, vj =
√

[2m2
j + P̄ 2(1 − yf f̄ j )]2 − 4m2

jP
2

P̄ 2(1 − yf f̄ j )
,

z1,2 = 1

2
(1 ∓ vjvf ), z

(m)

f f̄ j
= zf f̄ j − 1

2
(1 − vj ), z̄

(m)

f f̄ j
= z̄f f̄ j − 1

2
(1 − vj ).

(C.2)

The parameter κ is arbitrary, because the singular behaviour does not depend on it; in practice
the independence of the final result on κ can be used as check. The auxiliary momenta entering
the hard scattering matrix element for the subprocess ab → γjX also become more complicated,

p̃
μ
j = P 2 − m2

j√
λ(P 2, (pf + pf̄ )2,m2

j )

(
p

μ
j − Ppj

P 2
P μ

)
+ P 2 + m2

j

2P 2
P μ,

(C.3)k̃μ = P μ − p̃
μ
j , P μ = p

μ
f + p

μ

f̄
+ p

μ
j .
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In order to integrate the subtraction function we need the azimuthal-averaged version of h
μν

f f̄ ,j
,

(C.4)hf f̄ ,j (pf ,pf̄ ,pj ) = 2

(pf + pf̄ )2vj

[
Pf γ (zf f̄ j ) + 2(1 − κ)z1z2 + 2κm2

f

(pf + pf̄ )2

]
,

and an appropriate splitting of the phase space of the momenta pf , pf̄ , pj ,∫
dφ (pf ,pf̄ ,pj ;P) =

∫
dφ (k̃, p̃j ;P)

∫ [
dpf

(
P 2, yf f̄ j , zf f̄ j

)]
,

∫ [
dpf

(
P 2, yf f̄ j , zf f̄ j

)]= 1

4(2π)3

P̄ 4

P 2 − m2
j

y2∫
y1

dyf f̄ j (1 − yf f̄ j )

z2(yf f̄ j )∫
z1(yf f̄ j )

dzf f̄ j

∫
dφf ,

(C.5)

where

(C.6)y1 = 2m2
f

P̄ 2
, y2 = 1 − 2mj(

√
P 2 − mj)

P̄ 2

and z1,2(yf f̄ j ) are the z1,2 of Eq. (C.2), evaluated as functions of yf f̄ j . Up to this point, the full
dependence on mf and mj is kept.

Since we want to keep the momentum flow in the collinear limit open, i.e. the zf f̄ j integration
should be done numerically, we have to interchange the order of yf f̄ j and zf f̄ j integrations in
the singular phase-space integration over

∫ [dpf ]. For arbitrary masses mf and mj , this seems
hardly possible analytically, so that we focus on the limit mf → 0 in the following, because this
is the interesting case. We define

Hf f̄ ,j

(
P 2, z

)= P̄ 2

2

y2(z)∫
y1(z)

dyf f̄ j (1 − yf f̄ j )hf f̄ ,j (pf ,pf̄ ,pj ),

(C.7)Hf f̄ ,j

(
P 2)=

1∫
0

dzHf f̄ ,j

(
P 2, z

)
,

where we were allowed to use mf = 0 in the prefactors and in the integration limits of z = zf f̄ j .
The relevant asymptotics of y1,2(z) for mf → 0 is

(C.8)y1(z) = m2
f

P̄ 2

z2 + (1 − z)2

z(1 − z)
, y2(z) =

√
4P̄ 2z(1 − z) + m2

j − mj√
4P̄ 2z(1 − z) + m2

j + mj

.

The actual integration over yf f̄ j yields

Hf f̄ ,j

(
P 2, z

)= Pf γ (z)

[
2 ln

(√4P̄ 2z(1 − z) + m2
j − mj

2mf

)
− 1 − η(z)

− 2 ln
[
1 − η(z)

]+ m2
j [1 − η(z)]

m2 + η(z)P̄ 2

]

j
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(C.9)+ 2m2
j

P̄ 2

(
1 − κ + z2 + (1 − z)2) ln

(
1 + η(z)

P̄ 2

m2
j

)
+ 2z(1 − z)

with

(C.10)η(z) =
{ [1 − y2(z)]z for z < 1

2 ,

[1 − y2(z)](1 − z) for z > 1
2 .

The case mj = 0 given in Eq. (4.22) can be easily read off after realizing that η(z) =O(mj ). For
the evaluation of Hf f̄ ,j (P

2) it is easier to integrate first over z and then over yf f̄ j . The result is

Hf f̄ ,j

(
P 2)= 4

3
ln

(√
P 2 − mj

mf

)
− 16

9
+ 4mj

3(
√

P 2 + mj)

(C.11)+
(

κ − 2

3

)2m2
j

P̄ 2
ln

(
2mj√

P 2 + mj

)
,

which could also be derived from Eq. (5.36) of Ref. [8]. For mj = 0 this obviously leads to the
form given in Eq. (4.22).

Appendix D. More details on the subtraction for f → f γ ∗ splittings

D.1. Factorization in the collinear limit

In this section we derive the asymptotic behaviour (5.2) of the squared amplitude |Mf a→f X|2
for the case where the incoming and outgoing light fermions become collinear. We consider po-
larized incoming fermions f with momentum p

μ
f and helicity of sign κf = ±. The corresponding

Dirac spinor u(pf , κf ) is an eigenspinor of the helicity projector

(D.1)Σκf
= 1

2
(1 + κf γ5/spf

),

where the polarization vector

(D.2)sμ
pf

=
( |pf |

mf

,
p0

f

mf

ef

)

is aligned to the direction ef = pf /|pf | for helicity eigenstates. Defining the light-like vectors
k̃μ = k0(1, ef ) and nμ = (1,−ef ), the polarization vector s

μ
pf

can be decomposed into k̃μ and
nμ as follows,

(D.3)sμ
pf

= (pf n)

2mf k0
k̃μ − mf

2(pf n)
nμ.

Note that the momentum kμ of the virtual photon fulfills kn = O(k0) in the collinear limit,
because then kμ = k̃μ + O(mf ). The vector nμ will be used as gauge vector in the explicit
definition of photon polarization vectors for the subprocess γ a → X below.

Power counting reveals that the logarithmic singularity arising from the phase-space region
pf p′

f =O(m2
f ) → 0 (mf 	 p0

f ) originates from the square of diagrams in which the incoming
fermion collinearly emits a photon that triggers the production of X. The generic form of such
graphs is shown in Fig. 7. Assuming summation over the polarization of the outgoing fermion f ,
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Fig. 7. Generic squared diagram for the splitting f → f γ ∗ (left) and the corresponding squared diagram for the related
process with an incoming γ (right).

the squared matrix element behaves like∣∣Mf a→f X(pf ,pa,p
′
f ;κf )

∣∣2
˜pf p′

f →0

Nc,f Q2
f e2

k4
Tr
{
Σκf

(/pf + mf )γμ(/p′
f + mf )γν

}
(D.4)× T

μ
γa→X(k,pa)

∗T ν
γ a→X(k,pa),

where T
μ
γa→X(k,pa) includes all information of the subamplitude indicated by the open blob in

Fig. 7. To leading order in mf → 0, the squared amplitude for the subprocess γ a → X can be
written as

(D.5)
∣∣Mγ a→X(k̃,pa;λγ )

∣∣2 = ε∗
λγ ,μ(k̃)T

μ
γa→X(k̃,pa)

∗ελγ ,ν(k̃)T ν
γ a→X(k̃,pa),

with the helicity λγ = ± of the incoming photon and the light-like vector k̃μ. In order to relate
the f a process with the γ a subprocess, we first evaluate the trace in Eq. (D.4) and drop all terms
that vanish owing to the Ward identity kμT

μ
γa→X(k,pa) = 0. Inserting the form (D.3) of s

μ
pf

, the
result can be written as∣∣Mf a→f X(pf ,pa,p

′
f ;κf )

∣∣2
˜pf p′

f →0

Nc,f Q2
f e2

−k2

{
−gμν − 4pf,μpf,ν

k2
− iκf

k2
εμναβkα

(
(pf n)

k0
k̃β − m2

f

(pf n)
nβ

)}
(D.6)× T

μ
γa→X(k,pa)

∗T ν
γ a→X(k,pa).

Now we make use of the collinear limit which is characterized by pf p′
f = m2

f − pf k =
O(m2

f ) → 0. We decompose the photon momentum according to

(D.7)kμ = xp
μ
f + k

μ
⊥ + kμ

r

with x = k0/p0
f , pf k⊥ = 0, and kr = 0. In this decomposition we have O(k0⊥) = O(k0

r ) =
O(m2

f ) and k2⊥ = O(m2
f ), i.e. the vector k

μ
⊥ can be counted as O(mf ). Moreover, we get

k2⊥ = x2m2
f + k2(1 − x) + O(m4

f ). In the determination of the leading collinear behaviour of

Eq. (D.6), we can replace the momentum kμ by the light-like momentum k̃μ = kμ + O(mf ) in
the two Tγa→X(k,pa) terms. The expansion of the two terms with the ε-tensor is also straight-
forward. With the help of identity (B.2), the contraction εμναβkαnβ becomes
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εμναβkαnβ = εμναβ k̃αnβ +O(mf )

(D.8)= i(kn)
[
ε+,μ(k̃)ε−,ν(k̃) − ε−,μ(k̃)ε+,ν(k̃)

]+O(mf ).

The second contraction εμναβkαk̃β can be expanded upon writing εμναβ = gμ
μ′

gν
ν′

gα
α′

εμ′ν′α′β
with the following decomposition of the metric tensor,

(D.9)gμν = 1

2k0

(
nμk̃ν + k̃μnν

)− ε
μ
+(k̃)εν−(k̃) − ε

μ
−(k̃)εν+(k̃).

The ε-tensor now only appears as εμναβε
μ
+(k̃)εν−(k̃)nαk̃β = 2ik0, and the momentum k̃μ with an

open index can be replaced via

(D.10)k̃μ = 2k0

(kn)

[
kμ + (

ε−(k̃) · k)εμ
+(k̃) + (

ε+(k̃) · k)εμ
−(k̃)

]+O
(
m2

f

)
,

which follows from Eq. (D.9) upon contraction with kν . This procedure spans the tensor
εμναβkαk̃β in terms of ε±,μ(k̃)ε∓,ν(k̃) and covariants involving kμ or kν . The latter do not con-
tribute because of the Ward identity kμT

μ
γa→X(k,pa) = 0. The expansion of the various scalar

products for mf → 0 is straightforward, yielding

εμναβkαk̃β = ik0[k2(x − 2) − x2m2
f ]

x(pf n)

[
ε+,μ(k̃)ε−,ν(k̃) − ε−,μ(k̃)ε+,ν(k̃)

]
(D.11)+ (terms proportional to kμ or kν) +O

(
m3

f

)
.

Inserting Eqs. (D.8) and (D.11) into Eq. (D.6) and performing the expansion in the collinear limit
leads to the form given in Eqs. (5.2) and (5.3).

The final step of performing the azimuthal average around the collinear axis, which leads to
Eqs. (5.5) and (5.6), is most easily carried out by fixing a specific coordinate frame. In a frame
where the direction of pf is given by eT

f = (0,0,1), the vectors k̃μ and ε
μ
±(k̃) are given by

(D.12)k̃μ = (k0,0,0, k0), ε
μ
±(k̃) = 1√

2
(0,1,±i,0).

Recall that kμ and k̃μ differ only by terms of O(mf ) in the collinear limit. According to defini-
tion (D.7) the leading term of k

μ
⊥ takes the form

(D.13)k
μ
⊥ = (

0,−|k⊥| cosφ′
f ,−|k⊥| sinφ′

f ,0
)+O

(
m2

f

)
,

where φ′
f is the azimuthal angle of p′

f = pf − k. In this parametrization the average 〈kμ
⊥kν⊥〉φ′

f

is easily calculated to

(D.14)
〈
k
μ
⊥kν⊥

〉
φ′

f
= −k2⊥

2
diag(0,1,1,0) +O

(
m3

f

)= −k2⊥
2

Eμν(k̃) +O
(
m3

f

)
,

while it is trivially seen that the tensors ε
μ
±(k̃)εν±(k̃)∗ do not change after taking the azimuthal

average. With these considerations the transition from Eqs. (5.2) and (5.3) to the averaged form
in Eqs. (5.5) and (5.6) is straightforward.



S. Dittmaier et al. / Nuclear Physics B 800 (2008) 146–189 187
D.2. Dipole subtraction for f → f γ ∗ splittings with massive final-state spectator

In Section 5.3 we have presented all formulas needed for the case of a massless final-state
spectator in practice, but did not go into the details of their derivation. Here we close this gap by
deriving the formalism in the more general situation of a possibly massive spectator j . We keep
the general definition (5.22) of the subtraction function, but generalize the subtraction kernel as
follows,

h
ff,μν
j,κf

(pf ,p′
f ,pj ) = −1

(pf − p′
f )2

[
−gμν − 4(1 − x)

x2

k̃
μ
⊥k̃ν⊥
k̃2⊥

(pf − p′
f )2(1 − x) + m2

f x2

(pf − p′
f )2(1 − x)

+ κf

x

(
2 − x + 2x2m2

f

(pf − p′
f )2

)(
ε
μ
+(k̃)∗εν+(k̃) − ε

μ
−(k̃)∗εν−(k̃)

)]
,

(D.15)

because we need the correct dependence on the emitter mass mf for the integration of |Msub|2
below. The auxiliary parameters still have the form (5.24), but the auxiliary momenta become
more complicated,

k̃μ(x) = m2
j − P 2

−P̄ 2

x

R(x)

(
p

μ
f + P̄ 2 + 2m2

f x

2xP 2
P μ

)
+ m2

j − P 2

2P 2
P μ, k̃μ = k̃μ(xfj,f ),

p̃j (x) = P μ + k̃μ(x), p̃j = p̃j (xfj,f ),

(D.16)k̃
μ
⊥ = pj k̃

p̃j k̃
p

′μ
f − p′

f k̃

p̃j k̃
p

μ
j .

Here we made use of the abbreviations

P μ = p
′μ
f + p

μ
j − p

μ
f , P̄ 2 = P 2 − 2m2

f − m2
j ,

(D.17)R(x) =
√

(P̄ 2 + 2m2
f x)2 − 4x2m2

f P 2

−P̄ 2
.

The new momenta satisfy the on-shell conditions k̃2 = 0, p̃2
j = m2

j and correctly behave in the

collinear limit, k̃ → xpf , where pf p′
f = O(m2

f ) → 0. Before carrying out the singular integra-
tions, we average the subtraction function over φ′

f , yielding

(D.18)
〈∣∣Msub(κf )

∣∣2〉
φ′

f
= Nc,f Q2

f e2h
ff
j,τ (pf ,p′

f ,pj )
∣∣Mγ a→jX(k̃,pa;λγ = τκf )

∣∣2
with summation over τ = ± and

h
ff
j,τ (pf ,p′

f ,pj ) = −1

P̄ 2zfj,f + 2m2
f xfj,f

[
Pγf (xfj,f ) + 2m2

f x2
fj,f

P̄ 2zfj,f + 2m2
f xfj,f

(D.19)+ τ

(
2 − xfj,f + 2x3

fj,f m2
f

P̄ 2zfj,f + 2m2
f xfj,f

)]
.
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The splitting of the (N + 1)-particle phase space into the corresponding N -particle phase
space and the integral over the remaining singular degrees of freedom is given by∫

dφ (p′
f ,pj , kX;pf + pa)

(D.20)=
x1∫

0

dx

∫
dφ

(
p̃j (x), kX; k̃(x) + pa

)∫ [
dp′

f

(
P 2, x, zfj,f

)]
,

with the explicit parametrization

(D.21)
∫ [

dp′
f

(
P 2, x, zfj,f

)]= 1

4(2π)3

s̃

s̄

−P̄ 2

x2R(x)

z2(x)∫
z1(x)

dzfj,f

∫
dφ′

f .

The upper kinematical limit of the parameter x = xfj,f is given by

(D.22)x1 = −P̄ 2

−P̄ 2 + 2mf mj

.

The integration of the azimuthal angle φ′
f of f (p′

f ) simply yields a factor 2π . The non-trivial
integration over zfj,f has the boundary

(D.23)z1,2(x) =
2m2

f x + P̄ 2(x − 1) ∓ R(x)
√

P̄ 4(1 − x)2 − 4m2
f m2

j x
2

2[P̄ 2(x − 1) + (m2
f + m2

j )x] .

Defining the integrated subtraction kernel according to

(D.24)Hff
j,τ

(
P 2, x

)= −P̄ 2

2R(x)

z2(x)∫
z1(x)

dzfj,f h
ff
j,τ (pf ,p′

f ,pj ),

the cross-section contribution of the subtraction part takes the form (5.26) in the limit mf → 0.

For a non-zero spectator mass mj , the function Hff
j,τ (P

2, x) reads

Hff
j,τ

(
P 2, x

)= 1

2
ln

(
P̄ 4(1 − x)2

x3m2
f [−P̄ 2(1 − x) + m2

j x]
)[

Pγf (x) + τ(2 − x)
]

(D.25)− 1 − x

x
− τ(1 − x).
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