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Abstract

Building on earlier work, the dipole subtraction formalism for photonic corrections is extended to various
photon—fermion splittings where the resulting collinear singularities lead to corrections that are enhanced
by logarithms of small fermion masses. The difference to the earlier treatment of photon radiation is that
now no cancellation of final-state singularities is assumed, i.e. we allow for non-collinear-safe final-state
radiation. Moreover, we consider collinear fermion production from incoming photons, forward-scattering
of incoming fermions, and collinearly produced fermion—antifermion pairs. For all cases we also provide
the corresponding formulas for the phase-space slicing approach, and particle polarization is supported for
all relevant situations. A comparison of numerical results obtained with the proposed subtraction procedure
and the slicing method is explicitly performed for the sample processe”y — e~ u " ut.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Present and future collider experiments require precise predictions for particle reactions, i.e.
for most of the relevant processes radiative corrections have to be calculated. This task becomes
arbitrarily complicated if either the order in perturbation theory (loop level) or the number of
external particles is increased, or both. In recent years the needed techniques and concepts have
received an enormous boost from various directions; for a brief overview we refer to some recent
review articles [1,2].
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In this paper we focus on real emission corrections involving photons at next-to-leading order
(NLO). Apart from the integration over a many-particle phase space, here the main complication
is the proper isolation of the singular parts which originate from soft or collinear regions in phase
space. To solve this problem at NLO, two different types of methods have been developed in the
past: phase-space slicing (see, e.g., Ref. [3]) and subtraction [4-8] techniques. In the slicing
approach the singular regions are cut off from phase space in the numerical integration and
treated separately. Employing general factorization properties of squared amplitudes in the soft
or collinear regions, the singular integrations can be carried out analytically. In the limit of small
cutoff parameters the sum of the two contributions reproduces the full phase-space integral. There
is a trade-off between residual cut dependences and numerical integration errors which increase
with decreasing slicing cuts; in practice, one is forced to search for a plateau in the integrated
result within some errors by varying the slicing cut parameters.

This cumbersome procedure is not necessary within subtraction formalisms which are based
on the idea of subtracting a simple auxiliary function from the singular integrand and adding
this contribution again. This auxiliary function has to be chosen in such a way that it cancels
all singularities of the original integrand so that the phase-space integration of the difference
can be performed numerically, even over the singular regions of the original integrand. In this
difference the original matrix element can be evaluated without regulators for soft or collinear
singularities. The auxiliary function has to be simple enough so that it can be integrated over
the singular regions analytically with the help of regulators, when the subtracted contribution
is added again. This singular analytical integration can be done once and for all in a process-
independent way because of the general factorization properties of squared amplitudes in the
singular regions. At NLO several subtraction variants have been proposed in the literature [4-8],
some of which are quite general; at next-to-next-to-leading order subtraction formalisms are still
under construction [9].

The dipole subtraction formalism certainly represents the most frequently used subtraction
technique in NLO calculations. It was first proposed within massless QCD by Catani and Sey-
mour [5] and subsequently generalized to photon emission off massive fermions [6]! and to QCD
with massive quarks [7,8]. Among the numerous applications of dipole subtraction, we merely
mention the treatment of the electroweak corrections to ete™ — 4 fermions [11], which was the
first complete treatment of a 2 — 4 particle process at NLO. The formulation [5,7,8] of dipole
subtraction for NLO QCD corrections assumes so-called infrared safety of observables, i.e. that
all soft or collinear singularities cancel against their counterparts from the virtual corrections, ei-
ther after parton-density redefinitions for initial-state singularities or due to the inclusiveness of
event selection criteria in soft or collinear configurations for final-state singularities. In Ref. [6]
the collinear singularities from photon radiation are regularized by physical fermion masses, and
only for final-state radiation these were assumed to cancel due to inclusiveness of the observable.

In the following we generalize the method of Ref. [6] by dropping the latter assumption and by
considering also other collinear-singular configurations involving photons, which are regularized
by physical fermion masses:

1. In Section 2 we deal with non-collinear-safe final-state radiation off light (anti- )fermions f,

where collinear singularities arise from the splitting f* — fy. Here and in the following,
asterisks indicate off-shell particles. By non-collinear-safe radiation we mean that a collinear

1 The case of i ght fermions, where masses appear as regulators, has also been worked out in Ref. [10].
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fermion—photon system is not necessarily treated as one quasi-particle, which by contrast
is the case in any collinear-safe observable. In collinear-safe situations, which are usually
enforced by photon recombination or a jet algorithm, singularities from final-state radiation
cancel according to the well-known Kinoshita—Lee—Nauenberg (KLN) theorem [12]. Non-
collinear-safe final-state radiation off a fermion f, in general, leads to corrections o« aInm ¢
that are enhanced by a logarithm of a small fermion mass m f.

2. Section 3 is devoted to processes with incoming photons and outgoing light fermions. Here
the collinear-singular splitting is y — f f*, i.e. if an outgoing (anti-)fermion f is allowed
to be scattered into the direction of the incoming photon, the cross section receives an en-
hancement oc Inm ¢ from this phase-space region.

3. In Section 4 we treat processes with light fermion—antifermion pairs in the final state, i.e.
when an outgoing photon with low virtuality splits into an ff pair, y* — ff. If the
collinearly produced f f pair can be distinguished from a plainly emitted photon (that has
not split), the considered cross section again receives an enhancement o< Inm .

4. Finally, in Section 5 we concentrate on processes with forward-scattered light (anti- )fermions,
where the splitting f — fy™* leads to a collinear singularity if the emitted photon is almost
real. Again this phase-space region enhances the cross section by a factor o< Inm f.

While Section 2 builds on the conventions and results of Ref. [6], Sections 3, 4, and 5 are self-
contained and can be read independently.

Of course, the considered situations could all be treated by fully including a non-zero fermion
mass m ¢ in the calculation. However, if m y is small compared to typical scales in the process,
which is the case for electrons or muons in almost all present and future high-energy collider
experiments, such a procedure is very inconvenient. The presence of very small or large scale ra-
tios jeopardizes the numerical stability of phase-space integrations, and mass terms significantly
slow down the evaluation of matrix elements. The subtraction technique described in the fol-
lowing avoids these problems by completely isolating all mass singularities from squared matrix
elements, so that finally only amplitudes for a massless fermion f are needed. We support par-
ticle polarization whenever relevant, in particular for all incoming particles. In order to facilitate
cross-checks in applications, the corresponding formulas for the phase-space slicing approach
are also provided.

In our technical treatment of the various splittings involving fermions and photons we do not
distinguish between quarks and leptons, although the physical meaning of the occurring fermion
masses is rather different. While logarithms of lepton masses consistently describe physical ef-
fects, such as collinear photon radiation off initial- or final-state leptons, mass logarithms of
light quarks have no well-defined physical meaning in perturbation theory. Nevertheless light
quark masses are often convenient regulators for collinear singularities, and in this sense our
results can be used. In practice, logarithms of light-quark masses disappear from predictions for
observables. If such singularities are connected to incoming particles, they are removed by a rede-
finition of parton densities. If they are connected to outgoing particles they automatically cancel
for collinear-safe observables; in the non-collinear-safe case they can be absorbed by redefining
fragmentation functions for the final-state jets or hadrons.

In Section 6 we demonstrate the use and the performance of the methods presented in Sec-
tions 3, 4, and 5 in the example ey — e~ u~ ut. A summary is given in Section 7, and the
appendices provide more details on and generalizations of the formulas presented in the main
text. In particular, the derivation of the factorization formulas for processes with incoming po-



S. Dittmaier et al. / Nuclear Physics B 800 (2008) 146—189 149

larized photons splitting into light fermions and for the forward scattering of incoming polarized
light fermions is described there.

2. Non-collinear-safe photon radiation off final-state fermions
2.1. Dipole subtraction and non-collinear-safe observables

For any subtraction formalism the schematic form of the subtraction procedure to integrate
the squared matrix element ZM |M|? (summed over photon polarizations Ay ) for real photon
radiation over the (N + 1)-particle phase space d®; reads

/da>1 S j|M1|2=/d<p1(§ M - |Msub|2) +[d<150® (/[dansubP),
A A
4 v (2.1

where ddy is a phase-space element of the corresponding non-radiative process and [dk] includes
the photonic phase space that leads to the soft and collinear singularities. The two contribu-
tions involving the subtraction function |/\/lsub|2 have to cancel each other, however, they will
be evaluated separately. The subtraction function is constructed in such a way that the differ-
ence ZM My |2 - |/\/lsubl2 can be safely integrated over d®; numerically and that the singular

integration of |./\/ls~ub|2 over [dk] can be carried out analytically, followed by a safe numerical
integration over d®y.

In the dipole subtraction formalism for photon radiation, the subtraction function is given
by [6]

M@0 ==Y 0070 popee (ps, pr | Moo s T, (22)
F#f

where the sum runs over all emitter—spectator pairs ff’, which are called dipoles. For a final-
state emitter (final-state radiation), the two possible dipoles are illustrated in Fig. 1. The relative
charges are denoted Q ¢, Q s, and the sign factors ¢, 0 y» = %1 correspond to the charge flow
(oy = +1 for incoming fermions and outgoing antifermions, oy = —1 for outgoing fermions
and incoming antifermions). The implicitly assumed summation over T = % accounts for a pos-
sible flip in the helicity of the emitter f, where ks = & is the sign of the helicity of f both
in |[M;]? and | Mgup|?. The singular behaviour of the subtraction function is contained in the
radiator functions g(fs}l,b)r (pf, pys, k), which depend on the emitter, spectator, and photon mo-

menta py, pys, and k, respectively. The squared lowest-order matrix element |Mo|? of the

bi ) 2

P P
N

Fig. 1. Generic diagrams for photonic final-state radiation off an emitter i with a spectator j or a in the final or initial
state, respectively.
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corresponding non-radiative process enters the subtraction function with modified emitter and

spectator momenta py ) and p;f ) For a final-state emitter f, the momenta are related by

pfrt+kExpp= p(ff My p(ff,f ), where = refers to a spectator f’ in the final or initial state,

and the same set {k,} of remaining particle momenta enters |M/|> and |Mg|?. The modified

momenta are constructed in such a way that p;f RN Py + k in the collinear limit (p sk — 0).

Note that no collinear singularity exists for truly massive radiating particles f, because the
invariant p rk does not tend to zero if the photon emission angle becomes small (for fixed pho-
ton energy £). In such cases the corresponding masses are kept non-zero in all amplitudes, in
the subtraction functions, and in the kinematics, and the subtraction procedure works without
problems. Collinear (or mass) singularities result if the mass m ; of a radiating particle is much
smaller than the typical scale in the process under consideration. In such cases it is desirable
to set m ¢ to zero whenever possible. In a subtraction technique this means that m y = 0 can be
consistently used in the integral [dd®, (ZM |M1]? — | Mgwp|?), but that the readded contribu-

tion f [dk] |/\/lsub|2 contains mass-singular terms of the form o Inm . If such mass singularities
from collinear photon radiation do not completely cancel against their counterparts in the virtual
corrections, the corresponding observable is not collinear safe. The dipole subtraction formal-
ism as described in Ref. [6] is formulated to cover possible mass singularities from initial-state
radiation, but assumes collinear safety w.r.t. final-state radiation.

In collinear-safe observables (w.r.t. final-state radiation), and only those are considered for
light fermions in Ref. [6], a collinear fermion—photon system is treated as one quasi-particle,
i.e., in the limit where f and y become collinear only the sum p s + k enters the procedures of
implementing phase-space selection cuts or of sorting an event into a histogram bin of a differ-
ential distribution. Technically this level of inclusiveness is reached by photon recombination, a
procedure that assigns the photon to the nearest charged particle if it is close enough to it. Of
course, different variants for such an algorithm are possible, similar to jet algorithms in QCD.
The recombination guarantees that for each photon radiation cone around a charged particle f
the energy fraction

Py

= 2.3)
PY+ k0

if

is fully integrated over. According to the KLN theorem, no mass singularity connected with
final-state radiation remains. Collinear safety facilitates the actual application of the subtraction
procedure as indicated in Eq. (2.1). In this case the events resulting from the contributions of
| Msub|? can be consistently regarded as N- partlcle final states of the non-radiative process with
particle momenta as going into IMo(cDO ff 1)|?, i.e. the emitter and spectator momenta are given

=(ffN (D ~(ff")

by p 7Py , respectively. Owing to p i st k in the collinear limits, the difference

> Ay |IM > — | Mgup|? can be integrated over all collinear regions, because all events that differ
only in the value of z; enter cuts or histograms in the same way. The implicit full integration
over all z in the collinear cones, on the other hand, implies that in the analytical integration of
|Msub|2 over [dk] the z; integrations can be carried out over the whole z s range.

In non-collinear-safe observables (w.r.t. final-state radiation), not all photons within arbitrarily
narrow collinear cones around outgoing charged particles are treated inclusively. For a fixed cone
axis the integration over the corresponding variable z y is constrained by a phase-space cut or by
the boundary of a histogram bin. Consequently, mass-singular contributions of the form o Inm ¢
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remain in the integral. Technically this means that the information on the variables z ¢ has to be
exploited in the subtraction procedure of Eq. (2 1). The variables that take over the role of z ¢
in the individual dipole contributions in IMsub| are called z;; and z;, in Ref. [6], where f =i
is a final-state emitter and j/a a final-/initial-state spectator. In the collinear limit they behave
as z;j — z; and z;, — z;. Thus, the integral fd(Dl (Z»\y M, |2 _ |M3ub|2) can be performed

over the whole phase space if the events associated with | Mgyp|? are treated as (N + 1)-particle

event with momenta py — z 7/ pfff pr— pgf) and k — (1 — sz/)ﬁ;ff,). This can be
formalized by introducing a step function Ocuw(pys, k, psr, {ky}) on the (N + 1)-particle phase
space which is 1 if the event passes the cuts and 0 otherwise. The set {k,} simply contains the
momenta of the remaining particles in the process. Making the dependence on ®; explicit, the
first term on the r.h.s. of Eq. (2.1) reads

fdfbl [Z|M1|2@cm(pf,k,pfu {kn})

Ay

= 3 M POz Y (=2 p ¥ Y, {kn})], 24)
F&f

where we have decomposed the subtraction function |/\/lsub|2 into its subcontributions
| Mup, ff/|2 of specific emitter—spectator pairs ff’. Apart from this refinement of the cut pre-
scription in the subtraction part for non-collinear-safe observables, no modification in |./\/lsub|2
is needed. Since its construction exactly proceeds as described in Sections 3 and 4 of Ref. [6],
we do not repeat the individual steps in this paper.

However, the modification of the cut procedure requires a generalization of the evaluation of
the second subtraction term on the r.h.s. of Eq. (2.1), because now the integral over z 77 implicitly
contained in [dk] depends on the cuts that define the observable. In the following two sections
we work out the form of the necessary modifications, where we set up the formalism in such a
way that it reduces to the procedure described in Ref. [6] for a collinear-safe situation, while the
non-collinear-safe case is covered upon including extra contributions.

2.2. Final-state emitter and final-state spectator

For a final-state emitter i and a final-state spectator j with masses m; and m ; the integral of

gl(;urb )( pi, Pj, k) over [dk] is proportional to

ﬁ4 2 Zz(yu
GS"™(PE) = dyij (1= yij) / dzij &5 (pi, pj, k), (2.5)
ij,T J 2r ij,T
Zl(ylj)

where the definitions of Sections 3.1 and 4.1 of Ref. [6] are used. There the results for Gl(;uf ) ( P2)
with generic or light masses are given in Egs. (4.10) and (3.7), respectively. In order to leave the
integration over z;; open, the order of the two integrations has to be interchanged, and the integral

solely taken over y;; is needed. Therefore, we define

p4 ¥2(zij)
(sub) 2\ ij B NN C111+) .
glj‘[ (Pljazlj)_ 2\/)7]_ / dy;; (1 yu)g,-j,t (pi, pj, k). (2.6)

y1(zij)
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Note that no finite photon mass m,, is needed in the function g'i(j“}’ )(Pl%., z) in practice, because

the soft singularity appearing at z — 1 can be split off by employing a [- - -]+ prescription in the
variable z,

>(sub) ( p2 (sub) ( 2 5(sub) ( p2
gi;,ur (Pj.2) = Gi;tlr (P7)s(1—2)+ [gi;,ut (P Z)]+- @7
This procedure shifts the soft singularity into the quantity Gl(juf )(Pizl.), which is already known

from Ref. [6]. Moreover, the generalization to non-collinear-safe integrals simply reduces to
the extra term [g',.(j,“}’)(Pg., z)1+, which cancels out for collinear-safe integrals where the full z-
integration is carried out.

For arbitrary values of m; and m; a compact analytical result of Q_l.(;}lrb )(Pl%., z) cannot be
achieved because of the complicated structure of the integration boundary. Note, however, that
only the limit m; — 0 of a light emitter is relevant, since for truly massive emitters no mass
singularity results. The case of a massive spectator j is presented in Appendix A; here we restrict
ourselves to the simpler but important special case m; = 0.

In the limit m; — 0 and m; = m, = 0 the boundary of the y;; integration is asymptotically

given by

2
m; (1 —2z)
N@=———  »n@=1 (2.8)
PijZ
and the functions and quantities relevant in the integrand gl(jsurb ) behave as
P2
Pik=%yl'j, Rij(y)=1-y, rij(y)=1. 2.9)

The evaluation of Eq. (2.6) becomes very simple and yields

B P2z
Gow (PE.2) = Pr(2) [ln(m—Jz) = 1} + (1 +2)In( —2),
L
Gy (P =12, 10

where Pry(z) is the splitting function,

1+ 22
Prr@=——— (2.11)
Eq. (2.10) is correct up to terms suppressed by factors of m;. For completeness, we repeat the
form of the full integral Gl(;"f ) (Pl%.) in the case of light masses,
G(Sub) P2 _ E P2 2 7.[2 1 G(Sub) P2 _ 1 2.12
i ( ) = (ij’mi)_?_’_ ; ij,—(ij)—g’ (2.12)

with the auxiliary function

2 m2 m2 1 2 1 2
£(P*m?) = ln(%) 1n<P—V> +1n(P—V> -5 1n2<'%2> +2 ln<%>, (2.13)
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which are taken from Eqgs. (3.7) and (3.8) of Ref. [6].2
Finally, we give the explicit form of the ij contribution |[Mgyp;; (@1)|? to the phase-space
integral of the subtraction function,

fddﬁl [ Mab.ij (@1: )|

QtUt QJU//dqulj/dZ l(;uf) 3)8(1—Z)+[g_i(;ib)(1)£, )]+}

x |Mo(pi, pj TKi)} Ocut(pi = z2pi k= (1= 2)pi, pj, tka}), (2.14)

generalizing Eq. (3.6) of Ref. [6]. While p;, p;, {k,} are the momenta corresponding to the gen-
erated phase-space point in 050,,- j» the momenta p; and k result from p; via a simple rescaling
with the independently generated variable z. The invariant Pl%. is calculated via Pl% =(pi+p j)z
independently of z. The arguments of the step function Ocu(p;, k, p;, {k,}) indicate on which
momenta phase-space cuts are imposed.

For unpolarized fermions the results of this section have already been described in Ref. [13],
where electroweak radiative corrections to the processes yy — WW — 4 fermions were calcu-
lated. In this calculation the results for non-collinear-safe differential cross sections were also
cross-checked against results obtained with phase-space slicing. Another comparison between
the described subtraction procedure and phase-space slicing has been performed in the calcula-
tion of electroweak corrections to the Higgs decay processes H — WW /ZZ — 4 fermions [14].

2.3. Final-state emitter and initial-state spectator

For the treatment of a final-state emitter i and an initial-state spectator a, we consistently
make use of the definitions of Sections 3.2 and 4.2 of Ref. [6]. In this paper we only consider
light particles in the initial state, because the masses of incoming particles are much smaller than
the scattering energies at almost all present and future colliders. Therefore, the spectator mass
m, can be set to zero from the beginning, which simplifies the formulas considerably.

Before we consider the non-collinear-safe situation, we briefly repeat the concept of the
collinear-safe case described in Ref. [6]. Following Eqgs. (4.24) and (4.27) from there, the in-

(sub) (pi, pa, k) over [dk] is proportional to

clusive integral of g,

G (P2) / dx G (P2, x) (2.15)
with
‘ 52 22(xiq) ‘
ng',lI;)(Pzi’xia):—f / dzia 82 (pi. Pas k), (2.16)
21 (Xia)

2 If dimensional regularization is used to regularize the soft singularity instead of a finite photon mass, the photon-

mass logarithm in £ has to be replaced according to ln(m%,) — (47{;1,2)61"(1 +€)/e + O(€), where D =4 — 2¢ is the
dimension and p the reference mass of dimensional regularization.
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where we could set the lower limit xo of the x;,-integration to zero because of m, = 0. Since,
however, the squared lowest-order matrix element | M| multiplying gl.(ZuE) in Eq. (2.2) depends
on the variable x;,, the integration of |./\/lsub|2 over x = Xxj, is performed employing a [-- -]+

prescription,

X 22(Xia)

Piza (sub)
_7 dxiq dzia 8ia,t (pis Pask) -+
0 21 (Xia)
1
= [ar G (P2)act =0+ [G5 (P2 ), ) - 1)
0

This integration, where the ellipses stand for x-dependent functions such as the squared lowest-
order matrix elements and flux factors, is usually done numerically. Since the soft and collinear
singularities occur at x — x; = 1 — O(m,,), the singular parts are entirely contained in

G&) (P2 ) in Eq. (2.17), and the upper limit x; could be replaced by 1 in the actual x-integration.

ia,t
(sub) and g(sub)

For completeness we give the explicit form of the functions G, in the limit m; — O,

72 , 1
GON (P2) = £(|P2]m?) =T+ 1, GAP(P2) =3,

(sub) ( 2 1 2-x)_3 (sub) ( 2
G () = [ am(T22) - 3] g o @19

which are taken from Egs. (3.19) and (3.20) of Ref. [6].

In a non-collinear-safe situation, the ellipses on the lL.h.s. of Eq. (2.17) also involve z;,-
dependent functions, as e.g. 6-functions for cuts or event selection. Thus, also the integration
over z;, has to be performed numerically in this case, and we have to generalize Eq. (2.17) in an
appropriate way. To this end, we generalize the usual [---]4 prescription in the following way.
Writing

/ d'r[gm] T fo) = / d"rg() () = £)], _,) (2.19)

for the [---]4+ prescription in the r;-integration in a multiple integral over n variables ry (k =
1,...,n), we can iterate this definition to two-dimensional integrals according to

[arle@li, ro= [ @rllem], 1 o

= f d'rgm(f () = F®, _,~F O], _,+f

ime). (2.20)

In the notation [g(r)] ( ay We omit the superscript (r;) if g(r) depends only on the integration
variable r;, and we omlt the subscripts (a) or (a, b) ifa = 1 ora = b = 1. This obviously recovers
the usual notation for the one-dimensional prescription used above. Introducing a double [-- -]+
prescription in x = x;, and z = z;,, we generalize Eq. (2.17) to
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=y A z2(x)
ia [ 4y d (sub) k
- Z8iq.¢ (Pis Pask)---
0 71 (x)

1 1
=/dxfdz (GO (PL)s(1—x)8(1 —2) + [GL) (P x)],8(1 — 2)
0 0

+[GE (P2, 2)], 801 — ) + [g5% (. ]} - 2.21)

If the functions hidden in the ellipses do not depend on z, the last two terms within the curly
brackets do not contribute and the formula reduces to Eq. (2.17).

We derive Eq. (2.21) and the explicit form of the two extra terms in two steps. In the derivation
we quantify the previous ellipses by the regular test function f(x, z). The first step introduces a
[- - -]+ prescription in the x-integration of the 1.h.s. of Eq. (2.21) after interchanging the order of
the integrations,

=5 22(x)
P
I[fl=——2 [dx [ dzg®™ f(x,2)
2 ngr X, 2
0 z1(x)

1
Piza (sub)
=5 dz [ dxg;, . f(x.2)
0 0

_ 1(
P2 .
=l f dz / dx{[gl.(zl,ﬂ;)]f’)m oy F D+ gl f(x1(2),2) ). (2.22)
0 0

The upper limit x;(z) of the x-integration follows upon solving the explicit form of the limits
Z1,2(x) (given in Eq. (4.22) of Ref. [6]) for x. The full form of x;(z) is rather complicated for
finite m,,, but in the following it is only needed for m, = 0, where it simplifies to

p2
PiaZ

—_l (2.23)
P2z —m?(1—7z)

X1 (Z) |mV:O =

Note that soft or collinear singularities result from the region of highest x values, x — x; =
max{x{(z)}, so that the first term in curly brackets in Eq. (2.22) is free of such singularities owing
to the [- - -]+ regularization. Thus, we can set m; — 0 in this part, i.e. in particular x1(z) — 1,
yielding

1 x1(z2)
P;
I[f]:—%/d de g;(s;u? <x)f(x )+ f(x1(2),2) / dxglﬂzf';>}, (2.24)
0

0

In the second step we introduce a [- - -]+ prescription for the z-integration in both terms,
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P, 1 (b)(x)() (b)(x)
i sul z sul
== [ /dx ¢S] f(xz)+/dxg,“ G
0

x1(2) @) x1 ()
+f(x1(z>,z)[/ dngif'?)} ) [ dxg;;f?}
0

+ 0
P? l l (sub)7(x,z) \ (sub) w
=—%/dx/dz[gmr] fx,2)— /dxf(x 1)|:/dzgmrj|
0 0 0 +
52 1 x1(2) (2) 52 1 x0
- %/dz f(xl(z),z)|:/ dxg,.(ztll;):| - ’“ F(xi (D), 1) /dz / dxgl.(ztl:’).
0 0 0 0

(2.25)

In the second equality we just reordered some factors and integrations. Since all integrals over
the test function f are now free of singularities, i.e. the singularities are contained in the integrals
multiplying f, we can set the regulator masses m,, and m; to zero in the arguments of f. Thus,
we can write

1

1 1
1= [ ax [az[g e o) ron + [ar e n[g8 (PR,
0 0

0
b
/ 4z 1, DG (P 2)), + 10D G (PY) 2.26)
0
with the abbreviations
P

_(sub b
gl(zur)(x’ 7) = _%gi(zl,lr) \ my_=g ’

(sub) P} \ b)
su su
gzar ( la’x)z_ éa/nglar |’;‘V =0,

;=0

0
B2 x1(z)
5(sub) 1 (sub)
gzar (Pta’z) % / ngia,r my,=0’
0
152 1 x1(2)
G (P2) = - / dz / dx gS". 2.27)
0 0

Eq. (2.26) is equivalent to the anticipated result (2.21), which was to be shown. The explicit
results for gf;“f)( P7,, x) and Gl(;ut;)(Pz) have already been given above in Eq. (2.18), the two
remaining functions are easily evaluated to

1 2
_(sub) (sub)
Siny (X, 2) = 1—x(2—_1_z>’ Gig (x,2) =
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e —P2; 2In(2 -z
Giar (P 2) = Pry (@ [In< 2 ) ) 1] -2 a4 gma -,
m: -
1
G (Ph.2) =1~z (2.28)
The collinear singularity o< Inm; that appears in non-collinear-safe observables is contained in
the function g'l.(;f‘_? (Pl.za, z).
The resulting ia contribution |Mgyp g (6151)|2 to the phase-space integral of the subtraction
function reads

/d@l |Msub,ia(q§1; Ki)|2

. 1

o -
=—EQaUaQiGi/dx/dqu,ia(PiZa’x)/dZ
0

0

X @cut(pi =zpi(x), k=1 —2z)p;i(x), {Izn(x)})
e (2130 - 080 -+ [08 (2.4)] 501 -0

ia,t ia,t

+ (G (P 2)] 601 =0+ [23 (0 D15 HMo(Pi (), pao)s i) |

’

(2.29)

which generalizes Eq. (3.18) of Ref. [6]. Again, the arguments of the step function Oy (p;, k,
{12,1 }) indicate on which momenta phase-space cuts are imposed. We recall that CIS(), ia 18 the phase
space of momenta p;(x) and {12,, (x)} (without final-state radiation) with rescaled incoming mo-
mentum p,(x) = xp, instead of the original incoming momentum p,. In the actual evaluation of
Eq. (2.29), thus, the two phase-space points éO»ia(Pi%p x) and qso,ia(P,%{, x = 1) have to be gen-
erated for each value of x owing to the plus prescription in x. The relevant value of the invariant
Pl% is then calculated separately via Pi%l = (pi — pa)? for each of the two points, so that Pl%l re-
sults from the momenta entering the matrix element M in both cases.? The variable z, however,
is generated independently of the phase-space points and does not influence the kinematics in the
matrix element.

The combination of the subtraction procedures described in this and the previous section has
been successfully applied and compared to results obtained with phase-space slicing in the calcu-
lations of electroweak corrections to Drell-Yan-like W-boson production, pp — W — vl + X,
and to deep-inelastic neutrino scattering, v, N — v, /u + X, building on the calculations dis-

cussed in Refs. [15,16] and [17], respectively.
2.4. Phase-space slicing

In the phase-space slicing approach the soft and collinear phase-space regions are excluded
in the (numerical) integration of the squared amplitude of the real-emission process. In the so-
called two-cutoff slicing method the soft region is cut off by demanding that the photon energy
k° should be larger than a lower cut AE which is much smaller than any relevant energy scale

3 For a more formal explanation of this subtle but important point we refer to the discussion at the end of Section 6.3
of Ref. [8].
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of the process. The collinear regions are excluded by demanding that each angle of the photon
with any other direction of a light charged particle should be larger than the cut value A6 < 1.
Note that this phase-space splitting is not Lorentz invariant. In the soft and collinear regions
the photon phase space can be integrated out analytically by employing the general factorization
properties of the squared amplitudes, which are, e.g., discussed in Section 2.2 of Ref. [6] (includ-
ing polarization effects). General results for the integral over the soft region can, e.g., be found
in Refs. [18,19]. The integrals over the collinear regions for final-state radiation can be easily
obtained from intermediate results of the two previous sections as follows.
The cuts defining the collinear region for the photon—emitter system of Section 2.2 translate
into new limits for the integration variables y;; and z;;,
2 » 042 »
Ak DY Ve | Y VE R P (2.30)
Pizij P Zij ;
which are asymptotically valid up to the relevant order in m; — 0. With these new limits on y;;
we evaluate the integral defined in Eq. (2.6) and obtain

o 0)2A02 = (sli

The integrals of these functions over z = z;; are given by

. 2 92762 i
= {o(35) ()] et e

L
As it should be, in these results the dependence on the spectator particle j completely disappears,
because it was only needed in the phase-space parametrization. We also note that the same results
can be obtained from Section 2.3, where the limits on x;, and z;, are changed to

m2(1 = ziq) (p))?

1 —zig

— <1 —Xjqg < —= —A@z,
_Pl'%lzia +m,2(1 — Zia) " _P,%Z Zia
AE
O0<zig<1-— — (2.33)
Di

(sli)
T

Using the functions G and G&S‘”, the integral over the collinear photon emission cone

around particle i reads

/ dd )| My (@1 )

coll,i

1
o ~ sli 5 (sli
— 5207 [ 4do [ az (GEV ()01 — 2+ [GE (40, )), )
0

x [Mo(pis flci)|2@cut(pi =zpi. k= =2)pi, {kn}), (2.34)

where the momenta p; and {k,} belong to the phase-space point @q. Of course, apart from the
polarization issue this is a well-known result which can be found in various papers [3].*

4 Descriptions of phase-space slicing for initial-state radiation off unpolarized particles can also be found in Ref. [3];
the case of polarized incoming particles is, e.g., treated in Ref. [20].
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3. Collinear singularities from y — f f* splittings
3.1. Asymptotics in the collinear limit

We consider a generic scattering process

vk, y) +a(pa) = f(pr) + X, 3.1

where the momenta of the particles are indicated in parentheses and A, = & is the photon helic-
ity. Here a is any massless incoming particle and f is an outgoing light fermion or antifermion.
The remainder X may contain additional light fermions which can be treated in the same way
as f. For later use, we define the squared centre-of-mass energy s,

s = (pa +k)* = 2pyk. (3.2)

The collinear singularity in the squared matrix element |[M,,_, ¢ x|? occurs if the angle 6 r be-
tween f and the incoming y becomes small; in this limit the scalar product (kp ) is of O(m?),
where m ¢ is the small mass of f. Neglecting terms that are irrelevant in the limit m y — 0O the
squared matrix element | M, - rx (k, pa, ps; Ay)|* for a definite photon helicity A, = = (but
summed over the polarizations of f) asymptotically behaves like

|Mya%fx(k7 Pa,Pf; )‘V)yz
2

50 Q3 (ke p )| My x (P =xk. paikp=Thy) (3.3)

where x =1 — p? /k° and Q re is the electric charge of f. The matrix element M Fa—x cOITE-

sponds to the related process fa — X that results from ya(— f f*a) — fX upon cutting the
f* line in all diagrams involving the splitting y — f f* (see also Fig. 2). The incoming mo-
menta relevant in the different matrix elements are given in parentheses. Moreover, in Eq. (3.3)
we assume a summation over T = 4, where 7 = = refers to the two cases where the sign K7 of

the f helicity is equal or opposite to the photon helicity Ay . The functions h}{f (k, pr), which
rule the structure of the collinear singularity, are given by

2
xXm
n k,pp) = (P (x) + —f) — "k, pyp),
+ Pf x(kpy) fy kp pPf
2
1 m?

Wk, pr)= (1—x)<1—x——f>, (3.4)

! x(kpr) 2kp ¢

with the splitting function

Pr,(x)=(1—x)*+x2 (3.5)

The derivation of this result is given in Appendix B.1.

Note that the collinear singularity for kpy — 0 can be attributed to a single external leg
(namely f) of the related hard process fa — X. Thus, there is no need to construct the sub-
traction function | My |? from several dipole contributions o Q O s. Instead we can construct
I/\/lsubl2 as a single term Q?. Nevertheless we select a spectator f/ to the emitter f for the
phase-space construction, which proceeds in complete analogy to the photon radiation case. We
have the freedom to choose any particle in the initial or final state as spectator. In the following
we describe the “dipole” formalism in two variants: one with a spectator from the initial state,
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Y [y f

a7 .
a p\‘ J
Fig. 2. Generic diagrams for the splittings ¥ — f f* with an initial-state spectator a or a final-state spectator j.

another with a spectator from the final state. The two situations are illustrated in Fig. 2. Our prac-
tical experience shows that none of the two possibilities is superior to the other, but comparing
results of the two variants provides valuable cross-checks.

3.2. Initial-state spectator

The function that is subtracted from the integrand | M4 rx (k, pa, pf; )L),)|2 is defined as
follows,

2

2 _ -
| Maub0)|" = Q3R (k, pr. pa) | M fos x (B o Pas thn}s ik p=T20)|, (3.6)
with the radiator functions
2
1 Xfyalty f.a
h”f’”(k,p,p)=7<P (x )+7'>—hf’(k,p,p),
+ S Pa Xyakp ) fyv\AXfya kp s f>Pa
2
W5, pry pa) = ———— (1 —x )(1—x —ﬂ) 3.7)
_ s Pfs Pa xf,ya(kpf) fya fiva kaf s
and the auxiliary quantity
k—prk—
xpya= D PIE TPl (3.8)

Pak

Here we kept the dependence on a finite m y, because it is needed in the analytical treatment
of the singular phase-space integration below. The modified momenta p 7 and {k,} entering the
squared matrix element on the r.h.s. of Eq. (3.6) will only be needed for m s = 0 in applications
with small values of m ¢. In this limit they can be chosen as

m

P =xkt, =0y, k= ANk (3.9)
with the Lorentz transformation matrix A*, given by
_(P+ PP EP), 2P
P2+ PP p?
Pl=pli+ k' —plf. Pra)=pli+phe), Pl =pli+ i (3.11)

Aﬂv = gﬂv

) (3.10)

It is straightforward to check that [Mgy|> possesses the same asymptotic behaviour as
|M, s rx|? in Eq. (3.3) in the collinear limit with m y — 0. Thus, the difference | M, - rx|* —
|/\/lsubl2 can be integrated numerically for m y = 0.
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The correct dependence of |Msub|2 (and the related kinematics) on a finite m ¢ is, however,
needed when this function is integrated over 6 leading to the collinear singularity for 6 — 0.
The actual analytical integration can be done as described in Ref. [6] (even for finite m, and m f).
Here we only sketch the individual steps and give the final result. The (N + 1)-particle phase
space is first split into the corresponding N-particle phase space and the integral over the re-
maining degrees of freedom that contain the singularity,

/d¢(Pf7P;k+Pa)

X
=/dx/d¢(l3(x);ﬁf(x)+Pa)[[dpf(5»anf,ya)]’ (3.12)
0

with the explicit parametrization

y2(x)
S
/[dpf(S,xa)’f,ya)]zm / dyf,ya/d¢f- (3.13)
yi(x)

The upper kinematical limit of the parameter x = x,,, is given by

n=1-", (3.14)

but in the limit m y — 0 we can set x; = 1. While the integration of the azimuthal angle ¢ of f
simply yields a factor 27, the integration over the auxiliary parameter

kpy _ 2kpy
= ==L 3.15

Yfya kD R ( )

with the boundary
1 4m§

)’1,2()€)=5[1—xqE (1—X)2—T] (3.16)

is less trivial. Defining
y2(x)
xs
HYP s, x) = = / dyfya ¥k, ps. pa), (3.17)
yi(x)
the result of this straightforward integration (for m y — 0) is
1 — 2
H (s, x) = Pry (x) ln<u> +2x(1 —x) — H (5, 0),
my
1— 2
H (s, %) = (1 — x)? ln(—S( 2x) ) —(1—x)% (3.18)
m
!

For clarity we finally give the contribution 3" that has to be added to the result for the cross

ya— fX
section obtained from the integral of the difference | M, 4 rx 12 — IMsuwl?,
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O—;lzlzl;fx(k» Pa; )\y)
1
Q?Ol yf.a
= Nc,fﬁ dx HY (s, )0 7 x (P = Xk, pas k f=Thy). (3.19)
0

Although formulated for integrated cross sections, the previous formula can be used to calculate
any differential cross section after obvious modifications.

For the case of unpolarized photons this subtraction variant has already been briefly described
in Ref. [17], where it was applied to the contributions to deep-inelastic neutrino scattering,
vy N — v, /i + X, that are induced by a photon distribution function of the nucleon N. More-
over, the method presented here was successfully used in the calculation of photon-induced real
corrections to Drell-Yan-like W production (see Section 10 of Ref. [1] and Ref. [16]) and of
photon- and gluon-induced real corrections to Higgs production via vector-boson fusion at the
LHC [21]. All these results were also cross-checked against phase-space slicing.

3.3. Final-state spectator

As an alternative to the case of an initial-state spectator described in the previous section, we
here present the treatment with a possibly massive final-state spectator j with mass m , i.e. we
consider the process

y (k) +a(pa) = f(pp)+jpj)+X. (3.20)

The initial-state particle a is assumed massless in the following, but all formulas can be gen-
eralized to m, # 0 following closely the treatment of phase space described in Section 4.2 of
Ref. [6]. The subtraction function now is constructed as follows,

2 ~ ~ 2
(MG = Q521 k. pr. p) My s jx (B Par Biik p =Tl (3.21)
with the radiator functions
2
: XfiyMy f
Wk, p ',P')=7<P' (xzj )+7) —h"_(k.ps.p)),
J+ frPj X7y (kpp) fr\Xfjy kp s J, fPj
2
n (k prop))=————({1—xy )<l—xf' T > (3.22)
b T gy kpy) " " 2kpy
and the auxiliary parameter
kpj +kpr—prpj
xpjy =t BF PP (3.23)
kpj+kpy
The momenta p 7and pj are given by
SN Tl S S pp K T B pu
pf‘(x)—Xk s Pf—l?f-(xf],y), Pj—P -I-Pf-, P —Pf-i-Pj k",
(3.24)

while the momenta of the other particles are unaffected. Note that this construction of momenta is
based on the restriction m ; = 0, which is used in the integration of the difference | M4 fjx|* —
|Msub |2~
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In the integration of | Mgy|? over the collinear-singular phase space, of course, the correct
dependence on a finite m ¢ is required. Owing to the finite spectator mass m ;, this procedure
is quite involved; we sketch it in Appendix B.2. Here we only present the results needed in

practice. The cross-section contribution a;‘;b_> fjx thathas to be added to the integrated difference

|Mya—>fX|2 - |Msub|2 is given by

U;l;l)_).f:/x(kv Pa; )\y)

1
Qj f(p2
=Nc,f2-—ﬂ/dxHjV.,T(P  X)0 s ix (P =Xk, Pas KF=Thy), (3.25)
0
where the collinear singularity is again contained in the kernels
/', (P 1 e 1 i 2x(1
2 (P, x)=—Pr,(x)In + +2x(1 —x
jor(Px) = =Py () [(mﬁ—Pz)a—x)( (m?—PZ)(l—m)} 4=
—H’;f_(Pz,x),
I (p2 2 mzfx mix 2
H (P?,x)=—(1—x) ln[ — <1+ — )}—(1—@.
I (mj—Pz)(l—x) (mj—Pz)(l—x)

(3.26)

Of course, the singular contributions o< Inm ; have the same form as in the case of an initial-state
spectator discussed in the previous section.

3.4. Phase-space slicing

From the results of the two previous sections, the corresponding formulas for the phase-space
slicing approach can be easily obtained. The collinear region, which is omitted in the phase-space
integration, is defined by the restriction 6y < A6 on the fermion emission angle 6 ¢ in some given
reference frame.

In Section 3.2 this constraint translates into new limits on the variable y .,

2 042
m 2(1 —
___r . Yiya < MAQZ’ (3.27)
s(1—xfya) s
which modifies the result of the integral analogously defined to Eq. (3.17) to
: (k%)2(1 — x)? Ap?
WY (K0, x) = Pfy(x)ln( — +2x(1—x) —H (K, x),
f
: K0)2(1 — x)2A6?
H (K0, x) = (1 —x)21n<( )« 2x) ) — (-2 (3.28)
m
f

The cross-section contribution of the collinear region of f then reads

, 1
11, Qja
Uﬁzéffx(k’l’aﬂw) = Nc,fﬁdeHZf(kO’x)Of'an(pf:xk’ Pa; Kf=Thy).
0

(3.29)
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The same result is obtained from Section 3.3 with Appendix B.2, where the new limits on
Zfj,y Tead

4. Collinear singularities from y* — f f splittings
4.1. Asymptotics in the collinear limit
We consider a generic scattering process
a(pa) +b(pp) = f(pp)+ f(pp) + X, “.1)

where the momenta of the particles are indicated in parentheses. Depending on the particle con-
tent of the remainder X, there may be additional, independent collinear-singular configurations,
but we are interested in the region where the invariant mass (py + p J;)z = 2m§ +2psp 7 of the

produced fermion—antifermion pair f f becomes of the order (’)(m%-), where m ¢ is small com-
pared to typical scales in the process. The singular behaviour of the full squared matrix element
|Mab—>ffx (ps, p];)|2 entirely originates from diagrams containing a y* — f f splitting, i.e.
the singularity is related to the subprocess ab — y X. For the matrix element of this subprocess
we write Mgp . x = Tﬁy»y X (Ig)sky, M(/E)*, where chny X (k) is the amplitude without the pho-
ton polarization vector &, H(/E)*. In the collinear limit p ¢ p i 0 the light-like momentum kis
equal o k=ps+p 7upto mass-suppressed terms. Neglecting terms that are irrelevant in the

limit m y — O the squared matrix element M, _, ¢ 7x(Pf. P 7) |? asymptotically behaves like

%

2 _ 2 2 _ _ I 7
My ix sy PP pfpfquc,foe WP P Ty x O Tapyy x (),

4.2)
where
2 ki kv P?
hﬁwﬂvwﬂza;jayﬂﬂw+hﬂ—@gt;ﬂ,z=z@ 4.3)

and N, 7 is the colour multiplicity of f (Nclepton = 1, N quark = 3). The momentum & is the
component of p s that is orthogonal to the collinear axis defined by k, i.e. kk; = 0, and becomes
of O(my) in the collinear limit. An explicit prescription for the construction of k can, e.g.,
be found in Ref. [8], where the analogous case of the gluonic splitting into massive quarks Q,
g* — 00, is worked out. It is important to realize that FFaw in Eq. (4.2) is not proportional
to the polarization sum E,, = ZAV gky,#(;;)*gxw(lé) of the photon, so that the r.h.s. is not
proportional to the polarization-summed squared amplitude |[Mp—, x | of the subprocess. This
spin correlation has to be taken care of in the construction of an appropriate subtraction function

in order to guarantee a point-wise cancellation of the singular behaviour in the collinear phase-
space region. The spin correlation encoded in & fFaw drops out if the average over the azimuthal
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Fig. 3. Generic diagrams for the splittings y* — f f with an initial-state spectator a or a final-state spectator j, where f
is a light fermion or antifermion.

angle ¢y of the y* — f f splitting plane around the collinear axis is taken.> Indicating this
averaging by (---)¢, = [der/(2m), we get (hff-’w)(pf = E,whff- with (in four space—time
dimensions)

Zm?
hff(pf, pp)= |:Pfy (z) + 7] 4.4)

(rr+pp)? (pr+rp)?

up to terms that are further suppressed by factors of m . The averaged squared matrix element
behaves as

(IMases s 7xpro 2 oy prprsoNes 03eh; ;(py. p )| Mabsyx (). (4.5)

Since the collinear singularity for psp 7 — 0 can be attributed to a single external leg (the
photon) of the related hard process ab — y X, also in this case there is no need to construct
the subtraction function | Myy|? from several dipole contributions. The function | Mgyp|? can be
chosen as a single term o« Q2. Nevertheless a spectator is selected for the phase-space construc-
tion, as in the previous section. In the following we describe the “dipole” construction in two
variants: one with a spectator from the initial state, another with a spectator from the final state.
The two situations are illustrated in Fig. 3.

4.2. Initial-state spectator

‘We define the subtraction function as

|M5ub|2 - NC’fQicezhé}f Mv(pfv pfa pa)T b%yx(pm k) T b-;VX(paa k) (4'6)
with
W Py P Pa)
Z#[‘g’”—#@ =) e = )
(s +p)° (py+ pp2 S FaPr T 2170l ) s faP s = 2 fab
4.7)
5 As described in Refs. [5,8], for unpolarized situations this average can be easily obtained upon contraction with the

projector %d;w(k) = %[—gw + (“gauge terms” involving k* or k”)]/(1 — €), which fulfills —g"Vd, (k) = 2(1 — €)
and k*dy, (k) =0 in D =4 — 2¢ space-time dimensions.
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and the auxiliary parameters

PaPf+PaPf—PrpF—my

Xefa= ) Zr7
S 1 PaPf + Palf J1a

PaPlf

PaDf+ PaDy

— 2= 4.8)

The auxiliary momenta entering the amplitude for the related process ab — y X are given by
PE =xpl, =),
K =Pr 4 plieo. K =RGgp). PR =P+ -l 4.9)

while the momenta of the other particles remain unchanged. In these equations we kept the
dependence on m ¢, but of course in the numerical integration of |M, f fX|2 — | Maup|* we
can set m s to zero, because we are only interested in the limit m y — 0. For the integration
of | Mgup|? over the collinear-singular region, we need the m g-dependence of the spin average

a,
fhff
2
ha--(Pf,Pf,Pa)=ﬁ[Pfy(foa)-i-zmifz], (4.10)
11 (pr+rp) “(prtpp)

and an appropriate phase-space splitting,

a6 sppiptp0=[ar [ao e P+ pueo) [lap (Px2)). @
0

where we have used the shorthands x = x Fia andz =z fFa The explicit form of f [dps] reads

p2 1 22(x)
/[dpf( x,2)] = i / fd¢f (4.12)
z1(x)

with the integration limits for the variables x and z

P2 =1+ [ 21=F (4.13)
_— xX)=— ). .
P am? YT X1 —x)

Separating the singular contributions as described in Section 2.3, we rewrite the integral of 4¢ f

x| =

f
form s — 0 as

X 22(x)

P2

2

71 (x)

0

1
fdx/ 4 (P81 =081 —2) + [H4 (P, x)] 801 = 2)
0

+[HY (P 2)], 800 =) + [ (6. 0] 7)o (4.14)
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The new functions h‘; 2 etc., defined here are obtained from obvious substitutions and straight-

forward integrations,

0= Pfy(Z)
Hc}f(P{x) = %
ﬂf;f(Pz,z) = Pfy(z)|:]n<#§l‘_z)> — 1] +2z2(1 —2),
He (P2 )—%m(%’f)_? (4.15)

Using these functions the phase-space integral of the subtraction function reads

fdéffwsub(@ffnz
1

N f—/ [ 4, (#2.2) [ dc0uups =2kt =1 = Dk, (o)

0

X l{H;f(zﬂ)a(l —08(1 —2) +[H] -(P?.x)], 801~ 2)

[ (P2 2)] 000 =)+ [7 10 ] 57 [ My x (Pat) K 0)

(4.16)

where we have made explicit which momenta enter the cut function Ocy(p r, p 7> {k,}). Concern-

ing the phase-space integration over dqu (P?, x) and its integration over the boost parameter x
the same comments as made after Eq. (2.29) apply. There are actually two phase-space points
for each x value to be generated (one for x < 1 and another for x = 1), each determining mo-
menta p,(x), k(x), {kn(x)} for the evaluation of P? and the matrix elements. The generation of
the parameter z proceeds independently, and the squared amplitude [Mgp— x|? in Eq. (4.16)
does not depend on z. Thus, if the full range in z is integrated over, i.e. if the collinear f f pair
is treated as a single quasiparticle in the cut procedure, the last two terms in curly brackets do
not contribute. In this case the fermion-mass logarithm is entirely contained in the H ‘ff F con-

tribution. According to the KLN theorem this contribution will be completely compensated by
virtual O(«) corrections to the process ab — y X if collinear f f pairs are not distinguished
from emitted photons.

4.3. Final-state spectator

Since the case with a massive final-state spectator j is quite involved, we here present the
formalism for m ; = 0 and give the details for the massive case in Appendix C.
For m y =m = 0, the subtraction function can be defined as
Mainl* =Ne, Q7€ s o (Pr P P Tay sy ix ks B To i (ks ) (4.17)

with
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W prpfpj)

2 2
=———— | =g — —— (g 7P — 2,709 (270 — 2 --p”-} (4.18)
(Pf+17f‘)2[ prf( Frivf  2rfi f)( FriEf  2rfi f)
and the auxiliary parameters
. Prpj Prpyj
Zefi=1—2Z47;= , YeFi= . (4.19)
ok M9 pypj+pp; M9 pypj+pipj+prpg

The new momenta entering the amplitude for the related process ab — yj X are given by
Py =p /A=y, K=PR—p Pl=phtplt ) (4.20)
whereas all remaining momenta k,, of particles in X remain unchanged. Eq. (4.17) can be used to

integrate the difference |M ;,_, F7ix |2 — | Mgup|* for massless fermions f. In order to integrate

|./\/lsubl2 over the collinear-singular region, the dependence on m ¢ has to be taken into account.
Details of this procedure can be found in Appendix C. The result can be written in the form

2
0%a 1
_ f 3 — o F e =y
—Nc,f?fd@yfdz@cut(pf—Zky Pf—(l —2)k, P],{kn})
0

x {Hy 71 (PY)S(1 =2+ [H 7 (P2 2)], [ Mapsysix &, 5| @21)
with

_ P2-(1 —
Hff',j(Pz’ 2) = Pry(2) [ln(%) — 1] +2z(1 —2),

2 (P*\ 16
(p2) =
Hyf (P )_§1n<m_2f)_?' (4.22)

The momenta k, j j» {kn} directly correspond to the generated phase-space point in (Ey, while the
parameter z is generated independently. The comments on the z-integration made at the end of
the previous subsection apply also here. The squared amplitude | Myp— ;i x | in Eq. (4.21) does
not depend on z, and thus, if the event selection for f and f is inclusive in the collinear region
of the y* — f f splitting, the integral over z trivially reduces to the factor H 7P 2).

4.4. Phase-space slicing

Here we again deduce the integral over the collinear phase-space region which is needed in
the slicing approach. This region can, e.g., be defined by restricting the angle 6 I between the f

and f directions to small values, 6 7 < AO « 1.
In Section 4.2 this restriction leads to new limits in x fFa and z fia
2
i <l—x,7 <ﬁ - (A —z,7 YAO, O0<z,7 <1
“P2%. - (1—z,-) ffa= _p2%ffa iff.a ’ ffaa =0
ff.a ff.a (4.23)
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where k¥ = p(} + p(;; is the energy in the f f system. This modifies the integrated results to

_ k() 2.2 1— 2A92
H, 7 (k.2) = Pry(2) 1n<( )z (m2 2 ) +2z(1 —2),
f
(0 = 2 (D867 23
Hy (k) =3 ln( ) 5 (4.24)

where H 7 and H ¢ 7 are defined analogously to Eq. (4.14). The integral of the squared matrix
element over the collinear regions then reads

2
AP ;7| Moy, 1 ix (@ f)]

F<AO

Orf

—ch—/dcb /dZOcut pr=zk, pf=(1—z)k {kn})

x (H, 7 (k)81 =2+ [H, 7 (K0.2)], } [ Mapyx B (4.25)

The same results can be obtained from Section 4.3 with Appendix C, where the new limits on
the integration variables are given by

+ (1 —zp7,)2 0y2
/ ff I7i - (KD) i 2 i
e e a T O<zppj<l. (426)
J J

5. Collinear singularities from f — fy* splittings
5.1. Asymptotics in the collinear limit

We consider a generic scattering process

F(pr.kp)+alpa) = f(py) + X, (3.1

with the momenta of the particles and the (sign of the) helicity « y = = of the incoming fermion f
indicated in parentheses. We are interested in the region where the squared momentum trans-
fer (pr — p})2 = 2m§( —2py p/f of the scattered fermion f becomes of the order O(mzf),
where m ¢ is small compared to typical scales in the process. The singular behaviour of the full
squared matrix element |[M rq_ rx(py, p’f; Kf) |? entirely originates from diagrams containing
an f — fy™* splitting, i.e. the singularity is related to the subprocess ya — X. For the matrix
element of this subprocess we write Myu_»((k Da>ry) = ya_)x(k)exy u(k) where T _)X(k)

is the amplitude without the photon polarization vector ¢;,, ,, (k). In the collinear limit prp s 0
the momentum & is givenby k= py — p/f up to mass-suppressed terms. Neglecting terms that

are irrelevant in the limit m y — 0 the squared matrix element |M fa— rx (P s, P'si k) |? asymp-
totically behaves like
2
M pas rx(Pfs Pas Pyikf)|

o0 Ve Q€] s (P PP Ty x ks pa) Ty x ks pa), (5.2)



170 S. Dittmaier et al. / Nuclear Physics B 800 (2008) 146—189

where

. -1 A1 —x) ky k.
W pr P = [—gw— et

(py = Pp)? x2 k- x2m2f
(3 gy 2 D) — e u ek
“r?( —x+m>(5+,u( Yepvlk) —e— (k) e y( )):|
(5.3)
with
kO
X = (5.4)
Py

The momentum & is the component of k that is orthogonal to the collinear axis defined by py,
i.e. k; py =0, and becomes of O(m y) in the collinear limit. A derivation of this factorization is

described in Appendix D.1. Note that h,{{ _wv in Eq. (5.2) is not proportional to the polarization
sum E,, = ZM aM,M(IQ)*sM,v(lE) of the photon, so that the r.h.s. is not proportional to the

polarization-summed squared amplitude |[M,, 4 x |? of the subprocess. This spin correlation has
to be taken into account in the construction of an appropriate subtraction function in order to
guarantee a point-wise cancellation of the singular behaviour in the collinear phase-space region.
The spin correlation encoded in h,{{ ,uwv drops out if the average over the azimuthal angle ¢} of
the f — fy* splitting plane around the collinear axis is taken. Details of this averaging process,
which is indicated by (- --) ¢/,» are given in Appendix D.1. The result is

(| Mfams rx (s Pas P "f)|2>¢’,-

o 4 2
o7 0 Ve Q5T (p . P [ Myams x (ks pai 2y = ics)| (5.5)

with summation over T = & and

-1 2xm? 2x2m?
ri (p ',p/)zi[P ~(x)+7f+r<2—x+4f>],
A T o R (py—p})? (pg—p})?

(5.6)

which is valid in four space—time dimensions up to terms that are further suppressed by factors
of m y. Here P, (x) is the splitting function

14 (1 —x)>?
ny(x)zg.

5.7

Since the collinear singularity for p ¢ p/f — 0 can be attributed to a single leg (the photon) of
the related hard process ya — X, also in this case there is no need to construct the subtraction
function |Mgyp|? from several dipole contributions. The function | Mgyp|> can be chosen as a
single term Q?, and a spectator is only used in the phase-space construction as previously.
In the following we again describe the “dipole” construction in two variants: one with a spec-
tator from the initial state, another with a spectator from the final state. The two situations are
illustrated in Fig. 4.
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f ff f
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Fig. 4. Generic diagrams for the splittings f — fy* with an initial-state spectator @ or a final-state spectator j, where
f is a light fermion or antifermion.

5.2. Initial-state spectator

‘We define the subtraction function as
2 ~ ~
[Manlep)|” = Ne,f Q5 h L4 (P, Pys P T x K pa)* Ty x (ks pa) (5.8)
with
W (pr, Py pa)

_ -l [_gw 41 —xyra) Kk
(pr—pp)?

+ (2 —x+ ﬂ) (e (y*el (k) — e (k)*e” (12))} (5.9)
x (pr—pp?) T

and the auxiliary parameters

PaPf = PfPy = PaPls +m5 prp —my
: fpa=—21 1 (5.10)
PaPf PaDf

Assuming again the incoming particle a to be massless and defining

Xf.fa=

s=(pf+pa)?=mi+2paps =5+mp,  Pl=plpl-plf, (5.11)
the needed auxiliary momenta for the related process ya — X are given by
2 Ir
- m - - - Pk
k“(X)=x<p?—7fpﬁf), K=k xpga), K =plf— flzpé‘,
Pa

PH(x) = k" (x) + p¥, P* =P (xy,1a),

k= A% kY, (5.12)
where the Lorentz transformation matrix A*,, is constructed from the momenta P* and PH as
in Eq. (3.10). In these equations we kept the dependence on m ¢, but of course in the numerical
integration of [M g, r x> — [Mgup|> we can set m r to zero if we are only interested in the

limit m y — 0. For the integration of | Msub|? over the collinear-singular region, we need the
m g-dependence of its azimuthal average,

2 ~ 2
(IMsun (e[ )y, = Ne.y @5t (b1, Ps p) [ Myamsx (K pai 2y =Tk (5.13)
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with summation over T = & and

h{(ps. Py pa)

1 2x(1 —x)mzf 2x2m§
:_—|:ny(x)— . . +r<2—x— _ ﬂ (5.14)
sxy Y —x—y) —m3(2x +y)] sy

where we have used the shorthands x = x, 7, and y = yy r,. An appropriate phase-space split-
ting is given by

[ a0y i+ p0= [ ax [0 (Peoien+p.) [[ap)s.x. ] (5.15)
0
with the explicit form of [d P’
_ y2(x)
/ S /
/[dpf (s,x,y)] = m / dy/d¢f (5.16)
yi(x)

and the integration limits for the variables x and y

_ 2 2
Js—my s 2m’ \/ 4m’y

= —_— ), — et 1 —_ —_—— l —_ 2 e . 5.17
X1 NG ; y1.2(x) % X 5 X Fq/( X) 5 ( )

In the limit m y — O the integral

RICY)
XS
H s = 2 / dy " (py, Py, pa) (5.18)
y1(x)

can be easily evaluated to
" 1— 1—
HI (s, x) = 1n(M> [Py(0) + 72— x)] - — —7(1 — ), (5.19)

xmy X

and the part to be added to the cross section reads

oF, ix (P Paifcr)

Qb [ i
= Z—n/dﬂ_[’ (s, x)0pasx(k=Xpy, pai hy =Tk ). (5.20)
0

5.3. Final-state spectator

As an alternative to the case of an initial-state spectator, we now present the treatment with a
final-state spectator j, i.e. we consider the process

fprkp)+alpa) = F(Pp)+ipj)+X. (5.21)
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The particles a and j are assumed massless in the following; the case of a massive spectator j is
described in Appendix D.2. The subtraction function is constructed as follows,

2 ~ ~ ~ ~
| Mub (i £)| =Nc,fQ§e2hﬂf,,w(pf,p},pj)Ty‘La_).,X(k,pa,pj)*Ty”H,-X(k,pa,pj)

(5.22)
with
- / -
s W VO 4GPt = 2pif PDGrir P} = 28j )
Jkf pf’pf7pj _( _ /)2 ( _ /-)2x2~ g
Pf— Py Py —DPg) Xy ¢2fi.f
+2 (z —x+ ﬂ) (e el (k) — ek (ky*e” @)}
x (pr—pp?) 0 T
(5.23)
and the auxiliary parameters
prps+prpj—ppj prp’
Xfjf = e ; [ 2 f=l=2f. 0= ,fif (5.24)
Pfpy+prpj PfPytpPrpj
The momenta k and p; are given by
Kt=xprph,  pj=PrHk, Pr=p+pl - Pl (5.25)

Note that this construction of momenta is based on the restriction m y = 0, which is used in the
integration of the difference |M 4 ¢jx > — [ Mgup|? for my— 0.

In the integration of |Mygy|?> over the collinear-singular phase space the correct depen-
dence on a finite m s is required. We sketch this procedure in Appendix D.2 for a possibly
finite spectator mass m;, but here we give only the relevant formulas needed in applica-
tions. The cross-section contribution 0}‘;1; jx that has to be added to the integrated difference

|Mfa—>fX|2 — IMsub|2 is given by

oF, rx(Pfs paiier)
) 1
Qfa 2 7
27 d-XHff],T(P 1x)aya—>jX(k=xpfa pa§)¥y:77’<f)» (526)
0

where the collinear singularity is contained in the kernels

1 (—P2(1 —x)

1 —
Hypje(P2ox) = 51n )[ny(x) +1Q2-x)]— Tx —t(1—=x). (5.27)

3,2
xomy
5.4. Phase-space slicing

Finally, we derive the integral over the collinear phase-space region for the slicing approach.
This region is defined by restricting the angle 9}- between the outgoing and incoming f to small
values, 6} <AO K 1. .

In Section 5.2 this restriction leads to new limits in y, 74,

2 2 042

me X% . (py)
f f.fa <Vfta< f (1 —xf,fa)Aé’z, (5.28)
s 1 —Xf’fa N
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Fig. 5. QED diagrams contributing to e "y — e~ " u™ at tree level.

=

which modify the integrated result to
0
pr(1 —x)AO
Hff(pf, ) — 1n<f7

xmy
where the integral is defined analogously to Eq. (5.18). The cross-section contribution for the
collinear scattering of f is given by

— X

)[ny(x)+f(2—x)] - — (1 —x), (5.29)

2 1
;ZlLffX<pf,pa;xf>—24/dxH” P} x)0yasx (kK =Xpf, pai by =Tkf). (5.30)
0

The same results can be obtained from Section 5.3 with Appendix D.2, where the new limits on
the integration variables are given by

042
FoXg, f[l+(1—x,fjf)] (p )

i 1— NS 5.31

—P2 [ <Zfji.f =< —p2 —= X =xpj5) (5.31)

6. Application to the processe”y — e~ pu~put

In this section we illustrate the application of the methods described in Sections 3, 4, and 5
to the process e~y — e~ u~u™ at a centre-of-mass energy /s much larger than the involved
particle masses, /s 3> me, m,. Of course, this process is not of particular importance in parti-
cle phenomenology, but it involves the three issues of (i) incoming photons splitting into light
f f pairs, (i) the collinear production of light f f pairs, and (iii) forward-scattered fermions
and, thus, provides a good test process for these cases. As already mentioned in Section 2, our
treatment of non-collinear-safe final-state radiation has already been tested in other processes.

To illustrate the formalism, it is sufficient to consider the process e”y — e~ u~u™t in QED,
where only the four diagrams shown in Fig. 5 contribute. The corresponding helicity amplitudes,
including the full dependence on the masses m. and m, can be obtained from the treatment
of e"y — e~e e presented in Ref. [22] after some obvious substitutions. In the following
we compare the result with the full mass dependence to results obtained with the described
subtraction and slicing methods in various kinematical situations. Denoting the polar angle of an
outgoing particle i by 6; and the angle between the two outgoing muons by o, we distinguish
the following cases:

(a) No collinear splittings
Angular cuts: Oy < 0— < 180° — ey and 6+ < 180° — Oeye and Ocyr < 0y
No collinear singularities are included, and the integrated cross section is well defined for
vanishing fermion masses, i.e. none of the subtraction methods has to be applied. The dif-
ference between massive and massless calculations indicates the size of the fermion mass
effects.
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(b) Collinear splitting y — e"e™"
Angular cuts: Oy < 6.- and 6+ < 180° — Bcyy and Oeur < 04y
The collinear splitting y — e~e™™ of the incoming photon is integrated over, so that the
third diagram of Fig. 5 develops a collinear singularity for backward-scattered electrons.
The methods of Section 3 are applied to the calculation with massless fermions.

(¢) Collinear splittings y — u¥u**
Angular cuts: Ocyt < Oe— < 180° — Oeye and Oy < @ty
The collinear splittings y — uFu** of the incoming photon are integrated over, so that the
first two diagrams of Fig. 5 develop collinear singularities for backward-scattered muons.
The methods of Section 3 are applied to the calculation with massless fermions.

(d) Collinear splitting y* — u~ ™
Angular cuts: Ocy < 0e— < 180° — ey and 0= < 180° — ey
The collinear splitting y* — u~u™ of an intermediate photon is integrated over, so that the
last two diagrams of Fig. 5 develop collinear singularities for collinearly produced muons.
The methods of Section 4 are applied to the calculation with massless fermions.

(e) Collinear splitting e~ — e~ y*
Angular cuts: 0.- < 180° — ¢y and 6+ < 180° — Ocye and Ocur < 0y
The collinear splitting e~ — e~ ™ of the incoming electron is integrated over, so that the
first two diagrams of Fig. 5 develop collinear singularities for forward-scattered electrons.
The methods of Section 5 are applied to the calculation with massless fermions.

For the numerical evaluation we set the fermion masses to me = 0.51099907 MeV and m, =
0.10565839 GeV, the fine-structure constant to o = ez/(471) = 1/137.0359895, the beam en-
ergies to £ = E. = E, = 250 GeV, and the angular cut to 6.y = 10°. In the subtraction and
slicing methods the masses me and m,, are neglected everywhere except for the mass-singular
logarithms, i.e. the laboratory frame defined by the above beam energies coincides with the
centre-of-mass system. For the fully massive calculation the two frames are connected by a (nu-
merically irrelevant) boost along the beam axis with a tiny boost velocity of O(mg JE?). Our
numerical results for the different kinematical situations and the various methods are collected in
Table 1. In addition in Table 2 we show the analogous results for the situation where the energy
of each final-state lepton / =e™, ui is restricted by E; > 10 GeV. All results are obtained with
an integration by Vegas [24], using 25 x 10° events. While a simple phase-space parametrization
is sufficient in the subtraction formalism, dedicated phase-space mappings are required to flatten
the corresponding collinear poles in the slicing approach and when employing the full mass de-
pendence of the matrix elements. The fully massive results have been checked with the program
WHIZARD [25], where agreement within the integration errors has been found.

The results obtained with the different subtraction variants, where a spectator is chosen from
the initial state (IS) or from the final state (FS), are in mutual agreement within the integration
error, which is indicated in parentheses. Subtraction and slicing results are also consistent within
the statistical errors as long as the angular slicing cut A6 is not chosen too large. For example,
some of the slicing results for A@ = 10~! still show a significant residual dependence on A#. In
the chosen example, the integration errors of the subtraction and slicing results are of the same
order of magnitude. However, we would like to mention that the subtraction approach is often
more efficient, as e.g. observed in the applications of Refs. [14—17,21] mentioned above. This
superiority of the subtraction formalism typically deteriorates if complicated phase-space cuts
are applied, as in the chosen example, because the cuts act differently in the various auxiliary
phase spaces and thus introduce new peak structures in the integrand.
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Table 1

QED cross sections o, for e~y — e~ in the various setups described in the main text, with signs « and A of the
helicities of the incoming e~ and y, respectively. The results are obtained with the indicated methods, where IS and FS
stand for spectators in the initial and final states, respectively

Collinear splittings Method o4+— [pb] o4 [pb]
(a) None full mass dependence 0.50910(9) 0.47172(6)
massless case 0.51110(9) 0.47384(7)
by — e~et™ full mass dependence 0.52213(7) 0.56762(7)
subtraction (IS spectator) 0.52424(8) 0.57027(8)
subtraction (FS spectator) 0.52434(7) 0.57017(9)
slicing (A6 = 10-h 0.52410(7) 0.57021(6)
slicing (A0 = 1073) 0.52431(9) 0.57021(7)
slicing (A6 = 1073) 0.52423(8) 0.57028(7)
)y — u:':,u,i* full mass dependence 2.5890(5) 2.3615(4)
subtraction (IS spectator) 2.5872(3) 2.3586(5)
subtraction (FS spectator) 2.5873(8) 2.3585(5)
slicing (A6 = 10-h 2.5883(3) 2.3609(2)
slicing (A0 = 1073) 2.5859(8) 2.3578(8)
slicing (A0 = 1073) 2.5876(13) 2.3572(13)
d)y*—> pput full mass dependence 0.54076(8) 0.53357(8)
subtraction (IS spectator) 0.54309(8) 0.53597(7)
subtraction (FS spectator) 0.54306(8) 0.53603(7)
slicing (A6 = 10-h 0.53164(19) 0.52386(16)
slicing (A0 = 1073) 0.54287(17) 0.53624(15)
slicing (A0 = 1073) 0.54335(18) 0.53580(18)
(e)e” > e y* full mass dependence 5.5465(7) 4.7060(6)
subtraction (IS spectator) 5.5495(4) 4.7070(3)
subtraction (FS spectator) 5.5484(6) 4.7064(5)
slicing (A6 = 10-h 5.5313(1) 4.6880(1)
slicing (A6 = 1073) 5.5488(3) 4.7071(3)
slicing (A0 = 1073) 5.5486(5) 4.7067(4)

Finally, we remark that the impact of mass-suppressed terms is significantly reduced if the cut
on the lepton energies E; is applied. This cut guarantees that E; > m; overall in phase space, so
that mass-suppressed terms are proportional to ml2 /0% with Q > m;. Without any restriction on
Ej, there are at least small regions of phase space where Q is not much smaller than m;, leading
to larger mass effects. This feature is clearly visible in Tables 1 and 2 when comparing results
based on the full mass dependence in the matrix elements with the subtraction and slicing results
that are based on the asymptotic limit n; — O.

7. Summary

The dipole subtraction formalism for photonic corrections is extended to various photon—
fermion splittings where the resulting collinear singularities lead to corrections that are enhanced
by logarithms of small fermion masses m . Specifically, we have considered non-collinear-safe
final-state radiation, collinear fermion production from incoming photons, forward-scattered in-
coming fermions, and collinearly produced fermion—antifermion pairs. All formulas needed in
applications are provided, only the scattering matrix elements for the underlying process and
for relevant subprocesses have to be supplemented in the simple approximation of a massless
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Table 2

Same as in Table 1, but with an energy cut E; > 10 GeV for all final-state leptons

Collinear splittings Method o4— [pb] o4+ [pb]

(a) None full mass dependence 0.45780(6) 0.41699(6)
massless case 0.45779(6) 0.41704(5)

(b)y > e et* full mass dependence 0.46995(6) 0.50351(6)
subtraction (IS spectator) 0.46999(6) 0.50345(6)
subtraction (FS spectator) 0.46995(6) 0.50348(7)
slicing (A6 = 101 0.46990(7) 0.50349(5)
slicing (A6 = 1073) 0.46992(7) 0.50352(5)
slicing (A6 = 1073) 0.46992(7) 0.50355(6)

©y— uFpts full mass dependence 2.4934(5) 2.2637(4)
subtraction (IS spectator) 2.4931(3) 2.2637(2)
subtraction (FS spectator) 2.4923(6) 2.2642(5)
slicing (A6 = 1071 2.4895(2) 2.2606(2)
slicing (A6 = 1073) 2.4917(7) 2.2628(7)
slicing (A6 = 1073) 2.4905(12) 2.2626(12)

d)y*—puut full mass dependence 0.48606(7) 0.47396(8)
subtraction (IS spectator) 0.48620(7) 0.47407(6)
subtraction (FS spectator) 0.48630(6) 0.47401(6)
slicing (A6 = 1071 0.47588(19) 0.46363(13)
slicing (A6 = 103) 0.48607(19) 0.47399(14)
slicing (A6 = 1073) 0.48623(20) 0.47425(15)

(e)e” —> e p* full mass dependence 5.4878(6) 4.6467(5)
subtraction (IS spectator) 5.4866(3) 4.6471(3)
subtraction (FS spectator) 5.4871(5) 4.6475(5)
slicing (A6 = 1071 5.4690(1) 4.6278(1)
slicing (A6 = 1073) 5.4869(3) 4.6467(3)
slicing (A6 = 1073) 5.4862(5) 4.6466(4)

fermion f. Particle polarization is taken care of in all relevant cases, e.g., for incoming fermi-
ons and photons. For the purpose of cross-checking results in applications, we also provide the
formulas needed in the phase-space slicing method.

As an example illustrating the use and performance of the proposed methods we have explic-
itly applied the subtraction procedures to the process e~y — e~ u~ "t and compared the results
to those obtained with phase-space slicing. The presented subtraction variants will certainly be
used in several precision calculations needed for present and future collider experiments such as
the LHC or ILC.
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Appendix A. More details on non-collinear-safe final-state radiation
Here we generalize the results of Section 2.1, where non-collinear-safe photon radiation off

fermions is treated, to the situation where massive spectators in the final state exist. To this end,
we only have to consider the case of final-state emitter and final-state spectator.



178 S. Dittmaier et al. / Nuclear Physics B 800 (2008) 146—189

For m; — 0, m, =0, but m; # 0, the boundary of the y;; integration [given for the massless
case in Eq. (2.8)] is given by

2
m:(1—72z)
V1(@) = ——=—,
Pl%z
2

-1 m<
n@=[s0+1+E@E@+2 | wih&@ =t —. (A1)
ij -

and the functions relevant for the integrand g(sub) behave as

ij,T
P7yij
pikz%, Pr =P} —m3,
4m2.y 2m?
y
RiM= |(1=-y——==  riy=1--=L—"0. A2)
ij () y P,%' ij(y) P,%' T—y (

The evaluation of Eq. (2.6) now becomes non-trivial and yields

2
su i 2
gl(J Jl:)( 2, ):—Pff(z)ln<%[l—n(z)])+(l+z)ln(1—z)— _Z
2P Z
m2.
+(l+z)ln<1+ — )
Pin(z)

P2 1—
B 2 {ln<1+ (@l zn(z)]>_21n<1_ 2z1(2) )
(1-2)o(z) m?(l —-2) 14+0(2)

1 m2 1 (sub)
Fo@h ,,n<>( =9 )= G (P52)

G (PR z) =1~z (A3)

with the auxiliary functions

4m? 1
m5 () = { [1—y»(@)]z for z < % (Ad)

o(z)= |1+ —z 1—

© P} (=2 [1=»@]d—-2) forz> ;.

For m; — 0, the results for g}j”rb )(P2 zij) reduce to Eq. (2.10), as can be easily seen after
realizing that n(z) =O(@m;) and o (z) =1+ (’)(m%) in this limit.

Appendix B. More details on the subtraction for y — f f * splittings
B.1. Factorization in the collinear limit
In this section we derive the asymptotic behaviour (3.3) of the squared amplitude M4, rx 2

for the case where the outgoing light fermion flies along the direction of the incoming photon.
We consider polarized incoming photons with momentum k* and polarization vector ef(y, where
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Maaspx 1 M px
pr
/

Fig. 6. Generic squared diagram for the splitting y — f F* (left) and the corresponding squared diagram for the related
process with an incoming f (right).

Ay = L is the sign of its helicity. We further introduce a light-like gauge vector n* (n? =0, nk #

. M . .
0),i.e. S)W is characterized by

sgy = (e’;y)*, key, =ne, =0. (B.1)

In the following we make use of the identity®

R :
elt(e1)" = el = SEM (0 F 3" kons, (B.2)
where
kin 4 nik?
EM (k) = "6 + " —g’”+”ki (B.3)
n

is the polarization sum of the photon in four space—time dimensions and €*"?? the Levi-Civita
tensor with €123 = 41,

In a gauge for the photon where nk = O(k"), it is easily shown by power counting that the
logarithmic singularity arising from the phase-space region kp y = O(m?c) (my < k0) originates
from diagrams in which the incoming photon collinearly splits into a light f f* pair. The generic
form of such graphs is shown in Fig. 6. Assuming summation over the polarization of the outgo-
ing fermion f, the squared matrix element, thus, behaves like

|Mya%fX(k7 Pa,Pf; )‘V)yz

_ —pitmy —pitmy
e~ 2 27 _ f f
kp ;=0 Qfe ng—)X(pfv pa) p2 — m2 ¢;ty (ﬁf + mf)¢)»y

T_ — (p f pa),
fa—X\I'f
7 7 py— iy

(B.4)

6 This identity is easily proven using a representatlon of the polarization vectors by Weyl spinors. Employing the

conventions of Ref. [23], we have sﬁB = £+O‘ \/_nAkB/ kn) and aAB = aMoAB \/—kA B/ kn)* for the
polarization bispinors, so that

nvpo - AE CG BD FH _ AC EG BF DH v P
€ kpng = 4( )O'ABUCDO'EF GHkpng
i .. .
YA € BDy X _ ACIB, Dy X\ i v
4(k kxn €k n"kyn )O'ABGCD
i .
- A C D A B C D v
4( k k KokCnP)otl ol
i

(ankn)(s+s —elel) =itkn) (ehle? —elel).

The only non-trivial step is the third equality which follows from a twofold application of Schouten’s identity.
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where Tf,, x(p 7> Pa) includes all information of the subamplitude indicated by the open blob
inFig. 6 and 77, , x = (Tf,_, x) 0. To leading order in m ; — 0, the squared amplitude for the
subprocess fa — X can be written as

2 —_
(Mox (P Pas k " = T x (7o P[0 B f + Om )] T x (P Pa),  (B.S)

with w4 = %(1 4 ys) and k F= =4 denoting the sign of the f helicity. In order to find the relation
between these squared matrix elements, we insert identity (B.2) into Eq. (B.4) and eliminate the
€ tensor via Chisholm’s identity,

i€ 0ys = (ryPy? —gPy” + 87 yP — Py )ys, (B.6)
i.e. we trade the € contributions for a y5 insertion in the spinor chain. Next, we isolate the leading

terms in the collinear limit kpy = O(m%p) — 0. This limit can, e.g., be parametrized by the
decomposition of the momentum of f

pr=0 =)kt +pl | +ph, (B.7)

withx =1 — p(} /KO, kp f,.L =0, and py, = 0 (where boldface symbols refer the spatial parts

of momenta). In this decomposition we have (’)(p J_) = O( D= O(mz) and p2 1= O(mz)
Thus, each component of the orthogonal 3-vector p f,L is of O/ (my). After some stralghtforward
simplifying algebra, the result of applying the power counting to |M,,, 7 x| i

’Mya%fx(k Pa>DPf; )‘V)yz

Q22

2
- Mg
=0 Ty X P pof[ 1201 -0+ oy Jo:

2
— XAy |2x —1 T
y|: X +kpf:|)/515f} Fasx(P 7 Pa)

kpf—>0 2Q {(hif +h):f)[|Mf_aﬁX(pfv Pa; +)|2 + |Mfaﬁx(17f’ Pa; _)|2]
+ 2 (1 =) [ M x (P P D = [Mjamx o pai ']} B)

The last form results from the last but one by simply substituting | M Fa—sX | and the hif func-
tions defined in Eq. (3.4), whose arguments are suppressed in the notation. This completes our
proof of Eq. (3.3), which is a more compact version of this result.

In this section we have explicitly treated f as fermion and f as antifermion. The opposite
case with f being an antifermion and f a fermion is obtained analogously and leads to the
identical final result (3.3), although some signs in intermediate results are different. This fact is,
of course, to be expected, because relations between squared helicity amplitudes cannot depend
on our convention which fermion we call the antiparticle of the other.

7 Actually there are also terms proportional to Ay m f/(kp f)sza N X}( p fLYs Tfa—> x> Which at first sight seem to

contribute in O(mj_fz) in the limit m y — 0. Although these terms obviously disappear from the subtraction function
after setting m ¢ to zero, they potentially contribute to the corresponding integrated subtraction terms, in which the limit
m ¢ — 0 is taken after the singular phase-space integration. However, the integration over the azimuthal angle of p 7,
which is always assumed in our analysis, leads to a further suppression by one power of m ¢, so that the contribution to
the phase-space integral of |[My,, rx 2 is mass suppressed. Thus, these terms are irrelevant in the construction of a
subtraction function to separate mass-singular terms in the collinear cone.
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B.2. Dipole subtraction for y — f f* splittings with massive final-state spectator

Here we give some details on the derivation of the integrated subtraction part presented in
Section 3.3 for the collinear splitting y — f f* in the process ya — fj X, where j is a possibly
massive spectator. We start by generalizing the form (3.24) of the new momenta upon restoring
the correct dependence on m ¢,

= 2 22
Py =Y Miv (g P2\ By mm = (s
f _p2 2p2 7 p2 d f F\ry

Py () =Pl PR, By =P (), (B.9)
where the following shorthands are used,

5 2 2 2 2 2 2

P=P>—m% —m], Afjy =A(P% my,m3), (B.10)
with the auxiliary function

Ax,y,2) = x>+ y2 4+ 22 — 2xy — 2x7 — 2yz. (B.11)

The new momenta satisfy the on-shell conditions j> = =m? b pj= m% and correctly behave in the

collinear limit, p i xk, where kp y = O(m f) — 0. The splitting of the (N + 1)-particle phase
space into the corresponding N -particle phase space and the integral over the remaining singular
degrees of freedom is given by

/d¢>(pf,pj,kx;k+pa)

X1
:/dxfcw (ﬁj(x),kx;ﬁf-(x)+pa)/[dpf(P2,x,ij,y)], (B.12)
0

with the explicit parametrization

1 —P? (papf(x))/

/[dpf(p{x,zf,-,y)]= 22 zf,y/dqsf, (B.13)

z1(x)
and kx denoting the outgoing total momentum of X. The upper kinematical limit of the parameter

X =Xyj,, is given by

_p2
Xl=—— B.14
TR +2mym; ( )
The integration of the azimuthal angle ¢ of f simply yields a factor 27, but the integration of
the auxiliary parameter

kp;
Zpiy=—t2 (B.15)
7Y = kpr+kp;
with the boundary
2mix+ P2(x = 1) F \/134(1 —x)? — dmAmx?
212(x) = (B.16)

2(P2x — P?)
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is non-trivial. The integration kernels occurring in the final result (3.25) are defined as

_. 22(x)
_p2
HYL (P2 x) = — / dz iy W7 k. pr. p)) (B.17)

z1(x)

and can be evaluated without problems analytically (even for finite m r) yielding Eq. (3.26) for
my — 0.

Appendix C. More details on the subtraction for y* — f f splittings

In this appendix we supplement Section 4.3, where the subtraction procedure for collinear
y* — f f splittings has been described for a final-state spectator ;. In the following we fully take
into account the spectator mass m ;. The derivation widely follows Ref. [8], where the treatment
of the g* — QQ splitting with a massive quark Q has been considered. Our approach differs
from the one described in Ref. [8] in the level of inclusiveness that is assumed in the collinear
limit; in contrast to that paper we do not assume a recombination of the f f pair in the collinear
limit, but instead control the individual momentum flow of f and f.

For arbitrary mass values my and m; the subtraction function can be constructed as in
Eq. (4.17) with the generalized radiator function

2 m
v ) 2
o o)
4 (m) (m) (m) —(m)
W( LR D [N T | (SR

In addition to the parameters y 17 and z 7 j» which are defined as in Eq. (4.19), we make use of
the following auxiliary quantities,

P> = P2—2m3p —m%,

P2y, 7, —2m? J2m? 4 P21 =y )P — dm? P2

Vf = 52 : 5 Vj = ) N s
Peyypj+2my Pr =)
1 1 1
_ = ) 2™ I M Z(1—v;
Z],2—2(1:ijvf)a ff/ =Zf7; 2(1 Vi), }‘)‘j =Z5fj 2(1 vj).

(C.2)

The parameter « is arbitrary, because the singular behaviour does not depend on it; in practice
the independence of the final result on x can be used as check. The auxiliary momenta entering
the hard scattering matrix element for the subprocess ab — yj X also become more complicated,

2 2 2, 2

P " (p‘.‘— Lp; P”) S +2m’ Pt

J J ’
\/)»(Pz (Pf+Pf)2 2) P 2P

lE“:P“—pj, P“=pf+p;+p?. (C.3)
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In order to integrate the subtraction function we need the azimuthal-averaged version of h’;‘; i
L 2 ZKWl?p
- (proprp)=—-—"——|P; F)+2(1 — +——— | (C4
ff,j(Pf Py pj) vy +Pf)2Uj |: j)/(fo]) ( K)Z122 / +Pf)2j| (C4)
and an appropriate splitting of the phase space of the momenta ps, p 7P
/dqﬁ(pf,pf-, pj;P)=/d¢(/5, ﬁj;P)/[de (P2yrrjzri))s
- Z2(yffj)
I ! p* q _ )
[dps (P vy 7520 7)) = g pr oz | Wi =257 dzgppj [ Aoy
J Vi Zl()’ffj)
(C.5)
where
2
_ 2m _1_2m,»(«/P2—mj) C6)
yl - 132 ’ y2 - 132 .

and z 1,2(yf fj) are the z; 2 of Eq. (C.2), evaluated as functions of Yfije Up to this point, the full
dependence on m y and m ; is kept.

Since we want to keep the momentum flow in the collinear limit open, i.e. the z ; 7; integration
should be done numerically, we have to interchange the order of y 7, and z, 7; integrations in
the singular phase-space integration over [[dp s]. For arbitrary masses m ¢ and m j, this seems
hardly possible analytically, so that we focus on the limit 7 y — 0 in the following, because this
is the interesting case. We define

_, ()
2 p?
Hff,j(P’Z)ZT defj(l_Yff'j)hff,j(Pf,Pf‘,Pj),
y1(2)
1
2 2
Hy (P )=fdszf,,~(P .2), (C.7)

0

where we were allowed to use m s = 0 in the prefactors and in the integration limits of z = z fFj
The relevant asymptotics of y; 2(z) form s — 01is

my 24 (1-2)° VAP0 =2 4 —m,

P2 z(1—2)

(@)= ) 2 (2) = (C.8)

\/41322(1 —2) +m§ +m;

The actual integration over y 7 yields

\/4152z(1 —2) +m; —mj)
—1-n@)

Hfij(pZ’Z)zpfy(z)[21n< 2

HIES
—2In[1 -]+ )l WH}

m3 +1(z) P2
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2m;] 2 2 P?
+_—2(1—K+Z +(1-2) )ln<1+n(z)—2>+21(l—z) (C.9)
P m;

with
N forz < (C.10)
[1—y2(2)I(1 —z) forz> %

The case m j = 0 given in Eq. (4.22) can be easily read off after realizing that n(z) = O(m ). For
the evaluation of H FF (P?) it is easier to integrate first over z and then over y FFj The result is

_4 VPz—m]'> 16+ 4mj
9  3(WPX+mj)

_ 2
Hff’j(P)_gln( n
+( 2)2m31( 2m; ) (C.11)
K—=|—=ZIn| —— |, .
3 P2 4/P2+mj

which could also be derived from Eq. (5.36) of Ref. [8]. For m ; = 0 this obviously leads to the
form given in Eq. (4.22).

Appendix D. More details on the subtraction for f — fy* splittings
D.1. Factorization in the collinear limit

In this section we derive the asymptotic behaviour (5.2) of the squared amplitude [M 4 rx 2
for the case where the incoming and outgoing light fermions become collinear. We consider po-

larized incoming fermions f with momentum p? and helicity of sign « y = =£. The corresponding
Dirac spinor u(p s, « ) is an eigenspinor of the helicity projector

1
EKj.zi(l—i-Kfyw‘pf), D.1)
where the polarization vector
0
psl Py
#_ = —_—, —¢€ D2
s <mf my! 2

is aligned to the direction ey = py/|p | for helicity eigenstates. Defining the light-like vectors
k= ko(1, er) and n* = (1, —ey), the polarization vector s,’ff can be decomposed into k" and
n* as follows,
weo— (Prm) ru _ " nt.
P 2m ko 2(pyrn)

(D.3)

Note that the momentum k* of the virtual photon fulfills kn = (’)(ko) in the collinear limit,
because then k* = k* + O(m r). The vector n#* will be used as gauge vector in the explicit
definition of photon polarization vectors for the subprocess ya — X below.

Power counting reveals that the logarithmic singularity arising from the phase-space region
pr p} = O(mzf) - 0(mr < p?) originates from the square of diagrams in which the incoming
fermion collinearly emits a photon that triggers the production of X. The generic form of such
graphs is shown in Fig. 7. Assuming summation over the polarization of the outgoing fermion f,
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Mfﬂ“fX I M;aaf)(
/

Fig. 7. Generic squared diagram for the splitting f — fy™* (left) and the corresponding squared diagram for the related
process with an incoming y (right).

the squared matrix element behaves like

|Mfu%fX(pf Pa p/f; Kf)‘z

Nc f Qf
pir =0 A Tr{ e, (s +mp)ve@s+mp)v}
X Ty x (ks p) Ty ey x (ks Pa), (D.4)

where T)f‘a_> x (k, pa) includes all information of the subamplitude indicated by the open blob in
Fig. 7. To leading order in m y — 0, the squared amplitude for the subprocess ya — X can be
written as

|Mya—>X(k Pa; y)| —8A M(k) aﬁx(k pa) Ehy, v(k) a_>x(k»17a), (D.5)
14 14

with the helicity A, = &£ of the incoming photon and the light-like vector k*. In order to relate
the fa process with the ya subprocess, we ﬁrst evaluate the trace in Eq. (D.4) and drop all terms
that vanish owing to the Ward identity k,, 7’ a_) x (k, pa) = 0. Inserting the form (D.3) of s - the
result can be written as

2
| M fas rx(Pfs Pas Pyikep)|
N, Q2<e2 4 i - m2
_ Ner Q5 {_gw_ Prubry Ky ka<<Pf")kﬁ_ f nﬁ)}

prpy=0 " _j2 2 ;2 €uvap ko (psn)
yaﬁx(k pa) a-)X(k Da)- (D.6)
Now we make use of the collinear limit which is characterized by py p/f f —prk =

O@m? f) — 0. We decompose the photon momentum according to
k= xp;‘. + K+ kY (D.7)

with x = k%/p%, prki =0, and k, = 0. In this decomposition we have O(k}) = O() =
(’)(m?c) and k? = O(m?c) i.e. the vector k“ can be counted as O(m ). Moreover, we get
ki =X m + k21 — x) + O(m* f) In the determination of the leading collinear behaviour of

Eq. (D.6), we can replace the momentum k* by the light-like momentum k* = k* 4+ O(m f)in
the two T4 x (k, ps) terms. The expansion of the two terms with the e-tensor is also straight-
forward. With the help of identity (B.2), the contraction ewaﬁk"‘nﬂ becomes
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Eﬂvdﬁkanﬁ =€lwaﬁl;anﬂ +(’)(mf)
=ilkn)[eq  (K)e_ (k) —e_ u(K)ey (k)] + O(my). (D.8)

The second contraction €,,,45k*k? can be expanded upon writing €45 = e ga"‘/eu/,,/a/ B
with the following decomposition of the metric tensor,

g = %(n”/;” + & n¥) — el (k)e” (k) — e (k)& (k). (D.9)
0

The e-tensor now only appears as eumgsi (lz)sl(l;)n"‘lzfS = 2ikp, and the momentum k" with an
open index can be replaced via

~ 2k ~ ~ ~ -

k= (k—,f)[k“ + (s~ (k) - k)&l (k) + (e4-(k) - k)& (k)] + o(m§), (D.10)
which follows from Eq. (D.9) upon contraction with k”. This procedure spans the tensor
e,wa,gk‘)‘k/3 in terms of 4 ,, (k)ex (k) and covariants involving k,, or k,. The latter do not con-
tribute because of the Ward identity k, T}f‘a_) x(k, pa) = 0. The expansion of the various scalar
products for m y — 0 is straightforward, yielding

wig iko[k2(x — 2) —x2m§] . . . .
€vapk” kP = x(pyn) [8+,M(k)87,v(k) - 57‘/L(k)8+,v(k)]

+ (terms proportional to k,, or k) + O(m3f) (D.11)

Inserting Eqgs. (D.8) and (D.11) into Eq. (D.6) and performing the expansion in the collinear limit
leads to the form given in Egs. (5.2) and (5.3).

The final step of performing the azimuthal average around the collinear axis, which leads to
Eqgs. (5.5) and (5.6), is most easily carried out by fixing a specific coordinate frame. In a frame
where the direction of p is given by e} = (0,0, 1), the vectors k* and el (k) are given by

1
7

Recall that k* and k* differ only by terms of O(m ¢) in the collinear limit. According to defini-
tion (D.7) the leading term of kj‘_ takes the form

= (ko, 0,0, ko), ef(®) = —=(0,1,%i,0). (D.12)

kY = (0, — k1| cos ¢, — kL |sing’y, 0) + O(m3), (D.13)

where qﬁ} is the azimuthal angle of pff = ps — k. In this parametrization the average (kﬁfkj_) ¢
is easily calculated to

k> k> -
(kﬁki)d),f - —7i diag(0, 1, 1,0) + O(m?) = —TLE’“’(I{) +0(m}), (D.14)

while it is trivially seen that the tensors si (/;)Ei (k)* do not change after taking the azimuthal
average. With these considerations the transition from Eqgs. (5.2) and (5.3) to the averaged form
in Egs. (5.5) and (5.6) is straightforward.
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D.2. Dipole subtraction for f — fy* splittings with massive final-state spectator

In Section 5.3 we have presented all formulas needed for the case of a massless final-state
spectator in practice, but did not go into the details of their derivation. Here we close this gap by
deriving the formalism in the more general situation of a possibly massive spectator j. We keep
the general definition (5.22) of the subtraction function, but generalize the subtraction kernel as
follows,

TR 2 2.2
s Lo =L T AU = KR (pr = P = x) A myx
juy PfPpsP)) = S L
! Py =pp) x ki (py =P —x)
ty (2 o 2xzm§_> (e (R el () — " (e (1€>)}
x (pr—pp?) 0 B |
(D.15)

because we need the correct dependence on the emitter mass m s for the integration of |./\/lsub|2
below. The auxiliary parameters still have the form (5.24), but the auxiliary momenta become
more complicated,

2 2 p2 2 2 2
- ms— P~ x P74 2m%x - —P - -
) = 7 I~ pu J PR R =M (i),
W="F krw <pf 2x P2 T op2 <s3.1)

pix) =P+ kM (x),  pj=pi(xsp)

g /
o _ Pik o Prkoy
pik T Bk

Here we made use of the abbreviations

T p2 _ p2 2 2
Pr=py +p; —py P?=P"=2m} —m7,

\V/(If’2 + 2m%{x)2 - 4)c2m%cP2

R(x)= 2

(D.17)

The new momenta satisfy the on-shell conditions k* =0, 153 = m? and correctly behave in the
collinear limit, k — xpy, where p¢ p} = O(m?) — 0. Before carrying out the singular integra-
tions, we average the subtraction function over (])}, yielding
2y 2 2, ff o o (R poe k. — 2
(‘Msub(’(f)‘ >¢lf =N, r Qfe hjyf(Pfs Py Pj)’Mya%]X(kv Pas Ay = TKf)’ (D.18)

with summation over T = & and

_ 2m2x2.
if , 1 ffi
h. ([),P,P')Z— |:P (x ',)+—
P T B oy U By amag
2x3. .m?
+z<2—xfj,f+ S )} (D.19)
P ij,f+2mefj,f
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The splitting of the (N + 1)-particle phase space into the corresponding N-particle phase
space and the integral over the remaining singular degrees of freedom is given by

fd¢(p},pj,kx;pf+pa)

X]
= / dx / d¢ (5 (), kx; k(x) + pa) / [dp’s(P?,x,255.7)), (D.20)
0
with the explicit parametrization
| 5 _p? 22(x)
5 -
d’P2,,-~-=——7/d~-/d’. D.21
J 100 (PP vz = st e | o [ 465 D21)
z1(x)
The upper kinematical limit of the parameter x = xz;, 7 is given by
_p2
P — (D.22)
—P24+2mym;

The integration of the azimuthal angle ¢} of f( p}) simply yields a factor 2. The non-trivial
integration over z s; s has the boundary

2%+ P2~ 1) F R(x)\/I;4(l —x)2 — dm%m2a

22 = 2AP2(x — 1) + (m + m2)x] (0.-23)
Defining the integrated subtraction kernel according to
_, 22x)
ff (p2 —p? Moo
Wi (Px) = spey | s hicr Py ). (D.24)

z1(x)
the cross-section contribution of the subtraction part takes the form (5.26) in the limit m y — 0.

For a non-zero spectator mass m ;, the function Hffr (P2, x) reads

54 2
I S
H.,,f( ,x) 5In x3m§[—}32(1—x)+m%x] [Pyr(x)+712—x)]
1—x
- — (1 —x). (D.25)
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