which in parallel recruits external conformers (Bamberg and Passow, 1992). Nevertheless, it must be expected that DIDS or other inhibitors induce specific deformations of the protein. Consequently, the induced changes of the protein’s volume in the two monolayers may vary for different inhibitors and from those induced by pH, leading to different stages of echinocytosis.

Of course, the CCBC model does not exclude other mechanisms, like changing protein interactions in the cytoskeleton or the redistribution of membrane compounds, from influencing the erythrocyte shape. However, the redistribution of the major species of lipids after a pH jump, e.g., from 7.4 to 5.8, is rather slow. Moreover, the transbilayer steady-state distribution of these lipids most probably does not correlate with the equilibrium erythrocyte shape according to the bilayer couple model (Libera et al., 1997). Furthermore, one must ask whether equilibrium investigations may disclose a general mechanism that can explain quasiequilibrium cell shapes, as well as very quick changes. Surprisingly, the CCBC model may play a role in the mechanisms behind both observations: very rapid shape changes due to synchronized recruitment of the binding sites and a subsequent conformational change, and the erythrocyte’s equilibrium shape due to the average conformation distribution, such as that at alkaline pH.

REFERENCES


Jan Gimsa
Institut für Biologie
Humboldt-Universität zu Berlin
Berlin, Germany

Does the Transmembrane Potential (Δψ) or the Intracellular pH (pHi) Control the Shape of Human Erythrocytes?

In a number of papers we indicated a correlation between transmembrane potential (Δψ) and the shape of human erythrocytes. Recently Gedde et al. (1997a,b) discussed our findings, on the basis of their new experiments, stressing, however, that not Δψ but intracellular pH (pHi) is the factor, which is responsible for echinoocyte and stomatocyte shape transformations. Already in 1984, Bifano et al. had argued in a similar way, claiming that amphotericin, which we used in our first experiments (Glaser, 1979, 1982), was the real reason for the shape changes found. However, our reexaminations of this matter showed that our results were reproducible under various other conditions, even without antibiotics. On the other hand, we pointed out that the absence of echinoicytic transformations in Bifano’s work was caused by their use of albumin as a stomatogenic agent (Glaser et al., 1988, 1989, 1991).

Although many of our publications are mentioned in the papers of Gedde et al., some of our findings contradicting their conclusion, unfortunately, were not noticed. A crucial experiment, which was reproduced many times, is the following (Glaser et al., 1980; Glaser, 1993). In isotonic solutions of 30 mM NaCl + sucrose, at pHc 5.1, washed erythrocytes are stomatocytes in control experiments (Δψ = +46 mV, pHi 5.9) and remain stomatocytes, even if they are shifted into a full Donnan equilibrium (Δψ = +46 mV, pHi 5.9, volume of the cells in relation to control = 62%). At pHc 7.4, control cells remain stomatocytes (Δψ = +29 mV, pHi 7.9), but in contrast to the response at pH 5.1, they fully transform into echinocytes if they are shifted into Donnan equilibrium (Δψ = −19.5 mV, pHi 7.1, volume of the cells in relation to control = 67%). These data clearly demon-
strate that neither shrinkage nor pH, but only the transmembrane potential correlates with shape.

Gedde et al. (1997b) point out, as Bifano et al. (1984) already did, that “ionophores have independent shape effect.” This is true for large concentrations and was published by us for high concentrations of valinomycin (Glaser et al., 1991). But, as already mentioned above, the same shape effects were found without ionophores, when the cation exchange leading to the Donnan equilibrium was induced by electric breakdown of the membrane. Similar shape transformations under electric breakdown conditions were also observed by Chang and Reese (1990). Furthermore, we indicated that valinomycin in lower concentrations only induces stomatocytes if the cells have been pre-loaded with sodium, and a positive diffusion potential is induced in potassium-rich solutions (Glaser et al., 1991).

Another argument against the “pH hypothesis” are our experiments on ghosts: Why do ghosts not show a pH dependence of their shapes? Why do only resealed but not experiments on ghosts: Why do ghosts not show a pH distribution of drugs, or probably fatty acids or other membrane potential can also influence the asymmetrical formation of the band 3 protein in the membrane. The and Ried, 1995) proposed a mechanism based on the con- 

tric field effects on membrane constituents, and gradients of ionic strength it can be larger than 45 mV! The membrane potential is a physical parameter controlling a number of membrane and membrane-near properties. This makes the correlation between Δψ and erythrocyte shape, found by us, understandable.

REFERENCES


Roland Glaser
Institut für Biologie/Experimentelle Biophysik Humboldt-Universität zu Berlin Berlin, Germany