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We study the random partitions of a large integer n, under the assumption that
all such partitions are equally likely. We use Fristedt’s conditioning device which
connects the parts (summands) distribution to the one of a g-sequence, that is, a
sequence of independent random variables, each distributed geometrically with a
size-dependent parameter. Confirming a conjecture made by Arratia and Tavarg,
we prove that the joint distribution of counts of parts with size at most s, < n'/2
(at least s, > n'/2, resp.) is close—in terms of the total variation distance—to the
distribution of the first s, components of the g-sequence (of the g-sequence minus
the first s, — 1 components, resp.). We supplement these results with the estimates
for the middle-sized parts distribution, using the analytical tools revolving around
the Hardy—Ramanujan formula for the partition function. Taken together, the
estimates lead to an asymptotic description of the random Ferrers diagram, close
to the one obtained earlier by Szalay and Turan. As an application, we simplify
considerably and strengthen the Szalay—Turan formula for the likely degree of an
irreducible representation of the symmetric group S,. We show further that both
the size of a random conjugacy class and the size of the centraliser for every
element from the class are doubly exponentially distributed in the limit. We prove
that a continuous time process that describes the random fluctuations of the
diagram boundary from the deterministic approximation converges to a Gaussian
(non-Markov) process with continuous sample path. Convergence is such that it
implies weak convergence of every integral functional from a broad class. To
demonstrate applicability of this general result, we prove that the eigenvalue
distribution for the Diaconis—Shahshahani card-shuffling Markov chain is asymp-
totically Gaussian with zero mean, and variance of order n=3/2.  © 1997 Academic
Press
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INTRODUCTION

The problems concerning enumeration of various integer partitions of a
given integer n have long occupied a central place in analytic number
theory and enumerative combinatorics. The many reasons for such a
preeminent role are made abundantly clear, for instance, in Andrews [1]
and Stanley [26]. So it is all the more surprising that a pioneering work on
probabilistic aspects of the partitions done by Erdos and Lehner in 1941
[7] appeared not so long ago. (During a recent conference in honor of
Herb Wilf, the paper was mentioned by several speakers, and the partici-
pants were happy to see both the authors present.) Erdds and Lehner
introduced a notion of random partition, postulating that every sample
partition is assigned the same probability, 1/p(n), that is, where p(n) is
the total number of such partitions. Using the Hardy—Ramanujan asymp-
totic formula for p(n), the authors found the limiting distribution of the
number of summands (parts) and thus—by a classic duality—the limiting
distribution of the largest summand. Afterward there appeared to be a lull
until Erdos and Turan [9], Szalay and Turan [27-29], and Erdds and Szalay
[8]. To a large extent, the three authors were motivated by the very natural
connections that exist between the partitions and the symmetric group S,
of permutations on n letters. One such connection is a bijection between
the integer partitions of » on one side and the set of the conjugacy classes
of §, on another side. A related, but considerably deeper, bijection exists
between the partitions and the irreducible representations of S,; see
Ledermann [21], Diaconis [5], for instance. Among the host of results in
the Hungarian series, we would specifically mention two asymptotic formu-
las, one for the centralizer size of an element from a random conjugacy
class, in Erdos and Turan [9], another for the likely degree of randomly
chosen irreducible representation, in Szalay and Turan [29]. The latter is
based on the original formula of Frobenius [12], and its linear term factor
depends on the value of a very complicated double integral. More recent
advances were made by Wilf [34], who found a surprisingly simple deriva-
tion for the expected number of distinct sizes, and by Goh and Schmutz
[14], who were able to show that this number is asymptotically Gaussian.
Fristedt [11] undertook a systematic study of the random partitions that
very fruitfully combined analytic and probabilistic tools. He introduced a
conditioning device, conceptually analogous to the one by Shepp and Lloyd
[25] for the cycles of a random permutation. (An alternative conditioning
scheme for permutations, mappings, forests, and allocations has been
championed by Kolchin [20] since the late sixties.) Here is Fristedt’s
approach. Let X; denote the number of parts in the random partition of »n
(j = D. Let{Z};., be a sequence of independent random variables such
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that, for some g € (0, 1),

Pz=i} = (1 -a)@). i=0;

so Z; is geometric, with parameter q’. 1t turns out that, conditioned on the
event {¥;jZ; = n}, the sequences { X} and {Z;} are equidistributed, regard-
less of an actual value of g. Intuitively, one should choose g which
maximizes P{¥X;jZ; = n}, and Fristedt shows that g =e " (o=
7/ V6 V6), is almost optimal. (It is certainly optimal in terms of simplicity!)
On the basis of this connection with {Z}, Fristedt was able to show that
the Prohorov distance between {X}},_, and {Z}_, approaches 0 if
t, = o(n'/*). Besides having a 5|gn|f|cant heuristic value this result repre-
sents a considerable strengthening of the Erdds—Lehner theorem. Also,
the joint distribution of the o(n'/*) largest parts turned out to be asymp-
totically close to the one of a certain time-homogeneous Markov chain.
The fact that the first o(n!/*) parts counts are asymptotic to the first
o(n'/*) Z;’s is close in spirit to the “independent process approximation-
type results obtained for the Ewens distributed permutations. (The uni-
formly random permutation is in this class.) The reader would do well to
consult an expository paper by Arratia and Tavaré [2], who have initiated
much of the research in that area. For a general class of combinatorial
structures, which includes the random partitions, Arratia and Tavaré
managed to obtain a surprisingly simple formula for the total variation
distance (d;,) between (the distributions of) the parts counts for the
random structure and the independent variables that produce those counts,
distribution-wise, upon being conditioned on their total weight value.
Using an ingenious heuristic reasoning, Arratia and Tavaré formulated a
general conjecture as to when one should expect that distance to be
asymptotically small. (For the Ewens distributed permutations, Arratia,
Stark, and Tavare [3] obtained the asymptotics that come tantalizingly
close to confirming the conjecture of the two senior coauthors.) In a
particular case of the random partition the conjecture states: given integer
functions j, = j,(n), j, = j,(n), define

X, ={X

f}.isjl’
X, ={X}).... Z,={Z}.,;
then
dn(Zi %) >0, it ju/n? >0,
dw(Z,,X;) — 0, iff j,/nt/2 > o
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Such a result—if true—would certainly allow one, for instance, to get an
asymptotic distributional result for the first o(n'/?) parts counts, as
compared to o(n'/*) in Fristedt [11]. Similarly, the counts of large parts,
with size > n'/2, would be nicely approximated by the independent
variables Z;, j > n/2. Of course, one would still have to fill the gap, that
is, to study the parts of size O(n'/?), to be able to describe an overall
behavior of {X},. ;. In a nutshell, that is what the goal of the present
paper is.

Leaving the complete formulations for the main body of the paper, here
is an essence of our results. In Section 1 (Theorem 1) we use the
Arratia-Tavaré formula to show that if there exist finite a, = lim j,/n'/?
then

dw(Z;,X;) = dvy (A7), i=1,2

Here ., 4,4, are three normals, with zero means and variances 1,
o2(ay), of(a,), respectively. We also find the approximations for the cases
a, =0, a, = . The result fully confirms the Arratia—Tavare conjecture.
The most technical step is the proof of a local limit theorem, with a
remainder term, for ¥, ; jZ;, ¥;_; jZ;. This theorem, coupled with the
Chernoff-type estimates and the optlonal stopping time theorem for an
exponential martingale, allows us to obtain sharp probabilistic estimates
for the total count X (k) of the small parts of size k at least, small meaning
o(n'/?) (k < n'/?), and the total count X (k) of the large parts of size k at
least, kK > n'/2, Lemmas 2 and 3. In Section 2, using the techniques from
analytic number theory, we prove a proposition which basically asserts
that, for n® <k, <k, <% (8 € (%,3), the number of summands with
sizes ranging from k, to k, is “sub-Gaussian.” Actually a precursor of the
limit theorem in the last section, the proposition is used in Section 2 to get
the estimates for the parts counts X (k) for k filling the midrange, i.e., at
least n° and at most n'/?log n, Lemma 3. Combination of Lemmas 1-3
yields Theorem 2, which describes the probabilistic bounds of the counts
X(k), whence (by duality) those of the size ordered partition parts A, for
all essential values of k. (The bounds are analogous to those obtained by
Szalay and Turan [27-29], but our methods appear to be much less
technical.) As was observed by Vershik [33], the Szalay—Turan bounds
show that, loosely speaking, the partition parts A, with high probability
(whp) closely satisfy a deterministic equation

cAy ck L
exp| — — -—=] =1, s
o Tr (*)
at least for “moderate” k’s. (In 1952, Temperley [30] used the random
partitions to model a crystal growing process. A heuristic argument based

+ exp
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on statistical physics concepts led him to the equation (x)!) We use the
bounds from Theorem 2 and the hook formula for the degree d(A) of the
irreducible representation (Frame, Robinson, Thrall [10]), related to an
integer partition A of n, and show (Theorem 3) that

log d(A) = logyn! — An + O,(n*/*log*/?n),
where

3 log j T
A=—-—vy+logct—c?2) ——, c=

2 jou V6

and vy is the Euler constant. (The symbol O,(f(n)) stands for Y, f(n),
where Y, is a random variable bounded in probability.) This significantly
simplifies the linear term of the Szalay—Turan formula, and improves their
remainder estimate, which was O,(n’/®log*n). We conjecture that the
remainder is asymptotically Gaussian, with zero mean, and standard devia-
tion of order n%* We demonstrate the power of Theorems 1 and 2,
proving (Theorem 4) that the centraliser size & for an element of a
random conjugacy class satisfies

n*?log’n  n*?logn

log § = ——— + ———— (X, — v~ 2logc),

where
P(X,<x)—>e*, VxeR
This sharpens a single-term formula

n*’2log%n

éE= (1 + Op(l))T,

due to Erdds and Turan [9]. Finally (Section 3), we parametrize (continu-
ously) the ordered parts process, by introducing

vnoo1
V(1) = nl/“r(% - —log—),

c t
for ¢ € [0, 1] not too close to either 0 or 1, and setting V,(¢+) = 0 for the
extreme t's. The choice of the parametrization and the centering function
is prompted by the Temperley—Vershik equation (), while the reason for
scaling by n*/* is implicit in the proposition. In Lemma 4 we prove, among
other properties, that the processes V,(¢) are stochastically equicontinuous,
uniformly on [0, 1], and then show (Theorem 5) that the finite-dimensional
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distributions of 1 (¢) converge weakly to those of a Gaussian process V(¢).
Lemma 4 allows us to prove the second part of Theorem 5, namely that for
a class of integral functionals F of a form

F(x) = f01¢(t,x(t)) dr,

with ¢ behaving not too badly, we have F(V,) - ?F(V). Since V(¢) is
Gaussian, this result is particularly useful for the linear integral function-
als. As an illustration, we prove that the eigenvalue distribution for the
Diaconis—Shahshahani card-shuffling Markov chain (Diaconis and
Shahshahani [4], Diaconis [5]) is asymptotically Gaussian, with zero mean
and standard deviation of order n~3%/%,

1. SMALL PARTS AND LARGE PARTS ...

Every partition of the integer n is uniquely characterized by the se-
quence of counts {X}};.,, where X, is the total number of summands
(parts) equal to j. So X; > 0, Z]>1]X n; in particular, X; = 0 for j > n.

Let Z = {Zj}l-Zl be a sequence of independent random variables such
that

P(Z=i)=(1-a)(a), =0

Fristedt [11] proved that, for an arbitrary g, the distribution of {X}};_;_,
is the one of {Z}, _ ; _ , conditioned on the event{R = n}, R = ¥7_,jZ, =

n. He further proposed to select ¢ such that ER = n, as for thls chonce
P(R = n) would be close to its maximum value. An almost optimal choice
isg=e/V" ¢=m/V6,in which case

ER =n + O(n*?), P(R =n) =(l+0(l))4 ! ;o (1.1)
96n°

see Fristedt [11].
Given j,, j, € N, introduce

Z, = {Zj}jgjl’ Xy = {‘Xj}jgjl’ R, = jg iZ;,
=J1
ZZ = {Zj}jzsjsn’ X2 = {‘ij}jzsjsn’ RZ = >Z ]Z]
=)

Introduce dn,(Z;,X;), the total variation distance between Z, and X,
(i=12).
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THEOREM 1.  Suppose lim jin~'/? = a,, lim j,n™Y?% = a, exist.
(1)  There exists a > 0 such that if a; € (0,), a, € [a, ) then
lim dv (Z;,X;) = dvy(AH,7) (i=12),
where N, N,,N, are three normals, with zero means, and variances equal to 1,
and o?, o} given by
. VarR — VarR,
o? = lim——m
Var R
or explicitly
2,—cy

T yle , T

a; ye
o = dy, of = dy.
LoV f (1 — e ) Y 2 Y24 /(; (1—e)° Y

@ Ifj,—>% a =0 and a, =, j, < xn*?logn (xy < 2c)™),
then

1 Var R,
dry(Z;, X;) = 4 Var R
Var R, T J1

VarR  8/6 n/?2’

Var R, ~3( J2 )2exp(_c J2 )

CEL - =0(1) (i=1,2),

Var R 2\ n/? n'/?

Notes. (1) Fristedt [11] proved that, for j,n~!/* — 0, the ratio of the
discrete densities of Z, and X, approaches 1, which certainly implies that
d+,(Z,,X,) approaches 0. He also obtained an analogous result for the
o(n'/*) largest parts, thus extending considerably a classical result of
Erdds and Lehner [7]; it states that both the number of parts and the size
of the largest part are asymptotic in probability to (2¢)~*Vn log n. (The
latter makes the bound for j, in Theorem 1 rather natural.)

(2) The theorem confirms a conjecture by Arratia and Tavaré
[2] that d,(Z,, X)) —> 0 iff jn'/2 >0, and d,(Z,,X,) > 0 iff
Jan Vo e,

Proof. A key element is the Arratia—Tavaré [2] formula

1
dw(Z;,X;) = EP(RI' > n)

1 P(Ri=n—r 1.2
2,5 P(R =n)
R‘=R—R,

i

Consider i = 1 first.
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Step 1. By the definition of Z’s and R,

Jq’ a2 ye o o
ER, = ), 1 .=n(f0“" T ei€ydy+0(]ln 1)),

=i 4 -
2§
]9
o’ (R) =Y — (1.3)
j<i (1 —¢’)
2,—cy
s o—1/2 y-e
— /2 jln/— +0 -1y
(fo A=) dy + O(jin™?)
Let us prove that for every fixed x € C
E exp(xR}) = exp( 1x + O(Ix] ]*1/2) R* == Rl_— (1.4)
7 ' o(R,)

(This means, in particular, that R} =.7, and E(R})* - E/%, Vk = 1)
Denoting o = o (R;), we begin with
Eexp(xR, o) = 1-a
exp(xR,o™ ") = -~
' ]<11 1- q Te*le
Taking the (main branch) logarithm of the generic factor, and using
log(1 + z) =z — 2% /2 + O(|z|®), we compute

_ - R - 2
q'(1—e"7 ) ) g'(e’” —-1) 1 (qf(e’”" -1) )
= +

—log(1l + - . - .
J 1-¢q’ 1—-g’ 2 1—-¢q’

. - 3
q'lexi” — 1
1-—¢q’

(That the z’s we encounter all are O(1) will be seen momentarily.) Adding
the logarithms, and using (1.3), we get
|x|3 j3q2j
— > ——=|| (15)

o J<i (1 - q])

2

ER +—+O

Eexp(xR,07") = exp 5
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It remains to notice that o * is of order n*/2j%/2, while the sum is close to

3,-cy

2 (v _ V€ _ 3/2;
n ‘/;1 1oy dy = O(n*?j,).

Thus the error term is O(x|*j; 1/2). (This of course means that the error
terms for the individual logarithms were small too, so that the usage of the
expansion formula for log(1 + z) was indeed legitimate.) Equation (1.4) is
proved.

Step 2. Next, let us show that

1 A?
P 207

c

P(Ri =ER{+4) = + O(IAln=7/% + n=5/%)

(1.6)

(0% = Var R¢), uniformly over A such that E R{ + A € N. (This is a
variant of a local limit theorem with a remainder term.)
We begin with
. 1-¢
f(u) = Eexp(zuRl) = jl:][ m, ueskR (17)
1

(cf. Step 1). First, let u = 0(n?%), 8 € (4,2). Analogously to (1.5), via
log(1 +z) =z — z2/2 + 22 /3 + O(|z|*), we obtain

f(u) = exp 5

1
uE R} — ~u’s” — iu’S; + 0(u4S4)},

2j

. q’ q

3j
L a
i>h 1-4’) 2(1 —qf)2 3(1 _q,«)J

q'j

S4= - -
i>in (1 —q’)
In particular,
3,—cy
2] y (4
S, = 0| n? dy| = O(n?),
3 I’lj(; (1 —cy) y (I’l)
4,—cy
2] y e
S, =0|n*? = 0(n*?),
. A Tk G
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so that
ul®S, + u'S, = O(n=C2=?),

for u in question. Expanding expl[ —iu3S, + O(u*S,)], we have

1
f(u) = exp|iuE RS — Euzof [1—iu®S, + O(u*n? + u®n*)]. (1.8)

We also need to bound |f(u)| for the larger values of |ul. Let us prove
that there exist 4, «, B > 0 such that

| f(u)| < e " if lul < ﬁ, (1.9)
[f(u)| <e P, if lul > L (1.10)
Avn
By an elementary inequality
1
‘1_2 < l_|Z|exp[Rez—|zl] (zeC,lzI<1), (1.11)

and (1.7), we write

[f(u)] < exp[— Y q'(1— cosuj).

>
Now

x?  x*

cosx<1l-—+ —, x €R,
2! 41

SO
. u? . u’ _
Y g/(L—cosuj) = o Xa'j* — o7 L a'i*
J>J1 S S

The sums on the right are asymptotic to

ns/zf

Jan

e—cyyZ dy, nS/Zf e—cyy4 dy,

~1/2 -1/2
/ Jan~Y

respectively. So, for A large enough there exists « > 0 such that, if
lul < (AVn)~! and n > n(A), then the sum on the left is at least au?n®/2.
This proves (1.9).



442 BORIS PITTEL
For |u] € [(AYn)~*, ], we have
(1-¢)°=0(n"") =0(u?) = O(1 — cos u).

Therefore, denoting D = 1 — 2gcosu + g and using D = O(1 — cos u),
we obtain

) Jitl qf1+1ei”jl
Y q/(1 — cosuj) = - Re———
ih l1-g¢g 1-—ge
,-+1[ 1 1 }
qu RN —
1-q VD (1.12)
2gt? 1—cosu
1-q VD- (\/B +1- q)
> Byn,

for sufficiently small g8 > 0. This proves (1.10).
With the relations (1.8)—(1.10) at hand, we turn directly to proving (1.6).
As usual, we begin with the inversion formula

1 .=
P(RS =m) = Ef_ e mf(u)du, meN.

Introduce u, = n"°. By (1.9), (1.10),

if e " f(u) du

2w lul>u,

= 0(e 7. (1.13)

Consider |ul < u,,. Using (1.8), we write

1 _
el o= ol [+ f)

lul<u,
Here, setting m = E R] + A, we have

/1 = %f e’“exp(— %2062) du

lul<u,

(1.14)

p—

1 A?
v 2ma? P 20,
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3/2-25

so that the remainder term is O(e <" ), « > 0. Further, since u® is

odd and [sin y| < |y|,

u‘Sun
- A2 (1.15)
=0 S3|A|f%u4exp s dul
= O(|Aln=7/%).
Finally,
o AZ
/== n5/2f u'exp| — — | du
3 - 20, (1.16)
— 0(n~5/%),
and
o A2
f== n4f ubexp| — — | du
4 —o 20, (1.17)

=0(n>>").
Combining (1.14)—(1.17), we arrive at (1.6).

Note. Throughout Step 2, we have never used the condition j, — .
This means that we can apply (1.6) for j, =0, that is, for R = ¥;_,jZ;.
Recall that E R = n + O(n'/?); also (analogously to (1.3)),

- yZefcy
o?(R) = n®*/? —  _dy+0(nt?
(R) [, Gy @t om

/2%

= —n*? 4+ 0(n)
a

(1.18)

(Fristedt [11]). Therefore, from (1.6) we obtain

P(R=n) = (1+0(n /7)) = -

1 1
\/2770'2(R) W

(1 +0(n~V?)
(1.19)

(cf. (1.2)).
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Step 3. The rest is easy. We evaluate asymptotically the expression for
d+y(Z, X)) in (1.1), using the estimates of Steps 1, 2. Begin with the first
term, 0.5P (R, > n). Since E R = n and j, = O(n*/?), it follows then from
(1.2) that n — E R, is of exact order n. Since o(R,) = O(n*/*), applying
the Markov inequality to R¥ and using (1.4) with x = +1, we obtain

P(R, > n) = O(e """, k > 0.
Turn to the sum in (1.2). For r < n, using (1.6), (1.19),

ER, + ER =n + 0(n"?),

we write

P(R{=n—r)
‘W_ ‘z

o(R) ( (r-ER)’
o(R) T\ 20 (R)

+ O(n_llr —ER)J+ n_l/z).

Therefore, using the notation Rf = (R, — E R))o *(R)),

dTV(Zl’Xl)
1 | o(R R¥)?
= 5E 0((Rf)) exp[— ( 2) (?(R)/0?(R]) — 1)\ -1
+0(n o (Ry) +n1/?). (1.20)

To evaluate the last expectation asymptotically, we use R¥ =.#. Suppose
first limj,n=/% = a, € (0,%). Then

a?(RY) I
s g2 .= d
cZ(R) 7T / 1—e o)y ?
Therefore
dTV(Zl'Xl)

=7

x? 1 x?

= dTv(/Vlv/V)- (1.21)

o, 2

o]

_exp[__z(alz -y
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Suppose j,n~1/? - 0. Then, by (1.3),
a?(Ry) = njy(1 + O(jyn /%)) = o(c?(R)).
Therefore, using
le™ = (1-y)l<y?/2, Vy=0,
after simple manipulations we rewrite the expected value in (1.20) as

Uz(Rl) %2
W-Ell — (R)?|
0| S ER) + ()
J1 )
~ 7 EL— (1.22)

(We have used E(R})* - E(/%), Vk = 1)
The case i = 2 is basically similar. So we will just briefly indicate why we
need the conditions a, > a and
j, < xynlogn,  x<(2c) . (1.23)
First of all, it can be shown that

) yeiCy

ER,=(1+0(n ?))nf dy,

e L= e 9

2,—cy
0 y (4
2 _ ~1/2YY,,3/2 -
a?(Ry) = (L+0(n~Y?))n szn*/z 1oy ?

(cf. (1.3)). Thus, for j,n~*/? bounded away from 0, o ?(R,) is of an exact
order

an(%) exp(—cjz/\/ﬁ).

The analogue of (1.4) is then
ecfz\/'T/Z .
Y2 x|,

R, - ER,
o(R,)

So the remainder term is o(1) precisely because the condition (1.23) holds.

1
E exp(xR}) = exp[zxz +0

R; =
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Let f(u) stand now for the characteristic function of R$. Just as for R§,
we can prove (1.9), assuming that j, > n'/?, say. To get (1.10), we use the
bound (1.12) for j, = 0 to estimate

J2

Y q/(1 — cos uj)

J<J2

%

Y ¢’(1 - cosuj) —
j=1 1-¢

1/2

2

> oVn = (L +o0(1))c ™t Ve "
1
EBO‘/;'

%

provided that j, > avn , where a > 1 is sufficiently large. (Is it possible
that (1.10) still holds whenever j,n /2 is simply bounded away from 0?)
Once (1.9), (1.10) are established, the rest of Step 2 goes as before and
we get (1.6) with R in place of Rj.
The analogue of (1.20) follows then directly, and so does (1.21) when
a, € [a,»). Let j,n"1/? - =, assuming that (1.23) holds. In this case

. \2
o?(R,) = cln3/2(]T2) exp( —cj,n?).
n

So, because of (1.23), the remainder term in the R,-version of (1.20) is of
order n %o (R,), and we put it instead of the fraction (j,/n)'/? into the
R,-version of (1.22), in which

UZ(RZ) _
m > n"o(R,),

again according to (1.23). This proves Theorem 1 for i = 2 also. |

Even though the increasing order of parts is quite natural, our primary
goal is to study the likely shape of the Ferrers diagram, for which it is far
more convenient to list the parts in decreasing order. So let A, denote the
kth largest part in the random partition of n. Then we obtain the diagram
as a plane array of n dots arranged into bottom aligned columns, so that
the height of kth column is A,. Reading consecutively the numbers of dots
in the rows of the array, beginning from the bottom row, we get the
conjugate diagram (partition) {A%}. Since {A,} is uniformly distributed on
the set of all diagrams of size n, then so is {A}}. Notice that there is a
simple connection between A* and the sums of X, namely

N=X(k)=Y X, k=L (1.24)
jzk
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Thus

(X(k)}. (1.25)

In particular,

2 g
AN =X(D), Ag = My =X

(Erdos and Lehner [7], Fristedt [11]). Theorem 1 and (1.25) could be used
to get easily a sharp probabilistic estimate of X(k), whence of A,, for
k > yn. However, we are interested primarily in the case k = O(Vn).
Fristedt [11] obtained a sharp distributional result for the first o(n'/*)
largest parts. As a first step toward achieving our goal, we can estimate
now only

l_cn
X(k)y= Y X, (k,=[n?log~'n]),
j=k

for k < n® and any 8 < 3. The tail X(k, + 1) and X(k) (k = n®) will be
dealt with in the next section.

In the formulations below and elsewhere, we adopt the following nota-
tion. Let a family of random variables V,, (k € K,,, n > 1), and a positive
function f(n, k) be such that V,, /f(n, k) is bounded in probability as n
approaches infinity, uniformly for k € K,. We express this by writing

I/nk=0p(f(n’k))' keKn'

LEMMA 1. If logn < k < n® then

~ ~ nlog k \*?
X(k) =E(k) + Op( p ) ; (1.26)
if k < log n then
X(k) = [1+ O,(log™n)] E(k); (1.27)
here
~ o 1 — ek
E(k) = TIOg 1_ ekn-172

(So, for all k < k,, the distribution of X(k) is asymptotically concentrated
around the deterministic number E(k), but the degree of concentration appears
to be higher for the larger values of k.)
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Consider now the large k’s. Define
Vn
k,= 2—(Iogn — 2loglogn —a,)|,
C

where a, — o however slowly.

LEMMA 2. Ifa,n'? <k <k,, then
X(k) = E(k) + O,(e=*"n'/?log n) " (1.28)
Proof of Lemma 1. Consider log n < k < n®. Introduce
Z(k)y =Yz, (1.29)
=k

Then, analogously to (1.3), using k < k, we obtain

k i —cy
~ n q ko n-1/2 e B
EZ(k) =) - =n ™" ———dy + O(k™*'n'/?)
j—k L= f,m/ 1-e® (1.30)

= E(k) + O(k~'n'/?),
k j
n q k n71/2
— =Vn |7 _—
Ek 1-q') fk/ (1—e @) g
1 1 "
+ —.
(1+0(1)

Denoting o = o (Z(k)), we obtain (cf. (1.5))

e~

o?(Z(k))
(1.31)

2

Eexp(xZ(k)a‘l) = exp EZ(k) +—=+0

ke x]? q’
g o (1-q) )]

(1.32)

if x is such that each summand in the remainder is O(1), uniformly for the
given range of j. Since o is of order (n/k)"/? (see (1.31)), this is indeed so
if x = O(k'/?). Assuming the last condition, and bounding the sum by the
corresponding integral, we transform (1.32) for x = O(k'/?) into

2

E[exp(xo™Y(Z(k) — EZ(k)))] = exp % + 0(|x|3k1/2)l. (1.33)
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Setting x = y/6log k, by Markov’s inequality we obtain then

Plo7H1Z(k) — E Z(K)| > Blog k') < exp[ ~3log k + O(k~*/* log k)]
1
< p

Since the remainder in (1.30) is o(o), and o = (n/k)*/?, the last estimate
implies that

IA

Pl max |Z(k)-E(k)|> (

logn<k<n

7n log k)l/z) 1
k k>logn kZ
1

<log™"n. (1.34)

Suppose k <1, = [logn + 1]. Introduce the reverse sequence
Z(l )..., Z(1). It is easy to see that, given u € R, the sequence

_ euf(k)
Y(k) ::m(k_)’ l<kx<li,
is a martingale,
E(Y(k)|[Y(k+1),....¥%(1,)) = V(k+1), 1<k<I,

that is. Then, for any stopping time T (adapted to the reverse sequence),
we have

EY(T)=EY(l,) =1 (1.35)
(the optional stopping theorem, Durrett [6, Chap. 4]). Now, analogously to
(1.32),

E e"Z® = exp|uE Z(k) + O

k, J
Zuzq—.z)], (136)

=k (1—¢’)

provided that the jth term in the sum is O(1), uniformly for k <j <k,.
Since k = o(n'/?), the condition is met if u = O(n~/?). For such u, we
have

k, j o
¥ 2 —o(uzan'-Z) - o),

ik (1—q') j=i
u[ EZ(k) — E(k)] = 0(1),
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whence, if we set u = +n"'/2 in (1.36),
Eexp[n /% Z(T) - E(T)| = 0(1).
Let T be the first (counting backward from /,) moment k > 1 such that
|Z(k) — E(k)| = a,Vn ;
set T = 1, say, if no such k exists. Then
P( max, |Z(k) — E(k)| = an\/ﬁ) < e “Eexp|n 2| Z(T) - E(T)||
= O(e ™).
Since a, — « however slowly, we see that

Z(k) = E(k) = 0,(n'?)

E(k) (1.37)
=0, , l<k<li,
log n
(We have used
E(k ‘/;I &, ‘/;| 1<k<l
(k) = —log-~ = ——log n, <k<lI,

The relations (1.34), (1.37) and Theorem 1(2) imply (1.26), (1.27). 1

We omit the proof of Lemma 2 since it is very close to the proof above.
In the next section we will prove Lemma 3, which—in addition to the
range k = O(yYn )—provides the estimates for X(k) with k only twice
smaller than k,,.

2. ... AND INTERMEDIATE SIZE PARTS

We begin with an estimate which means that the random variables X;
with moderate j’s still possess certain degrees of mutual independence.
Given 1 <k, <k, <mn, let C= Zj—‘ilej denote the total number of
2

parts of sizes from the interval [k, k,]. (By (1.25), C =X, — X, ;) We
consider the case

(2.1)

=~
-
Vv
S
L
%)
m
—~~
©lw
N~
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(We use the symbol & as in Lemma 1, since later Lemma 1 will be
dovetailed with the next statement.) Select

sie(i-10.0). (22)
PROPOSITION.  For n = O(n™°Y), uniformly over n® < k, < k, < o,

E[exp(n(C — m))] = O[exp(3n%02)].

ky L]j ko qf
m = Zl_ 5 oh= Y —— (233)
-k 14 =k (1 —q")

Note. Thus, for n = O(n%), k; > n®° the moment generating function
(m.g.f) E "€ is essentially bounded by the m.g.f. of the Gaussian variable
with mean m and variance o2 of Zj?iklzj.

Proof of Proposition. Let A ={\ > A, > -+ A,, > 0} be a generic fi-
nite sequence of positive integer. Introduce

C(A) =[{s: A, € [ky, k, 1},
the number of the parts of A with sizes from [k, k,]. Then, mimicking the

usual derivation of Euler’s formula, we have:
For 7| < 1, |x|-[t] < 1 (k € [ky, k,),

Z " Z XM = H (1 4+t + 12+ )

n=0 A A=n jé[klvkz]
[T (1+x+ (x)) + )
JElky, k5]
1 ke 1
- TI 11

jelky, ky) 1-¢ =k, 1 —xt/

Therefore, denoting the total number of partitions of n by p(n), we write

o k,
Eotnp(n)E(xc) B je[li}kz] 1-1 11:1!1 1—xt)’ (24)
SO
1 ke
p(mE(x) =[] TI - T1 (2.5)

jelkn kg L=t ok, L—xt)
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Set x =e", n=0(n"°) (see (2.2) for the range of §,). In this case,
the function on the right hand side of (2.4), (2.5) is analytic in a disc
{t: ltl < r = exp(—vn~1/2)}, v> 0, since for j > k,

xrl < eXp[O(n*‘Sl) - vn‘s*l/z] <1,

as §, > 2 — 8. Using Cauchy’s integral formula for the contour {t = re’’:
0 € (—, w]}, we write

p(n)E(x¢) = Py /7Wwe‘i”0Fn(x,rei”) de,
| (2.6)
oo 1 ks 1 —z/
F(x,2) =1 - T1

j:ll—Zj j:kll—xzj'

In particular, the case x = 1 corresponds to the integral formula that led
Hardy and Ramanujan [17] to their celebrated asymptotic formula for
p(n). Its simple corollary is

e”m
p(n) = 4/3n

(1 + 0(n"1/%)). (2.7)

This result can be obtained in a short way via a remarkably simple formula
due to Freiman (see Postnikov [24]):

1 72 1 z

—_— = — + —Log— + , 2.8
kl:[ll—e_kz P 6z 2 09277 (=) (28)

uniformly for z — 0 within a corner {z:Imz < eRez, Rez > 0},e > 0
being fixed; Log denotes the main branch of the logarithmic function.
(Freiman used (2.8) to obtain a weaker estimate

eﬂ"/Zn/B

p(l’l) = W(1+O(H71/4+5)), Ve > 0;

see Postnikov [24].) We will utilize the full power of (2.8) later. In the
current proof we need only a special case Imz = 0, which can be obtained
in a direct fashion, via exponentiation of the product in (2.8) and applica-
tion of the summation formulas. Using the inequality (1.11) and |xr/| < 1
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(j = k,), we obtain

|Fn(x, re”’)| < F,(x, r)exp-

453

Y. ri(cos jo — 1)}

|j>1
[ 1 1
< F,(x, r)exp-Re T 1= r}
2(r + r?)(cos 6 — 1) (2.9)
- F"(x’r)exp_ (1—r)(1—2rcos 6+ 17
< F,(x,r)exp| — —372 a0271 ),
" n +n~1/%2
for a constant a > 0. Now
fﬁ exp| — at’ do —an’?0%/2 g
. p( 13/2 1 n—l/292) = |a|gn*1/26 0
+/ a2 g (2.10)
n~Y2<|f|l< 7w
=0(n"¥").
Choosing r = g(= e~<" "), with the help of (2.8) we easily obtain
% e™/2n/3
1‘[1 _q} =0( e ) (2.11)
Combining (2.7), (2.9)-(2.11) we get from (2.6):
E(xC) = 0 1k‘[ : _qj,).
j=k, 1 —xq’
Here, taking Iogarithms and using x =e" n = 0(n %), we obtain
. ) ‘
Zlog — ,—( —1)2 v (x_zl) y qzj.z
j=k j=ky 1 j=k-1 (1 —q’)
ollx-1? % q—313)
(- q) (2.12)
ks j j
=1 ) - 1 ln Z 1
j=ky j=ky (1 - q )

+ O(n-@8-3/4-300)
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Indeed
ky 3j —3cy
q e
|x — 1|3 Z ————— =0|n%t2 —dy
j=k, (1 - 61])3 '/;‘1"71/2 (l - eicy)s

— O(n~H-(/2-20/31)

and the contributions proportional to n*® that come from x — 1 and
(x — 1)® are of a lesser order of magnitude. |

As the first application, we can now fill the gap left open in Section 1.
Lemma 3. If

Vn
n® <k < k,, k, = |—logn|,
4c

then

X(k) = E(k) + OP(nl/z(eC"”fl/2 ~1) 'log n)l/z. (2.13)

Note. So, as we had promised, the relation (1.28) is indeed a special
case of (2.13) for k € [a,n"/? k, /2].

Proof of Lemma 3. By the proposition, with k, = k, k, = n,

E[exp(x(X (k) —m)) o] = O(exp(x?/2))
n L a7 (2.14)
" Eklﬂi"' = T
provided that
x| = O(o,n=%). (2.15)

The relation (2.14) is analogous to but simpler than (1.32). Further, it can
be easily shown that, uniformly for k > n?,

e
1—qk)'
Vno q*

a’i=— + 0

qk
¢ imat la-gYy
Vn  q*

-1 _qk[l +0(n%)].

m=E(k) +0O
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So, for k < «,,,
o =yn% y, >0,

and (2.15) definitely holds if |x| = O(n'/*~?%). We also see that m —
E(k) = o(o ). Sowe set x = y/4log n and (just as in the proof of Lemma
1) arrive at (2.13). 1|

As a direct consequence of Lemmas 1-3 and (1.25), we get

THEOREM 2.
(1 + O,(log™"n))E(k) (k < log n),
E(k) + O,(nk™*log n)’? (logn < k < n'/?),
X(k)’ Ay = ~1/2 172
E(k) + O,(e “*" "n*/?log n) (n*? <k <k,),
(1 +0,(a,"))E(k) (k, <k <k,),
(2.16)
where
E(k ‘/ZI !
= e e

2.17
‘/zl k ‘/Zl 2logl ( )
K, = Zogn: n Z(ogn_ Ogogn_an)’

with a,, — % however slowly.

The relations (2.16) are essentially analogous to the estimates obtained
(among other results) by Szalay and Turan in the remarkable series of
three papers [27-29]. The techniques differ substantially, though, ours
being more probabilistic and noticeably less analytical, largely due to
Fristedt’s conditioning device and the Arratia—Tavaré conjecture justified
in Theorem 1. Characteristically, Szalay and Turan did not use the connec-
tion stated in (1.25). It should be noted also that, neglecting the O,-terms
and extreme values of k, we can rewrite (2.16) loosely as

exp(—% —%) = 1. (2.18)

This important observation, based on the Szalay-Turan estimates, was
made earlier by Vershik [33]. He also indicated striking parallels and
dissimilarities with the asymptotic shape problem for the Plancherel dis-

+ exp
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tributed Ferrers diagrams (Logan and Shepp [22], Kerov and Vershik
[31, 32]). The Plancherel distribution assigns to a partition A, (|A| = n),
the probability measure proportional to the squared degree d(A) of a
corresponding irreducible representation of the symmetric group S§,,.
Szalay and Turan [29] used their estimates to study the likely magnitude
of d(A), under the condition (assumed in the present paper) that A be
uniformly distributed. Using the classic formula of Frobenius [12],

nlgig,‘gm()\i - Aj +J- i)
A+ m =)l

d(r) =n!

m
M=A,> =2, 21, YA =n], (2.19)
i=1

they showed that
P(llog d(A) — logVn! + An| <n"®logn) =1 —n"%, (2.20)
with

=y log y
e’ —1

1

—_ . -2

A= > logc + ¢ fo
o0 o) l
-2
A o o/t =)
y +log(1/(1— e )
> 0.02¢72 =0.012... .

dedy (2.21)

The authors also made a “‘very risky” conjecture that there exist constants
Ay, A, such that

log d(A) = logVn! — An + A,Vnlog?n + A,/nlog n

(2.22)
+ O,(Vnloglog n),

stressing that—according to an argument due to Erdos—the error term
cannot be improved to O,(Yn /log n).
g

Using A = A* and Theorem 2, we prove

THEOREM 3.

log d(A) = logVn! —An + O,(n**log*/?n), (2.23)



THE RANDOM FERRERS DIAGRAM 457

where
1 « tlogt
A=—+ d
2 foe"—l
2.24
3 V6 6 = logj ( )
R e Y
T T

and vy is the Euler constant; numerically A = 0.1040493... . Consequently,
the double-integral term in (2.29) equals 1.

Note. Contrary to the conjectured (2.22), we are inclined to believe
that #%/* in the remainder term estimate in (2.23) is optimal. We would
risk a conjecture that—just like R from Section 1—the random variable
logld(A)/ Vn!] is asymptotically Gaussian, with mean —An, and standard
deviation of order n®%.

Proof of Theorem 3. Our argument is based on an alternative expres-
sion for d(A), a so-called hook formula discovered by Frame, Robinson,
and Thrall [10]:

nl
1_[ Oe Ah( D) .
Here the product is over all n unit cells (squares 0) in the diagram A; for
an (i, j)-cell (the intersection of ith row and jth column),

h(O) =X —j+ A —i+1,

d(\) = (2.25)

that is, 2(0) is the number of cells in the hook comprised by O itself, and
by the cells in ith row right of O, and in jth column up from O. (The
reader is referred to Knuth [19, Chap. 6] for a detailed discussion of the
enumerational—algorithmic aspects of the hook formula, and to Greene,
Nijenhuis, and Wilf [15, 16] and Pittel [23] for its probabilistic interpreta-
tion. We note that the hook formula also was the starting point of analysis
in Logan and Shepp [22] and Kerov and Vershik [31, 32].
In view of Stirling’s formula for n!, it suffices to show that

1
|Og 1__[ h(D) = —n |Og n+nl+ Op(n3/4log3/2 n),
Oea 2
(2.26)

» tlogt

J:=/O e

For the more explicit formula, we observe that
d

- tzfl
J=— dt
dz (fo e —1 )

z=2
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and use the well-known formulas

o 7_zfl
| = Tdi=T(2){(z)  (Re>1), (2.27)
0o e’ —
o] 1
N(z)= [ vt 7dr, ()= ¥ =,
0 j=1J
' 7T2 2
M@ =1-y {2 = = (=c),
to obtain
log j
J=1l-y—logc—c?) —/—.
j=1 J
So, turning to (2.26), we prove first that
Y [A = E(i)| = O,(n¥*I0g"n),
i=1
Y| X = E(j)| = 0,(n**log"/?n). (2.28)
j=1

g
Since A = A*, we need to consider only the first sum. Write
Kll
LIN-E@D =YX +X+¥L:
i=1 1 2 3

here (see Theorem 2)

[log n] [log n]
Y= XL [N—E@)|[=0,|log™'n ¥ E(i)
1 i=1 i=1
= Op(nl/zlog n),
[n1/2] [n1/2]
Y= X [A-E@)|=0,|n g/ ¥ rm)
2 [log n]+1 i=1

Op(n3/4logl/2n),

X=X =0p(n3/4|091/2nfxe_”dx)
1

3 [n/2]+1

= 0,(n**log"/?n).
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So (2.28) follows. Also, again by Theorem 2,

k’l
A< XA+ (A —k)A,

1=K, 1=K,

=0, X n'/2e=<in""* 4 y3/%loglog n

i>k,

(2.29)
= 0,(n**loglog n),
Y. AF=0,(n**loglog n).

j=x,

In the coming estimates we adopt the following notation: given g: N —
[0,0), we denote by g the set of cells whose upper right corners have
coordinates satisfying 1 <i < g(j), 1 <j < g(i). Introduce

E(k) (1<k<x,),

Fk) =g (k> «,).

By (2.28) and (2.29),

Y. logh(O) = ) log h( D)

[mESP oef

<logn

Z |/\i _E(i)l + Z )‘i
i=1 i>k, (2_30)

A

+ |)\;‘.‘—E(j)|+ ZAjf)
j=1 >k,

= 0,(n**log*?n).

Further, introducing h,(0) = E(i)) —j + E(j) —i + 1 for an (i, j)-cell
O € f, we have

A —ED] A —EQ)
E()=j+3  E())=i+;

logh(O) — log hy(O) = O
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and, for instance, summing over j and then over i, we obtain

LU

OS] log E(1) ¥ |)\,»—E(i)|)

oef i=1
= 0,(n%*log®/*n).

Therefore

Y. logh(O) — ). log hO(D)‘ = 0,(n**log**n),

oef oef

and this estimate along with (2.30) delivers

Y logh(O) — ) log hO(D)‘ = 0,(n**log**n).

MESP oef

So it remains to estimate

L,= X log(E(i) —j+E(j) —i+1).

i<E()),j<E®G)

We will refer to the summation region as .%,. Notice that, for all (x, y) in
the (i, j)-cell,

E(x) —y=>=E(i) —j=0, E(y) —x>=E(j) —i>0,
since E(-) is decreasing. Therefore
log(E(x) —y + E(y) —x+ 1)
1+E(x) -~ E(i)  1+E(y) - E(j)
E(i) —j+; E(j)—i+3

=loghy(O) + O

Using an inequality
1—-e*

1 — e—U

u
< - (0<v<u),
v

we obtain then

/f(x heo log(E(x) —y + E(y) —x + 1) dxdy

1+ nt2t 1+ nt/2jt (2:31)

+ ’
B -j+3 B it}

— log hy(O) + O
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since, say,
[ (B - E() s ﬁf o
x) — E(1 = — og——————»
i-1 (x) () ¢ Ji-1 gl—e*“” ’
Vno i
< — log— dx
= c fi_l ng
Vn
= —[1+ (i-log(1 —i™")]
C
Vn
< —.

ci
Summing the bounds (2.31) for (i, j) € %,, we easily get

T, = fj; |09(E(x) -y +E(y) —x+1) dxdy+0(nl/zlogz I’l);

x,y)ER,
(2.32)

here (x, y) € R, iff (x, y) € O such that O’s upper right corner (i, j) is in
Z,. Introduce

H,={0<x,y<k,:x<E(y),y <E(x)}
the set H, \ R, is covered by O(n'/?log n) boundary cells. For every such

(i, j)-cell, by (2.31),

Os/f( log(E(x) —y + E(y) —x + 1) dxdy

x,y)€O0NR,

nl/2 nl/2
=0l|logn + — + —|,
! J

and—since each row and each column contains at most one boundary cell
—the integral over H, \ R, is O(n*/?log? n). So (2.32) becomes

n=J log( E(x) —y + E(y) —x + 1) drdy + O(n*/?log?n).
(x,y)€H,
(2.33)
Next we want to extend integration to the whole

H={x,y>0:x<E(y), y<E(x)}.
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To this end, let us show that
f/ log( E(x) —y + E(y) —x + 1) dxdy = O(n**log n).
H\H,

Using convexity of logarithm, the inequality

(y) = c g cy '
and denoﬂng

Vn - cE(x)
p(x) = E(x) =x = —~log——==+ 1,

we estimate half of the above integral:

j::[/;E(x) log(E(x) —y + E(y) —x + 1) dy] dx

1 E(x
el “E(x) —x+1 —i—E(y))dy}dx

< /:OE(x)Iog p(x) dx

< meE(x) Iog[

= O(n**log n).
The last equality holds since

\/_
p'(x) <0, p(xk,) =

-1/2

Vn
E(x) = —e™™" uniformly for x > «,,.
C

(By working out a lower bound, we can show that n%*log n is the exact
order of the integral.) Therefore (see (2.33)),

=[] log(E(x) —y + E(y) —x + 1) dvdy + O(n**log n).
(x,y)EH

(2.34)
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Now for the fun! Introduce new variables

1/2

E(x) —y 1I 1 y 1I e e
U= —F/——=—-log—— — —= = —log————3,
‘/; c gl_efxcn’l/2 ‘/; C gl_efxcn’l/2
E(y) —x 1I 1 x lI e ven
V= ——— = —lopg————7 — = = —log——— .
N R I R Y s

Then the bounds for H become u > 0, v > 0. The Jacobian is given by

a(u,v)y 1 e e xen L o
= — —— ——— — 1| = — (e = 1).

So the integral in (2.34) reduces to

1 du dv log(u + v + n~1/?)
Enlognff m +n'/:/;>ovy>o RTCE du dv
1

u>0,v>0 €
=" logn + nl,.

Here, by (2.27),

= ! d—1F2 2) =
I_'/(;€Ct—1 Z_C_Z()g()_l’

= tlog(t + n~'/?)
I, = fo e

To estimate 1,, we approximate log (¢ + n~'/?) by log¢ and, introducing

t T
G(1) = foe”_ L dr.

integrate the remainder by parts:

« tlogt = G(t)
I, = dt + n~t? | ——————dr.
" fo e — 1 " /o t(t +n"?)

The second integral equals

dt

O(,/;)lm—m +j;-wt_zdl).

= O(log n).
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Thus
I, =7+ O(n"'?log n).

and (2.34) simplifies to

1
T = on logn + nJ + O(n**logn). 1

Note. Clearly, from (2.23) and the proof we get

1| d(A) p 1 , ) as
PR T I (235)
where
/= ,/‘f0<x<f(y), log(f(x) —y + f(y) —x)dxdy,
0<y<f(x)
where

1
f(x) = Cil|09m.

In essence, the relation (2.35) was claimed, without a proof, by Vershik
[33].

A much simpler connection between partitions of » and the symmetric
group S, is based on the observation that with every partition A = {Xj}jZl
one can associate a conjugacy class C(A) of S, it consists of all permuta-
tions with X, cycles of length j (j > 1). This association establishes
bijection between the partitions and the conjugacy classes. By Cauchy’s
formula,

n!
HE)
£ = TT5x

c(A) =|c(n)] =
(2.36)

The class function £(A) is of importance in its own right; it is the number
of cosets of C(A) in S,. It also equals the number of permutations that
commute with a fixed permutation from C(A).
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Under the uniform distribution on the set of partitions A, c(A), £(A) are
random variables. Erdds and Turan [9] proved that

nl/2
log £(A) = (1 + op(l))4—clogzn. (2.37)
(By 0,(1) we denote a random variable which converges to 0 in probability.)
We strengthen (2.37), proving
THEOREM 4.
n*%log?n n*?%log n
4c 2c

log £(A) = (X, —v—2logc); (2.38)

here, for every x € R,
P(X, <x) > e~

Note. The appearance of the doubly exponential distribution came as a
surprise, since we had somehow expected log £(A) to be asymptotically
Gaussian. (Notice that the limiting distribution is infinitely divisible
nonetheless.) A partial reason for this “abnormal” phenomenon is that the
smaller the parts are, the larger the role they play in shaping a likely
behavior of £(A). In contrast, the dominant contribution to a typical value
of d(A) appears to come from the moderate-sized parts.

Proof of Theorem 4. Here is our plan. First, we use Theorem 1(1) to
show that the contribution to log ¢(A) made by the variables X, with
j = o(n'/?) is doubly exponentlal with mean and variance respectlvely of
orders n*/2log?n and n log?n. Second, we use Theorem 2 to show that the
overall contribution by the remaining X; is likely to be within the o(n'/?
log n)-neighborhood of its mean. Combining the two results, we get the
statement.

Let a, — « however slowly, and j, = [1n'/?/a,] Write

log () = Z log(j¥X;!) + Z log(j%/X;!)

= L,(A) + L,y(A).
1. By Stirling’s formula,

LA =Y Xlog(é) +

J<n

O( Z log(X; + 1))
= (2.39)

m|><i

= ZXIog(

) O(a;lnl/zlog n),
J<jn
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simply because X; <n. To get the limiting distribution of the sum in
(2.39), we replace X’s by Z’s from Section 1 and consider

,; Z Iog( 12 )

(Since j,n"*/? - 0, by Theorem 1 d.,(L,, %) — 0.) Let us break up %,
as follows:

Z =FO + ZO,

1
P =—logn ). Z;,, L=} Z Iog
2 J<in J<in

1/2'

Let us quickly dispense with Z®. Given j <j., denote x, =rj/Vn,
Ax, = r/Vn, and—with the help of (2.27)—compute

iz, .
(Zlog 1/2) =(1—q)2q”r|og 1/2

r>0

x
= (1 —q’) Y e “x,log— Ax,
e

r>0
(2.40)
n . L X )
= ]—2(1 — q’)(fo e xlogzdx + O(]/\/;)
Vn
= ——(y+logc) +O(1).
g
Likewise, but more crudely,
2 Z r .
E( Z?log? 1/2 =(1-4') Y q"r?log? 1/2
r>0
(2.41)

ofe-e)-of)

Using (2.40), (2.41), and recalling that j, = Vn /a,, we see that

v+ log ¢

EZ® = _2—\/Z|og n+0(Ynloga,),
C

Var#® < ), E(Z log? 1/2) =0(n).
J=in
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So the variance is negligible compared to the squared mean. Applying
Chebyshev’s inequality we obtain

+ log ¢
PO = - %,/n log n + O,(Vn log'/?n), (2.42)
C

say.
To get the limiting distribution of #», we need to study the character-
istic function
2c
u) = E(e1"y, t= —u.

By definition of #» and independence of Z'’s,

g.(u) = ITg,(u), g,(u)= EeXp(%Zj)'

]Slll

We compute

gnj(u)

(1-4q’) Y qj’exp(%r)

r>0

_ _ -1
1/2 ; 1/2
1 — e ( elucn -1
— — l -
2

1— ec(iu—j)n’l/ ecjn’l/z -1

. -1
w

= (1 - —(1+ O(nl/z)))
J
. -1
w

= (1 - —,) (1 + O(n’l/z)).
J

Then we can write

[T e/
[Tz ™/ /(1 = iu/j)

g.(u) = (1 + 0(j,n""?))

, (2.43)
= (1 + O(a,*))expliu(log j, + y)] e~ "™T(1 — i)

(1+0(a,*"))-e™9T(1 — iu).



468 BORIS PITTEL

We have used here the relation

f[lez/f(l +z/j) = (e”T(1+2)) 77, (2.44)

true for all z #+# —1, —2,..., and an obvious estimate

[Te /(1 +z/) =1+ 0(z%/k), i- .
j=k

Now it is also known, and easy to check, that
(1 —iu) = E(e™¥), P(X<x)=e*
(Probabilistically, the identity (2.44) means that

9 Y -1
X=y+ Y L+ —,
j=1

where Y; are i.i.d. exponentially distributed with parameter 1, hence X is
infinitely divisible.) It follows then from (2.43) that

X, 2¢ l(l) | ] X
= —— — — |0 s
n nl/zlogn 9Jj, =

and, in combination with (2.42) we have

2 = " lognlog " X |
= —_— _|_ —_ —_ —_
1= lognlog j, + ——log n(X, —vy—logc) (2.45)

+ O,(n*/?log"/?n).

The same formula holds then for L,(A).

2. Now consider L,(A). We know that, with high probability (whp) as
n— o, X;=0forj>i, =[(/n/2c)logn + a,)]. So whp

L) = 19 + 19,
i i,

LY = Y Xlogj, LP:= 3 log(X!).
Jj=int1 j=int1
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First, we have

LY = X (X(j) —X(j+1))log
j=int1

. . R j
=X(j, +Dlog(j, +1) + X X(/)log(.—l).
j=it2 I
as X(i, + 1) = 0 whp. By Theorem 2,
X(j, + D)log(j, + 1) = 7 Virlog(1 = e~<Ur 07 %) log(j, + 1)
+ 0,(nj; Ylog n)"* (2.46)
= Vnc tlog(n/2c Y, t)log j, + O,(a, *Vnlog n).

The sum is bounded by ¥, + ¥,; here, by Theorem 2,
k

: J
L= ¥ xGos—s -0 T e
1 j=int2 J jzjat1
= Op(n1/2 [ xtog(1 — e dx) = OP(\/;fllxllog(l/x) dx
= 0,(Vnlog?a,);
& J
L= X X()log——F = Ok, X(k,)(iy = k,))
2 j=k,+1

= 0,(k,*E(k,)(i, — k,)) = O,(Vnloglog n)a,log a,).
Therefore
LY = Vnctlog(n'/?c™ %, )log j, + O,(a, "Vnlogn). (2.47)

Finally, consider L. We begin with
X

LY = Y Y log k

Uptl<j<i,: X;21} k=1

= Y logk ) Lixsn (2.48)

k=1 j=iatl

i”
= ZIng Z l(ijk,jkg‘/rTa,,}'

k=1 j=jat1
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The last equality holds whp since
X; =k = jk < X(j) < X(j,),
and
X(j,) = O,(E(j,)) = O,(Vnlog a,).
Furthermore, notice that, for jk < n,
p(n —jk)
p(n)

since there is an obvious bijection between partitions A of n with X(/\) >
k, and partitions A of n — jk. For jk < \/—a the Hardy— Ramanu;an
formula (2.7) for p(-) transforms (2.49) into

P(X,>k)=0(e™* ), b=cy2.

P(X, > k) = (2.49)

Therefore the expected value of the sum in (2.48) is

Y logk Y e bk

k>1 j=j,+1

O(\/; Y e~ biskn0g k)

k>1

= O(\/;fme’”“nllog xdx)
1
= O(Vna,loga,).

Hence
LY = Op(\/;anlog a,),
and adding the estimate (2.47) we get
Ly(A) = Vnc tog(Vnc Y, t)log j, + O,(a, Vnlogn). (2.50)

(Thus the leading term and the error estimate (2.46) determine their
counterparts in (2.50).) Now the sum of the leading terms in (2.45) and
(2.50) is

Vn e tog(ne~ Y, t)log j, = Vnc~Y(3log?n — 3log c log n)
+ O(n'/?log’a,,).
So

n?log’n  Vnlogn
+
4c 2c

Op(a,jl\/ﬁlog n). 1

Li(A) + Ly(A) = (X, —v—2logc)
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3. A FUNCTIONAL LIMIT THEOREM

Here we prove a theorem that may allow us to get the distributional
results in the case when the functional F(A) depends primarily on the
moderate-sized parts.

Introduce an integer-valued function

+1, 1€ (0,1);

Vn
k(t) = [Tlogl —

so k(t,(n)) = 1, where t,(n) == (c¢/2)n"'/2. For t € [t,(n), 1), define

Vi1
Iog?).

V(1) = nl/“r(Akm - =
C

Also set V(T) = 0, if t < t,(n), and V,(1) = 0. (The choice of k(¢) and the
centering function is motivated by the Temperley—Vershik’s equation
(2.18).) Clearly, since A, = O,(n*/*log n),

V(1) = O,(n**log n). (3.1)
Further, since A, = 0 (k > n), for ¢ > 1,(n) =1 — e~*""* we have
V,(t) = O(n**e=cVm), (3.2)

For every n, the random function V,(¢) is right-continuous on [0, 1) and the
left-side limits V,(+-) exist for all ¢ € (0, 1].

LEMMA 4. Introduce t*(n) = n~°°, where 8, € (0, 3). Then, given & > 0,
u>0,and v e (%, %), p € (0, 1—12 —28,/3),

O,(tn*/*log n), ift<n",
V(1) = 0,(t*%log n) if t € [n™7, 1%(n)]
P ! 1 1
o (3.3)
lim lim sup sup  P{|V, (1) = V,(s)| = &} =0,
h=0 poo {t,s:lt—sl<h}

E[V,(0)|" = O(¢t*/2(1 = )" ? + n=#),  t>1*(n).

The second equation means that the random functions V,(-) are stochas-
tically equicontinuous, uniformly for ¢ € [0, 1].

Note. It is probably true that an even stronger property holds, namely

}!i_r)no IimsupP{ sup |V, (1) =V, (s)| = s} =0. (3.4)

n— o [t—sl<h
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Proof of Lemma 4. (a) By (3.1),
V(1) = 0,(m **logn) = O,(n~""¥Plogn), t<n"". (35)
Also, by Theorem 2 (the second equation in (2.16)), for t € [n~", t*(n)],

‘/; 1 -1/2
)‘k(t) — T|097 = OP(t_l + nl/zk(t) / |Ogl/2n)

= Op(t’1 + t’l/znl/“logl/zn).
So
[V,(t)| = O,(n"*/* + t*/?log n)
= 0,(t?log n) = O,(n"*/?log n).
So the first line in (3.3) is proven. Note that, for ¢ < r*(n),
V,(t) =0,(n*logn)  (s=min{v— 7,8,/2.}).

(b) By (3.2) and the last comment, it suffices to prove a weaker
version of the second part in (3.3), with ¢, s € [¢*(n), t,(n)]. Let us show
that, uniformly for t*(n) < t, <t, < t,(n),

_sz/(s(fz_fﬂ) 1 P —
ae , if x <n’(t, —t),
PV — Vel =) < | “ !
ae , ifx>nf(t, — ),
(3.6)

for some absolute constant a > 0. For ¢ > t*(n), k(¢) is at least of order
n®, where 8:= 1 — 8§, > . Setting k, = k(z,) (i =1,2) and using the
definition of V,(¢), we write

V(i) = V(1) = ’1_1/4t1((/\k1 - )‘kz) - (my — mz))

(3.7)
- n‘l/“(t2 - tl)()\k2 - mz) + O(n‘l/“);
here
mp= ) -
j:kil_q
(3.8)
\/;I ! ot
= —Ilog— + O(1; 1).
c OQt- (’ )
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By Cauchy’s inequality, we obtain from (3.7): for 0 < v = o(n'/*),
Eexp(v|V,(12) = V,(t2)])
<2 El/z(exp(ZUtlif1/“|(/\k1 —A,) — (my — m2)|))
><E1/2(exp(20(t2 —t)n VAN, — mzl)).

Notice that

So, for v = O(n*), by Proposition (Section 2) (with C = L5231 X; replaced
by the equidistributed A, — )\kz), the first expectation is bounded, within a
factor O(1), by

40%tf 2,
exp a2 7 < 2exp ;U (t, —t)].

(Here we have used an easy estimate

oi=y -T2 N 0wy 9

Likewise, the same bound obtains for the second expectation. Therefore,
there exists a constant a > 0 such that

2
Eexp(ol V(1) ~ Vi(t)]) < aewp( o?( - 1))- (310
C
Consequently, given x > 0,
2
PlIVittz) = Vilen)| = 3) < aewp| S0, = 1) —ux], - (31)
C

for every v = O(n"). We see that
CcX

4(ty — 1))

which minimizes the exponent on the right, is at most »n” provided that
x < x4 = n*(t, — t;). Plugging o into (3.11) we get

U =uv(x) =

P{V.(1) = V(1) = x} < anp(—8(t:x—_tl)), x <xy. (3.12)
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For x > x,, we choose v = v(x,) and easily obtain

P{IV,(t) — V,(t,)| = x} gaexp(—%n”x). (3.13)
So (3.6) is proved. Thus

sup P{IV,(t) = V,(s)| = &} < ae™c="/®M 4 ge=en’e/8,
{t,selt*(n), 1,(m)]: |t —s|<h}

so letting # | 0 and n — o, in that order, we prove the second line in (3.3).
(© Let t*(n) <t < t,(n). Asin (b), we write

V.(t) = n_l/“t(/\km —m) +0(n "),

and use Proposition to obtain

2

Eexp(v|V,(1)]) Saexp(;—ct(l —t)), v=0(n")
(cf. (3.10)). Then, analogously to (3.12), (3.13),

{aec,cz/(Zt(lt))7 if x <x,g,

—nPx/2
aenx/,

PV (t)| = <
(7)1 = 4 o

where x, = n?t(1 — t)/c. Therefore
X CX2
ElV, ()" *xpl —— | dx
Vol < anf "x exp( 21(1_0)

nx
2

+ au/wx“_lexp(— )dx
Xo
= O(t#2(1 = 1)** + n-rr),
which proves the third line in (3.3). 1

Once we establish convergence of finite-dimensional distributions of
V.(+), Lemma 4 will guarantee convergence in distribution of F(})) for a
class & of the integral functionals F of a form

F(x) = /Olq,’)(t,x(t))dt.
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Here ¢(z, x) is continuous for (¢, x) € D == (0,1) X R, and such that, for
some u>0,a<pu/2+1 B< u/6+1,

| *
, =0 ——=|, 3.14
B B
uniformly over D.

THEOREM 5. Given k> 1and 0 <t, <t, < -+ <t <1,

V(1) V1)) 5 (V1) V(1) (3.15)

Here V(-) is a Gaussian process, with E V(¢) = 0 and the covariance function
given by

K(t;,t,) = c Ht(1 — 1) — 3U(t)I(t,)], O0<t, <t,<1,
¢ . (3.16)
(1- t)l—t '

each separable version of V(-) is continuous on [0, 1]. Furthermore for every
F e 7,

1
I(t) = Zlog

[ oy (0)dS [Fa(e, (1) d. (3.17)

Notes. 1. We had not expected the bounds for o and B in (3.14) to be
different. With extra work, we could get a better bound for B, namely
B < 3un/14 + 1, but it would still be inferior to o < u/2 + 1.

2. Had we proved (3.4), we would have been able to ascertain
convergence in distribution of all the functionals F continuous in uniform
metric, not just those from . One such functional is sup,| x(#) |, and so we
would have concluded, at least, that sup,|V,(¢)| = O,(1). (Theorem 2 im-
plies a weaker result, namely sup,|V, ()] = O,(log n)*/?)

COROLLARY. Let
F(x) = [01¢(t)x(t)dt,
where ¢(t) = O(t“(L — )™ #), a < £, B < L. Then

F(V,) 310, 0?), (3.18)

where

o= [ [ 61 #(12) K1y, 1) dty iy (3.19)
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Proof of Theorem 5 and Corollary. (a) It is enough to consider ¢, > 0,
t, < 1. For simplicity of notations, let k = 2. We will prove that for all
reals vy, U,,

E et v et — exp(30iK 1y, 1) + 010, K(15,1,) + 305K (15, 1)).

(3.20)

(This certainly implies that

7
V(1) Vi(12)) = (V(11). V(12)))

Denote k, = k(z,), b=1,2, and, given two reals u,,u,, set x, =
exp(u,n=/*), b = 1,2. Then, just as for (2.6), we write

1

2arN

= 1 kzlg-—g = 1z

F(x.z) =11 - (3.21)

j=1 1- Zj j=k; 1- xlz-f j=k, 1 —XZZ']

p(H)E(xl)((kl)—X(kprX(kz)) — f” e~ (x, re'’) d,
— T

here r = exp(—vn~1/2), v > 0. With this formula in place of (2.6), the
argument begins similarly to the proof of Proposition, except that this time
8 =1, 8, = 0. However, the radius r (v, equivalently) will have to be
chosen more carefully.

(b) Let us first dispense with the overall contribution to the value of
the integral in (3.21) made by “large” 6’s, with |6| > 6, := n~3/*log n. Just
as for (2.9), we write

af?
i _
F,(x,re’?) an(x,r)exp( Y 02”1/2),

for some positive a > 0. Considering separately 6| € [6,,n"*/?], and
16| > n~1/2, we conclude that

rn [0 |F,(x,re'")|do

>0,
= O(r_”Fn(X,r)f exp(—an®%9°/2) dB)
01> 6,

<r "F,(x,r)exp(—alog®n/3). (3.22)

This estimate holds for every r = e~ /", As usual with a saddle point-type
method, we should choose an r which is, asymptotically at least, a
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stationary point of p™"F, (X, p). Such an r will depend on x! In view of
(3.21) and (2.8), we are content to set r = ¢~ ", choosing 7 close enough to
a stationary point of

77_2 k,—1 1—e¢ o 1—e" tj
H(t,X) =nt+ — + ) log———— + ). log———
6: 5, T l-xe ik, 1—xe” iy’

that is, to a root of

2

H(t,) =n — — — i (x, — 1)S®(¢,x,) = 0,

61,
k,—1 =t
je
SO(t,x) = Y — —,
ioh, (L—xem) (1 —e)
0 je—lj
SO(1,x) = Y e __
ioh, (L—xe7)(1 =€)

The expression for H, immediately suggests that we select

2y, — c
T=17%1+ bg,l o SP(r*, x,) |, T = ﬁ; (3.23)

here ¢ = w/ V6. (So ¢~ 7" equals g, the parameter from the previous
sections!) A direct computation, based on

L-xg/ = (L+o())(L—q)),  j=ky,

shows then that

H(7,X) =n —n|1

2 x,—1 -2
b=1
2
- Z (xp — 1)S(b)(7’xb)
b=1

2
i 0[”_3“ L SV, 0,)(SO(7%, %) + 7550 (7%,x,)

2
= 0(n3/2 Y SO(S® + T*T(b))).
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Here S and T® denote S®)(7*,1) and S(7*, 1), respectively, and it is
straightforward that

§® =0(n), T®=0(0n*? (b=12). (3.24)
Therefore
H,/(7,x) = O(n"?). (3.25)

(Notice that the derivative H/(#,x) at ¢ = 7* is considerably larger, of
order n**. As we will see shortly, the bound (3.25) is crucial for the
argument.) Analogously, for ¢ between 7* and 7,

772 2 26
H,(t,x) = Z (x, — 1)SP(t,x) = —ne’/2 + O(n**).

(3.26)

Using (3.24) and (3.25), we obtain

1 ~ 2
H(r,x) =H(r*,x) —H/(7,X)(7* — 7) — EHz‘t(t'X)(T* - T)

2n ktl 1 - g/ = 1-¢q’
=m o + E log——— E g
3 1—x,q’ %, 1—x2q’

+0(n~ %), (3.27)

c ( i ,
_ S
4n*\ /2

with the error term coming from (3.25) and 7* — 7= O(n~%/*). Here,
expanding log(1 — x,g’) in powers of x;, — 1, and x, — 1 = exp(u,n~ /%)
— 1 in powers of u,, we obtain

k,—1 1— j k,—1 j (xl _ 1)2 k,—1 qzj'
Z |Og - 1) Z 2 2
Jj= k1 q j=kq (1 - q])
ol 1|3k22—1 g
1 - .3
i=ky (L= ¢) (3.28)
kpm1  j ky—1 j
=un /4 ZZ 1 - 1un 172 ZZ 1
j= k1 —q 2 j=ky (1 -q )

+ O(n~ ).
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An analogous expansion holds for the second sum in (3.27). Also, with the
help of r — 7* = O(n3/%), for the logarithmic term in the expansion (2.8)
we have

Llogl = VAL o /s
Log log(24n) + O0(n=%"%). (3.29)
2 2

Combining (2.8) and (3.27)—(3.29), we obtain a key formula,

67711211/3 2 1
FF (X, r) = —————eX u,m,nt’* + —uza'znl/z)
(X, 7) (24n)1/4 p bgl( by o b Ts
c 2 2
——2( Y u, SO +0(n Y%, (3.30)
4n”\ 21
where
k-1 ko1 j
q , q
my = Z , 1= Z o 2
j=k, 1 =k, (1= q’)
L ) j (3.31)
q q
m, = Z 1-g of = Z PR
i=k; =k, (1_q )

Thus, the bound (3.22) becomes explicit.
(c) Turn now to the small 6’s, with || < 6,. First of all, for those
0’s,
H(t—1i6,x) = H(7,X) + H(7,x)(—i0)
+1H,(1,x)(—i6)* + O(n?6?),

since it can be demonstrated, analogously to (3.26), that

sup{| H,,,(¢,x)|: 1t = 7] < 6,} = O(n?).
(For complex ¢ in question, H,,(t,x) ~ —m?/t*) Besides,

1 T—1i6 1 T

—Lo = —log— + 0(6,n"?).
y 09— — = gy -+ 0(6,n7)

Therefore

r e "F (X, re'?)
2
= r "F,(x,r)exp| —i0H,(7,X) — 7Hn(r,x) +0(n" Y% |.
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The rest is short. We integrate

02
f exp(—ieH,(r,x) - —Hn(r,x)) de
lo1< 6, 2

2 HIZ(T,X)
~V H () exp(_ 2H,,(7,%)

1+ 0(n1/%).

+ O(Hgl/ze—e,%H“(r,x)/Z)

a
= i (
(Indeed, by (3.25) and (3.26),
H(7,X)
Hzt(—T,X) =0(nv?), 67H, (7,x) > alog’n,

for some constant a > 0.) Since also

J

we obtain

de ~

02

v
W(l + 0(1171/4)).

f r e MOF (x,re'?) dO = r "F,(X,r)
6]< 6,
(3.32)

Combining (3.21), (3.22), (3.30)—(3.32), and the Hardy—Ramanujan formula
(2.7), we arrive at

Eexp(uy(X(ky) — X(ky))n " + u, X(ky) X(ky)n™/*)
2 1
=exp| ) (ubmbn1/4 + —u,z,crbznl/z)
b=1 2
2

c 2
__( Z ubS(b)

2
4n°\ 2,

+ O(n”“)),
or, substituting u, = n;, u, = n; + n,,

E exp

2

Y uy(X(k,) — M(k,))n”“)
o . (3.33)
= eXp(E > f(ky kg)mymg + 0(”_1/4))-

1<b, B<2
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Here
o qj
p(k) = Y
=k =4
q/
flky kg) =n=2"2 —
j=kyvig (1 —q’)
R A c o jq
o
(1—61) i=ks (L —q")
For k = k(¢t), we have
e ¢x nl/2
_ ,1/2 -
(k) =n /kn—l/z—l—e‘ dx + 0| — )
ni/2
=—[ —+O(t 1)——I0g—+0(t b,
o e <X n1/2
S Iy N L
Zagr ey &
1 dr
= —/ — 4+ 0(n"V%72)
Li=t i
= ——+ “1/2472y
p— (n )
o jq’ s xe °* 1 (1—0)'"
—dr= —-log——
e R R L

Thus, setting m, = v,t, (b = 1,2), from (3.33), (3.34) we obtain: by the
definition of the process V(+),

(t X(k(1y)) = ¢ *n?log(1 — 1)

n1/4

t X(k(ty)) — ¢ *n*2log(1 —1,)

2
i/

2 V(1) (1)),
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2
and we recall that {X(k)} = {A,}. Furthermore, for 0 <¢, <t, < 1,
2
E(V(t,) — V(1)) =K(ty,t,) — 2K(t;,1,) + K(t;,1,)
_ 2
= ¢ (1, = 1) = (12 = 1) = 3(1(1) = U(12))7]
<c M1, - 1),
so, since V(t,) — V(¢;) is Gaussian, with zero mean, we have
E(V(1,) — V(1,))" < const(t, — 1,)°.
This inequality implies continuity of a separable version of 17(-) on [0, 1]
(Durrett [6]).
(d) Now let us prove the weak convergence of F(V),) for F € &.

Without loss of generality, we assume that «, 8 > 1.
Introduce ¢,, = 1/m, m > 1, and write

FW,) = [Tovn)di+ [* o1y, (0) di

[ )

=I,,+K,,+L,,. (3.35)
We write

3
Inm = Z I,E[:n):
b=1
where, using the bound for ¢ and Lemma 4,
1Y = ftl(n) ¢(t,V,(1)) dt = O,(n"*log*n),
sp=v(p—a+l)—u/A4,
19 = [ $(1,V,(1)) di = O,(n~**log* n),
5, =08(n/2+1—-a),

amzw=[j)a¢0Jau»hh

gm
= O(f (tH/272 4 p=repmay g
t*(n)

= O(&f/2" 1% + nrhsl 4 1), (3.36)

m

s3=min{&(n/2+1— a),up = §y(a—1)}.
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Since v/2 > a — 1, s, is clearly positive, and so is s, if we select v
sufficiently close (from below) to 1. Likewise, s, is made positive as well,
by picking p arbitrarily close (from below) to -5 and §, sufficiently small
to satisfy

8 12
> —, < — = =5,
Pz P=1p ~ 3%

For such a choice of v, p, §,, we have

L, =O,(el/? - g pmrgl-a 4 n=5), s>0. (3.37)
Let us bound L,,,. Pick a y € (3,1) and write

L= ["" (V) di+ [T a(1,v,(0))de

l-¢, 1-n—X
- L), + 1.
First, analogously to (3.36),
E|LD), | = O(el/?+17F + n el F + n=s),
sp=min{ x(pn/2+1-B) up+x(1-p)}. (3.38)

Since u/6 + 1 > B, we can select p and y so close (from below) to =
and (from above) to 3, respectively, that up + x(1 — 8) > 0. In that case
s, is positive. Second, by the definition of k(¢),

Vn
k(t) > (1+o0(1))x—logn, fort>1-n7*,

C

whence, with high probability, A,,, = 0 for such ¢’s, as

. Vn
A = (1 + op(l))zlog n.

Therefore, whp,

Vn 1
V(t) = —n"%- —Iog; = 0(n"*(1 - 1)),

c

and consequently

[0 letvald=o,fw [

—n

(@ -n" P ar

— O(n~(n/2+1-$)/2)
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From this bound and (3.38) we infer
L, =0,(et/?" 7P +n rog P +n™), s’ >0,
and, combining it with (3.37), we conclude that, for some s* > 0,
l,+L,, =0 ( po2HLT g gh/ZEIE g (gh B gl ) + n_“'*).
(3.39)

As for K,,,,, the process {V, (1)}, (. -, ; satisfies all the conditions of a
theorem due to Gihman and Skorohod {13, Chap. 9, Sect. 7]. Specifically,
the random functions V/,(-) are stochastically equicontinuous, uniformly on
[£,,1 — ,], and there exists a function (x), namely ¢(x) = |x|***, such

that (x) — » as |x| —» e« and
. lo(t,x)]
sup sup  Ey(V, (1)) <, lim sup sup ———— =
n o iele,,1-s,] a>% ele 1-s Jxl>a P(X)
By that theorem then

Ko 2K, = [ ¢ V(D) dr,  asn—w.  (340)

Furthermore

ElV(t)|"
1) f L)lﬁdt
0, &,lull=e,] t*(1 — 1)

= O(fs'"t“/Z“dt + fl (H/2-B dt)
0 l-¢,

— 0(8}#/2+170 + 8}#/2+lfﬁ),

/ El¢(1, V(1)) | dr =
[0,¢,]Ull-¢,]

since Var 1(¢t) < ¢ 1t(1 — ¢t), and V(¢) is Gaussian, with zero mean. So
(Fubini theorem) ¢(z,V(¢)) is almost surely integrable on [0, ¢,,] U [1 —
g,,1]and

E f[o o(t, V(1)) di

’ Em]U[ ~Em

= O(l/?* 1 + gl/241F), (3.41)

First letting n — o and then letting m — o, by (3.39)—-(3.41) we obtain
that F(V,) 3 F(V). I
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As an illustration, consider a function r(A) = x,(7)/d(\), where d(A) is
the dimension of the irreducible representation of S, that corresponds to
the partition A, and x,(7) is the value of the character of the representa-
tion at a transposition 7. According to Frobenius [12] (see Ingram [18]),

r() = ﬁzw‘@f‘”“‘] - (_1)2((;) ) (AZ))

J 2)
(3.42)

This function played an important role in the well-known analysis of the
card-shuffling problem performed by Diaconis and Shahshahani [4]; see
also Diaconis [5]. The prominence of this function in their proof is due to
the remarkable fact that it determines the set of the eigenvalues of the
transition probability matrix that describes the shuffling process. The
authors were able to show that, except for the extreme partitions A, the
values of r(A) are quite small, which was a key element element of the
argument. (To be sure, those rare partitions turned out to be influential
enough to determine a concise threshold number of shuffles.)

Under the assumption that A is distributed uniformly, () is a random
variable. Since d(A) = d(A*), it is clear from (3.42) that E r(A) = 0. Let us
study the asymptotic behavior of r(A).

Guided by Theorem 2, we set A; = E(j) + R; and obtain

3
LN -@i-nn] = E, U, +n,

U, = Y [E%(j) — 2jE())],

J

U, = 2R},
J

Uy = 2 [2(E(j) —i)R)],

where

It is easy to check that

3?2 .
U, = O,(nlog?n) + C—3fo (log2

1—e?
=0,(n log®n),
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as the integral equals zero. Indeed, substituting y = log(1 — #)~*,

“log?— gy = gzt 4
= —|——dt
[ el N Ly e

Using Theorem 2, we can show that
U, = O,(nlog®n) (3.44)

also. Turn finally to U;. Setting R(x) = R, ,, switching to integration,
and substituting x = (Vn /c)log(1 — ¢)~*, we transform the formula for U,
into

U, = 2/:(E(x) — x)R(x) dx + O,(n log?n)

- Z/OOC(E(x) —x)(Auyss — E(x)) dx + O,(n log?n)

5/4

n 1 1
. |

t
. dt + O,(nlog®n).

Now the corresponding function

2x 1—1¢

(1-1) log t

$(t,x) = 21

obviously satisfies the condition of Theorem 5, with parameters u = 1 and
a = B = 1.01, say. So, invoking (3.43), (3.44), we conclude that

9
n¥4r(A) >0, a?),

with o2 given by (3.19) and (3.16). It follows, in particular, that typically
r(A) is of order n=3/4,
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