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1. INTRODUCTION

Let G be a (finite) group and write Irr(G) for the set of irreducible
characters of G. We shall refer to the set cd(G) = { x(1) | y € Irr(G)} as
the “character degrees” of G, instead of the more precise “irreducible
character degrees.”

In this paper, we consider the following problem: given the set cd(G),
what can be said about the structure of G? The basic tools for studying
this question can be found in Chapter 12 of [6], and more recently an
expository article by Huppert outlined some of the results in this area (see
[3D. In this paper, we will look at particular sets of character degrees and
obtain surprisingly strong structural information about G. This is demon-
strated in the following theorem.

THEOREM A. Let p, q, and r be distinct primes. If G is a group such that
cd(G) = {1, p,q,r, pq, pr}, then G =A X B, where cd(A) = (1, p} and
cd(B) ={1,q,r}.

This result arose from [13]. In that paper, we proved that this set of
character degrees was one possibility for the character degrees of groups
that satisfy particular properties. We stated that direct products were one
way to produce groups that have this set of character degrees, and we
asked whether there were any other ways to produce groups that have this
set of character degrees. In attempting to build examples of other groups
having this set of character degrees, we proved that no other examples
exist. For the groups studied in [13], Corollary 5.3 suffices to answer the
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guestion. Also, we can use one of the intermediate results for Theorem A
(Theorem 5.2) to prove a similar result when we have four distinct primes.
This is demonstrated in the following theorem.

THEOREM B. Let p, q, r, and s be distinct primes. If G is a group such
that ¢cd(G) = {1, p, q,r, s, pr, ps, qr, gs}, then G = A X B, where cd(A4) =
{1, p, q} and cd(B) = {1, r, s}.

Our proofs of both Theorems A and B use a result of Huppert and
Manz [4, Theorem 2.4] to reduce to the case where the group is solvable.
Their result relies on the classification of finite simple groups. Therefore,
we have implicitly used the classification to reduce to the case of solvable
groups. Our contribution to the problem is to complete the solvable case.
We believe that our results are surprising, since the similar result is not
true when we have only two distinct primes. In particular, we will present
an example where cd(G) = {1, p, q, pq} for distinct primes p and ¢, but
where G is not a direct product.

One may also view this result as eliminating sets of integers as possibili-
ties for being the set of character degrees for some group. In particular,
the question is: given a set of integers, is there a group that has this set as
its set of character degrees? Our results say that if we have distinct primes
p, q, and r so that {1, p, q,r, pq, pr} is the set of character degrees for
some group, then {1, g, r} must also be the set of character degrees for
some group. This situation was studied in [9], and from that paper, we
obtain some arithmetic restrictions between g and r. Similarly, if p, g, r,
and s are primes so that {1, p, g, r, s, pr, ps, gr, gs} is the character degree
set of some group, then {1, p, g} and {1,r, s} are character degree sets.
Hence, we have restrictions from [9] between p and ¢ and between r
and s.

2. REDUCING TO SOLVABLE GROUPS

Since the techniques used to reduce our problem to the solvable case do
not affect the rest of the paper, we separate out this reduction and
dispense with it first. The following lemma is an easy consequence of
Theorem 2.8 of [4]. Note that the proof used by Huppert and Manz [4] is
dependent upon the classification of finite simple groups.

LEMMA 2.1, Let{py, psr -2 Ppr 41192, - - - » 4, be a set of distinct primes.
If G is a group where cd(G) ={1,p;,q;, p;q; 11 <i<n, 1 <j<mj then
G is solvable.

Proof. Suppose that G is not solvable. Observe that all the integers
lying in cd(G) are square-free. Thus, we are in the situation of Theorem
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2.8 of [4]. From that theorem, we know that G = A4 X S, where A4 is
isomorphic to the alternating group on seven letters (Alt(7)) and S is
solvable. It is well known that cd(A4) = {1,6,10, 14, 15,21,35}. On the
other hand, we observe that any prime that divides a character degree of a
direct summand of G must in fact be a character degree of that direct
summand. Since A4 has no primes as character degrees, 4 cannot be a
direct summand of G. Therefore, G must be solvable. [

Suppose that a group G has a character degree set of {1, p;, g;, p;q; |
l<i<n, 1<j<m} where {p,prr s P01 q1:92---, G, 1S a set of
distinct primes. We claim that n < 2 and m < 2. To prove this, we begin
by using Lemma 2.1 to see that G must be solvable. For solvable groups,
we know that if {p;, p,,..., p,} is a set of distinct primes with n > 3, then
there exist integers i # j so that p; p; divides some character degree of G
[14, Theorem 18.7]. Since this does not happen in G, we conclude that
n < 2. In similar manner, we can see that m < 2.

3. COPRIME ACTIONS

In this section, we prove two short results about coprime actions. These
are situations where we have a group S act by automorphisms on a group
G with (|S],|G]) = 1. We begin by looking at a situation that was studied
by Isaacs [7]. This is the case when S acts nontrivially on G, but where §
stabilizes all the nonlinear irreducible characters of G. The version of
Isaacs’ result that we use can be found in [14] as Theorem 19.3(b)(ii). Our
next result provides more information for the case when G is nilpotent.

LEMMA 3.1.  Let the group S act coprimely by automorphisms on the group
G, where G' € Z(G), and assume that S fixes all nonlinear irreducible
characters of G. Let H be a subgroup of G, where G' C H and H admits the
action of S, and suppose that [H,G] < G'. Then H < C;(S).

Proof. First, we show that the action of S on G’ is trivial. If A is any
nonprincipal linear character of G’, then A is a constituent of x,., where
x is a nonlinear irreducible character of G. Since y is S-invariant and
Xe = x(DA (recall that G' is central), it follows that A is S-invariant.
Thus S fixes all the members of Irr(G’), and hence it acts trivially on G’,
as claimed. It suffices now to show that S acts trivially on H/G’.

Let v be a nontrivial linear character of G’ /[ H,G]. Note that all the
irreducible constituents of »* are linear and G-invariant since H/[H, G]
is a central factor of G. Fix u as an irreducible constituent of »/ and let
8 be an irreducible constituent of u® so that §, = §(1)u. Because
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G' ¢ ker(u), we see that § is not linear and & is S-invariant. It follows
that w must be S-invariant. Therefore, all the irreducible constituents of
v are linear and S-invariant.

To show that S acts trivially on H/G' it suffices to show that every
irreducible character « of H/G' is S-invariant. If w is an irreducible
constituent of v, then au is also an irreducible constituent of »*. By the
previous paragraph, both w and au are S-invariant. Therefore, « must be
S-invariant. |

The second result in this section looks at the case where § acts on G
with the property that [G, S] € Z(G). In this case, we prove that G is a
direct product. This lemma will be used on several occasions to find the
direct products in Theorems A and B.

LEMMA 3.2. Let S act on G so that (|S|,|G)) = 1. If [G, S] € Z(G), then
G =[G, S1x C4(8).

Proof. From general facts about coprime actions, we know that G =
[G, SIC;(S) and, since [G, S] < Z(G) by hypothesis, it follows that C;(S)
is normal in G. As [G, S] is known to be normal in G automatically, all
that remains is to show that [G, S] N C;(S) = 1. This is clear by Fitting’s
lemma applied to the action of S on [G, S]. Because [[G, S], S] =[G, S],
we conclude that C,; 5(S) =1. 1

4. GROUPS WITH cd(G) = {1, m, n} WHERE m AND n
ARE COPRIME

In this section, we consider a group G, where cd(G) = {1, m, n} for
coprime integers m and n. The case where m and n are distinct primes
was originally studied by Isaacs and Passman [9]. A more recent paper by
Noritzsch [15] has taken their results and expanded them to the general
case. While in this paper we only use the case where m and n are primes,
the improvements that we make are true for the general case. Thus, we
will refer to the results in [15]. These groups fall into two categories based
on their Fitting heights. Using standard notation, we define the Fitting
subgroup F(G) of G to be the largest normal nilpotent subgroup of G.
Inductively, we define F, =1 and F,,,/F, = F(G/F)) for integers i > 0.
When G is solvable, it is clear that there is some integer i so that F;, = G.
We define the Fitting height of G to be the smallest integer i so that
F, = G. From a theorem of Garrison [6, Corollary 12.21], we know that the
Fitting height of G is less than or equal to |cd(G)|. When cd(G) = {1, m, n},
it follows that the Fitting height of G is at most 3. Since mn & cd(G), we
can see that G is not nilpotent and G has Fitting height at least 2. The



DETERMINING GROUP STRUCTURE 239

groups of interest can be categorized as those having Fitting height 3 and
those having Fitting height 2. The next result mostly is the content of
Theorem 3.5 of [15], but it does include some small improvements. The
parts that are new in this paper are (a)(ii), (b)(v)—(vii), and the nilpotence
class in (b)(i). The other parts of (a) that do not precisely match the results
in [15] follow from the results used to prove (a)(ii). In the next lemmas, we
discuss fully ramified characters. Following [6], we say when N is a normal
subgroup of G that the characters y € Irr(G) and 6 € Irr(N) are fully
ramified with respect to G/N if 6 is G-invariant and y is the unique
irreducible constituent of €.

LEMMA 4.1. Let G be a group with cd(G) = {1, m, n}, where m and n are
relatively prime integers. Write F = F(G) (the Fitting subgroup of G).

(@) Assume G has Fitting height 3. Write E/F = F(G/F) and P =
[E, F]. Then the following are true:
(i) F =P X Z(G) and cd(G) = cd(G/Z(G)) = {1,|G:E|, |E:Fl}.
(i) P is a minimal normal subgroup of G and P = E’.
(iii) cd(E) ={1,|E:F|} and F is abelian.
(iv) E/Z(G) is a Frobenius group with kernel F /Z(G).
(v) |G:E| is a prime number and E /F is a cyclic group.
i) |P| = p“9El for some prime p and some positive integer a.
(i) |E:F|/(|E:F|, p* — 1) = (p“9*F = 1)/(p* - D.
(b)  Assume G has Fitting height 2. Then the following are true:
(i) F = P X Z, where P is Sylow p-subgroup of G for some prime p
such that P has nilpotence class 2.
(i Z < Z2(G) and cd(G) = cd(G /2).
(i) |G:F| € cd(G)and cd(F) = cd(G) \ {|G:F}.
(iv) G /Fis cyclic.
Let R be a p-complement for G and write C = C,(R). Then:
(v) G'=[P,R]land P' cC.
(i) P/P'=C/P' X G'/P" and G/P' = C/P' X G'R/P".
(vii) If 6 € Irr(P) is a nonlinear character, then 5 is fully ramified
with respect to P/C.

Proof. First, assume that G has Fitting height 3. By Theorem 3.5(1) of
[15], we know that F = P X Z(G), where P is an abelian p-group, P/®(P)
is a chief factor for G, where ®(P) is the Frattini subgroup of P, and
G /(D(P)Z(G)) is what Noritzsch defined as an affine semilinear group
with ¢cd(G /(®(P)Z(G))) = cd(G). From Theorem 2.1.1 of [15], we obtain
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D cd(G/(D(P)Z(G)) = {1,|G:E|, |[E:FI}, (2) cd(E) = {1, |E:F|}, (3) |G:E]
is prime, (4) |P:®(P)| = p““El for some positive integer a, and (5)
|E:F|/(|E:F|, p* — 1) = (p““El — 1) /(p* — 1). We determine that E/F
is cyclic and E/(®(P)Z(G)) is a Frobenius group with kernel
F/(®(P)Z(G)) from Theorem 11.3.11 of [2]. Thus to complete the proof of
(a) is suffices to show that P = [E, F] = E’ and ®(P) = 1. (Since P/®(P)
is chief factor of G, ®(P) =1 implies that P is a minimal normal
subgroup of G.)

We begin by proving that P = [E, F] = E'. Let H be a subgroup of E
so that Z(G) c H and H/Z(G) is a p-complement for E/Z(G). Since
E /(®(P)Z(G)) is a Frobenius group with kernel F/(®(P)Z(G)), we have
E =PH and F =[F, E]®(P) X Z(G). Thus, P = [F, E]®(P). Because
®(P) is the Frattini subgroup of P, we know that P = [E, F]. This implies
that P = [P, H] and by Fitting’s lemma, C,(H) = 1. Since F = P X Z(G)
and E/F is cyclic, it follows that E/Z(G) is abelian and E’ € P. On the
other hand, recall that P = [E, F] C E’, which yields P = E’.

We will suppose that ®(P) > 1, and obtain a contradiction. Without
loss of generality, we assume that |G:E| = m and |E:F| = n. Since we are
assuming that ®(P) > 1, there is a character y € Irr(P) so that ®(P) ¢
ker(y). Let T be the stabilizer of v in G. Observe that T is also the
stabilizer of the character y X 1,,,, and since E/F is cyclic, y X 1,4,
must extend to T N E. This implies that |E:T N E| € cd(E). Because
P =E"and vy # 1,, we conclude that E # T N E. The only other possibil-
ity isthat TN E = F.

Observe that if @ is an irreducible constituent of y £, then 6(1) = |E:F]|
=n and 6 must be invariant in G. By a Frattini argument, we have
G = TE. Note that T/F = TE/E = G/E is cyclic, so y extends to T.
Writing y? for the pth power of v we know since ®(P) ¢ ker(y) that
y? # 1. Also, it is easy to see that the stabilizer of y? contains T
(anything that stabilizes y must stabilize y?). Because C,(H) = 1, the
stabilizer of y? in E is F, and T must be the stabilizer of y? in G.

Consider a character ¢ € Irr(P/®(P)) and note that ¢ =1. In a
similar manner, we can prove that the stabilizer in G of y¢ equals the
stabilizer in G of (y¢)?. On the other hand, we observe that (y¢)? =
yPpP = y? which implies that 7 is the stabilizer of y¢ in G. Because T
stabilizes v, it follows that T stabilizes ¢. Therefore, T stabilizes every
irreducible character of P/®(P). This implies that 7/®(P) centralizes
P/®(P). We know that C; , 4, py(P) is @ normal subgroup of G /®(P) and
that Cg; , qp(P) N E/P(P) = F/P(P). Therefore, we conclude that
Cs am(P) = T/®(P), but we now have G/F = E/F X T/F, which con-
tradicts E/F = F(G/F).

Suppose now that G has Fitting height 2. Then by Theorem 3.5(2) of
[15], we know that (1) cd(G) = cd(G/2), (2) |G:F| € cd(G), (3) cd(F) =
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cd(G)\{IG:Fl}, (4) G/F is cyclic, and (5) F = P X Z, where P € Syl (G)
and Z c Z(G). Also, we have cd(P) = cd(F) and see that P is not
abelian. Furthermore, we know that every nonlinear irreducible character
of P is G-invariant. Let R be a p-complement for G and observe that R
acts nontrivially on P fixing every nonlinear irreducible character. By
Theorem 19.3(a) of [14], we see that [P, R]' = P’ and P is nilpotent of
class 2. Since F /P is central in G/P and G /F is cyclic, we determine that
G /P is abelian and R is abelian. We can now conclude that G’ = [P, R]P’,
and because P’ C [P, R], we deduce that G’ = [P, R]. Applying Lemma
3.1 again, we see that P’ < C. We now use Fitting’s lemma to determine
that P/P' = C/P' X [P,R]/P' = C/P' X G'/P’, and with R centraliz-
ing B, we deduce that G/P’' = C/P’ X G'R/P’'. Taking § € Irr(P) as a
nonlinear character, we utilize the fact that P has nilpotence class 2 to
show that & vanishes on P\ Z(§) (see [6, Corollary 2.30 and Theorem
2.31]). Using Problem 6.3 of [6], this implies that & is fully ramified with
respect to P/Z(5). Observe that P’ ¢ Z(P) c Z(§) and [Z(8), P] c
ker(§) N P’ < P’. Thus, we may apply Lemma 3.1 to determine that
Z(8) c C. Finally, we refer to Lemma 12.4 of [14] to say that & is fully
ramified with respect to P/C. |

We now look at a group G which has a normal subgroup K with
cd(G/K) = {1, m, n} for coprime integers m and n and G /K has Fitting
height 3. In our next result, we are interested in looking at the irreducible
characters of K. The hypotheses of our result involve an oddness condi-
tion. After the lemma, we will present an example that shows that this
oddness condition is necessary.

When N is a normal subgroup of G so that G/N is abelian and 6 is a
G-invariant irreducible character on N, it is well known that 6 induces a
nondegenerate bilinear form {{-,-)), on G /N (see [5], for example). (A
bilinear form on a group A is a map {{-,-)):4 XA — C* that is a
homomorphism in each coordinate. The form is nondegenerate if either
(a,AY) =1 or {({A,ay) =1 implies that a = 1. We also note that
{{ -, ) is also symplectic, but that is not important for the purposes of
this paper, so we will not define it here.) We also use in this next lemma
some machinery that was developed in Section 2 of our paper [12]. Let C
be a cyclic group and take p to be a prime that does not divide |C|. Write k&
for the smallest positive integer so that |C| divides p* — 1 and let &
denote the field having order p*. Observe that the multiplicative group of
Z has a unique subgroup that is isomorphic to C and identify these two
groups. If we take M to be the additive group of %, then we obtain an
action of C on M by multiplication in .#. A bilinear form {{-,-)) on M
is C-invariant if ({m¢, n°)) = {{m,ny) for all elements m, n € M and
¢ € C. We say that M is self-dual under the action of C if M has a
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nondegenerate C-invariant bilinear form. In Lemma 2.6 of [12], we prove
that if M is self-dual under the action of C, then —1 is congruent to a
power of p mod|C|.

LEMMA 4.2.  Suppose that K is a normal subgroup of G so that cd(G /K)
= {1, m, n} for relatively prime integers m and n. Assume that G /K has
Fitting height 3 and write F/K = F(G/K) and E/F = F(G/F). When
2 € ¢cd(G), assume that [E,F1K/K is not a 2-group. If the character
0 € Irr(K) is E-invariant, then 0 extends to | E, F1K.

Proof. Write P = [E, F1K. From Lemma 4.1(a), we have (1) cd(G/K)
={1,|G:E||E:Fl}, (2) |G:E| is a prime, and (3) E/F are cyclic. Without
loss of generality, take |G:E| =m and |E:F| = n. By Lemma 4.1(a), we
know that P/K is a chief factor for G. Let p be the prime dividing |P:K]|.
From Lemma 4.1(a), we determine that |P:K| = p*™ for some positive
integer a and that n/(n, p* — 1) = (p*" — 1)/(p® — 1). Because E /F is
cyclic, there is a subgroup A in E that contains F, where |4:F| = (p*" —
1)/(p® — 1). Thus, P/K is a chief factor for 4 and, in fact, we can view
P/K as the field having order p“” and the action of 4 /F as multiplica-
tion in the field (this is Satz 11.3.10 of [2]). In the notation stated before
this lemma, P/K is isomorphic to M under the action of 4 /F. Since 0 is
E-invariant, either 6 extends to P or 6 is fully ramified with respect to
P/K (this is Problem 6.12 of [6]). If 6 is fully ramified with respect to
P/K, then {{-,-)) is an E-invariant nondegenerate bilinear form on
P/K (this is proved in [5]). This implies that P/K is self-dual under the
action of E/F. By Lemma 2.6 of [12], we determine that —1 is congruent
to some power of p mod(p* — 1)/(p* — 1) = pm~Y 4 pam=2
+ .-+ +p“ + 1. The only way that this can happen is if m = 2, and since m
and n are coprime, n must be odd. Therefore, p = 2, but this contradicts
the hypothesis that P/K is not a 2-group. |

Notice that GL(2, 3) shows that the oddness hypothesis in Lemma 4.2 is
necessary. In particular, let G = GL(2, 3), and take Z to be the center of
G. Let Q be the normal quaternion group in G and let S be the subgroup
of G that is isomorphic to SL(2,3). Note that Q/Z = F(G/Z), that
S/0Q = F(G/Q), and that Q =[S, Q]Z. Furthermore, it easy to see that
cd(G/Z) = {1,2,3}. Finally, if A is the nonprincipal irreducible character
of Z, then A is G-invariant and is fully ramified with respect to Q/Z.

5. DIRECT PRODUCTS WHEN cd(K) = {1, q, r}

In this section, we consider a group G which has a normal subgroup K,
where cd(K) = {1, g, r} for distinct primes g and r. We also have a third
prime p with the property that O?(K), the smallest normal subgroup of K
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whose quotient is a p-group, is K itself. If P € Syl (G), then we prove
under some additional technical hypotheses that PK is a direct product.
This result is a key step in proving Theorems A and B. Before getting to
the main result of this section, we need to prove the following easy lemma
regarding the characters of normal cyclic subgroups. Note that the hypoth-
esis of the last statement of this lemma will be fulfilled when A is the
Fitting subgroup of B, and this last statement says that B/A is central in
G/A.

LEMMA .1, Let A be a cyclic normal subgroup in G and write C = C;(A).
Then G' C C. Furthermore, if the character a is a faithful irreducible
character of A, then C is the stabilizer of « in G. Finally, if B is a normal
subgroup in G with C N B C A, then [G, B] C A.

Proof. Because A is normal, we see that C is normal in G and G/C is
isomorphic to a subgroup of the automorphism group of A (this is the
N /C theorem of Problem 3.9 in [8]). Also, since A is cyclic, the automor-
phism group of A is abelian (see [8, Problem 2.19]). Thus, G /C is abelian
and G' C C, as required. Let T be the stabilizer of « in G. As C
centralizes A, we certainly have C < T. On the other hand, it is easy to
see that [A,T] c ker(a). As « is faithful, T centralizes A4, so T c C.
Finally, we have [G,B]cG' "nBcCnNBcA. 1

We are now ready to prove the main result in this section. As we stated
earlier, we have a normal subgroup whose character degree set consists of
the value 1 and two prime numbers. There also is information about a
third prime and some technical hypotheses. The main consequence of this
theorem is part (4), where we prove that we have a direct product. We also
obtain a number of other interesting facts about this setup which we use in
proving Theorem B.

THEOREM 5.2. Let p, q, and r be distinct primes and write K = O?(G).
Assume that cd(K) = {1, q, r} € cd(G). Then G splits over K and there is a
complement N such that the following hold.

(1) [K,N]c Z(K), and Z(K) is a p’-group.
(2) G =Cu(N)x N[K,N1.
(3) cd(K) = cd(Cx(N)).

Proof. We begin by observing that K is solvable (this is Theorem 12.15
of [6]). Since p divides no character degree of K, we know that K has a
normal abelian Sylow p-subgroup U (see [6, Corollary 12.34]) Letting R be
a p-complement of K, we obtain K = RU. Observe that [U, R]R is a
normal subgroup of K having index that is a power of p. Since K = O”(K),
we conclude that K = [U, R]R and U = [U, R]. By Fitting’s lemma, this
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implies that C,(R) =1 and thus Ng(R) =R and Z(K)NU =1. In
particular, Z(K) is a p’-group (this is the second part of (1)). By a Frattini
argument, we have G = KNg(R). It follows that R is a normal p-comple-
ment of N;(R). By choosing a Sylow p-subgroup N of N;(R), then
KN N =1and G = KN. Note that P = UN is a Sylow p-subgroup of G.

Let F denote F(K). From the earlier discussion, we know that K has
Fitting height 2 or 3. The proof now splits into two cases based on the
Fitting height of K.

Case 1. K has Fitting height 3. Write E/F = F(K/F). From Lemma
4.1(a), we know that F =S X Z(K), where S =[E, F] is a minimal
normal subgroup of K. Then § is an elementary abelian s-group for some
prime s that does not divide | E:F|. Also, Lemma 4.1(a) yields the fact that
cd(K) = cd(K/Z(K)) = {1,|K:E| |E:F|} = {1, q, r}. It follows that K/E
and E/F are both cyclic groups of prime orders. Since K/F is not
nilpotent, K/E having prime order different from that of E/F implies
that K/F is a Frobenius group with kernel E /F. Without loss of general-
ity, we take |K:E| = r, and it follows that |E:F| =g and s # g. Applying
Lemma 5.1, we have K/E central in G/E, and K/E being a p-comple-
ment for G /E yields the consequence that PE is a normal subgroup of G.

Consider a character y € Irr(G) such that x(1) = r. In view of Corol-
lary 11.29 of [6], we see that y; € Irr(K). From Lemma 4.1(a) we know
that cd(E) = {1, q}. Let 6 be an irreducible constituent of x;. Then 6(1)
lies in cd(E) and 6(1) divides r. The only way that these two statements
can both be true is if #(1) = 1. By Frobenius reciprocity [6, Lemma 5.2],
Xx is a constituent of 6%, and because x(1) =r=|K:E|= 6%(1), we
deduce that y, = 6%. From Lemma 4.1(a), S = E’, and since 6(1) = 1,
this implies that S c ker(6) and 65 = 1,. Now we have 6, = 1; X ¢ for
some character ¢ € Irr(Z(K)). Clearly, this character is K-invariant, and as
E /F is cyclic, it extends to E. It is not difficult to prove that 13 X { has a
unique K-invariant extension g € Irr(E) (this is the content of Lemma 2.1
of [11]). By Gallagher’s theorem [6, Corollary 6.17], there exists a character
A € Irr(E /F) so that 6 = Ag Since K/E is cyclic and 7 is K- invariant, it
follows that 7 extends to 7 € Irr(K). Thus, we see that y, = 6% = (A{)X
= M and hence AX € Irr(K/F). We conclude that y # 1. Because |E:F|
= g, we know that A is a faithful character of E/F. By Lemma 5.1, we
determine that C is the stabilizer of A in G, where C = C,(E/F).

Write T for the stabilizer of 6 in G so that T N K = E by Lemma 5.1.
Since xx is G-invariant, we use a Frattini argument to decide that
G = TK, and it follows that |G:T| = |K:T N K| = |K:E| = r. Observe that
any element that stabilizes 6 must stabilize 6, = 1 X {. By the unique-
ness of ¢, this element must stabilize ¢. Thus, T is contained in the
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stabilizer of Z Consider an element ¢ € T, so that we have
M =0=0"=A"=)Z,

and by applying Gallagher’s theorem [6, Corollary 6.17], we determine that
t stabilizes A. Thus, we conclude that T c C, since C is the stabilizer of A.
We have

r=|G:T|>|G:C| > |CK:C|=|KE|=r,

which implies that G = CK and T = C since there is equality throughout
this equation. Because C is normal in G and |G:C| = r, we determine that
P c C and so PE C C. Therefore, E/F is central in PE/F. Observe that
E/F is a p-complement in PE /F, which implies that PF is normal in PE.
Because PF/F is a Sylow subgroup of G/F and PE is normal in PK, it
follows that PF is normal in G. Now we see that [P, K] c [PF, K] c PF
NK=Fand[N,RIc[P,K]INR CF N R. We must deal with two pos-
sibilities: either s # p or s = p.

First, assume that s # p. This implies that p does not divide |S|. Recall
that F = S X Z(K). We already know that p does not divide [Z(K)| and
|K:F|. Thus, p does not divide |F| nor does it divide |K|. It follows that
U=1, P=N, and R =K. Now, N acts coprimely on K and [K, N] =
[K,N,N]c[F,N]c[K,N] Therefore, we have [K,N]=[F,N] and
[K, N]z(K) as a normal subgroup of K. Since F/Z(K) =S is a chief
factor for K, either F = [K, N]Z(K) or [K, N] € Z(K). Consider a char-
acter y € Irr(G) with x(1) = ¢, so by Corollary 11.29 of [6], x; € Irr(E).
Because x(1) > 1, we obtain S = E’ ¢ ker( xz). When we take characters
o€ Irr(S) and ¢ € Irr(Z(K)), where o X ¢ is and irreducible constituent
of xg, then o # 1.

Since yg is N-invariant, N acts on the irreducible constituents of y;.
We also know that E /F acts transitively on the irreducible constituents of
Xr- Because the action of N on E/F is coprime and central, we conclude
that all of the irreducible constituents of x, are N-invariant (this is
Corollary 13.9 of [6]). In particular, o X ¢ is N-invariant. Note that
S = [E, F], where both E and F are characteristic in K. It follows that S
must be characteristic in K, and N acts on S. Because o X { is N-
invariant, o and thus o X 1., must themselves be N-invariant. We now
know that [F, N]Z(K) c ker(o X 1) < F. Hence, we conclude that [K, N]
= [F, N] c Z(K) (this proves (1)). From Lemma 3.2, we have K = C,(N)
X [K, N1, and since [K, N] is abelian, we obtain cd(C (N)) = cd(K),
which is conclusion (3). Therefore, G = C(N)K, N]N. Observe that
Cx(N) centralizes both [K, N] and N, so that both C,(N) and [K, NIN
are normal in G. Also, it is easy to see that C,(N) N [K, N]IN = 1, which
yields G = C(N) X [K, N]N. This proves the result in this case.
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Now, we consider the case where s =p. Since Z(K) and K/F are
p’-groups, it follows that S is a Sylow p-subgroup of K and so S = U.
Recall that [PF, R] c [PF, K] c F. This implies that R normalizes PF, so
R acts on the quotient PF/Z(K). Also, we see that PF = PSZ(K) =
PZ(K) and that PF/Z(K) = P, which implies that PF /Z(K) is a p-group.
It follows that Z(P)Z(K)/Z(K) = Z(PZ(K)/Z(K)), and Z(P)Z(K) is
normalized by R. We know that Z(K) < F n Z(P)Z(K) is normal in K.
Since F/Z(K) is a chief factor for K, we have U X Z(K) = F < Z(P)Z(K).
Because U c P, we conclude that U € Z(P). In particular, N centralizes
U,so[K,N]=[UR,N]=1[R,N]and C(N) = UC(N).

Observe that Z(K) is a p-complement for F. This implies that F N R =
Z(K). Also, recall that [R, N] € F N R = Z(K) < Z(R) (this finishes con-
clusion (1)). By Lemma 3.2, we have R = Cx(N) X [R, N]. Note that
K=RU=[R,NICx(N)U =[K, NIC,(N), and it is easy to see that
Cx(N)NI[K,N]=1. Since [N, K]c Z(K), we conclude that K =
Cx(N) X [K, N], and as [N, K] is abelian, we obtain cd(C(N)) = cd(K),
which is conclusion (3). In addition, we determine that G =
Cx(N)K, NIN. Note that Cx(N) centralizes both [K, N] and N, so
Cx(N) and [K, N]N are both normal in G. It is easy to show C,(N) N
[K, NIN = 1, and this yields G = C(N) X [K, NN, which is conclusion
(2). This completes the proof in this case.

Case 2. K has Fitting height 2. By Lemma 4.1(b), we know that
|K:F| € cd(K), and without loss of generality, we can take |K:F| = r. By
making this assumption we obtain from Lemma 4.1(b) that cd(F) = {1, ¢},
that F = Q X Z, where Q € Syl (K) has nilpotence class 2 (ie. Q'
Z(Q)), and that Z c Z(K). Also, we have cd(Q) = cd(F) = {1, 4} and
K’ € Q. Because p does not divide either |Q] or |K:K'|, we conclude that
p does not divide |K|. Thus, we deduce that K = R, that U = 1, and that
N = P. By Glauberman’s lemma [6, Lemma 13.8], we may choose a
g-complement 1/ for K so that [V, N]c V. Write C = C,(}/). From
Lemma 4.1(b), we know that K’ = [Q,V], Q/Q' =K'/Q’' X C/Q’, and
K/Q =C/Q xK'V/Q'.Notethat VN F = Zand K = FV. As Q' C C,
we see that C is normal in Q.

Consider a character y € Irr(G) so that x(1) = r. Observe that x, €
Irr(K) (Corollary 11.29 of [6], again) and write 6 = y,. Note that every
irreducible constituent of x,, is linear and Q" C ker(6). This implies that
0 = a X B for characters « € Irr(C/Q") and B € Irr((Q, VIV /Q"). Since
C/Q'’ is abelian, we have «(1) = 1 and hence 8(1) = 6(1) = r. Because 6
is N-invariant, it follows that 1, X B is N-invariant. Thus, N acts on the
set ) of irreducible constituents of (1. X 8), and 1/ acts transitively on
Q). By Glauberman’s lemma [6, Lemma 13.8], there is an N-invariant
irreducible constituent y € Irr(Q/C) of (1. X B),. Observing that (1, X
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By =1c X Bo, v we determine that vy, ,, is irreducible and is a con-
stituent of B, ;- Use B(1) # 1 to see that [Q, V] = K’ ¢ ker(8). This
implies that vy, ,; # 1,1, and hence, y # 1,. On the other hand, it is
easy to show that [Q, N] C ker(y). Considering C < ker(y), we conclude
that [0, NIC < Q.

Fix an irreducible character ¢ € Irr(G), where (1) = g. By Corollary
11.29 of [6], we know that vy, € Irr(K). Since g does not divide |K:Q|, we
deduce that & = ), € Irr(Q). Clearly, & is N-invariant, and with N
centralizing Q/[Q, N1C, it follows that every irreducible constituent of
8,0 nic i N-invariant (see Corollary 13.9 of [6]). Because & € Irr(Q) is
nonlinear, 8 must be V-invariant. From Lemma 4.1(b), we see that § is
fully ramified with respect to Q/C. As 6(1) =g, we determine that
|Q:C| = g2, and using Lemma 12.4 of [14], we have that § is fully ramified
with respect to Q/[Q, N]C. When we recall that C c[Q, N]C < Q and
|Q:C| = g2, the previous statements yields [Q, N]C = C and [Q, N] c C.
Thus, we have [Q,V, N1 c[Q,N]c Cand[N,Q,V] c[C,V]= 1. Apply-
ing Corollary 8.28 of [8], we obtain [V, N], Q] c C and [[V, N], Q] c [V, Q]
since V' was chosen with [V, N] € V. It follows that [/, N],Q]c C n
[V,01=0' <[V,Qland [V, N] < Vsince if [/, N] = V, then [[V/, N], O]
= [V, Q]. We now utilize [V:VV N Z(K)| = r to say that either [V, N] C
Z(K)or V=I[V,NIVnzZ(K). If V=[V,NI(Vn Z(K)), then [V,Q] =
[[V, N1, Ql, which we know does not happen. Thus, we determine that
[V, N] c Z(K) and we conclude that [K, N] c [QV, N1 c[Q, N]V,N]c
Z(Q)Z(K) c Z(K), yielding (1). By Lemma 3.2, we obtain K = [K, N] X
Cx(N), and as [K, N]is abelian, cd(K) = cd(C,(N)), which is (3). Finally,
it is easy to see that G = C,(N) X [K, NIN. This is the remaining
portion of conclusion (2) and proves the theorem. |

We now obtain a corollary to Theorem 5.2. In this corollary, we assume
that we have a group G that satisfies the hypothesis of Theorem A. We
also assume that cd(O?(G)) = {1, ¢, r}. Under this additional hypothesis,
we prove the conclusion of Theorem A. After proving Theorem B, the
remainder of this paper will be spent showing that O”(G) has the charac-
ter degree set {1, g, r} (under the hypothesis of Theorem A).

COROLLARY 5.3. Let p, q, and r be distinct primes. Suppose that cd(G)
={1,p,q,r, pq, pr} and cd(K) = {1, q, r}, where K = O”(G). Then G =
A X B, where cd(A) = {1, q, r}, and cd(B) = {1, p}.

Proof. By Theorem 5.2, there is a complement N so that G = A X B
with cd(A4) = cd(K) = {1,q,r}, where A = C,(N) and B = [K, N]N. It
is easy to show cd(B) = {1, p}, and we have the result. 1
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6. THE PROOF OF THEOREM B

In this section, we prove Theorem B. Before we proceed with its proof,
we would like to introduce some more notation. It is standard given a
subgroup H < G and a character 0 € lrr(H) to use Irr(G | 6) to denote
{x <€ Irr(G) | [ x, 0] # 0}. In this spirit, we write cd(G | 8) = {x(1) | x
€ Irr(G | x)}. We also use the notation cd (G | a) to represent the union
of all the sets cd(G | #) over all 6 € lrr(H), where 6(1) = a. We note that
while this is not precisely the definition used for this notation in [10] and
[13], it is consistent with the definition found in both of those papers. The
following easy lemma is proved as Lemma 2.1 and Corollary 2.2 in [13].

LEMMA 6.1. Let G be a finite group and suppose that K is a normal
subgroup of G. Assume that the character degrees a, b, and f lie in cd(K),
cd(G), and cd(G /K), respectively. If a € c¢d (G | a), then af € cd (G | a).
Furthermore if (b,|G:K|) = 1, then b € cd(K) and bf € cd (G | b).

The following lemma is an immediate consequence of Theorem 12.4
of [6].

LEMMA 6.2. Let K be a normal subgroup of G such that G/K is a
Frobenius group with kernel N/K an elementary abelian p-group for some
prime p. Suppose that a € cd(G) is relatively prime to |G:N|. If a|G:N| &
cd(G), then p divides a.

Proof. Consider a character y € Irr(G) so that y(1) = a. Let 6 be an
irreducible constituent of y,. From Corollary 11.29 of [6], we know that
x(1/6(1) divides |G:N|. Since x(1) is relatively prime to |G:N|, we
determine that x(1) = 6(1). By Theorem 12.4 of [6], we see that either
O(DIG:N| € cd(G) or p divides 6(1). Because 6(1) = y(1) =a and
a|lG:N| & cd(G), we conclude that p divides a. 1

We now have everything we need to prove Theorem B.

Proof of Theorem B. In view of Lemma 2.1, G is solvable. Now, let K
be maximal in G with respect to the properties that K is normal in G and
G /K is not abelian. There is an integer f > 1 so that cd(G/K) = {1, f}
(see Chapter 12 of [6]). From Lemma 12.3 of [6], we know that G /K is
either a #-group for some prime ¢ or G /K is a Frobenius group. Suppose
that G/K is a t-group for some prime ¢. It follows that f is a power of ¢
and a character degree of G. Since p, ¢q, r, and s are the only powers of a
prime that are character degrees of G, it follows that f € {p, g, r, s} and
f = t. Without loss of generality, we may take ¢ = p. We now apply Lemma
6.1 to determine that gp € cd(G), which is a contradiction. Thus, G/K
must be a Frobenius group with elementary abelian ¢-group kernel L/K
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for some prime ¢ and cyclic complement (see Lemma 12.3(b) of [6]). We
also utilize that result to see that |G:L| = f.

Suppose first that f < {pr, ps, gr, gs}. Without loss of generality, we may
assume that f = pr. By Lemma 6.2, L /K must be both a g-group and an
s-group, which is not possible since g # s. Therefore, we are left with
fe{p,q,r, s}, and without loss of generality, we may take f = p. In light
of Lemma 6.1, we obtain {1, g, r, s, gr, gs} < cd(L). Using Lemma 6.2, we
see that L /K is a g-group. Suppose that we have degrees a € cd(/N) and
b € ¢cd (G | @). Then by Theorem 12.4 of [6], either pa € cd(G) or ¢
divides a. If pa € cd(G), it follows that pa € {p, pr, ps} and hence a €
{1, r,s}. If g divides a, then ¢ divides b so that b < {q, gr, gs}. Since ¢, r,
and s are primes, it follows that a € {q,r,s, gr, gs}. This implies that
cd(L) = {1,q,r,s,gr, gs}. Because of Lemma 6.1, we determine that
{1,7, s} € cd(K). Given characters 6 € Irr(K) with 6(1)  {q, gr, gs} and
x € Irr(G | 6), then since x(1)/60(1) divides |G:K| by Corollary 11.29 of
[6], we must have that x, = 6. By Gallagher’s theorem [6, Corollary 6.17],
we have px(1) € Irr(G), which is a contradiction. Therefore, we conclude
that cd(K) = {1, r, s}.

Let M = O»9(G) so that M c K and cd(M) = {1, r, s}. Take R to be
a {p, g}-complement for M and take U to be a Hall { p, g}-subgroup of M.
Since neither p nor g divides any character degrees of M, we may apply
Corollary 12.34 of [6] to see that U is a normal abelian subgroup of M.
Thus, [U, RIR is a normal subgroup of M having {p, g}-index. Because
M = O 9(G) c O 9(M), we have M = [U, RIR and U = [U, R]. Apply
Fitting’s lemma, where R acts on U, to determine that C,(R) = 1 and
hence N,,(R) = R. Take N to be a Hall {p, g}-subgroup of N;(R), so
N;(R) =RN and NN M =1. Using a Frattini argument, we obtain
G = MN;(R) = MRN = MN.

Let P be a Sylow p-subgroup and Q a Sylow g-subgroup of G. By
Corollary 11.29 of [6] any irreducible character of G having degree of
either p or g must restrict irreducibly to M, and hence to MP and MQ.
Thus, {1, p, ¢} is a subset of both cd(MP) and cd(MQ). Therefore, we may
apply Theorem 5.2 to MP and MQ. By that theorem, there are subgroups
N, and N, so that MP = MN,, MQ = MN,, M N N, = l,and M "N, = 1.
Also, we know that [M, N,] € Z(M) and [M, N,] € Z(M), where Z(M) is
a {p, q}'-group. Observe that [R, N,] c[M, N,] € Z(M) c R and [R, N,]
c Z(M) CR, so N, and N, are subgroups of N;(R). Furthermore, we
have |N,| =|MP:M|=INs(R)|, and similarly |N,| = IN;(R)l,. Thus, N,
and N, are Sylow subgroups of N;(R), and they must be conjugate to
subgroups of N. Without loss of generality, we may assume that they are
subgroups of N. Therefore, N = N,N,, and we determine that [M, N] =
[M, N,IM, N,] < Z(M).
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Recalling that U is a normal Hall subgroup of M, U is characteristic in
M. This implies that [U, N] € U. Also, we have [U, N] c [M, N] c Z(M),
which implies that [U, N] c U n Z(M) = 1 since Z(M) is a {p, q}'-group.
Therefore, we have U c C,(N)=UCi(N) and [R,N]=[M,N]c
Z(M) c Z(R). By Lemma 3.2, R =[R, N] X Cx(N) =[M, N] X C,(N).
We then obtain M = UR = UCRx(N) X [M,N]=C,,(N) X [M,N] and
so cd(C,,(N)) =cd(M) = {1, p,q} since [M, N] is abelian. Finally, we
have G = MN = C,,(N) X [M, NIN because C,,(N) centralizes both
[M,N]and N. It is easy to compute cd((M, NIN) ={1,r,s}. 1

7. OBTAINING THE CHARACTER DEGREES OF O”(G)

In light of Corollary 5.3, to prove Theorem A it suffices to show that
cd(0?(G)) = {1, q,r}, and this is what we spend the remainder of this
paper doing. Our strategy depends on the following. We take K to be a
subgroup of G that is maximal with the property that K is normal in G
and G /K is nonabelian. Since we may assume that G is solvable (from
Lemma 2.1), we know that cd(G /K) = {1, f} for some character degree f
(this is Lemma 12.3 of [6]). We break up our proof into different cases
depending on the value of f. There are three different cases: f = p,
felq,r}, and f € {pq, pr}. We know from Chapter 12 of [6] that G /K is
either an s-group for some prime s or G/K is a Frobenius group. It is
obvious that when f € {pq, pr} that G/K cannot be an s-group. It is not
so obvious, but we will prove that G /K is not an s-group when f € {q, r}.
We first prove the result when f = p.

THEOREM 7.1. Let p, q, and r be distinct primes. Suppose that G is
solvable with ¢cd(G) = {1, p, q, r, pq, pr}. If K is a normal subgroup of G so
that cd(G /K) = {1, p}, then cd(O?(G)) = {1, q, r}.

Proof. Let M be a subgroup of G containing K and let M be maximal
with respect to normality in G and G /M not abelian. Since cd(G/M) C
cd(G /K), we have cd(G /M) = cd(G/K) = {1, p}. From Chapter 12 of [6],
we know that G/M is either a p-group or G /M is a Frobenius group.
Suppose first that G /M is a p-group. Then O?(G) c M and ¢, r € cd(M)
(this is Lemma 6.1). Consider character degrees a € cd(M) and b
cd,,(G | a). We use Corollary 11.29 of [6] to show that b/a divides |G: M|
and is thus a power of p. If b > g, then p divides b and b € {p, pq, pr}. It
follows that a € {1, g, r}. It b = a, then by Lemma 6.1, pa € cd(G). Again,
we obtain pa € {p, pq, pr} and we deduce that a € {1, g, r}. We conclude
that cd(M) = {1, q, 7}, and since |[M:0?(G)| is a power of p, we have
proved the result in this case.
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We now assume that G /M is a Frobenius group with kernel N/M. By
Chapter 12 of [6], we know that p = |G:N| and that N/M is an elemen-
tary abelian s-group for some prime s # p. Observe that g and r both lie
in cd(N) (again this is Lemma 6.1) and that O?(G) C N. It suffices to
prove that cd(N) = {1,q,r} (using Lemma 6.1). Consider a character
degree a € cd(N). By Theorem 12.4 of [6], we know that either pa € cd(G)
or s divides a. When pa € cd(G), then pa € {p, pq, pr} and a € {1, q, r}.
If s & {q, r}, then s divides no character degree of G, and hence it divides
no character degree of N. Therefore, we determine that cd(N) = {1, q, r}
to prove the result. We may assume that s € {g, r}, and without loss
generality we take s =gq. Consider character degrees a < cd(N) and
b €cdy(G la) so that g divides a. It follows that ¢ divides b and
b € {q, pg}. Hence, we see that a is either g or pg, and we have shown
that {1,q,7} ccd(N) c{1,q, pq,r}. If cd(N) ={1,q,r}, we are done.
Therefore, we assume that cd(N) = {1, g, pq, }.

Since r is coprime to |G: M|, we apply Lemma 6.1 to see that r € cd(M).
If pg € cd(M), then Lemma 6.1 implies that p°q € cd(G). Since this
cannot happen, we have pg & cd(M) and p € cd(M). Hence, the distinct
character degrees of M are pairwise relatively prime, and thus |cd(M)| < 3
(see Problem 12.3 of [6]). Now we know that cd(M) = {1, p, r}. Write
Q = O4(N) and observe that Q € M and cd(Q) = (1, p, r}. Fix a character
v € Irr(N) having v(1) =r. By Corollary 11.29 of [6], we know that
v, € Irr(Q). We see that cd(N | »,) = {r}, and a theorem of Gallagher [6,
Corollary 6.17], shows that cd(N|v,) = {r(Da | a € cd(N/Q)}. We deter-
mine that cd(N /Q) = {1}, which forces N/Q to be abelian.

Consider a character u € Irr(M) so that u(1) = p. Again, by Corollary
11.29 of [6], we have u, € Irr(Q). Take T to be the stabilizer of w, in G
and observe that M c T. Since Q = 0%(Q), it follows that g does not
divide |Q:Q'l. Thus, g does not divide the determinantal order of w,.
Because |M:W|is a power of g, we may apply Corollary 6.28 to see that
Ko has a canonical extension o on M so that T is the stabilizer of & in G.
Since M was chosen to be maximal subject to being normal in G with
G /M nonabelian, we know that N/M is a chief factor for G. Further-
more, if 0 is an irreducible constituent of &”, then p divides 6(1) and
6(1) = pq. This implies that # must be G-invariant. Thus, we can use a
Frattini argument to see that G = TN. We now know that T N N is
normal in G and T N N = M. By Clifford’s theorem [6, Theorem 6.11], we
determine that u € Irr(N). We observe that pg = u™(1) = |[N:M| u(1)
=|N:M|p and [N:M| = gq.

Since cd(M) = {1, p, r}, we know that M has Fitting height of either 2
or 3. Assume first that M has a Fitting height of 3 and take F = F(M) and
E/F = F(M/F). By Lemma 4.1(a), we know that cd(M) =
{1,|M:E\| |E:F]}. This implies that M /E and E/F are both cyclic groups
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of prime order. Furthermore, since M /F is not nilpotent and |M:E| is a
prime, it follow that M /F is a Frobenius group of order pr with kernel
E/F. Let A be a faithful character in Irr(E /F). Fix C = C;(E /F), so that
by Lemma 5.1, G’ € C and C is the stabilizer of A in G. Because M /F is
a Frobenius group with kernel E/F, observe that C N M = E, which
implies that AM € Irr(M). As A(1) = 1, we have A\M(1) = [M:E| € cd(M).

Suppose first that |M:E| = p. If 6 is an irreducible constituent of A",
then p divides 0(1) and 6(1) = pg = |[N:E| = AN (D). It follows that AN = 9,
and since C N N is the stabilizer of A in N, we get C " N = E. On the
other hand, 0 is clearly G-invariant. From a Frattini argument, we obtain
G = CN. Therefore, we may conclude that G/E = C/E X N/E. Hence,
we have CM/M € Syl (G/M), but because CM is normal in G, this
contradicts the fact that G/M is a Frobenius group.

Now we must suppose that |M:E| =r. Take P containing F so that
P/F € Syl (G/F). Observe that E/F is a normal p-group in G /F imply-
ing that E C P. Whereas |P:F| = p?, we see that P/F is an abelian group,
so P c C. Consider a character y € Irr(G | A) and note that AM is a
constituent of yx,,. This implies that r divides y(1) and thus x(1) € {r, pr}.
Since |G:C| is greater than 1, divides x(1), and is not divisible by p, we
conclude that |G:C| = r. Hence, C /F is a normal r-complement for G /F.
Let R be a subgroup of G containing F so that R/F € Syl (G/F).
Observe that R € M and that M = ER. Thus, we have

[C,R]c[G,M]cG' NnMcCNnM=E.

In particular, R centralizes C/E. Since M /F is a Frobenius group with
kernel E/F, we have E = [E, R]F. By Fitting’s lemma, we have C/F =
D/F X [C, RIF/F, where D/F = CC/F(R). Since R centralizes C/E, we
see that [C, R]F C E = [E, R]F C [C, R]F. This implies D N E = F and
C = DE. Because E /F is in the center of C/F, we know that £ normal-
izes D. Therefore, D is a normal subgroup of G and G/D = M /F. This,
however, contradicts Lemma 6.2: G/D is a Frobenius group with kernel
C/D, where C/D is an elementary abelian p-group and r = |G:C]|, but
g € ¢d(G) and gr & cd(G). We conclude that M cannot have Fitting
height 3.

We now must deal with the case where M has Fitting height 2. Again,
take F = F(M). By Lemma 4.1(h), we know that M/F is cyclic and
|M:F| € Irr(M). Write C/F = C; ,-(M). By Lemma 5.1, we have G’ C C.
Using the fact that G/M is a Frobenius group with kernel N/M, we
determine that N = G'M. Because both G' and M are contained in C, it
follows that N € C. In particular, N/F is central-by-cyclic, so N/F is
abelian. Now we have N’ ¢ F c F(N) and, in fact, it is easy to see that
F(N) N M = F. By Lemma 1.1 of [4], we determine that | N:F(N)| € cd(N).
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Suppose that F(N) is not contained in M. Since |[N:M| = g, it follows that
N =FKN)M and that |N:F(N)| = |[M:F| € cd(N) N cd(M) = {1, r}.
Therefore, we have |[N:F(N)| = |[M:F| = r. By Lemma 6.1, we know that ¢
and pq lie in cd(F(N)). Furthermore, if we consider character degrees
a € cd(F(N)) and b € cdgy (N |a), then b/a divides r. When b > a,
then r divides b and b = r, implying that a = 1. Therefore {1, g, pq} C
cd(F(N)) c cd(N) = {1, g, pq, r}, but neither of these sets can be the
character degree set for the nilpotent group F(N). This implies that
F(N) c M.

We are now in the situation where F = F(N). Applying the facts that
F < M, that |N:F|e cd(N), and that g =|N:M|, we determine that
IN:F| = pq and that |[M:F| = p. Itis not difficult to show that cd(F) = {1, r}
(this follows from Lemma 4.1(b). Take P to be a subgroup of G containing
F so that P/F € Syl (G /F). Since M /F is a normal p-subgroup of G /F,
we know that M c P, and as |P:F| = p?, we conclude that P/F is an
abelian group. Also, we know that N/F is abelian group. Since G = PN
and M Cc N n P, we deduce that M/F ¢ Z(G/F) and, in particular, we
obtain [G, M] C F. Let Q be a subgroup of N containing F so that
Q/F € syl (N/F), which implies that Q /F € Syl (G /F). Because N =
MQ and M /F is central in N/F, we see that Q /F is normal in N/F (and
hence characteristic). It follows that Q is normal in G and O”(G) € Q. On
the other hand, we have |Q:F| = |N:M| = g and cd(F) = {1, r}. Since gr
divides no character degrees in Q, we obtain cd(Q) c {1, g, r}. Since |G:Q|
is a p-power, we use Lemma 6.1 to get {1,q,r} C cd(Q). Therefore,
cd(Q) = {1, g, r}, which yields the desired result. [

We continue in the scenario outlined at the beginning of this section.
Next, we prove the result when f € { pq, pr}. As we stated earlier, we need
only concern ourselves with the case where G /K is a Frobenius group.

THEOREM 7.2. Let p, q, and r be distinct primes. Assume that G is a
solvable group with ¢cd(G) = {1, p, q,r, pq, pr}. Suppose that K is a normal
subgroup of G so that G /K is a Frobenius group with cyclic complement and
elementary abelian s-group kernel N /K, where s is some prime. If |G:N| e
{pq, pr}, then cd(O?(G)) = {1, 4, r}.

Proof. Without loss of generality, we may assume that |G:N| = pg, and
from Lemma 6.2, we know that s = r. Also, we have cd(G/K) = {1, pqg}.
Take M = OP(G)N and observe that O?(G/N) = M /N so that |G:M| =
p and [M:N| = q. Note that M /K is a Frobenius group with kernel N/K
and cd(M/K) ={1,4}. By Lemma 6.1, we know that r € cd(M) and
r € cd(N). From Theorem 12.4 of [6], if one is given a character degree
a € cd(N), then either apg € cd(G) or r divides a. Since apg € cd(G)
implies that a = 1, we see that r divides every nonlinear character degree
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of N. Suppose that a > 1 and consider a character degree b € cd (G | a).
Then r divides b and b € {r, pr}. This implies that a € {r, pr}, so, {1,r} C
cd(N) c{1,r,pr} and {1,q,7r} ccd(M) c{1,q,r, pr}. If cd(N) = {1,1},
then cd(M) = {1,q,r} and we are done. Therefore, we assume that cd(N)
= {1, r, pr}, which implies that cd(M) = {1, g, r, pr}.

Suppose that we have an irreducible character 6 € Irr(N), so that
6(1) > 1. Since (1) pg & cd(G), Theorem 12.4(b) of [6] implies that V(6)
c K, where V(0) is the vanishing-off subgroup for 6. (This is the subgroup
of N that is generated by all the elements where 6 is not zero; see page
200 of [6].) Let « be an irreducible constituent of 6,.. Then we know that r
divides 0(1)/a(1), and we have cd(K) = {1, p}.

Consider an irreducible character y € Irr(M) so that x(1) € {q,r)}.
Then the irreducible constituents of y, are all linear, and K’ c ker( y).
Thus, we have {1, q,r} € cd(M/K"), but on the other hand, K/K’ is a
normal, abelian subgroup of M /K’ having index of gr" for some positive
integer n. By It0’s theorem [6, Theorem 6.15], we know that the character
degrees of M /K' divide gr". As gr and r? divide no character degrees of
G, we conclude that cd(M/K') = {1, q, r}.

Since |cd(K)| = 2, we know that K has a Fitting height of 2 or 1.
Suppose first that K is nilpotent (i.e., it has Fitting height 1). Then
KcFN)and K=P X Z, where P € Sylp(K) and Z < Hallp,(K). Note
that cd(P) = cd(K) = {1, p}. This implies that Z is abelian and Z < Z(K).
Take 7 € Irr(P), so that (1) = p, and observe that 7 X 1, extends to its
stabilizer in M (this is Corollary 6.28 of [6]). Let T be the stabilizer of
7 X 1, in G. Take 6 to be an irreducible constituent of (7 X 1,)". Since
p divides 0(1), we know that 6(1) = pr. Because 6 is induced by an
extension of =X 1, on T N N, we deduce that |[N:T N N| = r. Observe
that 6 extends to G, which shows 6 is G-invariant. By Theorem 12.4(b) of
[6], we know that V(0) € K. With 7 X 1, extending to T N N, it follows
that KcTNN=V(0) and TN N =K. This implies that |N:K|=r.
Using a Frattini argument, we obtain G = TN. Now, focus on a character
A € Irr(Z) and take S to be the stabilizer of A in G. It is easy to see that
the stabilizer of = X A in G is T N S. Considering that 7 X A € Irr(K)
and 7 X AM1) = p, we have |G:S N T|=r =|G:T| Therefore, SN T =T
and T stabilizes A, and thus T must stabilize every irreducible character of
Z. For any character A € Irr(Z) that is not G-invariant, T is the stabilizer
of Ain G.

Consider an irreducible character y € Irr(G), where x(1) = g, and let
o < Irr(K) be a constituent of y, so that o(1) = 1. Since cd(G/K) =
{1, pq}, we know that o # 1,. There exist characters « € Irr(P) and
B € Irr(Z) so that o = a X B. Suppose that ¢ is G-invariant. Since N/K
is cyclic, we know that o extends to N. Also, G/N and Irr(N /K) both act
on the set of extensions of ¢ to N. Thus, we may apply Glauberman’s
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lemma [6, Lemma 13.8] to see that o has a G-invariant extension to N.
Because G /N is cyclic, this extension must extend to G, so o extends to
G. Using Gallagher’s theorem [6, Corollary 6.17], we determine that
cd(G | o) = {1, pq}, which is a contradiction. Therefore, o is not G-
invariant. Let X be the stabilizer of o in G and observe that |G: X| = ¢.
It is easy to see that X is the intersection of the stabilizer of « in G with
the stabilizer of 8 in G. Thus, the stabilizer of 8 in G must contain both
T and X. Since the indices of T and X in G are coprime, we have
G = TX, and B is G-invariant. We now deduce that X is the stabilizer of
a in G. Suppose that there is some character A € Irr(Z) that is not
G-invariant. We decided in the last paragraph that the stabilizer of A in G
equals 7 which implies that the stabilizer of a X A in G is XN T. Itis
easy to see that |G: X N T| = gr, which is a contradiction since this index
divides a character degree of G, and no character degree of G is divisible
by gr. Therefore, every irreducible character of Z is G-invariant.

Observe that {1,q} = cd(M/K) C cd(M/K'Z) c cd(M/K") = {1, q, 1},
and if ¢ € Irr(M) is a character with degree r, then = (n X )V for
n € Irr(P) and ¢ € Irr(Z). Since ¢ is G-invariant, we have (n X 1,)N €
Irr(N/K'Z) with (g X 1,)¥(1) = (1) = r. Thus cd(N/K'Z) = {1, r} and
N/K'Z is not nilpotent. Therefore, cd(M/K'Z) ={1,q,r} and M/K'Z
has Fitting height 3. Define Y/K'Z = Z(M/K'Z). By Lemma 4.1(a), we
know that K/Y is an elementary abelian p-group and that cd(M/Y) =
cd(M/K'Z). Also, from Lemma 4.1(a), we determine that N/Y is a
Frobenius group with kernel K/Y. We see that G /N is cyclic of order pg
and N /K is cyclic of order r. Moreover, since G /K is a Frobenius group
with kernel N/K, we may apply Lemma 1.10 of [15] to see that cd(G /Y)
U {pgr} = {1, pg} U {r, pr, gr, pgr}. This contradicts the fact that gr &
cd(G). Thus, K is not nilpotent.

We now suppose that K has Fitting height 2 and let F = F(K). By
Lemma 1.1 of [4], we have |K:F| € cd(K), so |K:F| = p. Also, we see from
Lemma 1.6 of [15] that F is abelian. Write C/F = C ,-(K) and take
A € Irr(K/F) to be a faithful character. By Lemma 5.1, C is the stabilizer
of A in G. In addition, observe that C is normal in G and that K ¢ C.
Since G /K is a Frobenius group with kernel N /K, we use Satz V.8.16 of
[2] to say that either C < N or N € C, and as ¢r divides no character
degree of G, we deduce that N c C. Hence, K/F is central in N/F, so
the Sylow r-subgroup of N/F is normal in N/F. Because this subgroup is
also abelian, we conclude that N/F is abelian and N' c F € F(N). In
fact, it is easy to see that F = N N F(N). It follows that p = |K:F| divides
IN:F(N)|. Applying Lemma 1.1 of [4], we obtain |N:F(N)| € cd(N). Con-
sidering that p divides this index, we must have |N:F(N)| = pr. On the
other hand, the fact that |[F(N)K:F(N)| = |K:F|=p implies that
IN:F(N)K| = r. Take S to be a subgroup containing F(N), where S/F(N)
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is a p-complement for N/F(N). As N/F is abelian, S/F(N) is a charac-
teristic subgroup in N/F(N) and thus S is normal in G. Also, we observe
that F(N)K/F(N) € Syl (N/F(N)) and N = SF(N)K = SK. Further-
more, we know that |N:S| = p, so by Lemma 6.1, r € cd(S). In fact, it is
not difficult to show that S/F is a p-complement for N/F, and since
K/F € Sylp(N/F), it follows that S N K = F and S/F is isomorphic to
the r-group N/K. Because F is abelian, we can apply It6’s theorem [6,
Theorem 6.15], to see that every element of cd(S) is a power of r, so
cd(S) = {1, r}.

Take P/S € Syl (G/S). Because N/S is normal in G/S and is a
p-group, we know that N € P. We have p normal in G since G/N is
cyclic. Let Q/S € Syl (G/S) and observe that |G:S|=|G:N||N:S|=
pgp = p?q. We conclude that G = PQ and P N Q = S. In addition, Q acts
coprimely on the abelian group P/S. Writing D/S = C, ,4(Q), we use
Fitting’s lemma to obtain P/S =[P,Q1S/S X D/S, and since G/N is
cyclic, it follows that [P, Q]S € N < P. Also, note that D is a normal
subgroup of G and that O’(G)N = QN. Thus, either D < P or D = P. If
D < P, then G/D is a Frobenius group with kernel P/D. This contradicts
Lemma 6.2, since |G:P| = g and r N cd(G), where P/D is not an r-group
with gr & cd(G). We are left with D = P, which implies that Q is normal
in G and hence Q < O”(G). The fact that cd(S) = {1,r} and |Q:S|=¢q
yields cd(Q) c {1, q,r}. By Lemma 6.1, we know that ¢, r € cd(Q) and
cd(Q) = {1, g, r}. The desired conclusion is now proved. [

Despite appearances, we now proceed to the third prong of our strategy
outlined at the beginning of this section. While on the surface it may not
seem that this result deals with the case that f < {q, r}, we will show that
the hypotheses of Theorem 7.3 hold in this case. Note that in this theorem,
we are able to use the more general hypothesis that m and »n are coprime
integers that are greater that 1 and not divisible by p. This is certainly
satisfied by g and r when p, g, and r are distinct primes, which is the case
when we want to use this result.

THEOREM 7.3. Let p be a prime and let m and n be coprime integers that
are greater than 1 and not divisible by p. Suppose that G is a solvable group
and K is a normal subgroup of G, where G /K is a p'-group with ¢cd(G /K') =
{1, m, n} and cd(K) = {1, p}. Assume that cd(G) c {1, p, m, n, pm, pn}. If
p € cd(G), then cd(O?(G)) = {1, m, n}.

Proof. Without loss of generality, we may assume that K = O?'(G).
This implies that K/K' is a p-group. Take R to be a p-complement for G
so that G = RK. We will work by induction on |G|. We have two cases to
consider; either G /K’ has Fitting height 3 or G /K’ has Fitting height 2.
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Case 1. G /K' has Fitting height 3. Let F/K' = F(G/K') and E/F =
F(G/F). From Lemma 4.1(a), we know that F/K' is abelian, that G/E
and E /F are cyclic, and that cd(G/K’) = {1, |G:E|, | E:F|}. Without loss of
generality, we take |G:E| = m and |E:F| = n. By Lemma 4.1(a), we have
F/K'=S/K' X Z/K', where § = [E, F]IK' and Z/K' = Z(G/K’). Fur-
thermore, S /K’ is a chief factor for G so that S/K’ is elementary abelian
for some prime s that does not divide n. We also obtain cd(G/Z) =
cd(G/K"). Since K/K' is abelian, it follows that K c F, and we have two
possibilities: either s # p or s = p.

Assume that s # p. Since K/K’ is a p-group and |F:Z| is a power of s,
we see that K € Z. Hence, we know that [K,G] € K’. Because K' c K C
Z, we determine that cd(G/K) = cd(G/K') = cd(G/Z) = {1, m, n}. Note
that K/K' is a Sylow p-subgroup of G/K’' and RK'/K' is a p-comple-
ment for G/K'. Considering that K/K' is central in G /K’, it follows that
RK' is normal in G having p-power index, and this implies that O?(G) <
RK'. Observe that K' is a normal abelian subgroup of RK' having
p-index. By 1td’s theorem [6, Theorem 6.15], we determine that all of the
character degrees of RK' are powers of p. From Lemma 6.1, we know that
{1, m, n} c cd(RK’). If we have character degrees a € cd(RK’) and b €
cdr (G | @), then b/a divides |G:RK'| (see Corollary 11.29 of [6]) and
a = b, € {m, n}. Therefore, cd(RK") = cd(O”(G)) = {1, m, n}, which is the
desired result in this case.

We now must deal with the possibility that s = p. Since F = ZS, we
have G = FR = Z(SR). Because Z/K' is central in G /K’, it follows that
SR is normal in G having index that is a p-power. Thus, we know that
O?(G) C SR, and we use Lemma 6.1 to see that {m, n} c cd(SR/K’).
Since S /K’ is an abelian subgroup of SR/K"' having p'-index in SR/K', it
follows from 1td’s theorem [6, Theorem 6.15], that all the character
degrees of SR/S’ are not divisible by p. This implies that cd(SR/K') =
{1, m, n}. Also, note that G = KR = K(SR), so |G:SR| =|K: KN SR| =
|K:S|. Recall that S is a normal subgroup of K and that cd(K) = {1, p}.
Hence, the character degrees of S are contained in {1,p}. If S is abelian,
then cd(SR) = {1, m, n} by 1t0’s theorem and we get the desired result. If
S is not abelian and SR < G, then we may apply induction to see that
cd(O”(SR)) = {1, m, n}. In combination with O”(G) = O”(SR), this yields
the desired conclusion, so we may assume that G = SR. This says that
S =K.

Consider a character ¢ € Irr(G) so that (1) = p. Since K = 0?'(G),
we know by Corollary 11.29 of [6] that iy < Irr(K). Recall that K =
[E, FIK' and that K/K' is a chief factor of G. Let A be an irreducible
constituent of ... Because K has two character degrees, we know that K’
is abelian [6, Corollary 12.6]. This implies that A(1) = 1 and so ¢ # A. In
view of Theorem 6.18 of [6], we see that the remaining possibilities are that
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A is fully ramified with respect to K/K' or AX = .. If A is fully ramified
with respect to K/K', then since iy is G-invariant, ¢ is G-invariant, and
since p and r are not both 2, this violates Lemma 4.2. The remaining
possibility is ¢, = AX. By Lemma 4.1(a), there is a positive integer a so
that |K:K'| = p®. We now have (1) = AX(1) = |[K:K'| = p* > p = (1),
which is a contradiction. This completes the proof in this case.

Case 2. G /K’ has Fitting height 2. Again, write F/K' = F(G/K'). By
Lemma 4.1(b), we know that |G:F| e cd(G/K'), and without loss of
generality, we may suppose that |G:F| = m. This implies that cd(F /K') =
{1, n} so that n is a power of some prime g. Also from Lemma 4.1(b), we
know that F/K' = QK'/K' X Z/K', where Q € Syl (G) and Z/K' C
Z(G/K'). It is easy to see that cd(QK'/K') = cd(F/K'). Since K/K' €
Syl (G/K"), we must have K c Z and [K,G] C K'. Because K/K' is
central in G /K, it follows that RK' is normal in G having p-power index
so that O?(G) < RK'. Since [cd(K)| = 2, the derived length of K is 2 and
K' is abelian. Using 1t0’s theorem [6, Theorem 6.15], and the fact that the
index of K’ in RK' is not divisible by p, the character degrees of RK' are
also not divisible by p. In light of the character degrees of G, we
determine that cd(RK') C {1, m, n}. On the other hand, since |G:RK'| is a
p-power, we know that {m,n} c cd(RK’), and this yields the desired
conclusion. 1

We now have assembled everything needed to prove Theorem A.

Proof of Theorem A. Because of Lemma 2.1, we know that G is
solvable. In view of Corollary 5.3, it suffices to show that cd(O”(G)) =
{1, ¢, r}. Let K be maximal in G so that K is normal in G and G /K is not
abelian. By Chapter 12 of [6], we know that cd(G/K) = {1, f} for some
integer f < cd(G). If f=p, then we are done by Theorem 7.1. If f &
{pq, pr}, then by Lemma 12.3 of [6], we know that G /K is a Frobenius
group, and we are done by Theorem 7.2. The remaining possibility is that
f € {q, r}. Without loss of generality, we take f = g. Observe that if G/K
were a g-group, then r € cd(K) and gr € cd(G) by Lemma 6.1. Hence,
G /K is a Frobenius group with kernel N/K, where |G:N| = f = g, and by
Lemma 6.2, we know that N /K is an r-group and O”(G) c K. Consider a
character degree a € cd(N). From Theorem 12.4 of [6], we know that
either ag € c¢d(G) or r divides a. When aq € cd(G), either a =1 or
a = p. If r divides a, then as a divides some character degree of G, we
conclude that « is either r or pr, and so we see that cd(N) c {1, p, r, pr}.
On the other hand, we can apply Lemma 6.1 to show that {1, p, r, pr} C
cd(NV), so we have cd(N) = {1, p, r, pr}. In another application of Lemma
6.1, we determine that p € cd(K). On the other hand, given a character
degree ¢ € cd(K) with ¢ € {r, pr}, we obtain ¢ € cd(G | ¢) by looking at
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the possible values in cd(G). Using Lemma 6.1 once more, we have
gc € cd(G). This is a contradiction because gc is divisible by gr, but no
character degree of G is divisible by gr. Therefore, we can conclude that
cd(K) = {1, p}. It is easy to see that cd(G /K') = {1, ¢, r}, and we are done
by Theorem 7.3. |

8. AN EXAMPLE

In this section, we will present an example to show that, given any
coprime integers m and n, there exists a group G with character degrees
cd(G) = {1, m, n, mn}, where G is not a direct product.

ExampLE 8.1. Let m and n be coprime integers and let p be a prime
that does not divide either m or n. Write d = ord,,,(p), so that d is the
smallest integer where p¢ = 1 mod mn (we say that d is the order of p
with respect to mn). Take F to be the Galois field of order p? and let K
be a direct sum of three copies of the additive group of F. We know that
mn divides p? — 1. We write X for the unique subgroup of the multiplica-
tive group of F having order mn. We now define an action of C on K by
(a,b,c) =(a*x,b=(x"),c=(x™)) forall elements a, b, c € F and x € X.
It is easy to see that this action is well defined. We use G to denote the
semidirect product of X acting on K. Observe that K is a normal abelian
subgroup in G having index mn. Thus, by 1td’s theorem [6, Theorem 6.15],
we know that every character degree of G divides mn. Observe that every
irreducible character of K having the form 1 X « X 1, where « # 1, lies
in an orbit of size m, and every one having the form 1 X 1 X B, where
B # 1, lies in an orbit of size n. The remaining nonprincipal irreducible
characters of K lie in orbits of size mn. We conclude that cd(G) =
{1, m, n, mn}. On the other hand, it is easy to see that G is not a direct
product.

9. QUESTIONS

We would like to conclude by proposing two open questions:

Question 9.1. Is it possible to relax the primeness hypothesis in Theo-
rems A and B? By this we mean the following: suppose that a, b, ¢, and d
are pairwise relatively prime positive integers. If G is a group with
cd(G) ={1,a,b,c,ab,ac}, must G =A X B, where cd(A4) ={1,a} and
cd(B) = {1, b, ¢}? Similarly, if cd(G) ={1,a,b,c,d, ac, ad, bc, bd}, must
G = A X B, where cd(A4) = {1, a, b} and cd(B) = {1, ¢, d}?
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There are several obstacles to extending our results to the more general
guestion, not least of which is that our use of the classification depends on
the fact that the character degrees are square-free. Also, in each of
Theorems 5.2, 7.1, and 7.2, there are places where the fact that the
character degrees are primes is used, and in many of these places, it
appears that it is nontrivial to weaken this hypothesis.

Question 9.2. Can one classify those groups G that have cd(G) =
{1, m, n, mn}, where m and n are relatively prime integers?

This may be a difficult question. Besides the construction found in
Section 8, we know of several other ways to construct such groups. Note
that the construction in Section 8 has derived length and Fitting height
that both equal 2. We know of examples where the Fitting height is 2 and
the derived length is 3, and examples where the derived length and Fitting
height are both 3. Is it possible in this case to prove that 3 is an upper
bound for either the Fitting height or the derived length of these groups?
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