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Metabolism is comprised of networks of chemical transformations, organized into integrated biochemical
pathways that are the basis of cellular operation, and function to sustain life. Metabolism, and thus life, is
not static. The rate of metabolites transitioning through biochemical pathways (i.e., flux) determines cel-
lular phenotypes, and is constantly changing in response to genetic or environmental perturbations. Each
change evokes a response in metabolic pathway flow, and the quantification of fluxes under varied con-
ditions helps to elucidate major and minor routes, and regulatory aspects of metabolism. To measure
fluxes requires experimental methods that assess the movements and transformations of metabolites
without creating artifacts. Isotopic labeling fills this role and is a long-standing experimental approach
to identify pathways and quantify their metabolic relevance in different tissues or under different condi-
tions. The application of labeling techniques to plant science is however far from reaching it potential. In
light of advances in genetics and molecular biology that provide a means to alter metabolism, and given
recent improvements in instrumentation, computational tools and available isotopes, the use of isotopic
labeling to probe metabolism is becoming more and more powerful. We review the principal analytical
methods for isotopic labeling with a focus on seminal studies of pathways and fluxes in lipid metabolism
and carbon partitioning through central metabolism. Central carbon metabolic steps are directly linked to
lipid production by serving to generate the precursors for fatty acid biosynthesis and lipid assembly.
Additionally some of the ideas for labeling techniques that may be most applicable for lipid metabolism
in the future were originally developed to investigate other aspects of central metabolism. We conclude
by describing recent advances that will play an important future role in quantifying flux and metabolic
operation in plant tissues.

Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

1.1. Network fluxes define cellular phenotype and are measured with
isotope labeling

Plant cellular function is defined by networks of enzymatic reac-
tions with substrates and products that are linked by mass and
energy balances. Through developmental or environmental cues
the expression of genes change the operating network and under-
score the dynamic nature of metabolism. Fluxes establish the prod-
ucts of metabolism and can be measured through the rate of
accumulation for end products (i.e., compounds that are not turned
over such as storage protein or oil in a seed). However at metabolic
steady state cellular intermediates do not accumulate and are both
produced and consumed at rates that cannot be readily inferred
from metabolite concentrations alone (i.e., metabolomics). Thus as
a metabolic attribute, fluxes must be assessed through other means.
Isotopes can serve as ‘‘tracers’’ that describe the rate of conversion
between pools over time, by providing a change in metabolite
molecular mass that occurs without perturbing metabolism.
Therefore the isotopic ‘‘labeling’’ indicates formation and turnover
through movement of an isotope from one metabolite to the next,
leading to flux descriptions that are important to studies on meta-
bolic operation, regulation and control [1].

1.2. Cellular roles for lipids in metabolism are diverse and complex

In biology few types of molecules serve as many diverse roles
or are as poorly characterized as lipids. The Arabidopsis genome
contains over 600 genes annotated with functions putatively tied
to lipid and/or fatty acid catabolism and anabolism, however less
than half of the genes have been characterized with in vivo stud-
ies of mutants that demonstrate a clear role in lipid metabolism
[2,3]. In the most rigorously studied pathways many enzymes
have multiple isoforms that conduct identical or very similar bio-
chemical reactions, but reflect specialized cellular, subcellular or
developmental activities for different aspects of lipid metabolism.
Whereas some mechanisms of lipid metabolism are conserved
between organisms, the subcellular descriptions of biosynthesis
and degradation in plants are distinct from other species [4].
Thus textbook descriptions of lipid metabolism are not universal,
and the operational network of metabolic reactions can vary
between species, tissues, and cells; as well as across developmen-
tal and environmental conditions. Fluxes change to accommodate
the different cellular demands for lipid production (e.g., mem-
brane, surface, or storage lipids), as well as turnover (e.g., storage
oil breakdown during germination) necessary to produce
other metabolic precursors, energy, and to maintain homeostasis
[5,6].

Lipids comprise membranes that are a defining feature of cell
biology. Membrane lipids separate cells from their environment
(i.e., plasma membranes) and establish subcellular organelles that
compartmentalize metabolism in eukaryotes. Layered on surfaces,
cutin and suberin provide a resistive, protective barrier to natural
elements, while other lipids perform signaling functions or serve
in an energy storage capacity. Triacylglycerols (TAG) in the seeds
(e.g., soybean, rapeseed, sunflower) or fruit (e.g., olive, avocado,
palm) of many plants are an energy dense storage form of biomass.
Apart from pericarp tissues, stored oils are remobilized at ger-
mination providing carbon and ATP for plant growth until auto-
trophic metabolism can be sustained [7]. The biochemistry and
genetics of storage lipid accumulation have received extensive
attention, and this area of research remains an important focus
in part because acyl chains are one of the most highly reduced
forms of carbon (i.e., approximately twice the energy content per
gram of dry weight than carbohydrates or storage protein) and
can be used to supplant non-renewable petroleum in many appli-
cations. Our dependence on TAGs for food, fuel and chemicals con-
tributes to an industry currently estimated at over $120 billion per
year (http://lipidlibrary.aocs.org/market/prices.htm). Despite the
many roles for lipids and intense research in plant lipid biochem-
istry and genetics over the past half century, significant gaps in
our understanding remain, foremost among these are the identity
and in vivo function of genes and enzymatic reaction networks
involved in lipid metabolism [2,3].

1.3. The scope of opportunities for lipid production and scientific
discovery

Given that oil content varies in plants from less than 1% of dry
weight (e.g., lentils, potatoes) to approximately 70% (pecans, wal-
nuts) and can exceed 88% in mesocarps (e.g., palm); there exists a
large difference in metabolic operation among various cells that
is an inviting prospect for engineering increased oil accumulation
in plants. Tissues such as leaves are usually less than 5% lipid,
however the abundance of leafy biomass vs. seed/mesocarp tissue
in most plants has led to significant recent efforts to engineer
lipid accumulation into vegetative tissues for biofuels [8–14]. To

http://lipidlibrary.aocs.org/market/prices.htm


Fig. 1. Plants operate at a systems level with different cellular metabolic activities and biomass compositions in different tissues. Simplified networks of metabolism are
shown. Leaves that are primarily autotrophic assimilate CO2 through the Calvin cycle (green arrows) and glycolytic enzymes (red arrows) to make organic compounds, mostly
sucrose, with energy from sunlight. Seeds can operate hetero- or mixotrophically converting sugars and amino acids into storage reserves that can include significant
amounts of storage lipid. Seeds may have duplicated pentose phosphate (blue arrows) and glycolytic pathway activities along with TCA cycle (purple arrows) and significant
amino acid biosynthetic flux necessary to make storage reserves. In some instances green seeds also possess the capacity to reassimilate respired CO2. Roots receive carbon,
predominantly as sucrose from other plant tissues and function heterotrophically with significant TCA cycle activities and oxidative pentose phosphate metabolism to
assimilate nitrogen and meet cellular demands. Together the cellular activities characterize the plant as a system. (Abbreviations: ADPG, adenosine diphosphoglucose; AKG,
alpha-ketoglutarate; AA, amino acid; E4P, erythrose-4-phosphate; F6P, fructose-6-phosphate; G6P, glucose-6-phosphate; HP, hexose phosphate; N, nitrogen; OAA,
oxaloacetate; PYR, pyruvate; R5P, ribose-5-phosphate; RuBP, ribulose 1,5-bisphosphate; S7P, sedoheptulose-7-phosphate; TCA, tricarboxylic acid cycle; TP, triose phosphate;
UDPG, uridine diphosphoglucose; 3-PGA, 3-phosphoglyceric acid).
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date there have been a few examples of significantly altered oil
levels in crop plants [15–17], and other engineering efforts that
demonstrate the potential to change fatty acid composition for
health or industrial applications, though mechanisms that control
FA synthesis, FA modification, and accumulation in plant tissues
are still not well understood [18–20]. Future progress will require
a more complete understanding of central carbon metabolism
including further annotation of genes, networks and enzyme
function, regulation of central carbon flux with FA biosynthesis,
and the coordination of FA modification with lipid assembly
and turnover to produce more oil with specific FA compositions.
Advances in genetics and omic-level analyses could be
complemented by isotopic labeling of targeted pathways as well
as larger network flux analyses; providing the rationale to revisit
what has been learned through prior isotope investigations.
In this review we first provide a description of the analytical
methods including a description of isotopes, instrumentation,
and different types of experiments. Next some of the seminal dis-
coveries in metabolism that were established through labeling
analyses with substrates commonly used to explore lipids are
reviewed. After some general considerations on computational
metabolic flux analysis, we describe what insights about reg-
ulation and control have been learned from experiments that per-
turbed metabolism. Finally, the most recent developments in the
application of isotope labeling, novel instrumentation and flux
analysis strategies are described that represent a significant
opportunity for future explorations in lipid metabolism and that
aim to define plant function at the systems level (e.g., the coordi-
nated auto-, mixo- and heterotrophic carbon metabolism and reg-
ulation across cells and tissues, Fig. 1).
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2. General considerations

2.1. Elemental isotopes used in biochemical studies

Isotopes of low natural abundance can serve as tracers and are
used to describe metabolic pathways, enzymatic reaction mecha-
nisms and movement of atoms within plant cells. The isotopes
for an element contain differing numbers of neutrons resulting in
unique masses. Isotopes can be stable or radioactive based upon
their half-lives, requiring different detection techniques and con-
tributing to their use in scientific explorations. In most labeling
experiments, a portion of the most abundant isotope of an element
(e.g., 12C, 16O, 1H, 14N) is substituted with either a different stable
(13C, 2H, 15N, 17O or 18O), or long-lived radioactive (14C, 3H, 35S,
32P, 33P) form. Other radioactive tracers with very short half-lives
(e.g., 11C, half-life �20 min relative to 14C, half-life 5730 years)
can be synthesized just prior to use and assessed by positron
emission tomography (PET) analysis [21–23]. Such short-lived
radioisotope investigations are more specialized and will not be
further considered though their application in photosynthesis, long
distance transport and other plant processes are becoming more
common [22,24–26].
Fig. 2. NMR and mass spectra. A hypothetical set of NMR and mass spectra from
analysis of a three carbon molecule that contains unlabeled (12-carbon; open
circles) and isotopically labeled (13-carbon; closed circles) in various combinations
known as isotopomers. For a 3 carbon molecule there can be up to 23 = 8
isotopomer labeling descriptions because each of the 3 carbons can be either
labeled or unlabeled. The bar graph is a typical description provided by mass
spectrometry, where the intensity of the [M]+ to [M+3]+ peaks represent the relative
abundance of labeled species within the population for the compound. The isotopic
composition is measured based upon mass and does not resolve the location of the
isotope within the metabolite, rather the amount of labeling is distinguished only
by the differences in weight detected through mass spectrometry, thus ‘‘mass
isotopomers’’. For the three carbon molecule there are four mass isotopomers. The
interpretation of NMR spectra is often more complex and indicates the amount of
labeling within a particular position in the molecule as well as its relation to other
labeled molecules within the carbon backbone. In carbon-13 spectra the higher
degree of labeled carbons bonded to each other creates more complex peak splitting
patterns, thus the pattern of peaks for carbon 2 (C2) is more complicated because it
can be connected to zero, one or two 13C atoms. Each connected 13C atom resulting
in splitting of the peaks. NMR spectra provide ‘‘positional isotopomer’’ information
indicating the enrichment of a particular atom and also describe bond-con-
nectedness to other 13C atoms.
The type of information obtained from stable or radioactive iso-
topic enrichment is distinct. Stable isotopic enrichment can be
assessed within individual atoms of the molecule (e.g., using
NMR), whereas radioactivity generally describes the overall label-
ing of the molecule unless additional techniques (e.g., a lipolytic
cleavage) are employed. Assaying the incorporation of radioisotope
into biomass does not require prior separation of metabolites per
se and sensitive detection of radioactivity through liquid scin-
tillation counting or autoradiography is not influenced by the pres-
ence of unlabeled metabolites. This can be of benefit because the
kinetics of labeling can be established using very low ‘tracer’
amounts of radioisotope for short labeling durations (a few sec-
onds to a few hours) presuming that the endogenous substrate
pool labels quickly (i.e., little to no lag time). By definition isotopes
contain the same number of protons per atom and maintain very
similar biophysical properties; allowing investigations to probe
metabolism with minimal perturbation from label introduction.
Nonetheless, care is necessary to avoid enzymatic discrimination
between labeled and unlabeled elements, (i.e., isotope discrim-
ination or kinetic isotope effects) which is well-known and can
lead to artifacts [27–30]. In some cases these same distinctions
have been used to constructively characterize physiology as
described elsewhere [31,32].

With stable isotopes there is less of an enzymatic preference
[33], and in addition stable isotopes do not require special handling
precautions. However, possibly the greatest benefit is that the
analysis of stable isotopes by mass spectrometry and NMR can pro-
vide additional positional and compositional information at the
atom and bond levels of metabolites without laborious prepara-
tions. The description of isotopic composition for a compound is
referred to as the set of isotopologues whereas isomers with
equivalent numbers of each isotopic atom but at different positions
in the molecule are referred to as isotopomers (i.e., isotopic iso-
mers; [34]). The terms ‘‘mass’’ or ‘‘positional isotopomers’’ are often
used to describe molecule composition that varies by the number of
Fig. 3. Transient and steady state isotopic (e.g., 13C) incorporation from pulse or
pulse-chase labeling experiments. Isotopic labeling experiments display the
incorporation into or dilution of isotope from metabolites that accompanies the
metabolic operation of the biological system. (A) Providing a continuous source or
‘‘pulse’’ of 13C to metabolism results in an increasing amount of isotopic labeling in
metabolites that eventually approaches a steady state value. If the source of carbon
is completely 13C, the metabolite will eventually approach 100% labeled, presuming
it is an intermediate that is completely turned over. (B) In a pulse-chase experiment
the isotope is provided for only a limited duration resulting in labeling for a period
of time followed by dilution when the source of carbon is switched from 13C to 12C.



Fig. 4. Isotope distribution in heterotrophic and autotrophic pathways. Bond
breaking and reforming reactions of metabolism alter the metabolic labeling of
metabolites. (A) Provision of both unlabeled (open circles) and isotopically labeled
(closed circles) glucose to cells utilizing the oxidative pentose phosphate pathway
(OPPP) and glycolytic steps will result in different labeling descriptions in
intermediates such as fructose-6-phosphate as well as derived end products such
as starch or cell wall. (B) In autotrophic metabolism the provision of isotopically
labeled carbon as [13C]O2 results in complete labeling of metabolites over time,
therefore information on the fluxes through metabolism must be obtained by
measuring the transient incorporation of isotopes.

A B P

Time

Fig. 5. Labeling kinetics in a linear metabolic pathway. Labeling of network
intermediates in series from a continuous pulse of isotope resulting in intermedi-
ates that approach a steady state labeling value and a product pool that
accumulates label over time throughout the experimental duration.
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each isotope (i.e., causing changes in mass) or that varies by the
location within the molecular structure (i.e., position). The analysis
of relative labeling with stable isotopes within a molecule was
coined Mass Isotopomer Distribution Analysis (MIDA) by
Hellerstein and colleagues [35]. Along with Kelleher and
Masterson [36], these authors established frameworks to describe
FA biosynthesis and applied the concepts with [13C]glucose,
[13C]acetate, and 2H2O experiments to inspect aspects of metabo-
lism [37,38]. As methods to correct for natural abundance levels
of isotopes were developed [39,40], the labeling description
became highly quantitative and well-positioned for computational
modeling developments such as metabolic flux analysis [MFA, see
Section 4.1; [41–43]] that is frequently used to study aspects of
central metabolism.
2.2. Measuring isotopic enrichment with MS and NMR

Mass spectrometry (MS) and nuclear magnetic resonance
(NMR) are complementary techniques to assess stable isotope
incorporation (Fig. 2). Mass spectrometry ‘‘weighs’’ the composi-
tion of isotopes that result in altered mass. Through interpretation
of fragmentation products, MS can assess the degree of labeling in
molecular substituents and in theory the positional location of the
isotope within a molecule. NMR is an atomic property that distin-
guishes isotopes with non-zero nuclear magnetic moments and is
well-suited for positional labeling analysis. General principles of
NMR spectroscopy emphasize its versatility to assess metabolism
in entire tissues or through the analysis of extracted metabolites
[44–50]. NMR requires more material, additional transient scans,
reduced temperature or special tubes to accommodate the reduced
sensitivity of instruments. Multi-dimensional NMR experiments or
modification of the solution or metabolites chemically are also
common techniques used to improve resolution and sensitivity
[51–56]. Though the extra effort and lower throughput of NMR
has limited its use to more specialized investigations, quan-
tification of positional enrichment with NMR can lead to more
intuitive assessments of metabolic pathways (relative to mass iso-
topomer descriptions) that may be especially important when the
network is not well-characterized a priori. Recent advances in NMR
are discussed further elsewhere [49,53].
2.3. Steady state and transient labeling

Isotope studies take one of several forms based on whether
steady state, pulse, or pulse-chase experiments will be most infor-
mative. Steady state labeling analyses imply that the isotope is
provided in excess for sufficient time (usually minutes to hours)
to achieve an unchanging description of labeling in metabolic
intermediates (Fig. 3). In developing seeds or cell-culture suspen-
sions metabolism operates at a pseudo steady state during periods
of development, therefore isotopically labeling these tissues with a
mixture of labeled and unlabeled substrates will result in redis-
tribution of the isotope that reflects pathway use and flux. Such
studies have been regularly performed with metabolic flux analysis
to document the partitioning of carbon, energy and reducing
equivalents to oil, protein and carbohydrate in seeds or cell cul-
tures [57–64]. However steady state labeling analyses are limited
to assessments of pathways that enzymatically rearrange the dis-
tribution of isotope. For example, in central metabolism of devel-
oping seeds the provision of [13C]labeled glucose will result in
fructose-6-phosphate (F6P) that is labeled at different positions
depending on the degree of reversibility of glycolysis and the use
of the oxidative pentose pathway (Fig. 4A). The labeling in F6P
can be measured directly with LC-MS/MS or inferred from mea-
surements of plant storage products such as starch and cell wall.

More challenging is the study of autotrophic metabolism which
depends upon CO2 as a source of carbon. CO2 does not contain car-
bon–carbon bonds that can be rearranged and the incorporation of
[13C]O2 will lead to complete enrichment of metabolites at steady
state which are no more informative for pathway flux than the ini-
tial unlabeled description (Fig. 4B, [65]). Thus the study of leaves
and other autotrophic cells may be best suited to transient or
‘‘nonstationary’’ isotopic analysis [66–70]. Pathways that have
limited carbon bond rearrangements or network branching such
as specialized metabolite production or pathways based on a single
precursor like fatty acid biosynthesis that utilizes acetyl-CoA units
have typically been investigated utilizing the kinetic incorporation
of radioisotopes over time (i.e., pulse labeling at metabolic steady
state as described below). However these pathways may also be
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prime candidates for nonstationary metabolic flux analysis with
stable isotopes in the future (see Section 4).

The incorporation of isotopes over time provides a transient,
dynamic description of pathway activity and is referred to as a
pulse labeling experiment (Fig. 3A). If the experiment is extended
after the labeled substrate has been removed and the change in
label accumulation or depletion in metabolites is measured dur-
ing this ‘‘chase’’ period, then the experiment is referred to as a
‘‘pulse-chase’’ experiment (Fig. 3B). Pulse and pulse-chase experi-
ments utilize the kinetics of isotopic labeling over time to deter-
mine the precursor–product relationships of intermediates within
a metabolic pathway or network [71]. In a pulse experiment the
individual pools become labeled in the order which they are gen-
erated by metabolism (Fig. 5). Assuming there are no diffusion or
uptake issues for the substrate, the lag time for labeling in the
first metabolite will be very small and the incorporation of label
over time into the first metabolite pool will reflect a hyperbolic
pattern. If diffusion is an issue the curve will exhibit a lag period
and become sigmoidal. The first metabolite in a sequence incor-
porates label at a linear rate but then starts to level off as steady
state enrichment is achieved. The metabolic intermediates down-
stream will exhibit sigmoidal curves with an initial lag period fol-
lowed by more rapid linear labeling then approach a maximal
value. The lag reflects the time needed to fill precursor pools.
Products of metabolism can lag significantly because in the net-
work they are often far from the source of label. As products
are not turned over into other pools they will continue to
Fig. 6. Label introduction into central carbon and fatty acid biosynthetic pathways for lip
bond breaking and reforming reactions and therefore provide complementary inform
exogenous isotopically labeled sources are indicated by green boxes. Sugars and CO2 are
phosphate pathways, and glycolysis and are therefore augmented significantly in the prod
metabolism because it is directly converted to acetyl-CoA and is cheap relative to other la
ACP chain until fatty acids are 16–18 carbons long (i.e., for long chain fatty acids). The acy
the plastid or the endoplasmic reticulum. Closed circles with numbers refer to specific en
thioesterase that are specifically referenced in text.
accumulate label during the course of the experiment (Fig. 5).
Thus, a pulse labeling experiment with short time points (typi-
cally seconds, minutes, to only a few hours) can be used to assess
the labeling of each intermediate in the pathway and establish
network flow. Following the labeling with a chase period (i.e.,
pulse-chase experiment) enables the tracking of isotopic enrich-
ment as well as dilution and is potentially more informative
because reactions that create as well as consume a pool can both
be elucidated. Though conceptually straightforward, the move-
ment through intermediates can be challenging to establish
because many metabolic steps operate reversibly with forward
and backward reaction rates near-equilibrium. As a consequence
isotope flow between successive intermediates can exceed the
net flux of molecules transferred from one pool to the next.
Thus as with any experiment the information obtained will
reflect the biological system and its measureable attributes.

Together these considerations contribute to the design of
the experimental labeling strategy that minimally addresses:
(a) the time scales of metabolism (i.e., both rate of metabolism,
and the practical experimental duration including the viability of
excised tissue during incubation), (b) the pathway reactions including
atoms and bonds that are altered, (c) the sufficient uptake of the
labeled substrate and its impact on metabolism, and (d) the capacity
to measure label incorporation in relevant metabolites. Given the
number of considerations and the time and resources necessary to
do labeling studies, in silico methods that can optimize the experi-
mental design have received considerable attention [72–79].
id analysis. Isotopes can be supplied through substrates that are involved in different
ation about network operation and pathway flux. A number of commonly used
incorporated through production of sugar phosphates by the Calvin cycle, pentose
uction of acetyl-CoA. Labeled acetate is frequently used to assess fatty acid and lipid

beled substrates. Fatty acid biosynthesis repeatedly adds an acetyl group to the acyl-
l chains are then released from ACP and used for lipid production that takes place in

zymatic steps including: plastidic pyruvate kinase and medium chain acyl-ACP



Fig. 7. Network descriptions and precursor–product relationships for lipid assembly. (A) The Kennedy pathway with linear incorporation of acyl chains into glycerol-
backbone to generate TAG. (B) Additional mechanism of acyl editing that exchanges FA between the acyl-CoA pool and PC prior to TAG biosynthesis by the Kennedy pathway.
(C) Acyl editing with multiple DAG pools that further emphasize PC involvement in TAG production that may not involve the Kennedy pathway. The precursor–product
panels to the right of each figure indicate the different qualitative labeling patterns for each of three lipid groups. The patterns are dependent on the network relationships
including the pathway sequence to TAG production. DAG labeling from [14C]acetate prior to PC or TAG is indicative of de novo glycerolipid biosynthesis, whereas acyl editing
results in faster labeling of PC relative to DAG and TAG when [14C]acetate is provided. If the production of TAG requires PC as an intermediate between two DAG pools (shown
in red) then the [14C]glycerol labeling will result in more complicated labeling trajectories. The metabolic labeling patterns are subject to the number and size of individual
pools, net and reversible fluxes and the network that splits and joins reactions for metabolites. Therefore the panels can vary extensively from the most basic description of a
precursor–product relationship presented in Fig. 5. (Abbreviations: G3P, glycerol-3-phosphate; LPA, lyso-phosphatidic acid; PA, phosphatidic acid; DAG, diacylglycerol; TAG,
triacylglycerol; PC, phosphatidylcholine; FAS, fatty acid biosynthesis; DGAT, acyl-CoA:diacylglycerol acyltransferase; PDAT, phospholipid:diacylglycerol acyltransferase; CPT,
CDP-choline:diacylglycerol cholinephosphotransferase; PDCT, phosphatydlcholine:diacylglycerol cholinephosphotransferase; rCPT, reverse-CPT; PLD, phospholipase D; PAP,
phosphatidic acid phosphatase; PLC, phospholipase C; dpm, disintegrations per minute).
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3. Pioneering investigations in lipid labeling to modern day

3.1. Enzymatic steps elucidated by tracking isotopes

Before the advent of modern day molecular biology techniques,
isotopic labeling studies were used to elucidate biochemical
pathways including substrates and products of individual reac-
tions. In the 1940’s Ruben and Kamen established that water not
carbon dioxide is the source of evolved oxygen using H2[18O]
[80]. The discovery and implementation of carbon-14 by the same
investigators revealed that the ‘dark’ reactions of carbon fixation
need not take place in light [81] and provided inspiration for the
work of Benson and Calvin that eventually led to descriptions of
the Calvin-Benson cycle [82] as well as C4 metabolism [83]. The
early examples made clear the value offered by tracers, but
methodological complexities and the laborious nature of the
analytical biochemistry, along with the limited access to tracers
suppressed a more widespread application. Cholesterol and fatty
acid measurements based on 2H incorporation, for example
[84,85], involved tedious measurements of the density of heavy
water after combustion of organic compounds. Therefore radioac-
tivity-based approaches gained favor because they could be used
with routine lipid extraction methods [86] and could be sensitively
measured.

Fatty acid biosynthesis and lipid metabolism have been studied
extensively using labeled acetate [reviewed in [87,88]]. While not
the endogenous substrate for fatty acid metabolism [89], acetate
is readily taken up and incorporated into both the cytosolic
and plastidic acetyl-CoA pools and subsequently utilized to
make newly synthesized fatty acids [90,91] and also track the
incorporation of newly synthesized FAs into glycerolipids [e.g.,
[92,93]]. Inorganic carbon [e.g., [89,91,93,94]] isotopically enriched
water [e.g., [95]], glycerol [e.g., [96,97]], fatty acids [e.g., [98–101]]
as well as other substrates [e.g., [27,97,102–104]] have all been
used to probe lipid metabolism depending upon the tissue or
reaction(s) of interest (Fig. 6). The selection of substrates remains
a critical aspect to experimental design but was particularly
important in early studies that required biosynthesis of the radi-
olabeled substrate from inorganic compounds (e.g., [32P]inorganic
phosphate or [14C]bicarbonate) followed by extensive purification
steps prior to the labeling experiment.

3.1.1. Elucidation of lipid assembly and the Kennedy pathway
The use of radioactivity with microsomal preparations and cell

free extracts has provided descriptions of the in vitro enzymatic
esterification of FA to make membrane and storage glycerolipids,
and was used to elucidate the Kennedy pathway (Fig. 7A;
[105,106]) comprising a series of four enzymatic steps. The process
involves two consecutive acyl-CoA dependent acylations of G3P by
sn-1 glycerol-3-phosphate acyltransferase (GPAT) and lysophos-
phatidic acid acyltransferase (LPAAT), producing LPA and PA,
respectively. Subsequently, the phosphate is removed by phospha-
tidic acid phosphatase (PAP) producing de novo assembled DAG
that can be further acylated by the acyl-CoA dependent diacylglyc-
erol acyltransferase (DGAT) to produce TAG. Phospholipid and TAG
biosynthesis from glycerol-3-phosphate (Fig. 7) were demon-
strated utilizing [32P]glycerol-3-phosphate and [14C]palmitate
or oleoyl-CoA with microsomes and cell free extracts from animal
livers [107–109] as well as plant tissues [106,110]. Pertaining to



Fig. 8. Fatty acid biosynthesis and lipid assembly in the plastid and endoplasmic reticulum. Acyl chains are produced on an ACP backbone through fatty acid biosynthesis
(FAS) in the plastid where the acyl-ACP can be utilized for prokaryotic membrane lipid assembly in the plastid, or hydrolyzed to fatty acids before attachment to coenzyme A
(CoA) by long chain acyl-CoA synthetase (LACS) outside of the plastid. The transport mechanisms to and from the ER are unknown though studies suggest a lipid such as PC,
LPC, PA, or DAG may be involved, possibly through a channeling mechanism. LPCAT association with the plastid envelope [152] supports the involvement of PC and possibly is
directly tied to acyl editing. Acyl groups are processed with acyl editing and modified on PC for the production of lipids in the ER. Others have suggested that LPCAT in the
chloroplast envelope supports a mechanism for LPC transport in both directions that need not be protein mediated [163,335] and LPC can partition into membranes as well as
the aqueous phase. The return of lipids to the plastid for MGDG and DGDG production utilizes trigalactosyldiacylglycerol (TGD) protein mutants in the transport process
[145,156]. At least PA, PC, DAG, and LPC have been implicated as acyl transport lipids; however the movement of fatty acids between the plastid and ER remains an active area
of research thus the figure shows a gradient between blue and green organelles in this region. The figure was inspired by [136] with modifications to address the text.
Enzymes specifically discussed are presented in yellow ovals. The pathways for phosphatidylglycerol, other phospholipids, and sulfolipid production are not shown.
(Additional Abbreviations: ACCase, acetyl-CoA carboxylase; Mal-CoA, malonyl-CoA; Mal-ACP, malonyl-ACP; KASII, ketoacyl synthase II; SAD, stearic acid desaturase; FAT A/B,
fatty acid thioesterase A/B; NEFA, non-esterified fatty acid; ACT1, genetic mutant from act1 locus of Arabidopsis; LPCAT, lyso-phosphatidylcholine acyltransferase; LPC, lyso-
phosphatidylcholine; TGD, trigalactosyldiacylglycerol mutant; MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol).
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the preferred acyl substrate, palmitoyl-CoA, synthesized chemi-
cally, could be used in place of ATP, CoA and fatty acids to esterify
G3P providing direct proof that acyl-CoA is used in lipid assembly.
PC biosynthesis from phosphocholine was similarly outlined using
[14C]- and [32P]phosphocholine [109], however repeating some of
the basic isotope labeling and dilution studies in plants proved
challenging [111,112] in part because little was known at the time
about the organelle location of lipid production. Eventually a num-
ber of aspects of the Kennedy pathway that were analogous to
mammalian tissues were confirmed [97,106,113,114]. More recent
studies have leveraged commercially available labeled substrates
with or without [115,116], the aid of modern genetics, genetic
engineering, and homology-based gene identification to demon-
strate enzyme function and activity in cell extracts, microsomes
and transgenic plants [116–121]. Regular discovery of new enzy-
matic reactions [122,123] indicates that not all the enzymatic steps
(and their associated genes) within lipid metabolism have been
elucidated. Differences among species emphasize the role of
in vitro kinetic activity measurements in isolated microsomes to
provide considerable insight for network elucidation and operation
[124]. Thus efforts to identify and describe the ‘‘parts list’’ and the
range of operation of enzymes in biochemical networks are critical
to models that link enzymatic steps by precursor–product labeling
relationships and describe coordinated network operation.

3.1.2. Desaturation substrates and pathways
Plant lipid metabolism differs significantly from mammalian

systems in several aspects including distinct substrates for desat-
uration and multiple subcellular locations for lipid assembly that
were elucidated by a combination of in vitro and in vivo labeling
experiments. Seminal in vitro studies with [14C]palmitate [125]
and in vivo pulse chase studies with [14C]sucrose [126] or [14C]O2

[127] first described the mechanisms for desaturation in plants.
Oleic acid was labeled rapidly followed by linoleic and linolenic
fatty acids; however during the chase the linoleic and linolenic
acids continued to increase at a rate that was elevated relative to
the oleic acid indicating that oleate was a precursor for desat-
uration to linoleic and linolenic acid [126,128]. Unlike animal sys-
tems that utilize acyl-CoA substrates for desaturation, in plants
most FAs are bound to plastidic or ER membrane lipids for this pro-
cess [129–134] with the exception of stearoyl-ACP desaturation.
Early work with safflower labeling showed [14C]oleoyl-CoA was
esterified to PC leading to [14C]linoleoyl-PC but without the forma-
tion of detectable [14C]linoleoyl-CoA [129] supporting PC-based
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modification. Desaturation of acyl-CoA’s directly in plants was
more definitively ruled out through the use of [14C]non-
hydrolysable ether analogs of PC [135].

At nearly the same time as initial descriptions of desaturation,
the assembly of glycerolipids and the production of polyunsatu-
rated fatty acids were ascribed to two separate biochemical path-
ways present in different organelles. The prokaryotic pathway
that takes place in the plastid and the eukaryotic pathway in the
ER [87,136] (Fig. 8) are distinguishable because of the attachment
of hexadecanoic groups (16 carbon fatty acids) at the sn-2 position
of glycerolipids – a result of the acyl-specificity of LPAAT of the
prokaryotic pathway [137]. Utilization of prokaryotic pathway dia-
cylglycerol (DAG) for phosphatidylglycerol (PG), monogalactosyl-
diacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)
synthesis and the subsequent repeated desaturation of the sn-2
hexadecanoic to hexadecatrienoic group in only certain plants
has led to the name ‘‘16:3 plants’’ [138]. Plants which assemble
galactolipids primarily from a DAG-backbone imported from the
ER and containing a sn-2 octadecatrienoic acyl chain are termed
‘‘18:3 plants’’ [139]. Thus, the fatty acid composition of galac-
tolipids is commonly used to determine if the prokaryotic or
eukaryotic pathway is the dominant path for galactolipid synthesis
in plants [140].

Galactolipid assembly through both routes was described using
a combination of continuous pulse, and pulse-chase metabolic
labeling experiments with isotopically labeled acetate, glycerol,
fatty acids and CO2 supplied to leaf tissue, isolated chloroplasts
and seedlings [99,133,137,139,141]. The transit of molecules
between the ER and plastid, as required in the eukaryotic pathway,
was observed when label that accumulated in PC during a pulse,
was traced to subsequent increases in galactolipid labeling during
the chase period. The pattern indicated a precursor–product
relationship between ER localized PC and plastid localized MGDG
and DGDG [132,141]. Further dual labeling with acetate and glyc-
erol demonstrated the same ratio of fatty acid to backbone enrich-
ment in PC as in MGDG of the chase experiment. This led Slack and
colleagues [96] to conclude that the entire DAG moiety was trans-
ferred from the ER to the plastid; thus revealing the modern day
description of the extra-plastidial or eukaryotic pathway of galac-
tolipid synthesis. The identification of Arabidopsis mutants with
changes in FA desaturation or membrane lipid composition by
Browse, Somerville, Benning and co-workers combined with
altered metabolic labeling of the two pathway system has subse-
quently allowed specific genes in lipid metabolism (i.e., both lipid
assembly and FA desaturation) to be correlated with these path-
ways (Fig. 8) [142–147].

3.1.3. Acyl chain formation and trafficking between the chloroplast
and ER in leaves

Though the basic paths and substrates for acyl chain and lipid
formation are known, a number of details about their transport
remain unclear. Fatty acid chain lengths of up to 18 carbons are
made through a series of condensing enzymes that pass an acyl-
ACP group and elongate it with the addition of two carbon acetyl
groups repeatedly (Fig. 6). The central role of ACP was established
through labeling experiments with [14C]malonyl-CoA, purified ACP
and ACP antibodies [104]. Ohlrogge, Kuhn and Stump varied the
ACP levels to establish dependency of de novo fatty acid biosynthe-
sis with this protein and also the plastidic location of fatty acid
production. Export of newly synthesized FA into the eukaryotic
pathway starts with release of the FA from ACP by a thioesterase
[2]. Mechanisms for acyl chain export from the plastid have
remained enigmatic, and may not require dedicated fatty acid
transporters because non-esterified fatty acids (NEFA) that flip-flop
diffuse within phospholipid membranes are immediately con-
verted to CoA esters after export by long chain CoA synthetases
[LACS; [148]] (Fig. 8). Acyl-CoAs cannot diffuse across membranes,
thus their re-entry into the plastid is prevented and the overall
process results in uni-directional transport. However, whereas lac-
s9 mutants resulted in approximately 10-fold less acyl-CoA pro-
duced from exogenously supplied [14C]NEFA [149] the mutants
did not give a distinct phenotype possibly indicating redundancy
with other LACS genes that are involved in the process [150].

The underlying mechanisms of fatty acid export have been dif-
ficult to fully describe in part because the activation and move-
ment of fatty acids may be a channeled process as suggested
from [14C]acetate labeling experiments using spinach,
Arabidopsis leaves and T87 Arabidopsis cells [27,151,152].
Arabidopsis suspension cells labeled with [14C]acetate produced
[14C]PC very quickly with an estimated lag time of approximately
5.4 s. The short lag is significantly less than the time needed for
bulk acyl group exchange and may implicate the involvement of
PC in shuttling acyl groups to the ER [152]. A form of channeled
transport could also be supported by the known physical interac-
tions between the endoplasmic reticulum and the mitochondria,
plasma membrane, trans-golgi and chloroplasts [153,154]. To
assess the genes involved the PC-MGDG precursor–product
relationship, FA and glycerol backbone labeling of leaf lipids was
characterized using mutants (Fig. 8). Arabidopsis act1 mutants
(from the act1 locus in Arabidopsis and also referred to as ats1,
Fig. 8) pulse-chase labeled with [14C]acetate demonstrated the role
of plastidial acyl-ACP dependent glycerol-3-phosphate acyltrans-
ferase (GPAT) activity in partitioning FA between prokaryotic and
eukaryotic pathways. Specifically, the lack of plastidial GPAT activ-
ity in the act1 mutant resulted in diverting the flux of acyl groups
from the prokaryotic pathway into the eukaryotic pathway,
enhanced production of MGDG from PC, and effectively converted
a 16:3 plant into an 18:3 plant [146,147]. A second set of lines with
altered trigalactosyldiacylglycerol (TGD) proteins that facilitate the
transfer of lipids, presumably either PA or DAG derived from PC,
into chloroplasts [155–161] were characterized using
[14C]acetate pulse-chase experiments [145] (Fig. 8). Whereas
wild-type Arabidopsis leaves showed the precursor–product
relationship between MGDG and PC that is characteristic of
eukaryotic galactolipid production, tgd-1 lines did not exhibit a
similar precursor–product pattern. Also the tgd phenotype is unlike
act1 lines that have reduced plastidic pathway biosynthesis
[146,147]. Instead the tgd-based MGDG pool exhibited strong ini-
tial labeling presumably from the plastidic pathway, but without
a second labeling peak in MGDG labeling that would signify the
conversion of labeled PC into MGDG at later time points. The
authors concluded that tgd-1 lines had an impaired ability to trans-
fer acyl groups from PC to MGDG and that the TDG1 protein was
involved in this process [145]. Other investigations specifically
interested in the form of lipid exported, suggest that partial
hydrolysis of PC to LPC is a prominent step in trafficking acyl
groups back to the chloroplast [162–164] based on acyl labeling
assessments of sn-1 and sn-2 positions. Together, these studies
highlight a recurring theme – the central role of PC in donating
and accepting acyl groups, and emphasize the need for further
mechanistic investigations of the lipid carrier(s) that import and
export acyl groups between chloroplast and ER. In particular, addi-
tional labeling studies with mutants that fail to interconvert phos-
pholipids could help resolve the pathway attributes.

3.1.4. Metabolic labeling reveals alternative fluxes of acyl groups into
membrane lipids and TAG

The flux of FA from the plastid through the Kennedy pathway is
minimally required to produce TAG composed of newly synthe-
sized fatty acids exported from the plastid (e.g., 16:0, 18:0, 18:1);
however, many plants accumulate TAG containing fatty acids that
have been further modified (e.g., desaturation, hydroxylation).
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Because PC is the substrate for most of these modifications
[165,166], acyl fluxes into and out of PC are essential for the pro-
duction of TAG, and the rate of PC labeling (Fig. 7) will reflect its
participation. A combination of at least three mechanisms allow
the flux of fatty acids into/out of PC for modification and eventual
TAG synthesis (Fig. 7B–C): (1) TAG synthesis from phospho-
lipid:diacylglycerol acyltransferase [PDAT; [123]]; (2) derivation
of the DAG substrate for TAG synthesis from PC; and (3) the
exchange of acyl groups between PC and the acyl-CoA pool by a
PC deacylation and lyso-PC reacylation cycle coined ‘‘acyl editing’’
[93,94]. For each of the three mechanisms no net synthesis of
PC is required for TAG biosynthesis. Acyl editing proceeds by
the forward (and probably reverse) action of LPCAT
[116,119,120,167,168], and incorporates nascent 18:1-CoA into
PC for modification and PC-modified fatty acids can re-enter the
acyl-CoA pool for incorporation into the sn-1, -2, -3 positions of
TAG by Kennedy pathway enzymes [Fig. 7B; [169]]. Alternatively
the use of PDAT results in the transfer of fatty acids from the sn-
2 position of PC to the sn-3 hydroxyl group of DAG resulting in
the production of TAG and lyso-PC. The lyso-PC is subsequently
reacylated by LPCAT as part of the acyl editing cycle (Fig. 7B). If
DAG used for TAG biosynthesis is derived from PC, then DAG is
in essence synthesized twice because it is also the precursor for
PC production (Fig. 7C). First, the production of de novo DAG occurs
through the Kennedy pathway for PC synthesis and second, the
removal of phosphocholine from PC produces a PC-derived DAG
that can be used to make TAG. Mechanisms that are potentially
involved in the de novo DAG ? PC ? PC-derived DAG pathway of
TAG production include: (a) both the forward and reverse reactions
of CDP-choline:diacylglycerol cholinephosphotransferase (CPT)
[170,171], (b) CPT to produce PC and phospholipase C (or phos-
pholipase D and PAP) for the subsequent production of PC-derived
DAG, and (c) phosphatidylcholine:diacylglycerol cholinephospho-
transferase (PDCT) [121] which transfers the phosphocholine
head group from PC to DAG, creating a new PC molecular species
and a PC-derived DAG (Fig. 7C). Of the possibilities, only PDCT
has been experimentally shown to deliver PC-derived DAG for
TAG biosynthesis based on evaluation of Arabidopsis mutants
with in vivo metabolic labeling [121]. Proposed further modi-
fications to the acyl editing scheme have been suggested by
Lager and coworkers [122] with the production of PC from two
molecules of lysophosphatidylcholine (LPC) using a lysophos-
phatidylcholine transacylase (LPCT). The other product of this reac-
tion, glycerophosphocholine (GPC) could be converted back to
LPC using a recently discovered acyl-CoA:glycerophosphocholine
acyltransferase (GPCAT). This previously undescribed set of
reactions does not require regeneration of CDP-choline and will
likely impact future interpretations of acyl editing; however the
enzymes catalyzing these steps have not been identified.

The use of isotopic labels has been essential in the character-
ization of the flux of acyl groups through acyl editing in plants.
The exchange of labeled fatty acids from acyl-CoAs into and out
of PC by LPCAT enzymes was initially characterized in microsomes
from oilseeds [167,168]. However, the involvement of acyl editing
as a major component of lipid metabolism was indicated through
in vivo metabolic labeling of leaves tracing the precursor–product
relationships of nascent fatty acid incorporation into membrane
lipids. Traditional descriptions of glycerolipid assembly hypothe-
sized that newly synthesized fatty acids were initially esterified
to glycerol-3-phosphate to produce mostly 18:1/16:0 and 18:1/
18:1 (sn-1/sn-2) molecular species of PA in the plastid and ER,
respectively. Then, the molecular species were desaturated while
linked to membrane lipids in the plastid (e.g., MGDG) or ER (e.g.,
PC). These concepts were brought into question when five minute
[14C]O2 pulse labeling of Brassica napus leaves followed by one
hour and twenty-four hour chases demonstrated labeled lipid
molecular species that fit the hypothesis for prokaryotic MGDG,
but not eukaryotic pathway derived PC [94]. Subsequent pulse
labeling experiments with [14C]glycerol for less than ten minutes
revealed the traditional PA ? DAG ? PC precursor–product
relationship of the eukaryotic pathway in Pea leaves; however
[14C]acetate labeling indicated that PA and DAG were not the pri-
mary precursors for incorporation of nascent fatty acids into PC
[93]. Further stereochemical and molecular species analysis of
the labeled products indicated newly synthesized fatty acids were
first incorporated into eukaryotic pathway lipids by esterification
to mostly the sn-2 hydroxyl of lyso-PC (but also sn-1 acylation of
1-lyso-2-acyl-PC) creating a new PC molecular species containing
one nascent fatty acid and one previously synthesized fatty acid.
The relative amount of sn-1 vs. sn-2 acylation depends on species
and tissue [93,172]. Additionally, the pool of acyl-CoA utilized for
Kennedy pathway reactions included a significant amount of unla-
beled fatty acids that were released from PC during the recycling to
lyso-PC. This acyl editing cycle allowed for direct incorporation of
newly synthesized 18:1 into PC for desaturation and subsequent
production of an acyl-CoA pool containing a mixture of nascent
(16:0, 18:1) and further desaturated (18:2 and 18:3) fatty acids
for de novo membrane lipid production. The rate of acyl editing
was estimated to be up to 20 times that of fatty acid synthesis in
rapidly expanding pea leaves, indicating that even if de novo glyc-
erolipid assembly in the ER utilizes the same acyl-CoA pool as acyl
editing, the much higher rate of the acyl editing cycle ensures that
most nascent fatty acids exported from the plastid first enter PC.
Apart from leaves, the acyl editing mechanism has also been
observed in developing seeds [120,172,173] and Arabidopsis cell
cultures [152], and may be a more general mechanism for the
incorporation of newly synthesized fatty acids into the extra-plas-
tidial lipids.

Similar to the characterization of the acyl editing cycle, in vivo
pulse labeling of tissues accumulating TAG has helped decipher
when TAG is synthesized from de novo DAG or alternatively from
PC-derived DAG. When TAG is synthesized directly from nascent
fatty acids using the Kennedy pathway, there is little PC labeling
from [14C]acetate or [14C]glycerol (Fig. 7A, graphs). The addition
of acyl editing activity results in more significant labeling of PC
from [14C]acetate but not [14C]glycerol (Fig. 7B; graphs); however
the glycerol labeling is useful in helping distinguish the flux of
TAG synthesis from de novo- versus PC-derived DAG (Fig. 7A, C;
[120,133,172,174,175]). During oil accumulation in developing
seeds the vast majority of lipid metabolism is for TAG biosynthesis,
therefore significant labeling in non-Kennedy pathway intermedi-
ates describes a more complicated path of acyl flux that produces
TAG. When TAG is produced from PC-derived DAG (Fig. 7C); label-
ing from [14C]glycerol results in a significant incorporation into
DAG followed by PC and finally TAG after a significant lag. Fig. 7C
indicates this through a precursor–product labeling description.

The amount of acyl flux through PC by the above mechanisms
varies with plant species and tissues accumulating TAG. It is tempt-
ing to assume that the amount of PC-modified fatty acids that
accumulate in TAG correlates with acyl flux through PC, however
this is an underestimate because fatty acids move through PC
regardless of whether they are further modified or not [5,172–
174]. Thus the pathway of TAG synthesis must be elucidated by
in vivo [14C]acetate and [14C]- or [3H]glycerol labeling and by mea-
suring the precursor–product relationships between DAG, PC and
TAG. For example, tissue slices of developing cocoa (Theobroma
cacao) cotyledons cultured with [14C]acetate or [14C]glycerol pro-
duced labeled TAG but had limited incorporation into PC from
either substrate during the stage of rapid TAG accumulation, sug-
gesting the classical Kennedy pathway is the major route of TAG
synthesis (Fig. 7A; [176]). Cocoa TAG contains less than 2% PC-
modified fatty acids [176], and thus did not require extensive flux
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through PC (Fig. 7A). In coriander (Coriandrum sativum) a precursor–
product relationship was observed between PC and TAG for
[14C]acetate but not glycerol labeling. Thus coriander lipid metabo-
lism is more analogous to Fig. 7B where fatty acids participate in
acyl editing cycle, but TAG is synthesized from de novo DAG
with the Kennedy pathway [177]. As coriander mostly accumulates
18:1D6 fatty acids produced in the plastid, the substantial flux
of nascent fatty acids through PC may in fact be part of the
mechanism of fatty acid export to the ER [152] and not for fatty
acid modification. Soybean (Glycine max), safflower (Carthamus
tinctorius), flax (Linum usitatissimum), and Arabidopsis thaliana;
[120,133,172,174,175] each demonstrate the PC to TAG relationship
from both [14C]acetate and [14C]glycerol labeling. In these species
acyl editing and the use of PC-derived DAG for TAG synthesis both
contribute to fatty acid flux through PC and result in high levels of
polyunsaturated-fatty acids in TAG (Fig. 7C). Though these
Fig. 9. Glutamine labeling studies indicate flow through organic acids to acetyl-
CoA. Studies with [13C]glutamine indicated that carbon from amino acids was used
in the biosynthesis or elongation of fatty acids in oilseeds (figure inspired by
[57,207]). Labeling in metabolites was measured by mass spectrometry resulting in
mass isotopomers (i.e., M1, M2, M3 etc) that reflected the increase in molecular
weight by 1, 2, 3 etc with incorporation of 13C in place of 12C. (A) Glutamine label in
soybeans was transferred to amino acids derived from pyruvate and acetyl-CoA
most likely through a combination of malic enzyme (ME) and ATP citrate lyase
(ACL). The high labeling in glutamine (i.e., M5) was transferred to four carbon
organic and amino acids such as threonine. Leucine that is synthesized through a
combination of acetyl groups was more highly labeled in even mass isotopomers
(i.e., M2, M4) indicating that a significant amount of acetyl-CoA was fully labeled.
(B) The reversibility of isocitrate dehydrogenase (ICITDH) in brassica resulted in a
high M5 labeling in citrate which would not otherwise occur from respiratory steps
of TCA. Uniformly labeled glutamine (i.e., M5) was decarboxylated by aerobic TCA
metabolism to produce M4 labeled succinate, fumarate, malate and oxaloacetate.
When combined with unlabeled acetyl-CoA, the resulting citrate and isocitrate
would contain four or fewer 13C atoms (i.e., <M5). Thus M5 in citrate and isocitrate
signified a reversible isocitrate dehydrogenase activity and with ACL provided
additional acetyl groups for fatty acid elongation.
examples indicate preferences for TAG synthesis, the paths are
likely in simultaneous operation to varied extents, (e.g., the relative
use of PDCT or CPT/lipase for PC-derived DAG production, and the
use of DGAT or PDAT for the final acyl acylation of TAG [115]). In
the case of DGAT and PDAT, DGAT may be used in any of the situa-
tions described in Fig. 7A–C, however, PDAT activity requires the
acyl editing cycle to reacylate the lyso-PC co-product of TAG syn-
thesis, and thus cannot be a part of a classical Kennedy pathway
(Fig. 7A).
4. Extending isotopic labeling interpretation

4.1. Computational metabolic flux analysis using stable isotopes

The interpretation of labeling is often not straightforward and
has been significantly aided by computational assessments of mul-
tiple pathways referred to as Metabolic Flux Analysis (MFA). These
methods were initially developed to study steady state metabolism
in other systems [e.g., [178–183]] but extensive resources for
application in plants have now been described in books [184–
186] and special issues of Phytochemistry [187] and the Journal
of Experimental Botany edited by Kruger and Ratcliffe [188]. In
each case the isotopic labeling experiment is assessed with a com-
puter model that describes mass-balanced atom transitions of the
biochemical reactions [43,189–191]. The model is a mathematical
description of network branching, bond-breaking and reforming
reactions, substrates and flux estimates that are used to simulate
the label incorporation which can then be compared to the experi-
mentally measured values through least squares regression. The
process is repeated with different flux values until an optimized
fit is achieved resulting in ‘‘best estimates’’ of flux and confidence
intervals and statistics can then be assessed using Monte Carlo or
techniques described elsewhere [192–194]. Progress in the quan-
tification of label [195,196] has increased the number and preci-
sion of measurements resulting in more information than is
minimally required to establish the flux values computationally
(known as an ‘overdetermined’ system). The least squares compar-
ison results in the best fit of all measurements and produces the
lowest overall residuum (i.e., lowest residual error between in silico
and experimental measurements). A more in depth survey of com-
putational considerations including elegant mathematical repre-
sentations are beyond the scope of this review and are described
elsewhere [197–201].
4.1.1. Central carbon metabolism supplies carbon, energy and reducing
equivalents for FA biosynthesis

In developing seeds, the carbon, energy and reducing equiva-
lents necessary for fatty acid biosynthesis are derived from multi-
ple sources requiring coordination between catabolic and anabolic
metabolic pathways. Developing seeds receive organic carbon and
nitrogen in the form of sugars and amino acids apoplastically from
the maternal plant [202,203]. The supply of carbon and nitrogen
constrains the potential metabolic operation; but the final seed
composition is a consequence of the fluxes through biochemical
pathways within the tissue. Branch points in the metabolic net-
work establish the distribution of carbon, energy and reduced
cofactors, thus the diversity in lipid and protein content in seeds
is a consequence of differences in flux through these steps.
Metabolic flux analysis has enabled the identification and quan-
tification of the endogenous carbon sources for fatty acid biosyn-
thesis and aided descriptions of the balance of ATP and
nucleotide cofactors.

Some seeds like pea and soybean produce significant amounts
of protein and therefore require a large amount of amino acid
nitrogen. Most of the nitrogen supplied to the seed is in the form



Fig. 10. Oxidative and non-oxidative pentose phosphate pathways have multiple
subcellular locations. The elucidation of active pathways in central metabolism has
remained difficult to assess because oilseeds have pentose phosphate pathway
enzymes targeted to multiple locations which may be involved in (A) oxidative, (B)
reductive or (C) both types of metabolism. Carbon, reducing equivalents and energy
necessary for fatty acid biosynthesis can come from metabolic networks operating
in different ways dependent upon the conditions and cell or tissue. For emphasis
the plastids in (B) and (C) are green symbolizing that they make use of light and
operate differently than (A).
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of glutamine and to a lesser extent asparagine or alanine [202]. The
nitrogen is redistributed by aminotransferases to other carbon
skeletons for the production of all twenty amino acids and also
results in the generation of organic acids. Radioisotopic studies
[204,205] and stable isotope investigations with metabolic flux
analyses in soybeans [57,206] indicate that organic and amino acid
carbon is partially repartitioned into oil (approximately 10–20% of
carbon in oil originates from glutamine) through conversion of
malate by malic enzyme (ME) or in combination with other steps
including ATP-citrate lyase (ACL; Fig. 9A). First, glutamine serves
as a donor of nitrogen in transamidation reactions to produce glu-
tamate. Glutamate aminotransferase reactions further reallocate
nitrogen and result in alpha-ketoglutarate which can be converted
to other organic acids (e.g., malate, citrate) using reactions
commonly associated with, though not limited to the TCA cycle.
Then malic enzyme can convert malate to pyruvate for acetyl-
CoA production or citrate can be cleaved using ATP-citrate lyase
resulting in acetyl-CoA (Fig. 9). Organic acids also serve as precur-
sors for acetyl-CoA production in Brassica ([207]; Fig. 9B) and
maize [208] embryos.

Acetyl-CoA can be derived from multiple sources in different
subcellular locations though it cannot readily diffuse through
membranes causing speculation about its origin and movement
in plant cells (e.g., [209]). As a result the enzymatic paths of
acetyl-CoA biosynthesis from hexose catabolism or amino acid
metabolism have differing consequences on carbon and energy uti-
lization. For example the production of two acetyl-CoA molecules
from glucose-6-phosphate using glycolysis and pyruvate dehydro-
genase produces: two CO2, four NAD(P)H, and two ATP. Since fatty
acid biosynthesis can be sustained with two NAD(P)H and one ATP
per acetyl group, the supply and utilization of carbon, energy and
reducing equivalents are stoichiometrically balanced by glycolytic
reactions. Other pathways such as the oxidative pentose phosphate
pathway (OPPP) can also play an important role in generating
reducing equivalents for fatty acid biosynthesis however there is
no strict requirement for a particular catabolic pathway’s involve-
ment. Estimates of the amount of OPPP in plant tissues such as
seeds are particularly difficult to establish because isoforms for
these enzymatic steps are found in both the plastid and cytosol
[210] (Fig. 10) and can be further complicated by CO2 reassim-
ilatory mechanisms that improve the seed carbon economy [211].

Production of acetyl-CoA from pyruvate involves decar-
boxylation and creates one mole of CO2 for every two moles of car-
bon dedicated to FA biosynthesis. RuBisCO in developing rapeseed
and soybeans [212] and high internal concentrations of CO2 [213]
led to a description of RuBisCO-aided assimilation that was con-
firmed by [13C]labeling studies [214]. [1-13C]alanine taken up by
rapeseed embryos was converted to pyruvate then acetyl-CoA with
decarboxylation by pyruvate dehydrogenase producing [13C]O2.
Reassimilation of the [13C]O2 resulted in labeling in glycolytic
products that were upstream of pyruvate supporting the role for
RuBisCO. It was further shown through 14C investigations that
the carbon reassimilation was light-dependent in green seeds
[215]. Rapeseed and other green oilseeds such as soybean appear
to have developed mechanisms to utilize sunlight for metabolic
efficiency though the extent and descriptions remain unclear and
may involve subcellular, cellular or tissue-level coordination
[206,216–221]. The biological diversity and challenges associated
with quantification of CO2 respiring and assimilating steps in mix-
otrophic metabolism (Fig. 1) has led to wide-ranging estimates for
flux through central metabolic pathways. Recent descriptions of
plant respiration including an in silico study with label design con-
siderations and modeling have summarized some of these chal-
lenges and opportunities [222,223].

Conversion of glutamine carbon to acetyl-CoA entails a different
set of reactions that start with the donation of nitrogen from glu-
tamine. Alpha ketoglutarate can be converted to acetyl-CoA by
way of sequential production of succinate, fumarate, malate and
pyruvate through enzymatic steps commonly ascribed to the TCA
cycle along with malic enzyme and pyruvate dehydrogenase
(Fig. 9). This series of steps will result in 4 NAD(P)H, an FADH2

and one ATP equivalent, though respiring multiple carbons in the
process. The additional reducing equivalents may supply electron
transport for oxidative phosphorylation needed for protein biosyn-
thesis as approximately 4.3 mol of ATP are required for each addi-
tional amino acid added to an elongating peptide [41]. Other seeds
such as rapeseed utilize acetyl-CoA originating from the organic
acid citrate as a carbon source for fatty acid elongation (i.e., cytoso-
lic addition of acetyl groups for acyl lengths of twenty carbons or
more). [13C]glutamine labeling experiments allowed Schwender
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and colleagues [207] to show that fully labeled alpha-ketoglutarate
resulted in citrate with a significant fraction of highly labeled car-
bons (i.e., M5) – a result that would not be anticipated with tradi-
tional TCA activity including carbon respiration (Fig. 9B). The
authors reasoned that isocitrate dehydrogenase (ICITDH) may act
reversibly to more efficiently conserve carbon and produce citrate
that can be exported and cleaved by ATP citrate lyase to produce
acetyl-CoA for fatty acid elongation. Labeling in the elongated fatty
acids at the terminal acetate as detected by mass spectrometry
helped confirm the result [207]. These divergent descriptions in
carbon handling emphasize that seeds are not merely passive col-
lection receptacles [224] but function according to their opera-
tional metabolic networks and its physiological context [225].

4.2. Assessing resource partitioning through perturbation-response
experiments

Given that plant metabolic operation is not static, the use of
labeling with or without computational analyses can help describe
cellular phenotypes and lead to hypotheses about regulation
through perturbation experiments. At the biochemical level these
studies have provided insight to wild-type metabolic operation
as well as the response to genetic or environmental conditions.
By changing the temperature [226], oxygen [62,227] nutrient sta-
tus [57,61,63,64,228] or through genetic manipulation of central
metabolism [59,229,230], or lipid metabolism [120] plant cells
are forced to rebalance resource utilization resulting in altered
phenotypes.

4.2.1. Alterations in carbon and nitrogen supply to fatty acids
The supply of carbon for fatty acid biosynthesis was examined

with [13C]labeling in genetically altered Arabidopsis lines [59]
containing mutations in the WRINKLED1 transcription factor
[231–233] or plastidic pyruvate kinase genes [234]. In the wri1-1
mutant allele seed oil content was reduced by 80% and resulted
in an observable wrinkling appearance. Double mutants in plas-
tidic pyruvate kinase pkpb1pkpa (Fig. 6 ) also had significant
reduction in oil presumably because pyruvate generation was
limiting for fatty acid biosynthesis. The decrease in oil in wri1
was attributed to reductions in flux from sucrose that is consistent
with transcriptionally regulated changes in glycolysis [235] and
fatty acid metabolism [236]. As a result flux through cytosolic
pyruvate kinase and malic enzyme was altered in part to compen-
sate for the reduced supply of carbon to fatty acid metabolism by
plastid-localized steps [59]. The role of these two enzymes have
also been considered by environmental changes to temperature
[226] and supplied nitrogen [47,57,61]. When inorganic nitrogen
(i.e., instead of amino acids) was supplied to rapeseed the flux
through malic enzyme in the mitochondria decreased 50% as a
consequence of increased use of TCA intermediates for amino acid
biosynthesis [61]. Rapeseed growth was depressed by 50% possibly
due in part to the form of nitrogen supplied for metabolism. In
soybeans, changes in the amount of organic nitrogen supplied did-
not significantly impact growth but did lead to changes in final
composition that included more protein [47,57]. Thus the response
of metabolism to changes in nutrient or environment is variable
and provides further rationale for flux analysis in many species [63].

4.2.2. Altered flux phenotypes in lipid mutants
Genetic mutants have also played a role in elucidating the most

active pathways that contribute to fatty acid and lipid production.
In the examples of act1(ats1) and tgd1 lines [145,146] each mutant
was identified from a forward genetic screen by an easily detected
lipid phenotype (e.g., fatty acid or lipid class composition changes),
therefore changes in acyl fluxes were expected and confirmed by
labeling analysis. However reverse genetics-derived mutants that
do not display significant growth or lipid composition phenotypes
have also benefited from tracer studies. In particular the acyl edit-
ing mechanism has been supported by lyso-phosphatidylcholine
acyltransferase (LPCAT) mutants. Since acyl editing can result in
the removal of PUFA from PC for TAG synthesis in seed tissue,
defects in the LPCAT enzymes required for acyl editing cycle would
be expected to reduce the PUFA composition of TAG. Of the four
putative Arabidopsis gene products with in vitro lyso-phos-
phatidylcholine activity [119,237] a double knockout comprised
of the two enzymes with highest LPCAT activity gave very little
change to Arabidopsis seed FA composition [120,238]. The TAG
composition suggested the two LPCATs may not have been greatly
involved in acyl editing, or that other enzymes with lysophospho-
lipid acyltransferase activity can compensate for their loss in seed
tissue. However, [14C]acetate labeling of the double mutant
revealed a different conclusion. Wild-type seeds incorporated nas-
cent fatty acids into sn-2 PC prior to sn-1/sn-2 DAG, characteristic
of the seed acyl editing mechanism [172]. However, the lpcat1/lp-
cat2 double mutant had a DAG ? PC precursor–product relation-
ship more similar to the flux of de novo DAG synthesis by the
Kennedy pathway, and the stereochemistry of fatty acid incorpora-
tion was essentially the same in both lipids. The results suggested
that acyl editing was impaired within the lpcat1/lpcat2 mutant
[5,120,174,238]. It appears that a compensatory increase in the
PC-derived DAG pathway of TAG synthesis provided a way for nas-
cent fatty acids to flux through PC for desaturation prior to TAG
synthesis. Thus, the true phenotype of a mutant was not revealed
by static pool measurements of lipid composition. Analysis of
metabolic fluxes with isotopic labeling identified the ‘‘hidden’’
mutant phenotype and also underlined the compensatory metabo-
lism needed to maintain a seed composition similar to wild type.

4.2.3. Oil with modified FA composition
The majority of fatty acids found in plants are 16 or 18 carbons

long with 0–3 methylene interrupted double bonds. These acyl
groups are valuable sources of nutrition, but have a select range
of uses as biofuels and industrial feed stocks. However, within the
Plant Kingdom there are greater than 300 different types of ‘‘unu-
sual fatty acids’’ that have desirable physical properties and func-
tional groups (e.g., short chain, medium chain, hydroxy, epoxy,
cyclopropane, and conjugated double bonds). Capitalizing on natu-
ral diversity is an attractive proposition for biotechnology and
could result in value-added fuels, lubricants, polymers, coatings,
adhesives, surfactants, resins, and other products that reduce
dependency on petroleum [19,239,240]. However, many plants that
produce these unusual fatty acids have agronomic features which
make them less suitable as major crops. Over the past two decades
attempts to genetically engineer unusual fatty acids into common
oilseed crops or model species with few exceptions have produced
modest proportions of desirable fatty acids [18,19,240–243]. To
understand why, isotopic labeling has been used to identify limiting
steps. California bay (Umbellularia californica) plants contain a med-
ium-chain acyl-acyl carrier protein thioesterase (MCTE) that termi-
nates FA synthesis at 12 carbons [244] (Fig. 6 ). When the MCTE
was expressed in B. napus, lauric acid accumulation was positively
correlated with MCTE activity up to approximately 30% 12:0 in TAG.
A further 30-fold increase in MCTE enzyme activity increased the
concentration of 12:0 to near 60% and indicated that this enzyme
was no longer limiting lauric acid accumulation in TAG [118,245–
247]. Though [14C]acetate was predominantly converted to lipid
in wild-type B. napus seeds, in the high lauric transgenic B. napus
line only one-half of the [14C]acetate went to lipids with the rest
contributing to water soluble products including sucrose and
malate [246]. Along with high enzyme activities for 12:0-CoA oxi-
dase, isocitrate lyase, and malate synthesis the results suggested a
high rate of beta-oxidation and gluconeogenesis that likely breaks
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down newly synthesized 12:0 and limits its accumulation in TAG.
Even though FA beta-oxidation was increased in these seeds total
oil accumulation was unaffected because of a concomitant increase
in fatty acid synthesis (also elucidated by metabolic labeling) indi-
cating plants can respond to futile cycles of FA synthesis and degra-
dation to maintain seed lipid levels.

Significant production of unusual oils does occur in a few crops
including castor. Castor (Ricinus communis) produces a significant
amount of the hydroxylated fatty acid ricinoleic acid (12-hy-
droxy-9-cis-octadecenoic acid) through a FA hydroxylase that is a
variant of the FAD2 enzyme and utilizes 18:1 esterified to PC as
a substrate [166,239,248]. The seed endosperm contains �90%
ricinoleic acid in castor TAG; though only 5% of the PC fatty acid
profile is hydroxylated [249]. Thus at least 90% of seed 18:1 fluxed
through the sn-2 position of PC. An in vitro analysis of TAG synthe-
sis within castor endosperm microsomes suggested that supplied
[14C]18:1 was hydroxylated on PC, released from PC through an
acyl editing mechanism, and the hydroxy-FA-CoA utilized to
synthesize de novo DAG and TAG through a classical Kennedy
pathway (Fig. 7B; [250]).

Attempts to engineer other plants to produce castor type oils
have resulted in significant, but far less, hydroxylated fatty acid
content. Heterologous expression of the castor fatty acid hydroxy-
lase produced only �17% modified fatty acids in Arabidopsis,
suggesting other factors may limit their accumulation in TAG
[251–255]. Based on short time point [14C]glycerol pulse labeling
approximately 50% of newly synthesized de novo DAG produced
by the Kennedy pathway contained a hydroxylated fatty acid, but
this de novo DAG was turned over and not utilized for synthesis
of PC or TAG [174]. Since Arabidopsis utilizes the PC-derived
DAG pathway of TAG synthesis, the inefficient utilization of unu-
sual-fatty-acid-containing de novo DAG for PC synthesis represents
a limitation for synthesis of TAG containing unusual fatty acids at
the sn-1 position. Additionally, hydroxy-fatty acid production
within transgenic Arabidopsis seeds reduced total seed oil levels
by 30–50% [251,256] and revealed a concomitant decrease in the
rate of fatty acid synthesis based on [14C]acetate and [3H]2O label-
ing studies [257]. Comparative [14C]acetate and [14C]malonate
labeling suggested acetyl-CoA carboxylase activity was reduced
by one half in seeds producing hydroxy-fatty acids relative to the
wild-type. Together these results indicated that the lower oil con-
tent of the hydroxy-fatty acid producing lines was a consequence
of reduced fatty acid biosynthesis rather than fatty acid beta-
oxidation [257]. Subsequent engineering attempts to increase the
proportion of hydroxy-fatty acids in seed oils through co-expres-
sion of the castor fatty acid hydroxylase and selective TAG synthe-
sis enzymes from castor [251,254] have resulted in significant
increases in the proportion of modified fatty acids in TAG (i.e., to
over 25%), relieved the acetyl-CoA carboxylase inhibition, and
restored near wild-type rates of fatty acid synthesis and oil produc-
tion [257]. One implication from this work is that the inefficient
utilization of unusual fatty acids within ER glycerolipid synthesis
can inhibit de novo fatty acid synthesis in the plastid, potentially
indicating an uncharacterized endogenous mechanism that coordi-
nates ER lipid assembly with plastid FA synthesis [257]. Similar
reductions in TAG in other transgenic oilseeds [258,259] may sug-
gest a common mechanism that coordinates fatty acid biosynthesis
with TAG containing unusual fatty acids.

4.2.4. Assessing regulation with metabolic control analysis
Though perturbation experiments can provide insights into car-

bon partitioning, attempts to unify this data with other ‘‘omics’’
technologies have not led to straightforward interpretations. For
example Junker and colleagues measured the protein activities of
22 enzymes of central metabolism at saturating substrate concen-
trations in Brassica [61]. Their data, obtained from cultured
embryos, was reasonably consistent with tissues measured directly
after harvest [260] but activities did not agree closely with meta-
bolic fluxes. This cautionary tale supports the shared control of flux
through multiple pathway enzymes [261] and demonstrated that
metabolism can be poised to adjust to environmental perturbation
without significant regulatory reprogramming at the proteome
level. Therefore catalytic activities may not provide meaningful
estimates of in vivo flux. Analogously, changes in metabolite levels
from perturbed oxygen supply [62] or through in silico explorations
[262] do not require obvious changes in fluxes either; indicating
our understanding of the control of oil biosynthesis and regulation
of its accumulation remain primitive [263].

As a complementary approach the relationship between activi-
ties and fluxes has been considered by metabolic control analysis
[264–266]. MCA first gained prominence because early analyses
described the shared control of pathway flux that was inconsistent
with notions of enzymatic bottlenecking that still pervades the
literature and common thought today. Assessment of control can
entail either an enzyme level exploration that is a ‘‘bottom up’’
approach or alternatively divide metabolism into groups of path-
way steps referred to as ‘‘blocks’’ with top down control analysis
(TDCA) [267]. Through a series of investigations Harwood and col-
leagues have applied the latter approach to assess the control
structure of oil metabolism in crops. Fatty acid biosynthesis and
lipid assembly were considered as separate blocks in soybean,
palm, olive and brassica species [268–274]. The flux through both
blocks was measured using 14C labeling with acetate and glycerol
and then again after perturbing metabolism. By adding exogenous
fatty acids (i.e., oleate) or enzyme inhibitors, altering temperature,
or through changes in gene expression the studies monitored the
responses of fatty acid biosynthesis and lipid assembly that were
the metabolic blocks. In this case, the blocks were separated by
the cytosolic acyl-CoA pool which was manipulated using oleate.
This approach is referred to as single manipulation TDCA. Then
inhibitors can be used to further probe control, known as double
manipulation TDCA. In soybean and palm, fatty acid biosynthesis
contributed approximately two-thirds of the flux control, slightly
more than in olive [268,270,274]. In oilseed rape, the flux control
coefficient for lipid assembly was predominant [273]. Double
manipulation studies with combinations of inhibitors including
2-bromooctanoate or diazepam that inhibit lipid assembly [272–
274] and diflufenican and triclosan that inhibit fatty acid synthesis
[271,273] provided further confirmation of the findings. One
unique observation came from the specific comparison of
Kennedy pathways between olive and palm callus cultures by
Ramli and coworkers. They observed that radioactive DAG in addi-
tion to TAG accumulated at increased levels in olive relative to
palm [270]. They attributed the change in labeling to enhanced flux
control specific to DGAT in olive and used the DGAT specific inhi-
bitor 2-bromooctanoate to compare olive and palm. Results from
the studies indicated the flux control coefficient for DGAT was
74% in olive but only 12% in palm and therefore DGAT played a
more significant role in controlling olive oil production.
Subsequent studies overexpressing DGAT indicated a shift in the
distribution of flux control, consistent with TDCA theory, but also
demonstrated a related increase in seed oil content [e.g., 14%
increased oil in Brassica [272]]. These studies have since been fur-
ther validated with results from field trials [16]. Together they
describe promising enzymatic targets for enhanced oil biosynthe-
sis on the basis of their contribution of flux control through lipid
biosynthetic pathways. Control analysis is equally well-suited to
other tissues such as leaves [275] and may provide insights to
overcome current challenges that limit oil production in vegetative
tissues. Altogether these investigations establish that even with
shared flux control, the modification of steps exerting greatest con-
trol can result in altered overall flux, however with the additional



D.K. Allen et al. / Progress in Lipid Research 58 (2015) 97–120 111
consequence that control of flux is likely shifted to other steps in
the process.
4.3. Future techniques and technology to address longstanding
challenges

4.3.1. Developments in MS technology to enable labeling and flux
studies

Deciphering unknown plant function and the operation of lipid
metabolic networks in the future will greatly benefit from
technological advances. Historically separation techniques such
as thin layer and gas chromatography that are highly reproducible
have been invaluable in segregating lipid species; however trans-
formative progress in lipid analysis was more recently aided with
the development of electrospray ionization (ESI) technology
[276]. The ionization of intact molecular species of lipids through
‘‘soft’’ techniques that minimize fragmentation has helped avoid
artifacts from preparation and allowed direct verification of acyl
composition in different lipids [277–279]. ESI tandem MS can reli-
ably quantify picomole levels of known compounds and identify
hundreds of lipids species [280] leading to estimates that approxi-
mately 90% of all lipid pools can be measured [281,282]. There is
hope that fragmentation patterns may even be capable of discern-
ing the regiospecific attachment at sn-1 and sn-2 positions
[277,279,283], though acyl or double bond migration artifacts
remain a concern [284]. As ESI-related technology is several orders
of magnitude more sensitive than other technologies [283], it has
found application in quantifying isotopic labeling [67,285] leading
to assessments of metabolic flux in central metabolism [e.g.,
[66,70,286]] as well as recent mammalian studies examining flux
of cellular lipids [278]. By tracking deuterium or phospholipid head
group labeling, newly synthesized PC and mechanisms of PLA and
PLB deacylation-reacylation mechanism have been described [277]
and the status of progress in this area was recently reviewed by
Fig. 11. Cellular heterogeneity contributes to spatial labeling differences in
metabolites. The complexity of plant cells includes subcellular pools of metabolites
separated at cellular and subcellular levels, however most experimental methods
are incapable of examining pools specific to a compartment. Portions of three
individual cells are shown in orange along with the intercellular space between
them. Individual metabolite pools shown in blue contain both unlabeled and
labeled atoms indicated by white and dark blue filled circles. In this example, triose
phosphate that is labeled autotrophically in the chloroplast (TPp) can be exported to
the cytosol (TPc1) and converted to sucrose by combining with other metabolites
that are unlabeled. The resulting sucrose (Sc1) is less labeled and may be further
diluted when exported to the exterior of the cell (Sext) and into other cells (Sc2).
Conversion of sucrose to triose (TPc2) results in at least three triose pools that are
mixed when metabolites are extracted from biomass. The heterogeneity in cells and
the distinct metabolism at the subcellular level can limit the conclusions that can be
drawn.
Ecker and Liebisch within this journal [287]. Presumably similar
approaches could be applied to plant tissues if commensurate
amounts of labeled substrate were metabolized by plants. Given
the number of different labeling experiments described for plants
in the literature that range from in planta, to leaf disks, embryos,
cell or root tip cultures, tissue slices, or homogenates and organelle
preparations, such approaches seem promising.
4.3.2. Addressing the challenges of multicellular eukaryotic
metabolism

One of the practical limitations to interpretation of labeling
experiments in eukaryotes is the ability to resolve the spatial dis-
tribution of compounds at cellular and subcellular levels. Plant
cells come in dozens of different types that perform different
Fig. 12. Analysis of 13C peptide labeling in developing soybeans for spatial and
temporal metabolic information. (A) Developing soybeans were taken from pods
and cultured with 13C resulting in partially labeled storage proteins (inspired by
[319]). (B) Initially seed metabolism on the vine resulted in isotopic concentrations
consistent with natural abundance. As the labeling experiment progressed new
proteins were made using amino acids that contained 13C. (C) Examination of the
peptides indicated the presence of a small fraction of storage protein that had not
been turned over by culturing and had isotopic concentrations reflecting natural
abundance. In addition a second fraction that was more isotopically enriched
reflected the labeling process. Thus the peptide mass isotopomers formed a bimodal
distribution that reflected the temporal labeling process. Some proteins were the
result of unlabeled amino acids present in planta whereas others were the result of
amino acids made by labeled amino acids generated during culturing. For
comparison purposes the same protein harvested after culturing was hydrolyzed
and amino acids mass isotopomers were measured. The amino acid descriptions
were mathematically convolved to generate a labeling description of the same
peptides for comparison. However when hydrolyzed amino acids were convolved,
the connectivity of labeled or unlabeled amino acids specific to a time on the vine or
in culture was lost. Therefore GC–MS analysis of amino acids and mathematical
convolution could not account for the specific attachment of labeled amino acids
next to each other which was a result of the temporal labeling process in seed
development and culturing. Thus the direct measurement of peptides provided
enhanced and more accurate labeling information.



Fig. 13. S7P isotopic labeling during autotrophic metabolism in leaves. Isotopic
labeling of sedoheptulose-7-phosphate (S7P), an intermediate of the Calvin cycle.
The mass isotopomers indicate the labeling trajectories that reflect the incorpora-
tion of [13C]O2 sequentially into S7P. Initially the metabolite is unlabeled as
indicated by 100% M0 composition at time zero, then as the time exposed to [13C]O2

increases the M1 pool increases but at some point is replaced by M2. The pattern
continues until S7P becomes highly labeled. The inset graph indicates the average
labeling per carbon. The average labeling is approaching a value of �80% with time,
indicating the presence of pools that were inactive within the labeling duration
(�20% of the total S7P pool size).
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functions (e.g., leaf mesophyll and epidermal cells) and that are
themselves comprised of heterogeneous populations. The metabo-
lite heterogeneity including lipid compositions at the cellular level
examined through MRI [288,289] and imaging mass spec [290–
293] is visually striking [see figures and further description in
[294]] and reminds us that plants operate at a systems level
(Fig. 1) with individual cells predisposed to differing metabolic
objectives. Lessons learned from a specific tissue such as oil rich
cells within seeds could be used to characterize mechanisms that
limit oil production elsewhere, including leaves and other veg-
etative tissue that are less than 5% lipid [295] but that could be
engineered for increased energy content [8–14,296–299].

Eukaryotic and prokaryotic pathways and the transport
between them in lipid metabolism emphasize the complicated
subcellular compartmentation that convolutes the interpretation
of experiments. Relative to other species, plants have an increased
number of duplicated metabolic pathways within different orga-
nelles [300] including both lipid and central metabolism.
Glycolysis has been reported in at least three locations of a plant
cell [301] including cytosolic, plastidic, and a possible role on the
surface of mitochondria [302]. Likewise both cytosolic and plas-
tidic forms of enzymes functioning with pentose phosphate meta-
bolism exist [210] (Fig. 10). These intricate network descriptions
are a well-recognized challenge [6,303–308] (Fig. 11) and the
implications for modeling in multiple locations have been
described [222] including labeling experiments to maximize infor-
mation content from the labeling experiment [75].

Experimental techniques that provide information specific to
cellular or subcellular locations represent one approach to more
accurately assess metabolism. Organelle fractionation using non-
aqueous buffers at reduced temperatures to rapidly quench meta-
bolism produces minimal artefacts [309–311] and has allowed
metabolite profiling at the subcellular level [312]. Extraction of sin-
gle cells [313] or subcellular treatments [314] have also been devel-
oped to assess the metabolome and the status of profiling methods
was recently reviewed [315]. Thus the methods to combine very
specific spatial profiling approaches with isotopic labeling are
becoming more refined. A different strategy is to make use of the
known biosynthetic locations of metabolite biosynthesis and ana-
lyze the differences in enrichment from a labeling experiment.
Experiments have capitalized on the distinct biosynthetic locations
of fatty acids [52,59], carbohydrates [51,52], or protein-derived
amino acids [316] to inform isotopic labeling on subcellular meta-
bolism. The production of fatty acids includes a fatty acid synthase
complex located in the chloroplast stroma that synthesizes acyl
chains to lengths of 16 or 18 depending on the species. Further
elongation or assembly to make lipids occurs after export to the
ER. Thus the distinct locations of fatty acid biosynthesis and elonga-
tion result in the incorporation of acetate groups from distinct plas-
tidic or extra-plastidial sources. The inspection of the terminal
acetate on labeled fatty acids of different lengths provides a means
of comparing the spatially distinct acetyl-CoA pools [52,317].
Similarly, methods for carbohydrates [51,52] and amino acids
[316] produced in distinct biosynthetic locations of plants can pro-
vide analogous information about sugars and amino acids from dif-
ferent locations and have been recently extended with high
resolution MS to indirectly assess amino acids through peptide
labeling descriptions [318,319] assisting flux analysis [320].

Developing soybean embryos were cultured with 13C to gener-
ate significant amounts of biomass labeled through metabolism
(Fig. 12A). The isotopic labeling was measured in peptides obtained
from proteolysis of storage proteins. A fraction of the storage pro-
tein was nearly unlabeled because it was produced ‘‘on the vine’’
prior to embryo culturing (Fig. 12B). This resulted in a subset of
mass isotopomers with little 13C incorporation (Fig. 12C inspired
by [319]; m/z < 5 has low histogram values). The subsequent
metabolic labeling and growth of the embryos in culture resulted
in a second distribution of mass isotopomers in newly synthesized
storage proteins that correspond to significant 13C in the amino
acids used in protein biosynthesis (i.e., m/z > 5 in Fig. 12C). Thus,
the MS measurements produced a bimodal distribution within
the peptides that reflected two distinct metabolic events for the
embryos: growth in planta initially, without isotopic labeling, fol-
lowed by growth in culture with 13C substrates. Thus the final
labeling in protein observed through the mass isotopomer descrip-
tion, served as a record of the growth over time with and without
provision of isotope. The labeling distributions in the individual
amino acids that were necessary to generate the mass spectral
distribution can be determined through a computational fitting
process where many peptides of different amino acid compositions
and labeling descriptions are considered. Additionally the unla-
beled fraction can be accurately established and accounted for
based upon the composition and spectral distribution. The study
indicated that protein made with isotopes during metabolism
can be used to track differences in metabolism that occur
temporally [319]. For comparison purposes, the same protein
was hydrolyzed and labeling in individual amino acids measured
using GC–MS. The amino acid mass isotopomer descriptions were
mathematically convolved to regenerate a labeling description in
peptides; however as presented in Fig. 12C, the temporally
averaged amino acid labeling resulted in a mass isotopomer profile
that did not exhibit a bimodal labeling pattern. The information
about [13C]-amino acids connected to each other in peptides that
occurred when made in culture and the connectivity information
of [12C]-amino acids in peptides that were produced on the vine
prior to culturing was lost when all peptides were hydrolyzed
and measured by GC–MS. The GC–MS-based measurement of
hydrolyzed peptides resulted in a labeling description for each
amino acid that was the combination of all growth including the
initial growth in planta without isotopes, as well as in culture
labeling. Thus peptide measurements present a strategy for
temporal metabolism (and analogously for spatial metabolism,
see [316]) and compartmentalized flux analyses [320].

4.3.3. From CO2 to lipid: temporal labeling-based MFA approaches
Steady state MFA descriptions are limited to tissues that exhibit

unchanging metabolism for long durations and to networks con-
taining branch points with enzymatic bond-breaking and reform-
ing reactions. The steady state enrichments of different atoms
within a metabolite or end product can indicate the relative use
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of different pathways; however many tissues exhibit only brief
periods of constant metabolism (e.g., leaf metabolism is diurnal)
or in some cases all metabolites become fully labeled with time
due to an exclusive source of carbon (e.g., autotrophic metabolism
with [13C]O2 provision). Still other paths lack branch points and do
not exhibit enzymatic isotope rearrangements within a molecule.
The latter is often a feature of secondary metabolic pathways that
are linear or fatty acid biosynthesis where the repeated addition of
labeled acetyl groups results in nearly completely labeled
intermediates at isotopic steady state. Thus additional information
such as the enrichment over time is needed. For this reason con-
tinuous pulse or pulse-chase metabolic labeling of lipid assembly
are preferred.

The temporal measurement of stable isotopic labeling is analo-
gous to the dynamic radiolabeling approaches (but with stable iso-
topes) and is an appealing development because each time point
contributes information that complements steady state labeling
analysis. Therefore the additional measurements of labeling over
time in a temporal analysis (Fig. 3) provide a richer set of data
for modeling purposes [321] over steady state analysis alone.
Additionally, because the earliest time points are the most sensi-
tive to label provision, they provide a significant amount of infor-
mation and the experimental duration can be shortened
[322,323]. Recent studies have described the incorporation of 13C
into whole plants [324–326] and specific photosynthetic tissues,
cells or unicellular organisms [66,67,70,327,328]. When [13C]O2 is
provided to plants, the experiment is non-invasive and metabolic
data reflects in vivo operation. Fluxes in Arabidopsis leaves were
recently assessed by kinetic flux profiling that models unlabeled
mass isotopomers levels in metabolites [66]. Estimates for active
and inactive pools were used to overcome the spatial challenges
of a plant system and describe photosynthetic metabolism.
Autotrophic metabolism has also been described mathematically
using non-stationary state MFA applied to unicellular systems
[65,70] and the same approach has now been leveraged to
Fig. 14. Comparison of mass isotopomer measurements for isotopically labeled
fragments using single and tandem mass spectrometers. Assessment of mass
isotopomers with mass spectrometry can benefit from linking fragments (product
ions) to their precursor molecules. In the example a four carbon compound is
fragmented in the mass spectrometer resulting in a 2 carbon product that can be
measured. (A) In a single quadrupole instrument the fragment may be detectable
along with some of the remaining intact four carbon molecule resulting in 8 mass
spectral measurements, 5 from the four carbon product and 3 from the two carbon
fragment. In both cases the mass isotopomers must account for 100% of the
fractional labeling, thus the number of independent measurements are 4 and 2,
respectively. (B) When the measurements for the same four and two carbon
compound can be directly linked through the use of a tandem mass spectrometer,
the number of independent measurements increases to 8 (i.e., 9 measurements, 8
that are independent).
investigate higher plants [69]. The application of non-stationary
MFA utilizes all isotopomer data, which is fitted to accommodate
the labeling trajectories between time points (Fig. 13). Thus multi-
ple evaluations in time provide an enriched data set relative to
steady state investigations (Fig. 3A) and can be used to distinguish
pathways. The modeling of isotopomer pools allows estimation of
the inactive pools through pool dilution fluxes and therefore pre-
sents an alternative way to obtain information on spatial complex-
ity, possibly without some of the pitfalls associated with direct
experimental measurements. For example, the flux through pho-
torespiration, a pathway with up to 16 spatially resolved pools
was examined through this strategy and led to quantification with-
out assumptions about the ratio of carboxylation to oxygenation
[69]. A number of other reports, mostly in non-plant systems are
starting to surface on related use and applications [199,329–333].

The power of computational nonstationary MFA and other
methods lies in the abundance of measurements that contribute
to establish an overdetermined set of network differential mass
balance equations that describe metabolism. Though the networks
are generally simplifications, future analyses can be expected to
become more complicated and benefit from advances in labeling
and mass spectrometry. In particular mass spectrometry collision
cell technologies are available but largely untapped such as elec-
tron transfer dissociation (ETD), and higher energy collision
dissociation (HCD). Together with CID methods, fragmentation
can be optimized for lipids or other macromolecules depending
on the biological question of interest. Regiospecific information,
higher resolution techniques to distinguish similar compounds,
positive and negative ionization for different lipid classes,
increased MSn afforded in linear and orbital trap MS with small
quantities, and separation technologies such as ion mobility that
capitalize on other physical properties all represent technological
opportunities that remain largely unexplored. As these capacities
are further developed, compounds will be identified less ambigu-
ously and positional (not just mass) isotopomer descriptions will
become available. Fig. 14 illustrates the additional measurement
information that can be obtained from tandem MS that is a step
in this direction. Whereas a single quadrupole has the capacity to
measure intact as well as fragments of a metabolite, tandem MS
can link fragmented products back to labeling in their precursors.
Thus the connection between precursor and product ions results
in additional information relative to independent monitoring of
each. As indicated in the figure a four carbon compound (i.e., 4 cir-
cles) results in five mass isotopomers of which four are indepen-
dent (i.e., one is redundant if they must sum to 100% to account
for total labeling description), and the measurement of a second,
two carbon fragment adds an additional three measurements of
which two are independent. Together the MS of these two frag-
ments provides six independent mass isotopomer measurements;
however, by monitoring the transition from precursor to product
ions, nine mass isotopomers groups can be measured of which
eight are independent from one another. Thus the tandem MS of
the same two fragments results in 25% (i.e., 6 vs. 8 measurements)
more information. Further details on the number of independent
measurements from tandem MS is presented elsewhere [334]. It
is reasonable to expect that with higher power MSn techniques
or different fragment evaluations a complete isotopomer descrip-
tion may be achieved; reducing further the guesswork in model
descriptions and biological interpretation.
5. Conclusions and perspective

The engineering of primary metabolism including the accumu-
lation of lipids in plant tissues remains a challenging endeavor
despite intensive research efforts. Fundamental to our
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understanding of lipid pathways, isotopic labeling methods pro-
vide a dynamic description of metabolic operation including net-
work fluxes. The most basic aspects of lipid metabolism in plants
including the eukaryotic and prokaryotic pathways of membrane
and storage lipid assembly were largely defined by isotopic label-
ing studies. Future investigations can be anticipated to be equally
transformative for our understanding of lipid metabolism and have
a significant impact on modern day problems in food and energy,
in part because of the availability of high purity commercial iso-
topes and technologies such as MS that are sensitive with high res-
olution. Coupled with MS imaging, or more specific metabolic
readouts, isotopic labels can account for heterogeneity, tissue-level
and subcellular differences in metabolism. Other dynamic lipido-
mic studies involving isotopic labeling with or without high
resolution MS, and nonstationary MFA will define fluxes quan-
titatively and establish emergent biological properties. Finally,
the use of isotopic labeling methods with environmental or geneti-
cally altered plants will be essential in the further elucidation of
unknown reactions and/or pathways within lipid metabolism,
and is starting to allow metabolic assessment of regulation and
control mechanisms that remain the current frontier of metabolic
research in many species. Elucidation of lipid metabolism is no
longer technologically limited, but possibly our imagination and
ability to leverage available tools in new clever experiments pre-
sent the greatest hurdle to Progress in Lipid Research.
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Glossary of abbreviations

AA: amino acid
ACP: acyl carrier protein
ADPG: adenosine diphosphoglucose
AKG: alpha-ketoglutarate
ATP: adenosine triphosphate
ACL: ATP-citrate lyase
CoA: coenzyme A
CPT: CDP-choline:diacylglycerol cholinephosphotransferase
DAG: diacylglycerol
DGAT: acyl-CoA:diacylglycerol acyltransferase
DGDG: digalactosyldiacylglycerol
DHAP: dihydroxyacetonephosphate
ER: endoplasmic reticulum
ESI: electrospray ionization
E4P: erythrose-4-phosphate
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FA: fatty acid
FAT A/B: fatty acid thioesterase A and B
F6P: fructose-6-phosphate
G6P: glucose-6-phosphate
G3P: glycerol-3-phosphate
GC: gas chromatography
HP: hexose phosphate
ICITDH: isocitrate dehydrogenase
LACS: long chain acyl-CoA synthetase
LC: liquid chromatography
LPA: lyso-phosphatidic acid
LPAAT: acyl-CoA:lyso-phosphatidic acid acyltransferase
LPCAT: lysophosphatidylcholine acyltransferase
ME: malic enzyme
MFA: metabolic flux analysis
MGDG: monogalactosyldiacylglycerol
MRI: magnetic resonance imaging
MS: mass spectrometry
NADH: nicotinamide adenine dinucleotide
NADPH: nicotinamide adenine dinucleotide phosphate
NEFA: non-esterified fatty acid
NMR: nuclear magnetic resonance
OAA: oxaloacetate
OPPP: oxidative pentose phosphate pathway
PA: phosphatidic acid
PAP: phosphatidic acid phosphatase
PC: phosphatidylcholine
PDAT: phospholipid:diacylglycerol acyltransferase
PDCT: phosphatydlcholine:diacylglycerol cholinephosphotransferase
PG: phosphatidylglycerol
PUFA: polyunsaturated fatty acid
PYR: pyruvate
R5P: ribose-5-phosphate
RuBP: ribulose 1,5-bisphosphate
RuBisCO: ribulose bis-phosphate carboxylase/oxygenase
S7P: sedoheptulose-7-phosphate
TAG: triacylglycerol
TCA: tricarboxylic acid cycle
TGD: trigalactosyldiacylglycerol
TP: triose phosphate
UDPG: uridine diphosphoglucose
3-PGA: 3-phosphoglyceric acid
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