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In this paper the concept of a contraction for multi-valued mappings in a metric space is
introduced and the existence theorems for fixed points of such contractions in a complete
metric space are proved. Presented results generalize and improve the recent results of
Y. Feng, S. Liu [Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings
and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317 (2006) 103–112], D. Klim,
D. Wardowski [D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions
in complete metric spaces, J. Math. Anal. Appl. 334 (2007) 132–139] and several others.
The method used in the proofs of our results is new and is simpler than methods used in
the corresponding papers. Two examples are given to show that our results are genuine
generalization of the results of Feng and Liu and Klim and Wardowski.

© 2008 Published by Elsevier Inc.

1. Introduction

Let (X,d) be a metric space and let Cl(X), CB(X) and Comp(X) denote a collection of all non-empty closed, all non-
empty closed and bounded and all non-empty compact subsets of X , respectively. Let D(x, A) denote the distance from x
to A and H the Hausdorff metric induced by d.

The Nadler’s [8] fixed point theorem for multi-valued contractive mappings has been extended in many directions
(cf. [1–12]). The following generalization of Nadler’s result is given by Mizoguchi and Takahashi [7].

Theorem 1. (See [7].) Let (X,d) be a complete metric space and let T : X → CB(X). If there exists a function ϕ : (0,∞) → [0,1) such
that

lim
r→t+ supϕ(r) < 1 for each t ∈ [0,∞), (1)

and if

H
(
T (x), T (y)

)
� ϕ

(
d(x, y)

)
d(x, y) (2)

for all x, y ∈ X, then T has a fixed point.

An alternative proof of this theorem was given by Daffer and Kaneko [4, Theorem 2.1].
Recently some interesting results have been obtained by Feng and Liu [5]. They proved the following theorem.
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Theorem 2. (See [5, Theorem 3.1].) Let (X,d) be a complete metric space and let T : X → Cl(X). If there exist constants b, c ∈ (0,1),

c < b, such that for any x ∈ X there is y ∈ T (x) satisfying the following two conditions:

bd(x, y) � D
(
x, T (x)

)
(3)

and

D
(

y, T (y)
)
� cd(x, y), (4)

then T has a fixed point in X provided a function f (x) = D(x, T (x)) is lower semi-continuous.

Very recently Klim and Wardowski [6] generalized Theorem 3.1 of Feng and Liu [5]. They proved the following two
theorems.

Theorem 3. (See [6, Theorem 2.1].) Let (X,d) be a complete metric space and let T : X → Cl(X). Assume that the following conditions
hold:

(i) the map f : X → R, defined by f (x) = D(x, T (x)), x ∈ X, is lower semi-continuous;
(ii) there exist a constant b ∈ (0,1) and a function ϕ : [0,∞) → [0,b) satisfying

lim
r→t+ supϕ(r) < b for each t ∈ [0,∞), (5)

and for any x ∈ X there is y ∈ T (x) satisfying the following two conditions:

bd(x, y) � D
(
x, T (x)

)
(6)

and

D
(

y, T (y)
)
� ϕ

(
d(x, y)

)
d(x, y). (7)

Then T has a fixed point.

Theorem 4. (See [6, Theorem 2.2].) Let (X,d) be a complete metric space and let T : X → Comp(X). Assume that the following
conditions hold:

(i) the map f : X → R, defined by f (x) = D(x, T (x)), x ∈ X, is lower semi-continuous;
(ii) there exists ϕ : [0,∞) → [0,1) satisfying the condition

lim
r→t+ supϕ(r) < 1 for each t ∈ [0,∞), (8)

and such that for any x ∈ X there is y ∈ T (x) satisfying the condition

d(x, y) = D
(
x, T (x)

)
(9)

and the condition (7).

Then T has a fixed point.

Theorem 3 generalizes Theorem 2, but not Theorem 1 of Mizoguchi and Takahashi [7], since the function ϕ in Theorem 3
need to satisfy the condition (5), which is stronger than (1), as b < 1. Also Theorem 4 does not generalize Theorem 1, as
T (x) in Theorem 4 need to be compact.

The aim of this paper is to present more general results which unify and generalize the corresponding results of Mi-
zoguchi and Takahashi [7], Feng and Liu [5] and Klim and Wardowski [6]. Two examples are given to show that our results
are genuine generalizations.

The method used in the proofs of our results is new and seems that is simpler than corresponding methods used by the
cited authors.

2. Preliminaries

Let (X,d) be a metric space, CB(X) a collection of all non-empty closed and bounded subsets of X and H the Hausdorff
metric induced by d. Thus, for A, B ∈ CB(X),

H(A, B) = max
{

sup
x∈B

D(x, A), sup
x∈A

D(x, B)
}
,

where D(x, A) = infy∈A d(x, y).
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Definition 1. A function f : X → R is called lower semi-continuous, if for any {xn} ⊆ X and x ∈ X,

xn → x implies f (x) � lim
n→∞ inf f (xn).

Definition 2. Let X be a non-empty set. An element x ∈ X is said to be a fixed point of a multi-valued mapping T : X → 2X

if x ∈ T (x). If T x = {x}, then x is called a stationary point (or a strict fixed point) of T .

Definition 3. Let (X,d) be a metric space. A subset K is called proximinal if for each x ∈ X , there exists an element k ∈ K
such that

d(x,k) = D(x, K ) = inf
{

d(x, y): y ∈ K
}
.

It is well known that every closed convex subset of a uniformly convex Banach space is proximinal.

3. Main results

Now we shall prove a theorem which generalizes Theorem 1 of Mizoguchi and Takahashi [7].

Theorem 5. Let (X,d) be a complete metric space and T : X → Cl(X) be a mapping of X into itself. If there exists a function
ϕ : [0,∞) → [0,1) satisfying

lim
r→t+ supϕ(r) < 1 for each t ∈ [0,∞) (10)

and is such that for any x ∈ X there is y ∈ T (x) satisfying the following two conditions:

d(x, y) �
(
2 − ϕ

(
d(x, y)

))
D

(
x, T (x)

)
(11)

and

D
(

y, T (y)
)
� ϕ

(
d(x, y)

)
d(x, y), (12)

then T has a fixed point in X provided f (x) = D(x, T (x)) is lower semi-continuous.

Proof. Since ϕ(d(x, y)) < 1 for all x, y ∈ X, it follows that 2 −ϕ(d(x, y)) > 1 for all x, y ∈ X . Thus for any x ∈ X there exists
y ∈ T (x) such that (11) holds.

Let x0 ∈ X be any initial point. Then there exists x1 ∈ X such that x1 ∈ T (x0) and

d(x0, x1) �
(
2 − ϕ

(
d(x0, x1)

))
D

(
x0, T (x0)

)
. (13)

Then from (12), with x = x0 and y = x1,

D
(
x1, T (x1)

)
� ϕ

(
d(x0, x1)

)
d(x0, x1). (14)

From (13) and (14) we get

D
(
x1, T (x1)

)
� ϕ

(
d(x0, x1)

)(
2 − ϕ

(
d(x0, x1)

))
D

(
x0, T (x0)

)
. (15)

Define a function ψ : [0,∞) → [0,+∞) by

ψ(t) = ϕ(t)
(
2 − ϕ(t)

)
, (16)

that is, by ψ(t) = 1 − (1 − ϕ(t))2. Since ϕ(t) < 1 and limr→t+ supϕ(r) < 1 for each t ∈ [0,∞), it follows that

ψ(t) < 1 (17)

and

lim
r→t+ sup ψ(r) < 1 (18)

for each t ∈ [0,∞).

From (15) and (16),

D
(
x1, T (x1)

)
� ψ

(
d(x0, x1)

)
D

(
x0, T (x0)

)
. (19)

Now we choose x2 ∈ X such that x2 ∈ T (x1) and
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d(x1, x2) �
(
2 − ϕ

(
d(x1, x2)

))
D

(
x1, T (x1)

)
.

Then by (12) and (16) we get

D
(
x2, T (x2)

)
� ψ

(
d(x1, x2)

)
D

(
x1, T (x1)

)
.

Continuing this process we can choose an iterative sequence {xn}∞n=0 such that xn+1 ∈ T (xn),

d(xn, xn+1) �
(
2 − ϕ

(
d(xn, xn+1)

))
D

(
xn, T (xn)

)
(20)

and

D
(
xn+1, T (xn+1)

)
� ψ

(
d(xn, xn+1)

)
D

(
xn, T (xn)

)
, n = 0,1,2, . . . . (21)

For simplicity denote dn = d(xn, xn+1) and Dn = D(xn, T (xn)) for all n � 0. Then from (21),

Dn+1 � ψ(dn)Dn for all n � 0. (22)

If Dn = D(xn, T (xn)) = 0 for some n, then xn ∈ T (xn), that is, xn is a fixed point of T and the assertion of theorem is
proved. So we shall assume that Dn > 0 for all n � 0.

From (22) and (17) we conclude that {Dn}∞n=0 is a strictly decreasing sequence of non-negative reals. Therefore, there is
some δ � 0 such that

lim
n→∞ Dn = δ. (23)

Since D(xn, T (xn)) � d(xn, xn+1) for each xn+1 ∈ T (xn), and as ϕ(t) < 1 for all t � 0, from (20) we get

Dn � dn < 2Dn. (24)

Thus, the sequence {dn}∞n=0 is bounded and so there is some d � δ such that

lim
n→∞ inf dn = d. (25)

Now we shall show that d = δ = 0. Suppose, at first that δ = 0. Then from (23) and (24) we have

lim
n→∞dn = 0.

Suppose now that δ > 0. We shall show that d = δ. Suppose, to the contrary, that d > δ. Then d − δ > 0 and so from (23)
and (25) there is a positive integer n0 such that

δ � Dn � δ + d − δ

4
for all n � n0 (26)

and

d − d − δ

4
< dn for all n � n0. (27)

Then from (26), (27) and (20) we have

δ + 3
d − δ

4
= d − d − δ

4
< dn �

(
2 − ϕ(dn)

)
Dn �

(
2 − ϕ(dn)

)(
δ + d − δ

4

)

for all n � n0. Hence we get

1 + 2(d − δ)

3δ + d
< 1 + (

1 − ϕ(dn)
)
.

This inequality implies that

−(
1 − ϕ(dn)

)2
< −

[
2(d − δ)

3δ + d

]2

.

Thus,

ψ(dn) = 1 − (
1 − ϕ(dn)

)2
< 1 −

[
2(d − δ)

3δ + d

]2

for all n � n0.

Now from (22),
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Dn+1 � hDn for all n � n0, (28)

where h = 1 − [2(d − δ)/(3δ + d)]2. Then h < 1, as d > δ. Since δ > 0, there is a positive integer k such that

hk
(

δ + d − δ

4

)
< δ.

Then from (28) and (26) we have

δ � Dn0+k � hDn0+k−1 � h2 Dn0+k−2 � · · · � hk Dn0 � hk
(

δ + d − δ

4

)
< δ,

a contradiction. Therefore, our assumption d > δ is wrong. Thus d = δ. Since δ � Dn � dn, it follows that limn→∞ inf dn = δ+.

Hence we conclude that there exists a subsequence {dnk }∞k=0 of {dn} such that

lim
k→∞

dnk = δ+.

Then by (18),

lim
dnk →δ+

sup ψ(dnk ) < 1. (29)

From (22) we have

Dnk+1 � ψ(dnk )Dnk .

Thus by (23) we obtain

δ = lim
k→∞

sup Dnk+1 �
(

lim
k→+∞

sup ψ(dnk )
)(

lim
k→∞

sup Dnk

)
=

(
lim

dnk →δ+
sup ψ(dnk )

)
δ.

If we suppose that δ > 0, then from this inequality we have

1 � lim
dnk →δ+

sup ψ(dnk ),

a contradiction with (29). Thus δ = 0. Then from (23) and (24) we have

lim
n→∞dn = 0.

Now we shall show that {xn}∞n=0 is a Cauchy sequence. Let

α = lim
dn→0+

sup ψ(dn).

Then by (18), α < 1. Let q be such that α < q < 1. Then there is some n1 ∈ N such that ψ(dn) < q for all n � n1. So from (22)
we have Dn+1 � qDn for all n � n1. Then by induction we get

Dn � qn−n1 Dn1 (30)

for all n � n1 + 1. From (30) and (24) we get

d(xn, xn+1) � 2qn−n1 Dn1 . (31)

Now by (31), for all m > n � n1 + 1, we have

m∑
k=n1

d(xk, xk+1) � 2
m∑

k=n1

qk−n1 Dn1 � 2
1

1 − q
Dn1 .

Hence we conclude, as q < 1, that {xn}∞n=0 is a Cauchy sequence.
Since X is complete, there is some z ∈ X such that

lim
n→∞ xn = z. (32)

We now show that z is a fixed point of T . Since f (x) = D(x, T (x)) is lower semi-continuous and D(xn, T (xn)) = Dn → 0
as n → ∞, we have

0 � D
(
z, T (z)

) = f (z) � lim
n→∞ sup f (xn) = lim

n→∞ sup D
(
xn, T (xn)

) = 0.

Hence D(z, T (z)) = 0. This implies that z ∈ T (z), as T (z) is closed. Thus we proved that z is a fixed point of T . �
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Remark 1. Theorem 5 is a generalization of Theorem 1 of Mizoguchi and Takahashi [7], as D(y, T (y)) � H(T (x), T (y)) for
each y ∈ T (x). It is easily to construct examples in which Theorem 5 can be applied, but not Theorem 1.

Now we shall prove a theorem which is a different from Theorem 5 and is a generalization of Theorem 1 of Mizoguchi
and Takahashi [7], Theorem 2 of Feng and Liu [5] and Theorem 3 of Klim and Wardowski [6]. We shall present a proof
which seem to be simpler than the proof in [6].

Theorem 6. Let (X,d) be a complete metric space and T : X → Cl(X) be a mapping of X into itself. If there exist a function
ϕ : [0,∞) → (0,1) and a non-decreasing function b : [0,∞) → [b,1), b > 0, such that

ϕ(t) < b(t) (33)

and

lim
t→r+ supϕ(t) < lim

t→r+ sup b(t) (34)

for all t ∈ [0,∞), and for any x ∈ X there is y ∈ T (x) satisfying the following two conditions:

b
(
d(x, y)

)
d(x, y) � D

(
x, T (x)

)
(35)

and

D
(

y, T (y)
)
� ϕ

(
d(x, y)

)
d(x, y), (36)

then T has a fixed point in X provided f (x) = D(x, T (x)) is lower semi-continuous.

Proof. Since b(d(x, y)) < 1 for all x, y ∈ X, it follows that for any x ∈ X there exists some y ∈ T (x) such that (35) holds. Let
x0 ∈ X be arbitrary. Then we can choose x1 ∈ T (x0) such that (35) and (36) hold, that is, such that

b
(
d(x0, x1)

)
d(x0, x1) � D

(
x0, T (x0)

)
(37)

and

D
(
x1, T (x1)

)
� ϕ

(
d(x0, x1)

)
d(x0, x1). (38)

From (37) and (38) we get

D
(
x1, T (x1)

)
� ϕ(d(x0, x1))

b(d(x0, x1))
D

(
x0, T (x0)

)
. (39)

Define now a new function ψ(t) on [0,∞) as follows:

ψ(t) = ϕ(t)

b(t)
for all t ∈ [0,∞).

Then from (33) and (34),

ψ(t) < 1 (40)

and

lim
t→r+ sup ψ(t) < 1 (41)

for all t ∈ [0,∞). Thus from (39),

D
(
x1, T (x1)

)
� ψ

(
d(x0, x1)

)
D

(
x0, T (x0)

)
.

Now we choose x2 ∈ X such that x2 ∈ T (x1) and

b
(
d(x1, x2)

)
d(x1, x2) � D

(
x1, T (x1)

)
and

D
(
x2, T (x2)

)
� ϕ

(
d(x1, x2)

)
d(x1, x2).

Then by definition of ψ we get

D
(
x2, T (x2)

)
� ψ

(
d(x1, x2)

)
D

(
x1, T (x1)

)
.
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Continuing this process and denoting dn = d(xn, xn+1) and Dn = D(xn, T (xn)), we can choose an iterative sequence
{xn}∞n=0 such that xn+1 ∈ T (xn),

b(dn)dn � Dn (42)

and

Dn+1 � ϕ(dn)dn (43)

for all n � 0. From (42) and (43) we have

Dn+1 � ψ(dn)Dn. (44)

Again from (42) with n = n + 1 and from (43),

dn+1 � ϕ(dn)

b(dn+1)
dn. (45)

If Dn = 0 for some n, then xn is a fixed point of T and so we finished the proof. Thus we shall consider the case Dn > 0
for all n � 0. From (44) and (40) we have

Dn+1 < Dn for all n � 0.

Now we shall show that

dn+1 < dn for all n � 0. (46)

Suppose, to the contrary, that dn � dn+1. Then b(dn) � b(dn+1), as b(t) is a non-decreasing function. Now, by (45), we have

dn � dn+1 � ϕ(dn)

b(dn+1)
dn � ϕ(dn)

b(dn)
dn = ψ(dn)dn < dn,

a contradiction. Thus we proved (46).
Since {Dn} and {dn} are monotone, there exist δ � 0 and d � 0 such that

lim
n→∞ Dn = δ, lim

n→∞dn = d + .

Then from (44) we get

δ �
(

lim
n→∞ sup ψ(dn)

)
δ =

(
lim

dn→d+
supψ(dn)

)
δ.

Hence by (41) we conclude that δ = 0. Since 0 < b � b(t), from (42) we get bdn � b(dn)dn � Dn and hence

dn � 1

b
Dn. (47)

Since limn→∞ Dn = 0, we get

lim
n→∞dn = 0.

Let

α = lim
dn→0+

sup ψ(dn).

Then by (41), α < 1. Let q be such that α < q < 1. Then there is some n0 ∈ N such that ψ(dn) < q for all n � n0. Thus
from (44),

Dn � qn−n0 Dn0 for each n � n0.

Then from (47),

dn � 1

b
qn−n0 Dn0 for each n � n0.

Proceeding as in the proof of Theorem 5 one can prove that {xn}∞n=0 is a Cauchy sequence and that its limit point is a
fixed point of T . �

Now we shall formulate a theorem, which is a generalization of Theorem 4 of Klim and Wardowski [6].
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Theorem 7. Let (X,d) be a complete metric space and T be a multi-valued mapping of X into a collection of all non-empty proximinal
subsets of X . If there exists a function ϕ : [0,∞) → [0,1) satisfying (8) and such that for any x ∈ X there is y ∈ T (x) satisfying the
following two conditions:

d(x, y) = D
(
x, T (x)

)
and

D
(

y, T (y)
)
� ϕ

(
d(x, y)

)
d(x, y),

then T has a fixed point in X provided f (x) = D(x, T (x)) is lower semi-continuous.

Remark 2. Theorem 6 is a genuine generalization of Theorem 3 of Klim and Wardowski [6]. Indeed, if in Theorem 6,
b(t) = b-const. and ϕ1(t) = bϕ(t), then ϕ1(t) satisfies (5) and (7) and therefore all hypotheses of Theorem 3 are satisfied.
In the next section we shall construct and discuss two examples which show that Theorem 6 is strict generalization of
Theorem 3.

Remark 3. In the next section we shall construct an example which shows that Theorem 7 is a strict generalization of
Theorem 4.

4. Comparisons and examples

In this section we shall construct and discuss two examples which show that our results are genuine generalization of
the results of Mizoguchi and Takahashi [7], Feng and Liu [5] and Klim and Wardowski [6].

The following example shows that there are mappings which satisfy all hypotheses in Theorem 5, but not in Theorem 3,
and therefore in Theorem 2.

Example 1. Let X = [0,1] and d : X × X → R be a standard metric. Let T : X → Cl(X) be defined as in Example 3.1 of Klim
and Wardowski [6]:

T (x) =
{ { 1

2 x2} for x ∈ [0, 15
32 ) ∪ ( 15

32 ,1],
{ 17

96 , 1
4 } for x = 15

32 .

Define now ϕ : [0,∞) → [0,1) as follows:

ϕ(t) =

⎧⎪⎪⎨
⎪⎪⎩

8
5 t for t ∈ [0, 7

24 ) ∪ ( 7
24 , 1

2 ),

5
8 for t = 7

24 ,

4
5 for t ∈ [ 1

2 ,∞).

We shall show that T satisfies all hypotheses of our Theorem 5. It is easy to see that a function f (x) = D(x, T (x)) is
lower semi-continuous. Moreover, for each x ∈ [0,15/32) ∪ (15/32,1] we have T (x) = {(1/2)x2} and therefore y = (1/2)x2,

d(x, y) = D(x, T (x)) = x − (1/2)x2. Further,

D
(

y, T (y)
) = d

(
1

2
x2,

1

8
x4

)
= 1

2

(
x2 −

(
1

2
x2

)2)
= 1

2

(
x + 1

2
x2

)(
x − 1

2
x2

)

= 1

2

(
x + 1

2
x2

)
d(x, y) � 8

5

(
x − 1

2
x2

)
d(x, y) = ϕ

(
d(x, y)

)
d(x, y).

Thus, for x ∈ [0,1], x �= 15/32, T satisfies (11) and the contractive condition (12) in Theorem 5.
Let now x = 15/32. Then for y = 17/96 ∈ T (x) we have

d(x, y) = 7

24
<

(
2 − 5

8

)
7

32
= [

2 − ϕ
(
d(x, y)

)]
D

(
x, T (x)

)
and

D
(

y, T (y)
) = d

(
17

96
,

1

2

172

962

)
<

17

96
<

5

8

7

24
= ϕ

(
d(x, y)

)
d(x, y).

Thus, T satisfies (11) and (12) for x = 15/32. Therefore, all assumptions of our Theorem 5 are satisfied and Fix(T ) = {0}.
Now we shall show that a given map T does not satisfy hypotheses of Theorem 3 of Klim and Wardowski [6].
Let b ∈ (0,3/4]. Then for any ϕ : [0,∞) → [0,b), 3/4 > ϕ(d(x, y)). Thus for x = 1 we have T (x) = {1/2}, y = 1/2,

T (y) = {1/8}, d(x, y) = 1/2, D(y, T (y)) = 3/8 and, consequently,
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D
(

y, T (y)
) = 3

4
· 1

2
= 3

4
d(x, y) > ϕ

(
d(x, y)

)
d(x, y).

Therefore, for x = 1 the inequality (7) in Theorem 3 is not satisfied.
Let now b ∈ (3/4,1) and let x = 15/32. Then

T (x) =
{

17

96
,

1

4

}
and d

(
x, T (x)

) = 7

32
.

Consider at first the case y = 17/96. Then d(x, y) = 7/24 and so we have, as b > 3/4,

bd(x, y) >
3

4
d(x, y) = 3

4
· 7

24
= 7

32
= d

(
x, T (x)

)
.

Therefore, for y = 17/96 the inequality (6) is not satisfied.
Let now y = 1/4. Then T (y) = {1/32}, d(x, y) = 7/32, D(y, T (y)) = 7/32 and so we have, as for any ϕ : [0,∞) → [0,b),

1 > b > ϕ(t),

D
(

y, T (y)
) = 7

32
= d(x, y) > bd(x, y) > ϕ

(
d(x, y)

)
d(x, y).

Therefore, for y = 1/4 the inequality (7) is not satisfied. Thus, for x = 15/32 there is not y ∈ T (x) which satisfies (6) and (7).
So we showed that there do not exist b ∈ (0,1) and ϕ : [0,∞) → [0,b) such that the mapping T satisfies hypotheses of
Theorem 3.

Now we shall present an example which shows that Theorem 7 is a genuine generalization of Theorem 4.

Example 2. Let X = [0,+∞). Define T : X → Cl(X) and ϕ : [0,∞) → [0,1) as follows:

T (x) =
{

x

a

}
∪ [

(1 + 2x),+∞)
,

ϕ(t) = 1

a
,

where a > 1. Then

f (x) = D
(
x, T (x)

) = x − x

a
= a − 1

a
x

and so f (x) is continuous. Further, for each x ∈ X there exists y = x/a ∈ T (x) such that d(x, y) = D(x, T (x)). Thus we have

D
(

y, T (y)
) = x

a
− x

a2
= 1

a

a − 1

a
x = ϕ

(
d
(
x, T (x)

))
d(x, y).

Therefore, all assumptions of our Theorem 7 are satisfied and Fix(T ) = {0}. Clearly, T does not satisfy the hypotheses in
Theorem 4, since T (x) is not compact for all x ∈ X .
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