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Under suitable hypotheses, if an object in an additive category is a direct sum of 
subobjects with local endomorphism rings, then any two such decompositions have 
the summands isomorphic in pairs, and any other decomposition has a refinement 
into a decomposition where the summands are of this sort. The purpose of this paper 
is to give careful proofs of such results, using what appear to be minimal hypotheses. 
Theorems of this sort for infinite direct sums in additive, non-Abelian categories, 
have been essential in recent work in Abelian g;oup theory. 

In 1909, MacLagan-Wedderburn [29] proved that if a finite group is expanded 
in two ways as a direct sum of indecomposable factors, then the summands are iso- 
morphic in pairs. Remak [ 181 showed that the summands are actually centrally iso- 
morphic. This theorem was extended by Gull [ 131 and Schmidt [ 19,201 to operator 
groups satisfying the double chain condition for admissible subgroups, and the numer- 
ous extensions of this famous theorem are most often referred to as Krull-Schmidt 
Theorems. 

In this paper we are primarily interested in generalizations of such theorems con- 
cerning infinite direct sums of modules. The most famous such result is Azymaya’s 
unique decomposition theorem, published in 1950: Let M be a module which has a 
direct sum deconlposition us a finite or infinite direct stun of irzdecomposable sub- 
rmdules Mi (i E I), such that the endornorphisrn ring oj’each Mi (i E I) is a local 
ritzg. Therz any imieconzposable sutmzand oj’M is isomorphic to Mi Ibr some i E I, 

md if M is the direct sum of the iudecotnposable submodules NjQ’ E J), therz there 
is a bijective mapping Q, : I + J such that Mi s NQco for all i E I. 

h-r 1964, Crawley and Jonsson [6] published some unique decomposition and 
isomorphic refinement theorein for general algebraic systems. A key condition in 
their work was’the so-called exchange property (defined in Section 2 below). In 
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1969, Warfield [24] showed that an indecomposable module has this exdmge pro- 
perty if and only $ its endomorphislli iing is a local ring. Using this, it turns out 

that the Crawiey-J&. I ;;T;on theorems for direct sums of indecomposable algebras 
include Azun:aya’s thi;orem, and also the following isomorphic refinement theorem: 
Let M be a IT&& which had a direct sum decompositiim as a (finite Or injkite) 
direct slim oJ indecomposable submodules IV&i E r) SUCK that each Mi is coumbly 
germ-ated and the erldomorphism ring oj’each Mi is a local ring. Then any two direct 
s~lm decompositiom of M ham isomorphic refimnerrts, ar!d, in particular if K is a 
surnrnar~~l c)j’M, then there is ,LI subset J C I such that K is /somorphic to the direct 
sldm of the modules Mi, i E J. (An economical proof of this theorem can be found 
in [ 1, Theorem 2&S]. An exslnple of an earlier theorem implied by this one is 
Kaplan&y’s Theorem [ 121 t ,lat a projective module over a local ring is free.) 

The first version of the K &l--Schmidt Theorem proved in the context of cate- 

gories was Atiyah’s KrulLdc C hmidt Theorem [2], published in 1956, for objects in 
an Abelian category satisfying a bichain condition. The result was applied to sheaf 
theory. In his thesis [8] Gabriel stated that Azumaya’s theorem carries over imme- 
diately to Abelian categories with infinite direct sums and satisfying a Grothendieck 
condition, and used this to discuss the injective objects in a locally Noetherian cate- 
gory. Proofs of Azymaya’s theorem in an Abelian Grtithendieck category may be 
foundin [5], [16],and [173. 

In 1964, 1231, Walker used the Azumaya Theorem for finite direct sums in an 
Abelian category to give a natural form to some interesring results discovered by 
B. Jdnsson. Jo’nsson had shown (announced in 1945 [S], with details in 1957 [ 101) 
that torsion-free Abelian groups of finite rank fail to satisfy the Krull-Schmidt 
Theorem. However (announced in 1945 191, with details in 1959 [ \ 11) he was 
able to obtain an approximate Krulll-Schmidt Theorem involving an equivalence 
relation weaker than isomorphism (two such groups are quasi-isomorphic if each is 
isomorphic to a subgroup of finite index in the other). Walker showed that Jbnsson’s 
result could be viewed as an application of the Azumays Theorem for finite sums in 
an Abelian category whose objects are Abelian groups brlf where the morphism 
group is defined differently. 

Two other extensions of the Krull-Schmidt Theorem were given by Bass [4, 
pp, 18-201 and Warfield [Xl. hss extended the Azytnaya theorem for finite sums 
to additive categories in which all idcmpotents split, and applied the result to K:- 
theory. A similar result has been needed in recent work ill the K-tljeory of Alxliall 
groups of finite I-’ lk [ 14) . Warfield extended most of the Crawley-- Jdnsson results, 
inchfing those f: SC sums of indecomposables, to Abelian categories satisfying ;I 
Gothendieck condition. and applied the results to the structure of iljjective ~?Io* 
dules. 

Recent work in Abelian group theory has made it essential to use unique decom- 
Position and isomorphic refinement theorems in additive categories which are not 
Abelian. The Cst of the relevznt examples arose in Warfield’s work 011 tllt~ &ssifics- 

tiofl theory of mddes mw a discrete valuation ring ([26], 1271, ;lnd [281) iI; tyllicll 



a certain family cjf cardinal numbers associated to a certain class of modules were 
shown to be isomoi.pFism invariants by the application of a version of Azumaya’s 
theorem, not in the category of mcdules but in an associated, additive, non-Abelian 
category. The invariants were extended to summands of modules in the class bjr ap- 
plication of a version t>f the Craj&zv--.Gnsson results in the same category. A very 
similar category, but one more easily described, was introduced by E.A. Walker. 
Let 311 be the category whose obg tt;Jt; are modules over a discrete valuation ring R 
and whose morphisms are the sets )Tl,)mR(A,B)l)lomR(A,rB), where tB denotes the 
torsion submodule of B. The module: A and B are isomorphic in 7Z if and only if 
there are torsion modules S and T such that A 0 S 2 B D T. This category is an addi- 
tive category with kernels and infinite direct sums, but it is JIO~ Abelian. The iso- 
morphic refinement theorem in this category implies the following theorem. proved 
directly by Stanton 1211: If M is a module which is a summand of a direct sum of‘ 
modules whose torsion-free rank is one, then there is a torsion module T such that 
hf @ Tis a direct sum of modules of torsion-free rank one. (This had previously been 
known 2111~ for modules of finite rank over a complete discrete valuation ring.) The 
key is tl~at tnodules whose torsion-free rank is one have a local endomorphism ring 
in cni!. 

In ;I different direction, Jbnsson’s Theorem on quasi-decompositions can be ex- 
tended to groups of intlnite ran!< using a notion of local quasi-isomorphism. (If H is 
a torsion-free group and A a subgroup, A is locally quasi-equal to B if for every 
finite rank subgrlrup Fof B, there is a positive integer 11 such that r#s ,4. Croups 
G and H are locally quasi-isomorphic if they have subgroups G and II’, locally 
quasi-equal to (3 and II respectively, such that G’ 2 H’.) In [7], Fuchs and Viljoen 
obtain unique decomposition and isomorphic refinement theorems in this contest. 
A special case of their results yields the following: If G = &_IM~ = xjG,,NjY where 
each l\fi and Ni is torsion-free of finite rank and contains no decomposable subgroup 
of finite index, then there is a bijective map Q, : I + J such that Mi is isomorphic to 

a subgrol!pl of finite index in NQcij. Further, if G has another decomposition G = 
X a Y, then there is a subgroup B ot’ A’, locally quasi-equal to X, and a subset 1’ of 

/, S~JCII that B 2 I&,’ A$. 
Walker 1221 Put this theory in a natural setting by defining an additive category 

P whose objects are torsion-free groups and whose morphisnl groups &k/j) are 

dcf?llcd to be the ,direct I;mits of the groups 1 ~III( x.8). where ,v ranges over tk set 
of subppqx of Ai which are quasi-equal to ,4. This category is an additive c;ltegory 
with infinite direct SLJ~IS ;IJI~ wih kernels. 

The general &heorern is that if C; is isomorphic in f! to a direct sum d groups 4 . c 
linitc rank, t!len irl :JJIY two such decumposihms. the SUJIIJI~;~JN.IS arc quasi-isoJ]lor- 
pI:ic in pairs. ant1 that any sunmand of G inJhe category L? is P-isomorphic to a 
direct SLIJ~I of groups of finite rank. 

These various applications made it essenti;rl to have a careful proof of the rek- 
v;tnt tlreorerns ;Ivailable. A rl!rrnber ot‘ difficlrltics arise in non-Abelian categories, 
so that at a number CJ key points L~IP uioufs do not simply carry over innrnediately 
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from the Abelian category case. In the first section below we prove a Kruli-Schmidt 
Theorem for finite decompositions in any additive category, which generalizes 
Bass’s result [4] somewhat. In Sections 2 and 3 we prove unique decomposition 
and isomorphic refinement theorems for infinite direct sums in additive categories 
with infinite direct sums and kernels. Throughout this paper, we use the notation 
2= for direct sums and we call a ring a local ring if the sum of two non-units is a 
non-unit (i.e. the ring has a unique maximal left ideal, but is not necessarily 
Noetherian). 

1. A unique decomposition thtaorem for finite direct sums 

Throughout this paper we work in an additive category satisfying the standard 
axioms [ 15, pp. 249-2531. ! toughly speaking it is a category together with an 
Abelian group structure on each Hom(A,B) relative to which composition is bi- 
linear. For every two objects A,B there is an object A @B together with tnaps 
eA:A+AQB,eB:B+A@,pA:A@B+A,pB:A@B+Bsatisfying 

Pne~ = 1~~ PB~B = 1, and e,@A + eBpB = GARB. 
The proof of the following lemma is straightforward. 

Lemma LLetMCG=iVN?, withpN,pR,eN, R e the projections and injections 
and eM : M -+ G the inclusion. suppose PNeM : M + N is an isomo~hisin. Then 
G’ = M @ R, the prO]ectiOnS for this Sum being nM = (PN eM’)- ‘PN and nR = 

PR ( I(; - e,tr?rMh 

Theorem 1. Let A be any additive category arid M = $l 1 Mi where End(Mi) is a 
local ring fcv all i. Therl arly other direct suns decomposition of M reji-rlcs to a dc- 
composition into at most 01 indecomposable summands, and if M = I$!= 1 Ni is an- 
other decomposition in which End(Ni) has no idempotents other than 0 azd 1 

(I G i < rz): the0 111 = 11 and, with renurrtbevirlg, Mi z Ni(1 < i G rn). 

Proof. We prove the second statement first. Let ei : Mi + M and fi : Nj -+ M be the 
injection maps and pi : 

$I p f t. )yi 1 

M + Mi and q) : M + N,- be the projection maps. Then 
e is the identity on M,, and since End(M1) is a local ring, one of the 

surnnrands is a unit in the ring. Renumbering, we suppose that this is the element 
7 =plflqlel. We now look at the endomorphism of N, given byqlel~--*p~& 
Computation (using the definition of y) shows that this is an idempotent, and 
hence either 0 or 1. Since it is a factor of (y-lpl,fi q1e1)2, which is the identity 
of Ml, and Ml # 0, this idempotent must be the identity of N,. The map pl,fI is 
therefore an isomorphism of N, onto M,, with inverse y1 e&. Lemma 1 impiies 
that 

M = N, 3 M2 f% . . . @ At,,* . 
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An easier lemma, valid in any additive category, implies that complements to the 
same summand are isomorphic, whence 

The statements follows by induction. 
Returning to the first statement of the theorem, we let R be the endomorphism 

ring of M and note that R = XzlR(eipi), where eipi is an idempotent in R, and 
this is a direct sum decomposition of R as a sum of left ideals. Further, we can iden- 
tify End(Mi) with End(R(eipi)) = (eipi)R(eipi), so these endomorphism rings are 
local. Our previously proved statement therefore applies to this decomposition of 
R. Since the category of R-modules is Abelian, any idempotent splits. An examins- 
tion of the previous argument (or the well known results for modulus as in [24] or 
Proposition 2 below for example) show that if R R = I& Li is any direct sum de- 
composition of R as a sum of left ideals, then, renumbering if necessary, we can de- 
compose L 1 = L; @L; such that R = R(eIpl) @L; @ (iEF=zLi). By induction, we see 
that any decomposition of R as a module refines to one with at most IN summands, 
all indecomposable. This mIans that any independent orthogonal set of idempotents 
in R has at most m members, which implies, in turn, that any direct sum decompo- 
sition of M has at most 112 members. This clearly implies that any decomposition of 
M refines to a decomposition with indecomposable summands. (We note that it does 
not imply that those indecomposable summands have endomorphism rings with no 
nontrivial idempotents, since we do not know that idempotents split in our category. 
If we knew this, we would have a more satisfactory result, like that proved in 14, 
pp. 18-201). 

2. A unique decomposition theorem for arbitrary direct sums 

Definition. A small object is an object S such that every map into a sum 
f : S + C,, Mi factors through a subsum ZliEF Mi with F some finite sllbset of 1. 

In a category of modules, finitely generated modules are small. The converse 
does not generally hold, but this observation provides an abundance of small objects. 
In particular, every module is the least upper bound of its small submodules. Util- 
izing the notion of small objects, this property is generalized to categories via the 
following definition. 

Definition. An object M isfini~ely approximable if for any object L and map 
f : L + M, f is an isomorphism if and only if(i) f is manic, and (ii) for any small 
object S and for any map R : S + M there is a map h : S + L such that g =.f71 (i.e. 
g factors through fl. 

Lemma 2. A small object is finite& approxintable. If M = ZiEl Mi is _fNtc!y approx- 
imable, then each Mi is finitely approximable, arzd if the category has kerrd, the 
converse holds also. 
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Proof. The first assertion is clear. Let M = A @ B, and assume M is finitely approx- 
imable. Let j’: L + A be monk. Let iA : A + N and 1~~ : A4 -+ A be the injection 

and projection associated with the direct sum. Suppose for every g : S + A with s 
small, there is an II : S + L such that fh = g. Let g : S +A @ B, with S small. There 
isanh:S-tLsuchthat~=IIAg.Thereisamapk:S-,L~Bsucl~thatp~,k=~z 
and&k = &#g, where pL and & are the projections relative to the sum L @B, and 
pB is the projection relative to the sum A @ B. Let _T: L @ B -+A @ B be the map 

satisfying&J= fp,, and pBj’=pb. Then@ = (iApA + iBpB)fi = iA.fpLk + iBp;k = 
iAfh + iB pBg = iA pAg + iBpl Jo = g. Thus every map g : S + A @ B with! small fac- 
tors through 7, implying that fis an isomorphism. If y is an inverse for ,f, then we 
see easily that f is an isomoqhism with inverse pL yiA . 

Now suppose that the cz tegory has kernels and that Mi(i E I) is finitely approx- 
imablc. Let J’: L -+ M = IZiG _/Mi be manic with the property that every map S + M 
with S small can be factored through5 I.& pi and ei be the projection and injection 
maps associated with the slim M= Z,,Mi, and let ki : Ki + I, be a kernel for 
(I -- CilJi)fi Let gi = pi.fki. Yhen (1 - eipi)jRi = 0 implies Cigi = eipifki = ski. Since 
both ki and fare manic, gi is also manic. Suppose g : S -+ Mi with S small. Then 
there is a map I2 : S + L with f/z = Cig. NOW (1 - eipi)j’h = (1 - eipi)eig = 0. Thus 
there is a map /Ii : S + k’i W,dl kihi = h. Then using the fact that ~71 = eig we have 
g = pieig = piflI = pifkihi = gihim Thus gi I Ki + Mi satisfies properties (i) and (ii) so 
that gi is an isomorphism for each i E I. Let ar : M --) L lx tfle unique map su& that 
(Jfi = kig;-’ = ej, implying f0 = 1~. Then j(af) = (fa)f= f, with f manic, implies 
qf= I,. I%US ICI is finitely approximable. 

Lamma 3. Let SQ be an addr’tive category with kemels. The jbllmving hold. 
(l)lj+EEnd(M) is an i~enpoterzt, therz M = Ker ‘II @ Ker( 1 - 71). 
(2) If A C M is a kernel and C C M, then A n C exists. 
(3)IfACSCA@B@C, thenSn(AgB)=A@(SnB). 
(4) If A,B,C C M and B and Care kernels,, the/l A (7 (B n C’) e_xists and equals 

(A mjnc. 

Proof. (1) is well known. Suppose eA : A --, M is a kernel off : M --) N, and let 
q : C-, M be manic. Let k : K --, C be a kernel for fee : C -+ N. Then it is easy to 
show that c,k : K +A4 is an intersection of the subobjects A and C of M. The rest 
of the lemma is straightforward. Note that (2) applies, in panticular, when A is any 
direct summand of M, since a direct sumrnand is a kernel. 

Lemma 4. Let d be all additrw category with kcmels. 1j‘N C ZiE/ Mi aud N is 
jiGtely approxitnable and uonzero, thcu there is a jiwIc set J C I such that 
,‘V n CiG./Mi # 0. 

Proof. Since 0 + A' is not an isomorphism, but is manic, there is a small object S and 
a map 0 #f : S *IV. Ther: Q,./‘: S + CicIMi factors through a finite sum XiEJ Miq 
and j’induces a nonzero rnr7p S -+ N (‘I y- UiEJ Mi. T~IIIS the intersection is nonzero. 



Definition. An object M in an additive category has the txclratz~e ~m~~ert;l~ if for any 
object G, with G = M @ N = ZiE,Gi, there are decompositions Gi = Gi 3 Hi SUCK 

that G = M @ Zi,lGi. An object M hss the /i&c cxcllarlge /~ropert~~ if the above 
holds whenever the set I is finite. 

Proof. Injections and projections induce an isomorphism B (3 C s Xi!__/ Di, and hence 
a decomposition B’ @ C’ = Z,, Dl with B’ s B. Thus XigIDi = B’ 3- ISi;1 D] witk 
Di C Di, and thus A @ Z ie:/ Di = A @ B’ 0 Z;isl DJ. Caref<l checking of the IIU~S re- 
veals that the isomorphism B 2 B’ is the map pHt eB 
B’ by B in the direct sum. 

, so by Lemma I we may replace 

Proof. This follows easily from Lemma 5. 

The converse of this lemma also holds. This fact is contained in [6]. The error in 
the proof, pointed out in [Z I], is in the nature of a misprint and can be corrected. 

Proof. Suppose G = M CD C = C:!=, Di. Let pi : G + Di and “_&I : Ci + ill denote the 

projections, and enI : M -+ G and Ci : Di + G thqinjections. Then IAl = XI’=1 ~,~~~JiJ~ie,~l 
and since M has a local endomorphism ring, one of the summands, say 7 = EJECT/+ ~‘JI. 
must be an automorphism. Let a! = elpLcbIy 1 Q,*. Then a2 = cy, so G = Ker cx 13 

Ker( 1 -- a). Let lI : Ker( I - or) + G be the injection. Then 0 = (1 - o)k implies 

h; = ark, so ~~cu = 0 implies pjk = 0, j > 1. Thus Ker( 1 - a) C D, . This implies D, = 
Ker( 1 -- or) @ (Dl f~ Ker a), and we have G = Ker(1 - CQ 0 (Dl n Ker cu) @ C:!,,Di- 
The projection G -+ Ker( 1 - a) relative to this direct sum is a’el/q, where kcr’ = a). 

Now depl q,! : M + Ker( 1 - ar) and y--- $,$ : Ker( 1 - a) -+ M are inverses of each 

other. But a’elPI erzf is the injection map of M into G followed by the projection 
onto the summand Ker(1 - a). Thus by Lemma 4, G = ICI Q (0, n Ker ar) + Xy=zni. 
Thus M has the finite exchange property. 

Definition. An additive category satisfies a rtvak GrohmIicck corlditiml if for every 
index set I and every nonzero manic A + Si_l B there is a finite subset J of / and a i 

commutative diagram 
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with the map C + A nonzero. (Note that this is equivalent to saying A f7 Xi,, Bi # 0, 
if the intersection exists, which it does, by Lemma 3, if the category has kernels.) 

If every object is finitely approximable then the category satisfies a weak Grothen- 
dieck condition. (See the proof of Lemma 4.) This hypothesis occurs frequently for 
categories constructed from module categories. There are categories that satisfy the 
weak Grothendieck condition but fail to have enough small objects around for every 
object to be finitely approxim~~ble. 

Proposition 2. Lef d be an ad&be category with kernels. if M is inde~omposable 
with the finite exchange prop’: **ty arzd either (i) M is finitely approximable or (ii) the 
.category satisfies a weak Gror jlwndieck condition, then M has the exchange property. 

Proof. LetG=MWV=Z iEz Gi, and for J C I let G(J) = ZiEJ Gj. Assuming either (i) 
or (ii), there is a finite subset J of I for which M n ZiEJGi f 0. Now by the finite 
exchange property, G = M @ AV = G(J) @ G(I \J) = M @ ZicJGi @ E, with Gi C Gi(ieJ) 
and EC G(I \J). Then Gi =G~~HiandG(I\J)=EeE’,andMe(~i,JGJ:~E)= 
(Z,JU, @ I?‘) @ (ZjEJGi @ E) implies N G Ip aiEJI!Ii @ E’. Since M is indecomposable, 
all but one of the IYi (i f J) and Er are zero. Suppose E’ # 0 and Hi = 0 for all i E J. 
Then Gi = Gi for all i &I implies M n G(J) = 0, contradicting the choice of J, Letting 
Gi = Gi for i E i \ J, we have G = M @ Zig, cl;, with G; C Gi(i E I). Thus M has the 
exchange property. 

Proposition 3. An indecomposable finitely approximable object in an additive cate- 
gury with kernels has the exchailge property if alzd auiy if its endomorphism ring is 
local. 

Proof. Half of this proposition was proved in Propositions 1 and 2. For the other half, 
see the proof in 1241 for modules. 

Theorem 2. Let 94 be an additive category wit11 ker~lels, arid let M = )=iEIMi, ~~~~~r~ 
the ~~~~io~~orpl~isrn bang of each Ml is a loyal vi&g. S~~ppuse that eitl~er (i) ea& Mi is 
~?~itel~? apl~roxi~~able~ or (ii) that ~4 satis~es a ~veak Grotll~~~~die~k ~i~~~ditio~~. Tlfe~ 
arly i~d~~omposable s~i~~~~and of’M is is~~~i~urpl~i~ to one o,f the Mt. 

Proof. Let M = N @ K = CiE,Mi with each endomorphism ring End(Mi) local, N non- 
zero and indecomposable. For J C I, let M(J) = XiEJMi. If(i) holds (applying Lemmas 
2 and 4) or if’ (ii) holds there is finite set J C I such that N n M(J) # 0. By Proposi- 
tions 1 and 2 and Lemma 6, M(J) has the exchange property. Thus M = M(J) @ N’ @ k” 
with N’ C N and K’ C K. Then N = N’ @ (.N 0 (M(J) @ K’)), N n (M(J) @ K) # 0, and 
N indecomposabie, imply N’ = 0. Thus It/f = M(J) @ I$?, and K = K’ @ (K f? M(J)), and 
N = N @ K’ @ (K n M(J)). This implies M(J) 2 N @ (K n M(J)), and we are reduced 
to the case I is finite. By T~leoren~ 1, K = 2”’ i=l Ki cvhere Ki is indecol?lposable. Since 
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the category has kernels, Lemma 3 implies that in End@) and End(&) there are no 
idempotents other than 0 or 1. By Theorem 1, A1 sMi for some i. 

We now are ready for the main unique decomposition theorem of this paper. 

Theorem 3. Let gQ be all addit&e categoy with kernels aud M = Xi,lMi with the 
erldomorphisnz rifjg of each Mi a local ritzg. Suppose that either (i) each Mi is Jiilitci’y 
approximable or (ii) the category SQ satisfies a weak Grothmdieck corzditiorz. Thm 
if M = Zje./Nj with each Nj i~ldecom/~osable, there is a bijectil,e map CY : I -+ J SMC/I 

that Mi z N,(i) for each i E I. 

Proof. By Theorem 2, each Ni 2 Mi for some i E I, and in particular, every fili and 
every Ni has the exchange property. For X C I, Y C J let M(X) = XieXfiji and 

N(Y)=Z~~vlL;‘,-.ForkEI,letI~={iE1IMi 2 Mk}. Then {lk 1 k E I} partitions 
1. Let Jk = (i E J 1 Ni Z Mk} for k E 1. Then {Jk 1 k E I] partitions J. Suppose 1, is 
finite. Then M(lk) has the exchange property, and M = M(lk) @ M(1 \ Ik) = 
M(Ik) @ N(J’), for some J’ C J. And M(I \ Ik) s N(J’) implies that if j E J’. then 
Ni +Mk and thus j $Jk. Together with M(Ik) 2 N(J \J’), this implies Jk = J \J’. 
Thus M(lk) s N(Jk). From Theorem 1, it follows easily that Ilk 1 = la$l whenever 
Ik is finite. 

Now suppose Ik is infinite. Let +k = @ (2 J 1 M = Mk @ N(J \ G})}. There is a 
finite set F C J such that Mk n N(F) # 0, by either (i) or (ii). Ifj $ b’ then 
F C J \ v} implies Mk f? N(J \ (i}) # 0. ThUS 9, C F, SO each ‘Pk is finite. NOW _ 

let r fJk. There is a finite subset G of I such that N, n M’i;) f: 0, and M = 
M(G) @ N(J \ H) for some finite subset H of J. Due to the nonzero intersection 
above, l must be in H. Then M = N(ff \ {t}) @ Nr @ N(J \ if) = M(G) 9 N(J \ H) = 
N(H \ {t)) @ MR @ N(J \ H) for some g E G, since N(H \ (t}) has the exchange pro- 
perty @emma 5). Thus t f ag. Also, Mr: 2 Nt 2 Mk, so g E Ik. Thus J, = UgElk qk. 
Since fk is infinite, and each $ 

and by Synlliietry, ls!kl = Ifkl. 

is finite and nc ,,enipty, it follows that lJkl < IlkI, 

3. An isomorphic refinement theorem in additive categories 

Some countability hypothesis seems to be required for an isomorphic refinement 
theorem. The notion of countably small below replaces that of countably generated 
for modules. 

We assume throughout this section that we have an additive category with kernels. 
For the isomorphic refinement theorem, we will find it necessary to also assume the 
category has infinite sums and satisfies a weak Grothendieck condition. 

Definition. An object M is cozrrltab& srmzll if every honlomorphism from ICI into a 
direct sum factors through d countable subsum. 



Lemma. Lpt M = Ci~IMi = P @ Q, c\*itlt each Mi courttablj small ami J;initelv apprm- 
&table, awi let f : S + M with S courttably mail. Tl?ert there is a cotrntablc strbsct J 
~j* I SUCK that f factors rhrr)tdgh M(J) = ZiEJ Mi -+ M artd such that M(J) = (M(J) n P) 

@ WCJ.l n QJ- 

Proof. There is a countable subset Jo C I such that ./‘factors through M(J,) +M. Let 
ep and eQ be the injections and ni) and no the projections for the sum 

nJ be the corresponding maps for M(J) relative to the sum M = M(J) 
f~ M(I \ J). There is a countable set J, C I such that both eppf and eQ np,f factor 

through M(J,) -+ M. There is a ;ountable set J, C / such that both i?@+cJ, and 
ey np eJr factor through M(J2, i + M. Continuing in this fashion, get a countable set 
Jk+l C I such that both epnpe rF; and eQ ~9 CJ~ factor through M(Jk+I) + M, k = 
I, 2, . . . . and let J = lJ&:, k J . ?Yen J is countable and .f’ factors through M(J). Also 

M(J) 2 (iv(J) n P) @ (M(J) n 21. Let 7’ be small and g : T + M(J). Then g factors 
through Iv&) for some k. Tl :ere are commutative diagrams 

M(J,+,) x--&-4 
I 

M(Jk+l) -p- M . 

This gets C’Jg = “Jek+@kh + qek+l&h. But e k+l @,h factors thOUgh P n M(JF,+1) + 

M(J) and ek+l&/? factors through Q n M(Jk+l) + M(J). Thus R factors through 
their sum. Since M(J) is finitely approximable, this means M(J) = (M(J) n P) tf! 
(M(J) n Q). 

The following is a version of Kaplansky’s Theorem [ 121. 

Theorem 4. Let d be ajt additive category with kerrtels, artd M = &Mi = P TV Q, 
with each Mi comtab$ small artd finite& apl,rmimablc. Tll~t P = 2lje.I Pj with caclt 
Pj ismor@ic to a direct summa/~d u,f a direct sum of a courttablc~ rttrrnber o,f the 
Mi ‘s. 

Proof. We construct a chain of subsets I, of I such that 
(i) I = UJa. 

(ii) Ifcr is a limit, I, = Up<& ffi. 
(iii) In+, \ I, is countable and nonempty. 
(iv) M&) = (n4(1,) n P) @ (M(/,) n Q). 

L&I,= 0. Assume 0 < QI and we have (ii) --(iv) for fl C ok. If a is a limit, let I, = 
Up<(y /pm Let M(I,) = 2’,, li4i. Then M(l,) 3 (M(I,) n P) @ M(I, n Q). If they are 

not equal, there is a mapfaS + M&) with S small which does not factor through 

the sum. But ffactors through M(F) for some finite subset F of I,, and F C Ia for 



some p < a. Therefore M(l,) = (M(/,) n P) @ (M(l,) n Q). If CY = fl+ I, ml 

M($) # M, let .f : S + M be a map which does not factor through M($), with 5 
small. There is a countable subset J of I such that f‘factors through M(J) -+ M and 
such that M(J) =.(M(J) n P) @ (M(J) n Qj. Let I, = ‘p UJ. Then (ii)- are satis- 
fied for CL Now from (iii), if lcrl > 111 then I, = I. Thus I = U, I,. Now 
M = M(I,) @ M(I \ I,) = @!(I,) n f) @ (M(I,) n Q) @ M(I \ I,) for each Q. Since the 
Ia form a chain, M(I,+,) n P = (M(/,) n P) 0 Pa, where Pa! = (M(/,+t ) n P) n 

((MI,) n Ql@ MU \ &I>, f or each CII. Similarly, M(la+l) n Q = (M(/,) n Q) @ Q,. 
Now M&+1) = M(I,) + M(J,) with Jn countable (J, = IQ+, \ IJ. Also, M(l,+I) = 

MI,) @ Pa @ Qar implying pa! 8 Q, s M(J,). Thus Pcy is isomorphic to a direct 
summand of a direct sum of a countable number of the Mi’s. 

It remains to show that P = Za Pa. First, we show the map e : IS, Pa + P is 
manic. The map PO + P is manic. Suppose the map e, : Z,,, Pp + P is manic. Then 
PP c (n/r(l,+t) n P) C (M(I,) n P) all p < or implies LJ, factors through M(i,) n Y. 
Since (M&) n P) n Pa = 0, we have 2;,, em Pp -+ P manic. Thus Xti 1: C P. To show 
they are equal, we show M(1,) n P = Xaca P s. This works for 0 = 0. Assume the 
equality holds for ail ar < y. If y = Q + 1. then M&) n P = (M(I,) n P) 8 Pa = 
+.ypP. If 7 is a limit ordinal, /? = U2+ I,. Now T;p<yPp C (iPI n P). Let 
]‘:S-qM(I,)nP) wi I tl s small. Then .f’factors through M(E) n P -+ M(/,) I-I P for 
some finite F C I,. But then P C I, for some ar < y, implying I‘factors through 
bf(r,) n P -+ M(I,) n P. Then M(/,) n P = Xpca Pci C CpcyPp implies that f hC- 

t ors through X 3<2 PO -+M(l,) n P. Thus they are equal. 

For the isomorphic refinement theorem, we reyuire a somewhat stronger count- 
ability hypothesis. 

Definition. An object ICI is cowtab@ Jim?cfv approxh~ublc if there is a countable 
family Cr;: : Si + M}Fzl of maps with each Si small. with the property that a manic 
f : L -+ M is an isomorphism if and only if each ji can be factored through .f: 

Proof. Let j’: I)1 --, A = q_, A. There is a countable family of maps I/i : Si -+ A.? with I. 

Si small, such that if N -+ ICI is manic and every ~4~ factors through 1%’ + M, then 
N -* 111 is an isomorphism. Let I,, be a finite subset of I such that jjri factors through 
A(/,,)=X,,_,,,Ai+A. Letlo=UE,lia Lcttrtqn2,(‘1, _ Q be the p~ojcctions and in- 

jections for the direct sum ,4 =,4(/,,)+4(/\l,,). Let IV= Ker(MLA n2 4l\I,,)). 

Then every l/i f;rctors through N - *M since nlfi/i = 0 for all i = I, 2, . . . . Thus 
1~2f = 0, since this implies N + M is an isomorphism. Then f*= (q q + cJ27rz).l*= 

cl n#actorsf‘through A(/“) + A. Therefore, M is countably small. 

It is also true that a summand of a countably finitely approximable object is 
countably finitely approximable. The proof is essentially the same as that 01‘ Lemma 
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2. &o, by the same prod, a dkct sum of a countable number of countably finitely 
appraximable objects is countably finitely approximable. 

Theorem 5. Let A be ail additive category with kernels and @nite SUMS which 
satisfies a weak Grothendieck condition. If M = ZiEl Mi = N @ K, with each Mi count- 
ably finitely approximable, irjzd with the endomorphism ring of each nl, a local ring, 
then N is isomorphic to a dirlxt Sam Xi, J M for some J C 1. Consequently, any two i, 

direct deco,yzpositions of M Lave isomorphic refinements. 

Proof. By the previous theorim, N = C,,, N or with each NO isomorphic to a direct 
summand of a direct sum of a countable number of the Mi’S. Thus we may assume I 
is countable. If / is finite, tf \e result follows from Theorems 1 and 2, so we may as- 
sume I is infinite and countable. Write M = ZF, Mi, and let M(k) = $=I Mi. Let 
(fk : Sk + N}&1 be a family of maps which approximate N, with each Sk small. Let 
N 

a 
= 0. Assume NO, . . . . Nk are given with Ni C N for each i, the map N(k) = 

Zi=o Ni -+ N manic, N(k) a direct summand of N, fk factors through N(k) -+ N, and 
N(k) is isomorphic to a direct sum of a finite number of the Mi’s. Then M 7 

.fk+l N(k) @ xi”=& with $ C MC. For some integer m, the composition &+,-N+M 
factors through N(k) @ M(m) -+ M, where M(M) = Z& $. Thus fk+] factors through 
N n (N(k) + M(m)) = N(k) @ (N n M’(m)) + N. Now N = N(k) @ Rk for some Rk. 
Since M’(m) has the exchange property, M = N(k) @ M’(m) @ zl&, + 1 Mi = 

N(k) @ Rk @ K = N(k) @ M’(m) @ N’ @ K’, with N’ C Rk and K’ C K. Then N = 

N(k) * M @ (N n (M’(m) @ K’)). Let Nk+] = N 0 (M’(nz) @ K’) (using Lemma 5). 
Then fk+] factors through N(k) @ Nk+l =N(k+ l)+N,themapN(k+ l)+Nis 
manic, and N(k + 1) is a direct summand of N. Now K = K’ @ H, and M = 
N(k) @ M’(m) @Iv’ @ K’ = N(k) @ Nk+l @N’@K’@HimpliesM’(nl) ?N(k + l)@H. 
Thus Nli+, is isomorphic to a finite sum of Mi’s. Thus by induction, we have a se- 
quence NO,N, , . . . of subobjects of N satisfying the conditions above. Now 
z;uNi + N is manic, for otherwise the kernel would have nonzero intersection 
with a finite sum, and hence it is an isomorphism since every fk factors through it. 
Thus N is isomorphic to a direct sum Of Mi’S. It now follows from Theorem 3 that 
N z ZiaMi for some J C I. 
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