echocardiography, and LV ejection fraction (EF), LV mass index, LV wall maximal thickness, and left atrial volume index (LAVI) from MR. LGE extent was quantified (presented as the proportion of total LV myocardial mass) according to location: %RVIP-LGE, %non-RVIP-LGE.

Results: Although LGE was commonly present in both apical (74%) and non-apical HCMs (84% vs 0.163), RVIP-LGE was more frequent (38.6% vs 47%, P<0.002) in non-apical HCM in whom E/E' was significantly higher. The regression analysis revealed the RVIP-LGE extent as an independent predictor of E/E' (β=0.45, P<0.001) and LAVI in HCM patients (β=-0.53, P<0.001).

Conclusions: The RVIP-LGE extent was independently related to diastolic dysfunction of LV. Non-RVIP-LGE did not show any association.

GW25-e201
Using three-dimensional speckle-tracking echocardiography to assess the left ventricular function of varying degrees aortic stenosis

Wu Ting, Bai Wenjuan, Tang Hong, Rao Li
The Cardiovascular Department of West China Hospital, Chengdu, Sichuan, China

Objectives: Aortic stenosis (AS) was a major cause of sudden cardiac death, early detection of left ventricle (LV) dysfunction is essential for management of patients with aortic stenosis. The aim of this study was to compare the left ventricle function in varying degrees AS using three-dimensional speckle-tracking echocardiography.

Methods: We prospectively enrolled 44 AS patients with aortic flow velocity >3.0ms⁻¹, mean valve pressure gradient >20mmHg, 54 controls were enrolled for compare the difference. Further AS patients were divided into different groups according to aortic stenosis gradient and symptoms (angina, exercise intolerance). AS gradient subgroup had 18 moderate AS patients (mean gradient <40mmHg) and 26 severe AS patients (mean gradient >40mmHg). Symptoms subgroup included 10 asymptomatic patient, 21 symptomatic patients. All patients underwent two-dimensional echocardiography and three-dimensional tracking echocardiography.

Results: Aortic stenosis patients had lower 2D LVEF, three-dimensional global radial strain (GRS), global circumferential strain (GCS), global longitudinal strain (GLS) and area tracking than control group (P<0.001, P<0.001, P<0.001, P<0.001, respectively). Three-dimensional GCS and area tracking had negative correlation with LVEF (r=-0.72, P<0.0001; r=-0.72, P<0.0001, respectively). AS gradient subgroup analysis demonstrated that GRS and three-dimensional strain was lower in severe AS subgroup (P=0.042, P=0.038, respectively); peak time of standard deviation in twelve heart segments (median and basal part of heart) for 3D Displacement was significant larger in severe subgroup (P=0.02). 3D echocardiographic parameters in symptoms subgroup analysis showed no significant difference between symptomatic and asymptomatic group.

Conclusions: Our study indicates GCS and Area tracking are the most subtle markers to detect LV systolic dysfunction of aorta stenosis. Radial and circumferential myocardium motion of the left ventricle impaired in AS patients, and the damage extent increased with AS severity.

GW25-e1420
Comparison of two methods for evaluating human carotid artery elasticity: Possible detection of early atherosclerosis in subjects with dyslipidemia

Zhang Yanling1, Niu Lili2, Zheng Hairong2, Liu Jinla2, Zhang Hui2, Xu Shicheng2, Zheng Rongqin2
1The Third Affiliated Hospital, SUN Yat-sen University, 2Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Objectives: Dyslipidemia is closely associated with the development of atherosclerosis, and is reportedly one of the most important modifiable risk factors of cardiovascular disease (CVD). Both ultrasound radiofrequency (RF)-data technique and vessel texture matching method (VTMM) are noninvasive vessel tracking technique, the former is capable to calculate artery elastic parameters instantly by means of ultrasound RF signal, and the latter can measure artery wall elasticity modulus by off-line analysis of B-mode ultrasound dynamic images during cardiac cycle. The aim of the present study was to compare the values of carotid artery elasticity in the dyslipidemia subjects with dyslipidemia patients using two methods. The purpose of this study was to determine whether their measures can be conveniently and accurately applied to reflect early atherosclerosis.

Methods: Eighty six subjects with dyslipidemia who met the Adult Treatment Panel III criteria for borderline dyslipidemia and without clinical CVD were enrolled in the study. Left common carotid artery (CCA) of all subjects were assessed in the same session, by the same operator and analysed both by the ultrasound RF-data technique and VTMM. Carotid intima-media thickness (IMT), distensibility coefficient (DC), compliance coefficient (CC), stiffness (β), β stiffness (β) and single point pulse wave velocity (PWV) were measured automatically by the former method, and elasticity modulus (E) were calculated by the latter one.

Results: IMT negatively correlated with CC (P<0.05) and DC (P<0.05), positively correlated with β, β stiffness and PWV and E (P<0.05), and the correlation coefficient were 0.342, 0.321, 0.322, 0.394 and 0.518, separately. Grouping by the presence or absence of other atherosclerotic risk factors in subjects with IMT <1.0mm (n=81), there were significant differences only in PWV and E (P<0.05), no difference was observed in CC, DC, CC, and β (P>0.05). And furthermore, the relationships between
number of risk factors and the values of atheroclerosis parameters were examined by analysis of covariance (ANCOVA), adjusted with age as a covariate. E raised along with the increasing number of risk factors (P < 0.05), ξ, β, and PWV decreased firstly then increased (P < 0.05), and no significant difference was observed in DC and CC (P > 0.05).

Conclusions: Both ultrasound RF-data technique and VTTM can be used to non-invasively and quantitatively assess the carotid artery elasticity. E is a sensitive and direct marker for detecting early stage atherosclerosis, whereas it cannot be achieved immediately. Elastic parameters obtained from ultrasound RF-data technique are less sensitive and yet acquired conveniently.

GW25-e5213
Study on the changes of echocardiography before and after training in volunteers
Wang Jiangtao, Bian Tingting, Cao Xuebin
Department of Cardiology, No.252 Hospital of PLA, Baoding, Hebei Province, China

Objectives: To investigate the changes of cardiac structure and function by echocardiography before and after 3 km and 5 km training in volunteers and explore the potential damage of large intensity training to cardiac structure and function.

Methods: 40 healthy volunteers who aged (20±2.2) years old were selected randomly. Detecting the ultrasonic cardiogram and recording the data the day before the training, then the ultrasonic cardiogram was tested and the data was recorded again immediately after the training which was required to complete in 15 minutes. Finally, those data was compared with each other such as the diameter of left atrium, the diameter of left ventricle, the thickness of interventricular septal and left ventricular posterior wall, the left ventricular end diastolic diameter and ejection fraction.

Results: (1) After 3 km training, the ejection fraction (EF) 65.29±2.91% increased markedly (P < 0.001) compared with the value 63.10%±3.65% before the training. (2) The left atrium (LA) 31.24±2.62mm after 3 km training increased significantly (P < 0.001) compared with 29.93±2.56mm before the training. (3) Comparing with 17.8±2.1mm before 3 km military training, the right pulmonary artery (RPA) 20.37±1.45mm after the training increased obviously (P < 0.001). (4) There was no changes in the left ventricular end diastolic diameter (LVEDD), interventricular septal thickness (IVST) and left ventricular posterior wall (LVPW) (P > 0.05).

Conclusions: Large intensity training causes a compensatory increase of EF and a enlargement of left atrial. The long-term and repeated large intensity training may lead to pathological changes in cardiac structure and function. Whether the large intensity training will increase the potential damage to cardiac structure and function, we should do the further observing at a long time and consider other factors such as exercise intensity, exercise duration and exercise skills.

GW25-e5260
Prognosis of patients with non-significant coronary stenosis detected by coronary computed tomography angiography
Guang Shaofeng, Qu Xinkai, Han Wencheng, Li Ruogu, Qu Xinkai
Shanghai Chest Hospital

Objectives: Coronary computed tomography angiography (CTCA) is an important non-invasive diagnostic method, however data regarding prognosis of patients with non-significant coronary stenosis detected by CTCA is rare. The aim of our study was to evaluate the prognostic role of CTCA in patients with non-significant coronary stenosis.

Methods: Patients with suspected coronary artery disease underwent CTCA were enrolled and followed up clinically. Cardiovascular clinical endpoints were defined as MACE including cardiac death, non-fatal myocardial infarction and hospitalization due to chest pain. The relationship between MACE and baseline patient characteristics, stenosis severity and lesion characteristics was evaluated.

Results: A total of 847 patients were enrolled (mean age 61.7±12.7 years and 53.8% men). CTCA results showed normal in 61.3% patients, mild stenosis in 22.2% patients, and moderate stenosis in 16.5% patients. During follow up of 34.5±15.8 months, MACE rate was 2.0%. Multivariate COX hazard regression analysis showed that the severity of lesion in CTCA was the only factor to predict MACE (HR = 5.64, 95% CI 2.69-11.87, P < 0.001). More MACE occurred in patients with coronary lesions than without coronary lesions (P < 0.001).

Conclusions: MACE rate in patients with non-significant coronary stenosis detected by coronary CTCA correlated well with the severity of lesion in coronary CTCA. MACE rate was very low in patients with normal and mild coronary lesion in CTCA.

GW25-e5308
Assessment of Adriamycin-Induced Cardiomyopathy by Strain and Strain Rate Imaging
Lin Hong1, Li Xiaoyuan1, Yu Hongkui3, Fan Rui1, Yao Fengjuan1, Lu Kun1
1Dept of Ultrasound, First Affiliated Hospital, Sun Yat-San University, Guangzhou, 510080, CHINA, 2Dept of Biomedical Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, CHINA, 3Dept of Ultrasound, Children’s Hospital of Shenzhen, Shenzhen, 518026, China

Objectives: Adriamycin is a highly effective antineoplastic agent, but it can produce the serious side effects of acute cardiac injury and chronic congestive heart failure. Echocardiography is used as a non-invasive diagnostic technique to visualize morphologic or functional changes in doxorubicin-induced cardiomyopathy. But conventional measures of ventricular function, such as ejection fraction, fractional shortening, are insensitive in detecting early doxorubicin-induced injury. The aim of our study was to validate strain (S) and strain rate (SR) imaging, new technologies of echocardiographic diagnosis, are more sensitive indices to assess cardiac function in an experimental model of doxorubicin-induced cardiomyopathy.

Methods: Fifty-six New Zealand rabbits were randomly divided into four groups: group A, doxorubicin 1mg/kg; group B, 2mg/kg; group C, 3mg/kg; control group, 2 ml/kg of normal saline; all given intravenously once a week for 8 weeks (total dose, 8 mg/kg, 16 mg/kg, respectively) to induce the cardiomyopathy model. The left ventricular dimensions, fractional shortening and ejection fraction were measured by transthoracic echocardiography on the baseline and in the 4, 6, 8, 12th week after administration. The parameters of peak systolic strain and strain rate at the mid atrial were measured.

Results: Compared with the baseline conditions, the value for the left ventricular diameter of the diastole increased significantly, while the value for ejection fraction and the fractional shortening decreased significantly after given with doxorubicin (P < 0.05) for 6 weeks. For control group, no significant changes were found in all parameters. But at 4 weeks of doxorubicin administration, peak strain and strain rate at mid atrial significantly decreased, there was a significant difference between group C and control group (P < 0.05). A progressive increase occurred for group C at 8 weeks, as well as group B. The changes were supported by histologic findings.

Conclusions: Strain and SR imaging provides a new sensitive and early method to evaluate LV function in monitoring adriamycin cardiotoxicity compared to conventional echocardiography.

GW25-e0825
Noninvasive Assessment of Microvascular Function in Hypertension by Transthranch Doppler Echocardiography
Li Yijia, Ma Ning, Zhang Shan, Li Rongjuan, Xue Jingli, Yang Jiao, Yang Ya
Department of Echocardiography, Beijing An Zhen Hospital affiliated to Capital Medical University

Objectives: The present study aim at investigate the use of transthranch Doppler echocardiography (TTDE) in coronary flow imaging (CFI) to evaluate the microvascular function in Hypertension.

Methods: 51 patients without significant coronary lesions detected by angiography were divided into two group, as hypertensive group (n=25) and normal control group (n=26). TTDE-CFI and adenosine stress echocardiography were used to measure average peak velocity at baseline and hyperemia, and the coronary flow velocity reserve (CFVR) were calculated.

Results: There were no significant difference in clinical baseline data between hypertensive group and normotensive control group, while blood pressure related parameters were significant higher in hypertensive group (P < 0.01). The coronary flow parameters between the two groups was no significant difference in the resting state and adenosine stress state, but CFVR was lower in hypertensive than that in normotensive control group (2.44±0.49 vs 3.33±0.40, P < 0.0001).

Conclusions: The reduction of CFVR is a effective and noninvasive assessment parameters of microvascular function in hypertension.

GW25-e1545
A study on myocardial shear strain by stress and live three-dimensional echocardiography
Li Chaoyun, Luo Xiangdong, Du Lianfang, Su Yijin, Shao Chunquan, Luo Xianghong
Department of ultrasound, the first people’s hospital affiliated to Shanghai Jiao Tong University

Objectives: To evaluate myocardial shear strain by stress - three dimensional echocardiography.

Methods: 45 healthy volunteers including man 22 and women 23, aged mean (25.5±2.8) years were studied. All subjects underwent a multistage symptom-limited supine graded exercise protocol on a variable load bicycle ergometer. The entire test was divided into three: pre-, peak, after exercise. (1) Blood pressure (BP), heart rate (HR) and BP–HR (RPP) was measured during rest, peak exercise, and recovery stages. Through the apical 4 chamber view, a 2mm pulsed Doppler sample volume was placed at the mitral valve tip, and mitral flow parameters were obtained: peak velocity of early filling (E) and late (A) filling, and ratio of E over A. Furthermore, Doppler tissue imaging was carried out in the four-chamber view at the septal mitral annular level. The peak velocity of myocardial systolic wave (s), early diastolic wave (e) and late diastolic wave (a) were recorded; the e/a and...