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Abstract

Recursive Descent (RD) parsers are popular because their control flow follows the structure of the grammar
and hence they are easy to write and to debug. However, the class of grammars which admit RD parsers
is very limited. Backtracking techniques may be used to extend this class, but can have explosive run-
times and cannot deal with grammars with left recursion. Tomita-style RNGLR parsers are fully general
but are based on LR techniques and do not have the direct relationship with the grammar that an RD
parser has. We develop the fully general GLL parsing technique which is recursive descent-like, and has the
property that the parse follows closely the structure of the grammar rules, but uses RNGLR-like machinery
to handle non-determinism. The resulting recognisers run in worst-case cubic time and can be built even
for left recursive grammars.
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Parser users tend to separate themselves into bottom-up and top-down tribes.

Top-down users value the readability of recursive descent (RD) implementations of

LL parsing along with the ease of semantic action incorporation. Bottom-up users

value the extended parsing power of LR parsers, in particular the admissibility of

left recursive grammars, although LR parsers cannot cope with hidden left recur-

sion and even LR(0) parse tables can be exponential in the size of the grammar,

while an LL parser is linear in the size of the grammar. Both tribes suffer from

the need to coerce their grammars into forms which are deterministic, or at least

near-deterministic for their chosen parsing technology. There are many examples

of parser generators which extend deterministic algorithms with backtracking and

lookahead[10,11,1,18,7,5], although such extensions can trap the unwary. A more

formal approach to backtracking is represented by Aho and Ullman’s TDPL lan-

guage (recently repopularised as Parsing Expression Grammars and their associated

memoized Packrat parsers). These techniques are superficially attractive because,

by definition, there is at most one derivation for each string in the language of a
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PEG, but, of course, PEG’s are not context-free grammars, and as Aho and Ullman

said [3, p466]

“. . . it can be quite difficult to determine what language is defined by a TDPL program.”

The current interest in PEG’s is another manifestation of users’ need for parsers

which are human readable.

The Natural Language Processing (NLP) community has always had to cope

with the full expressive power of context free grammars. A variety of approaches

have been developed and remain popular including CYK [19], Earley [6] and Tomita

style GLR parsers [15,9,13]. Although GLR parsing has not been universally adopted

by the NLP community—perhaps because of its complexity compared to the easier

to visualise CYK and Earley methods—GLR has the attractive property for com-

puter science applications that it achieves linear performance on LR-deterministic

grammars whilst gracefully coping with fully general grammars. Since most com-

puting applications involve near-deterministic grammars, GLR has seen signifi-

cant takeup for language re-engineering applications. It is used, for example, in

ASF+SDF [16] and Stratego [17], and even Bison has a partial GLR mode [2]. We

have developed [14] cubic worst-case GLR algorithms which smoothly improve their

performance to linear time algorithms when processing LR grammars, but this does

not address the desiderata of the top down cohort. Nobody could accuse a GLR

implementation of a parser for, say, C++, of being easy to read, and by extension

easy to debug.

This paper introduces a new algorithm, Generalised LL (GLL) parsing, which

handles all (including left recursive) context free grammars; runs in worst case

cubic time; runs in linear time on LL grammars and which also allows grammar

rule factorisation, with consequential speed up. Most importantly, the construction

is so straightforward that implementation by hand is feasible: indeed we report

on the performance of a hand constructed GLL parser for ANSI C. The resulting

code has the RD-property that it is essentially in one-to-one correspondence with

the grammar, so parsers may be debugged by stepping through the generated code

with a conventional debugger. We believe that GLL will become the generalised

parsing algorithm of choice.

The insight behind GLL comes in part from our work on Aycock and Horspool

style RIGLR parsers [12]. Aycock and Horspool [4] developed an approach designed

to reduce the amount of stack activity in a GLR parser. Their algorithm does not

admit grammars with hidden left recursion, but we have given a modified version,

the RIGLR algorithm, which is general. In their original paper, Aycock and Hor-

spool described their automata based algorithm as a faster GLR parser but it is

our view that the algorithm is in closer in principle to a generalised LL parser.

The RIGLR automata are derived from the grammar rules by ‘terminalising’ cer-

tain instances of nonterminals in a way that removes embedded recursion. When

an RIGLR traverser encounters a terminalised nonterminal, it is required to make

a call to another automaton. Normally, we seek to minimise call stack activity by

finding a small set of terminalisations which are complete, in the sense of eliminating

all embedded recursion. However, in [12] we noted that
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if we ‘terminalise’ all but the topmost instance of each nonterminal, we get a parser whose stack activity
mimics that of a recursive descent parser, except that left recursion is allowable!

It is this observation that lead us to apply the techniques that we developed for

RNGLR and RIGLR parsing to give a general recursive descent-style algorithm.

In fact we can organise the algorithm so that the parsing schedule either mimics

a depth first backtracking recursive descent parser (except that recursive calls are

terminated early) or so that all putative parses are synchronised with respect to

reading the input. The latter synchronisation is more GLR like and causes the call

stacks to be constructed in levels, and that allows a memory efficient approach to

the construction of both the stacks and the associated parse trees in a full parser

implementation. In this paper we focus on the former organisation.

1 The general approach

A context free grammar (CFG) consists of a set N of non-terminal symbols, a set

T of terminal symbols, an element S ∈ N called the start symbol, and a set of

grammar rules of the form A ::= α where A ∈ N and α is a string in (T ∪ N)∗.
The symbol ε denotes the empty string. We often compose rules with the same left

hand sides into a single rule using the alternation symbol, A ::= α1 | . . . | αt. We

refer to the strings αj as the alternates of A.

A derivation step is an expansion γAβ⇒γαβ where γ, β ∈ (T∪N)∗ and A ::= α

is a grammar rule. A derivation of τ from σ is a sequence σ⇒β1⇒β2⇒ . . .⇒βn−1⇒τ ,

also written σ
∗⇒τ or, if n > 0, σ

+⇒τ .

A non-terminal A is left recursive if there is a string μ such that A
+⇒Aμ.

A recursive descent parser consists of a collection of parse functions, pA(), one

for each non-terminal A in the grammar. The function selects an alternate, α, of

the rule for A, according to the current symbol in the input string being parsed, and

then calls the parse functions associated with the symbols in α. It is possible that

the current input symbol will not uniquely determine the alternate to be chosen,

and if A is left recursive the parse function can go into an infinite loop.

GLR parsers extend LR parsers to deal with non-determinism by spawning par-

allel processes, each with their own stack. This approach is made practical by

combining the stacks into a Tomita-style graph structured stack (GSS) which re-

combines stacks when their associated processes converge. Direct left recursion is

not a problem for LR parsers, but hidden left recursion (A
∗⇒βAμ where β

+⇒ε) can

result in non-termination.

We have used a modified type of GSS to give a Tomita-style RNGLR algo-

rithm [13] and an Aycock and Horspool-style RIGLR algorithm [12], both of which

result in parsers that can be applied to all context free grammars, including those

with hidden left recursion. In the RD-based GLL algorithm, introduced in this

paper, we shall use RIGLR-style ‘descriptors’ (see next section) to represent the

multiple process configurations which result from non-determinism, and a modified

GSS to explicitly manage the parse function call stacks in a way that copes with

left recursion.
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2 Call stacks and elementary descriptors

We begin by describing the basic approach using the grammar Γ0

S ::= A S d | B S | ε
A ::= a | c
B ::= a | b

(Note that this approach will need modification to become general, as we shall

discuss in Section 3.)

A traditional recursive descent parser for Γ0 is composed of parse functions pS(),

pA(), pB() and a main function. The parse function contains code corresponding

to each alternate, α, and these code sections are guarded by a test which checks

whether the current input symbol belongs to first(α), or follow(α) if α
∗⇒ε, see

Section 4.1. We suppose that the input is held in a global array I of length m+ 1,

and that I[m] = $, the end-of-string symbol.

main() { i := 0

if (I[i] ∈ {a, b, c, d, $}) pS() else error()

if I[i] = $ report success else error() }

pS() { if (I[i] ∈ {a, c}) { pA(); pS(); if (I[i] = d) { i := i+ 1 } else error() }
else { if (I[i] ∈ {a, b}) { pB(); pS() } }

pA() { if (I[i] = a) { i := i+ 1 }
else if (I[i] = c) { i := i+ 1 } else error() }

pB() { if (I[i] = a) { i := i+ 1 }
else if (I[i] = b) { i := i+ 1 } else error() }

(Here error() is a function that terminates the algorithm and reports failure.)

Of course, Γ0 is not LL(1) so this algorithm will not behave correctly without

some additional mechanism for dealing with non-determinism. We address this by

converting the function calls into explicit call stack operations using stack push and

goto statements in the usual way. We also partition the body of those functions

whose corresponding nonterminal is not LL(1) and separately label each partition.

In practice, then, some goto statements will have several target labels, corresponding

to these multiple partitions: for example, this will be the case for the nonterminal

S in Γ0. We use descriptors to record each possible choice, and replace termination

in the RD algorithm with execution re-start from the point recorded in the next

descriptor. Instead of calls to the error function, the algorithm simply processes

the next descriptor and it terminates when there are no further descriptors to be

processed.

In detail, an elementary descriptor is a triple (L, s, j) where L is a line label, s

is a stack and j is a position in the input array I. We maintain a set R of current

descriptors. At the end of a parse function and at points of non-determinism in

E. Scott, A. Johnstone / Electronic Notes in Theoretical Computer Science 253 (2010) 177–189180



the grammar we create a new descriptor using the label at the top of the current

stack. When a particular execution of the algorithm stops, at input I[i] say, the

top element L is popped from the stack s = [s′, L] and (L, s′, i) is added to R (if it

has not already been added). We use POP(s, i,R) to denote this action. Then the

next descriptor (L′, t, j) is removed from R and execution starts at line L′ with call

stack t and input symbol I[j]. The overall execution terminates when the set R is

empty. In order to allow us, later, to combine the stacks we record both the line

label L and the current input buffer index k on the stack using the notation Lk.

At this interim stage we treat the stack as a bracketed list, [ ] denotes the empty

stack, and we assume that we have a function PUSH(s, Lk) which simply updates

the stack s by pushing on the element Lk. In the final version of the algorithm this

will be replaced by a function create() which builds the GSS.

i := 0; R := ∅; s := [L0
0]

LS : if (I[i] ∈ {a, c}) add (LS1 , s, i) to R
if (I[i] ∈ {a, b}) add (LS2 , s, i) to R
if (I[i] ∈ {d, $}) add (LS3 , s, i) to R

L0: if (R �= ∅) { remove (L, s1, j) from R
if (L = L0 and s1 = [ ] and j = |I|) report success
else { s := s1; i := j; goto L }

else report failure

LS1 : PUSH(s, Li
1); goto LA

L1: PUSH(s, Li
2); goto LS

L2: if (I[i] = d) { i := i+ 1; POP(s, i,R) }; goto L0

LS2 : PUSH(s, Li
3); goto LB

L3: PUSH(s, Li
4); goto LS

L4: POP(s, i,R); goto L0

LS3 : POP(s, i,R); goto L0

LA: if (I[i] = a) { i := i+ 1; POP(s, i,R); goto L0 }
else{ if (I[i] = c) { i := i+ 1; POP(s, i,R) }

goto L0 }
LB: if (I[i] = a) { i := i+ 1; POP(s, i,R); goto L0 }

else{ if (I[i] = b) { i := i+ 1; POP(s, i,R) }
goto L0 }

As an example we execute the above algorithm with input aad$. We begin by

adding (LS1 , [L
0
0], 0) and then (LS2 , [L

0
0], 0) to R and then go to line L0. We remove

(LS1 , [L
0
0], 0) from R and go to line LS1 . The push action sets s to [L0

0, L
0
1] and we

go to LA. The pop action adds (L1, [L
0
0], 1) to R and then we go back to L0. In the

same way, processing (Ls2 , [L
0
0], 0) from R eventually results in (L3, [L

0
0], 1) being

added to R.

R = {(L1, [L
0
0], 1), (L3, [L

0
0], 1)}

Next (L1, [L
0
0], 1) is processed. At L1 the push action sets s to [L0

0, L
1
2] and then

at LS we add (LS1 , [L
0
0, L

1
2], 1) and (LS2 , [L

0
0, L

1
2], 1) to R. Similarly, processing
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(L3, [L
0
0], 1) gives

R = {(LS1 , [L
0
0, L

1
2], 1), (LS2 , [L

0
0, L

1
2], 1), (LS1 , [L

0
0, L

1
4], 1), (LS2 , [L

0
0, L

1
4], 1)}

Processing each of these elements in turn results in

R = {(L1, [L
0
0, L

1
2], 2), (L3, [L

0
0, L

1
2], 2), (L1, [L

0
0, L

1
4], 2), (L3, [L

0
0, L

1
4], 2)}

Then, as I[2] = d, processing each of these results in

R = {(LS3 , [L
0
0, L

1
2, L

2
2], 2), (LS3 , [L

0
0, L

1
2, L

2
4], 2), (LS3 , [L

0
0, L

1
4, L

2
2], 2), (LS3 , [L

0
0, L

1
4, L

2
4], 2)}

From this set we get

R = {(L2, [L
0
0, L

1
2], 2), (L4, [L

0
0, L

1
2], 2), (L2, [L

0
0, L

1
4], 2), (L4, [L

0
0, L

1
4], 2)}

Processing these elements gives

R = {(L2, [L
0
0], 3), (L2, [L

0
0], 2), (L4, [L

0
0], 3), (L4, [L

0
0], 2)}

Since I[3] = $, processing these results in (L0, [ ], 3) and (L0, [ ], 2) being added to

R and finally algorithm terminates and correctly reports success.

3 The GSS and the sets Ui and P
The problem with the approach as it is described above is that for some grammars

the number of descriptors created can be exponential in the size of input and the

process does not work correctly for grammars with left recursion. We deal with

these issues by combining the stacks into a single, global graph structure, a GSS,

recording only the corresponding stack top node in the descriptor, and using loops

in the GSS when left recursion is encountered. The GSS will be built by the GLL

algorithm as illustrated in the modified Γ0-recogniser described below. The GSS

combining all the stacks constructed in the example for Γ0 previous section is
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A descriptor is a triple (L, u, i) where L is a label, u is a GSS node and i

is an integer. For example, the four elementary descriptors {(LS3 , [L
0
0, L

1
2, L

2
2], 2),

(LS3 , [L
0
0, L

1
2, L

2
4], 2), (LS3 , [L

0
0, L

1
4, L

2
2], 2), (LS3 , [L

0
0, L

1
4, L

2
4], 2)} in the above exam-

ple are replaced by two descriptors {(LS3 , u, 2), (LS3 , w, 2)}. As a result of this

definition actions POP(s, i,R) are replaced by actions which add (L, v, i) to R for

all children v of node corresponding to the top of s.
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In order to avoid creating the same descriptor twice we maintain sets Ui =

{(L, u) | (L, u, i) has been added to R}. A problem arises in the case when an

additional child, w, is added to u after a pop statement has been executed because

the pop action needs to be applied to this child. To address this we use a set P
which contains pairs (u, k) for which a ‘pop’ line has been executed. When a new

child node w is added to u, for all (u, k) ∈ P if (Lu, w) �∈ Uk then (Lu, u, k) is added

to R, where Lu is the label of u.

These techniques are implemented via functions add(), create() and pop() that

are formally defined in Section 4. Informally, add(L, u, j) checks if there is a de-

scriptor (L, u) in Uj and if not it adds it to Uj and R. The function create(L, u, j)

creates a GSS node v = Lj with child u if one does not already exist, and then

returns v. If (v, k) ∈ P then add(L, u, k) is called. The function pop(u, j) calls

add(Lu, v, j) for all children v of u, and adds (u, j) to P.

We can rewrite the algorithm from Section 2 as follows. The variable cu holds

the current GSS node, i holds the current input index and m = |I|+ 1.

create GSS nodes u1 := L0
0, u0 := $ and an edge (u0, u1)

i := 0; R := ∅; cu := u1
for 0 ≤ j ≤ m { Uj = ∅ }

LS : if (I[i] ∈ {a, c}) add(LS1 , cu, i)

if (I[i] ∈ {a, b}) add(LS2 , cu, i)

if (I[i] ∈ {d, $}) add(LS3 , cu, i)

L0: if (R �= ∅) { remove (L, u, j) from R
cu := u; i := j; goto L }

else if ((L0, u0,m) ∈ Um) report success else report failure

LS1 : cu := create(L1, cu, i); goto LA

L1: cu := create(L2, cu, i); goto LS

L2: if(I[i] = d){ i := i+ 1; pop(cu, i) }; goto L0

LS2 : cu := create(L3, cu, i); goto LB

L3: cu := create(L4, cu, i); goto LS

L4: pop(cu, i); goto L0

LS3 : pop(cu, i); goto L0

LA: if (I[i] = a) { i := i+ 1; pop(cu, i); goto L0 }
else{ if(I[i] = c){ i := i+ 1; pop(cu, i) }; goto L0 }

LB: if (I[i] = a) { i := i+ 1; pop(cu, i); goto L0 }
else{ if(I[i] = b){ i := i+ 1; pop(cu, i) }; goto L0 }

Note It is not obvious how to implement the algorithm as written because few

programming languages include an unrestricted goto statement that can take a

non-statically visible value, which is what is implied in the if statement at label L0

in the above algorithm. We discuss this in Section 5.
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4 Formal definition of the GLL approach

4.1 Initial machinery

We say A is nullable if A
∗⇒ε. We define firstT(A) = {t ∈ T|∃α(A ∗⇒tα)} and

followT(A) = {t ∈ T | ∃α, β(S ∗⇒αAtβ)}. If A is nullable we define first(A) =

firstT(A) ∪ {ε} and follow(A) = followT(A) ∪ {$}. Otherwise we define

first(A) = firstT(A) and follow(A) = followT(A). We say that a non-

terminal A is LL(1) if (i) A ::= α, A ::= β imply first(α) ∩ first(β) = ∅, and (ii)

if A
∗⇒ε then first(A) ∩ follow(A) = ∅.
We use Lu to denote the line label corresponding to a GSS node u.

A GLL recogniser includes labelled lines of three types: return, nonterminal and

alternate. Return labels, RXi , are used to label the main loop of the algorithm

and what would be parse function call return lines in a recursive descent parser.

Nonterminal labels, LX , are used to label the first line of what would be the code

for the parse function for X in a recursive descent parser. Alternate labels, LXi ,

are used to label the first line of what would be the code corresponding to the

ith-alternate, αi say, of X.

The algorithm also employs three functions add(), create() and pop() which build

the GSS and create and store processes for subsequent execution, and a function

test() which checks the current input symbol against the current nonterminal and

alternate. These functions are defined as follows.

test(x,A, α) {
if (x ∈ first(α)) or (ε ∈ first(α) and x ∈ follow(A)) { return true }
else { return false } }

add(L, u, j) { if ((L, u) �∈ Uj { add (L, u) to Uj , add (L, u, j) to R } }

pop(u, j) { if (u �= u0) { add (u, j) to P
for each child v of u { add(Lu, v, j) } } }

create(L, u, j) { if there is not already a GSS node labelled Lj create one

let v be the GSS node labelled Lj

if there is not an edge from v to u {
create an edge from v to u

for all ((v, k) ∈ P) { add(L, u, k) } }
return v }

4.2 Dealing with alternates

We begin by defining the part of the algorithm which is generated for an alternate

α of a grammar rule for A. We name the corresponding lines of the algorithm

code(A ::= α).
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Each nonterminal instance on the right hand sides of the grammar rules is given an

instance number. We write Ak to indicate the kth instance of nonterminal A. Each

alternate of the grammar rule for a nonterminal is also given an instance number.

We write A ::= αk to indicate the kth alternate of the grammar rule for A.

For a terminal a we define

code(aα, j,X) = if(I[j] = a) { j := j + 1 } else { goto L0 }

For a nonterminal instance Ak we define

code(Akα, j,X) = if(test(I[j], X,Akα) {
cu := create(RAk

, cu, j), goto LA }
else { goto L0 }

RAk
:

For each production A ::= αk we define code(A ::= αk, j) as follows. Let αk =

x1x2 . . . xf , where each xp, 1 ≤ p ≤ f , is either a terminal or a nonterminal instance

of the form Xl.

If f = 0 then αk = ε and

code(A ::= ε, j) = pop(cu, j), goto L0

If x1 is a terminal then

code(A ::= αk, j) = j := j + 1

code(x2 . . . xf , j, A)

code(x3 . . . xf , j, A)

. . .

code(xf , j, A)

pop(cu, j), goto L0

If x1 is a nonterminal instance Xl then

code(A ::= αk, j) = cu := create(RXl
, cu, j), goto LX

RXl
: code(x2 . . . xf , j, A)

code(x3 . . . xf , j, A)

. . .

code(xf , j, A)

pop(cu, j), goto L0
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4.3 Dealing with rules

Consider the grammar rule A ::= α1 | . . . | αt. We define code(A, j) as follows. If

A is an LL(1) nonterminal then

code(A, j) = if(test(I[j], A, α1)) { goto LA1 }
. . .

else if(test(I[j], A, αt)) { goto LAt }
LA1 : code(A ::= α1, j)

. . .

LAt : code(A ::= αt, j)

If A is not an LL(1) nonterminal then

code(A, j) = if(test(I[j], A, α1)) { add(LA1 , cu, j) }
. . .

if(test(I[j], A, αt)) { add(LAt , cu, j) }
goto L0

LA1 : code(A ::= α1, j)

. . .

LAt : code(A ::= αt, j)

4.4 Building a GLL recogniser for a general CFG

We suppose that the nonterminals of the grammar Γ are A, . . . ,X. Then the GLL

recognition algorithm for Γ is given by:

m is a constant integer whose value is the length of the input

I is a constant integer array of size m+ 1

i is an integer variable

GSS is a digraph whose nodes are labelled with elements of the form Lj

cu is a GSS node variable

P is a set of GSS node and integer pairs

R is a set of descriptors

read the input into I and set I[m] := $, i := 0

create GSS nodes u1 = L0
0, u0 = $ and an edge (u0, u1)

cu := u1, i := 0

for 0 ≤ j ≤ m { Uj := ∅}
R := ∅, P := ∅
if(I[0] ∈ first(S$)) { goto LS } else { report failure }

L0: if R �= ∅ {
remove a descriptor, (L, u, j) say, from R
cu := u, i := j, goto L }

else if ((L0, u0,m) ∈ Um) { report success } else { report failure }
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LA: code(A, i)

. . .

LX : code(X, i)

5 Implementation and experimental results

As we mentioned above, to implement a GLL algorithm in a standard programming

language the goto statement in the main for loop can be replaced with a Hoare

style case statement. We associate a unique integer, NRXj or NLXj , with each

label and use that integer in the descriptors (so L becomes an integer variable). Of

course, we could also substitute the appropriate lines of the algorithm in the case

statements if we wished, removing the goto statements completely with the use of

break statements.

Elements are only added toR once so the setR can be implemented efficiently as

a stack or as a queue. As written in the algorithm R is a set so there is no specified

order in which its elements are processed. If, as we have done, R is implemented

as a stack then the effect will be a depth-first parse trace, modulo the fact that left

recursive calls are terminated at the start of the second iteration. Thus the flow of

the algorithm will be essentially that of a recursive descent parser.

On the other hand, R could be implemented as a set of subsets Rj which contain

the elements of the form (L, u, j). In this case, if the elements of Rj are processed

before any of those in Rj+1, 0 ≤ j < m, then the sets Uj and the GSS nodes will be

constructed in corresponding order, with no elements of Uj created once Rj = ∅.
This can allow Uj to be deleted once Rj = ∅.
To demonstrate practicality we have written GLL-recognisers for grammars for C

and Pascal, for the grammar, Γ1,

S ::= C a | d
B ::= ε | a
C ::= b | B C b | b b

which contains hidden left recursion, and for the grammar, Γ2,

S ::= b | S S | S S S

on which standard GLR parsers are O(n4). The GLL-recognisers for C, Γ1 and Γ2

were written by hand, demonstrating the relative simplicity of GLL implementation.

For C, the GTB tool [8] was used to generate the first sets and implementation

was made easier by the fact that the grammar is ε-free. For Pascal, the recogniser

was generated by the newly created GLL-parser generator algorithm that has been

added to GTB.

Of the common generalised parsers, the GLL algorithm most closely resembles

the Aycock and Horspool style RIGLR algorithm, mentioned above, in which a

set of automata which correspond to grammar non-terminals call each other via a
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Grammar Input GSS nodes GSS edges |U | CPU secs

GLL C 4,291 60,627 219,204 509,484 1.510

SRIGLR C 4,291 44,510 78,519 180,114 1.436

GLL C 36,827 564,164 2,042,019 4,737,207 13.750

SRIGLR C 36,827 406,008 739,057 1,717,883 17.330

GLL Pascal 4,425 19,728 26,264 48,827 0.140

SRIGLR Pascal 4,425 21,086 29,369 79,885 1.770

GLL Γ1 a20b150a 45 67 3,330 0.010

SRIGLR Γ1 a20b150a 44 66 9,514 0.016

GLL Γ2 b300 1,498 671,565 1,123,063 28.595

SRIGLR Γ2 b300 1,496 446,117 896,718 16.550

GLL Γ∗
2 b300 1,198 357,907 583,654 8.060

SRIGLR Γ∗
2 b300 1,796 359,400 899,405 12.930

Table 1

common stack. The RIGLR algorithm can be tuned by selecting which non-terminal

instances in the grammar generate an automaton call, trading execution time for

automaton space. In the most space efficient version, which we call SRIGLR, all non-

terminal instances generate a call. We have used GTB to build SRIGLR recognisers

which we have compared to the corresponding GLL recognisers.

The input strings for C are a Quine-McCluskey Boolean minimiser (4,291 tokens)

and the source code for GTB itself (36,827 tokens). The input string for Pascal

is a program that performs elementary tree construction and visualisation (4,425

tokens). The input has already been tokenised so no lexical analysis needed to be

performed. The results are shown in Table 1.

We can see that, as well as being easy to write, GLL recognisers perform well. The

slower times for Γ2 arise because the SRIGLR algorithm factors the grammar as it

builds the automaton. The results for Γ∗2

S ::= b | S S A A ::= S | ε

in which the grammar is factored, demonstrate the difference. A GLL recogniser

for the equivalent EBNF grammar S ::= b | S S (S |ε) runs in 4.20 CPU seconds

on b300, indicating that GLL recogniser performances can be made even better by

simple grammar factorisation. This advantage is also displayed by the Pascal data;

the Pacsal BNF grammar used was obtained from the EBNF original and hence is

also simply factored. In general, such factorisation can be done automatically and

will not change the user’s view of the algorithm flow.

6 Conclusions and Final Remarks

We have shown that GLL recognisers are relatively easy to construct and are also

practical. They have the desirable property of recursive descent parsers in that the

parser structure matches the grammar structure. It is also possible to extend the

GLL algorithm to EBNF grammars, allowing factorisation, and the use of iteration

in place of recursion, to make the resulting parsers even more efficient.
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The version of the GLL algorithm discussed here is only a recogniser: it does not

produce any form of derivation. However, all the derivation paths are explored by

the algorithm and it is relatively easy to modify the algorithm to produce Tomita-

style SPPF representations of all the derivations of an input string. The modification

is essentially the same as that made to turn an RIGLR recogniser into a parser, as

described in [12].
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