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and we explore the links between these theories. Somewhat
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to study stochastic partial differential equations, with an emphasis
on the stochastic heat and wave equations driven by spatially
homogeneous Gaussian noise that is white in time. We compare
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1. Introduction

The theory of stochastic partial differential equations (spde’s) developed on the one hand, from
the work of Walsh [41], and on the other hand, through work on stochastic evolution equations in
Hilbert spaces, such as in [13]. Important milestones in the latter approach are the books of Da Prato
and Zabczyk [14] and Rozovskii [37] (see also Krylov and Rozovskii [23] and Krylov [22]).

These two approaches led to the development of two distinct schools of study for spde’s, based
on different theories of stochastic integration: the Walsh theory, which emphasizes integration with
respect to worthy martingale measures, and a theory of integration with respect to Hilbert-space-
valued processes, as expounded in [14]. A consequence of the presence of these separate theories is
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that the literature published by each of the two schools is difficult to access when one has been trained
in the other school. This is unfortunate since both approaches have advantages and in some problems,
using both approaches can be useful (one example of this is [10]).

The objective of this paper is to help create links between these two schools of study. It is addressed
to researchers who have some familiarity with at least one of the two approaches. We develop both
theories, and explore the links between the two. Then we show how each theory is used to study
spde’s. The Walsh theory emphasizes solutions that are random fields, while [14] centers around
solutions in Hilbert spaces of functions. Each theory is presented rather succinctly, the main focus
being on relationships between the theories. We show that these theories often (but not always) lead
to the same solutions to various spde’s.

It should be mentioned that the general theory of integration with respect to Hilbert-space-
valued processes and its generalizations - such as the stochastic integral with respect to cylindrical
processes — was well-developed several years before [41] and more than a decade before reference
[14] appeared: see, for instance, the book of Métivier and Pellaumail [25]. This reference, and several
others, are cited in [14] and [41]. However, Walsh preferred to develop his own integral, even though
he realized that the two were related (see the Notes at the end of [41]).

Here, we present in Section 2.1 a modern formulation of the theory of stochastic integrals with
respect to cylindrical Wiener processes, as developed in [25], as a unifying integral behind most of
those that were introduced later on. This integral is briefly recalled in Section 2.1. In Section 2.2, we
show how spatially homogeneous Gaussian noise that is white in time can be viewed as a cylindrical
Wiener process on a particular Hilbert space. Emphasizing this type of noise is natural, since in recent
years, following in particular the papers of Mueller [28], Dalang and Frangos [7], Dalang [6] and Peszat
and Zabczyk [31,32], this type of noise has been used by several researchers. This is due in part to
the fact that it leads to a theory of non-linear spde’s in spatial dimensions greater than 1, while non-
linear spde’s driven by space-time white noise generally only have a solution in spatial dimension 1.In
Section 2.3, we show (Proposition 2.6) that the Walsh stochastic integral and the extension presented
by Dalang [6] and Nualart and Quer-Sardanyons [29] can be viewed as integrals as defined in Section
2.1. Section 2.4 gives a wide class of integrable processes. In Section 2.5, we discuss the relationship
between this integral and the function-valued stochastic integral introduced by Dalang and Mueller
in [9]. A further extension of real-valued integrals to Hilbert-space-valued stochastic integrals was
developed in [29,35,38]; these extensions were motivated by the needs of Malliavin calculus: indeed,
the so-called Malliavin derivative of the solution to an spde satisfies a stochastic integral equation
which requires a Hilbert-space-valued integral. We give a unified presentation of these extensions in
Section 2.6.

In Section 3, we sketch the construction of the infinite dimensional stochastic integral in the setup
of Da Prato and Zabczyk [ 14]. We also make use of the more recent presentation of Prévéot and Rockner
[33]. In Section 3.1, we recall some basic properties of Hilbert-Schmidt operators. Section 3.2 gives
the relationship between a Hilbert-space-valued Wiener process and a cylindrical Brownian motion,
in the case where the covariance operator has finite trace. Hilbert-space-valued stochastic integrals
are defined in Section 3.3. In particular, we show in Proposition 3.4 how this infinite-dimensional
stochastic integral can be written as a series of Itd stochastic integrals. This is used in Section 3.4
to show how the integrals of Section 2 can be interpreted in the infinite-dimensional context. The
case of covariance operators with infinite-trace is discussed in Section 3.5. We do not discuss Banach-
space-valued stochastic integrals, for which we refer to [2,40]. Finally, in Section 3.6, we establish
the somewhat unexpected but interesting fact that the extension of the Walsh stochastic integral
presented in Section 2.6 and the Da Prato and Zabczyk integral of Section 3.5 are in fact equivalent.

It is well-known that in certain cases, the Hilbert-space-valued integral is equivalent to a
martingale-measure stochastic integral. For instance, it is pointed out in [ 14, Section 4.3] that when the
random perturbation is space-time white noise, then Walsh’s stochastic integral in [41] is equivalent
to an infinite-dimensional stochastic integral as in [14] (see also [19]). Of course, space-time white
noise is only a special case of spatially homogeneous noise, and we are interested in comparing
solutions to spde’s driven by this more general noise. The function-valued approach of [9] gives
solutions to spde’s for which it is not known if a random field solution exists, and the Hilbert-space
approach is even more general. However, for a wide class of spde’s that have solutions in two or more
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of these formulations, such as the stochastic heat equation (d > 1) and wave equation (d € {1, 2, 3})
driven by spatially homogeneous noise, we will show that the solutions turn out to be equivalent.
One does not expect this to be the case in all situations. Indeed, there are a few cases in which a
solution exists with one approach and is known not to exist in one of the others. For instance, for noise
concentrated on a hyperplane, as considered in [8], the authors establish existence of function-valued
solutions and show that there is no random field solution.

In Section 4, we consider spde’s driven by spatially homogeneous noise, with an emphasis on the
stochastic heat and wave equations. In Sections 4.1-4.3, we discuss the random field approach, and
we use the stochastic integral of Section 2.3 to extend the result of [6] to arbitrary initial conditions
(Theorem 4.3). In Section 4.4, we discuss the Hilbert-space-valued approach to the study of the same
equations, using the approach of [32]. In Section 4.5, we show that the mild random field solution of
Theorem 4.3, when interpreted as a Hilbert-space-valued process, yields the solution given in [32].
This is achieved by identifying the multiplicative non-linearity with an appropriate Hilbert-Schmidt
operator, and using the relationships between stochastic integrals identified in Section 3. Since the
two solutions are defined using different Hilbert spaces, the embedding from one Hilbert space to
the other has to be written explicitly. Finally, in Section 4.6, we compare the random field solution
of the stochastic wave equation with the function-valued solution constructed in [9]. Again, in cases
where both types of solutions are defined, that is, in spatial dimensions d € {1, 2, 3}, we show that the
random field solution yields the function-valued solution (Theorem 4.13). Overall, Section 4 unifies
the existing literature on the stochastic heat and wave equations driven by spatially homogeneous
noise, and clarifies the relationships between the various approaches.

2. Stochastic integrals with respect to a spatially homogeneous Gaussian noise

In this section, we recall in Section 2.1 the notion of cylindrical Wiener process and the stochastic
integral with respect to such processes. In Section 2.2, we introduce a spatially homogeneous Gaussian
noise that is white in time, and we show how to interpret this noise as a cylindrical Wiener process.
Building on material presented in [29], we relate in Section 2.3 the stochastic integral with respect
to this particular cylindrical Wiener process with Walsh’s martingale measure stochastic integral and
the extension given by Dalang in [6]. Some examples of integrands are given in Section 2.4. In Section
2.5, we discuss the function-valued extension given in Dalang and Mueller [9]. Finally, in Section 2.6,
we give a unified presentation of the Hilbert-space-valued stochastic integral developed in [29,35,38].

2.1. Stochastic integration with respect to a cylindrical Wiener process

Fix a separable Hilbert space V with inner product (-, -),,. Following [ 18,25], we define the general
notion of cylindrical Wiener process in V.

Definition 2.1. Let Q be a symmetric (self-adjoint) and non-negative definite bounded linear operator
on V. A family of random variables B = {B.(h), t > 0, h € V}is a cylindrical Wiener process on V if the
following two conditions are fulfilled:

1. forany h € V, {B;(h), t > 0} defines a Brownian motion with variance t(Qh, h)y;
2. foralls,t e Ry and h, g eV,

E (Bs(h)B:(g)) = (s A )(Qh, &)y,

where s At := min (s, t). If Q =Idy is the identity operator in V, then B will be called a
standard cylindrical Wiener process. We will refer to Q as the covariance of B.

Let F; be the o-field generated by the random variables {Bs(h), h € V, 0 <s <t} and the P-null
sets. We define the predictable o -field as the o-field in [0, T] x §2 generated by the sets {(s, t]xA, A €
F, 0<s<t<T}
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We denote by V; (the completion of) the Hilbert space V endowed with the inner-product

(h.g)y,:=(Qh.g)y, hgeV.

We can now define the stochastic integral of any predictable square-integrable process with values in
Vi, as follows. Let (v;); be a complete orthonormal basis of the Hilbert space Vj. For any predictable
process g € [2(£2 x [0, T];Vq), it turns out that the following series is convergent in 12(£2, 7,P) and
the sum does not depend on the chosen orthonormal system:

o0

T
g B=) /0 (85, Uj)y, dBs (). (2.1)
j=1

We notice that each summand in the above series is a classical Ito integral with respect to a standard
Brownian motion, and the resulting stochastic integral is a real-valued random variable. The stochastic

integral g - B is also denoted by fOT g dB;. The independence of the terms in the series (2.1) leads to
the isometry property

E((g-B?) =E ((fOTgsst)2> =E (/OT lgs I, d5> :

We note that there is an alternative way of defining this integral: one can start by defining the
stochastic integral in (2.1) for a class of simple predictable V,-valued processes, and then use the
isometry property to extend the integral to elements of L?(£2 x [0, T];Vq) by checking that these
simple processes are dense in this set.

2.2. Spatially homogeneous noise as a cylindrical Wiener process
We now define the Gaussian random noise that will play a central role in this paper. On a complete
probability space (£2, F, P), we consider a family of mean zero Gaussian random variables W =

{(W(p), ¢ € (R 1)}, where ¢§°(R**1) denotes the space of infinitely differentiable functions with
compact support, with covariance

o0
Ewewen) = [ d [ 4@ @0 < i, 22)
0 R
where “x” denotes convolution in the spatial variable and Iﬁ(t, X):=y(t, —x).
In the above, A is a non-negative and non-negative definite tempered measure on R¢, it is therefore
the Fourier transform of a non-negative tempered measure x on RY. That is, by definition of the Fourier

transform on the space S'(R?) of tempered distributions (see [39]), for all ¢ belonging to the space
S(RY) of rapidly decreasing ¢* functions,

f p() A@Y) = / Fo(®) u(de),
Rd Rd
and there is an integer m > 1 such that
[ ey ) < o 23)
R
We have denoted by F¢ the Fourier transform of ¢ € S(RY):

Fo€) = / p(x)e 25X dx,
Rd

The measure wu is called the spectral measure of W and is necessarily symmetric (see [39, Chap. VII,
Théoréme XVII]). The covariance (2.2) can also be written, using elementary properties of the Fourier
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transform, as

EW(@W(y)) = / dt / k() Fo O & FROE).
0 R

Remark 2.2. In the case where the measure A(dx) is absolutely continuous with respect to Lebesgue
measure on RY, with density f, formula (2.2) becomes

/ dtf dx/ dy (.3 f (X — ) Y (£.9).
0 R RrA

which makes clear the spatially homogeneous character of the noise.

It is natural to associate a Hilbert space with W: let U the completion of the Schwartz space S(RY)
endowed with the semi-inner product

(0. 9)y = /d Ad0) (¢ % ) (x) = /d n(d§) Fo(&) 7y (§), (2.4)
R R

@, ¥ € S(RY), and associated semi-norm || - lly- Then U is a separable Hilbert space that may contain
Schwartz distributions (see [6, Example 6]).

Remark 2.3. Let [2(RY, dp) be the subspace of [2(RY, i) consisting of functions ¢ such that ¢ = ¢.
It is not difficult to check that one can identify U with the set {¥ € S'(RY) : ¢ = F~'¢, where ¢ €
12(RY, duw)}, with inner product

(F'o. 7o)y = (9. @) 2@ty D0 € PR dp).

We fix a time interval [0, T] and we set Uy := L%*([0, T];U). This set is equipped with the norm
given by

T
lel?, = [ e o
0

We now associate a cylindrical Wiener process to W, as follows. A direct calculation using (2.2)
shows that the generalized Gaussian random field {W (¢), ¢ € C¢5°([0, T] x RY)} is a random linear
functional, in the sense that W(ap + by) =aW(¢)+ bW(y), and ¢ — W(¢) is an isometry
from (C§°([0, T] x RY, | - lly,) into 12(£2, 7, P). The following lemma identifies the completion of

¢ ([0, T] x RY) with respect to | - ||, .

Lemma 2.4. The space C3°([0, T] x RY) is dense in Ur = L*([0, T];U) for || - llu, -

Proof. Following [29], we will use the notation ¢( - ) to indicate that ¢, is a function t > ¢4(t) of
the time-variable, and ¢,( » ) to indicate that ¢, is a function x — ¢,(x) of the spatial variable.

Let C denote the closure of C5°([0, T] x RY) in Uy for || - lly, - Clearly, C is a subspace of Ur. The
proof can be split into three parts.

Step 1. We show that elements of Uy of the form ¢1( - )g,( x ), where ¢ € C5°(R; R) with support
included in [0, T] and ¢, € S(RY), belong to C. Using the fact that

/Rd A (2] % 521 () < 00

because A is a tempered measure and |, | * |@-| decreases rapidly, together with dominated con-
vergence, one checks that there is a sequence (¢5), C C§° (RY) such that limp_, oo ||@o2 — o3, =0.



72 R.C. Dalang, L. Quer-Sardanyons / Expositiones Mathematicae 29 (2011) 67-109

Then, by the very definition of the norm in Ur, one easily proves that lim,_.« [[¢192 — @193 1l =
0. Therefore, @1( - )po( * )€ Ur.

Step 2. Suppose that we are given ¢; € L?([0, T]; R)and ¢, € S(RY). We show that ¢1( - Jpo( * )e C.
Indeed, let (¢]), € Cg°(Ry) be such that, for all n, the support of ¢} is contained in [0, T] and
@t — @1inL?([0, T]; R). Then ¢¥¢, € C by Step 1, and one checks that ¢, converges, as n tends
to infinity, to ¢1¢; in Ur. Therefore, ¢1( - )p2( * )€ C.

Step 3. Suppose that ¢ € Ur. We show that ¢ € C.Indeed, let (¢;); be a complete orthonormal basis
of U withe; € S(RY), for all j. Then, since ¢(s) € U for any s € [0, T],

T 0o T
lllZ, =/0 lp@s)lIF ds = Z/O (9 (s), €))7 ds.
j=1

In particular, for any j > 1, the function s — ({¢(s), €;),, belongs to [?([0, T]; R). Thus, it follows
from Step 2 that

n

P"():=Y_(9(). ey e

=1

belongs to C. Moreover, it is straightforward to verify that || ¢ — ¢" ||f,T — 0asn — oo.This shows
thatp e C. O

Therefore, taking into account the above lemma, W(¢) can be defined for all ¢ € Uy following the
standard method for extending an isometry. This establishes the following property.

Proposition 2.5. For t > 0 and ¢ € U, set W(¢) = W(10,1( - )@( * )). Then the process W = {W(¢),
t >0, ¢ € U}isacylindrical Wiener process as defined in Section 2.1, with V there replaced by U and Q
=Idy. In particular, for any ¢ € U, {(W(¢), t >0} is a Brownian motion with variance t| ¢|y
and for all's, t > 0and ¢, ¥ € U, EW (@)W (¥)) = (s A t) (@, ¥)y-

With this proposition, it becomes possible to use the stochastic integral defined in Section 2.1. This
defines the stochastic integral g - W for all g € I2(£2 x [0, T];U) = L?(£2;U7). By definition of U, the
complete orthonormal basis (e;); in the definition of g - W can be chosen such that (¢;); C S(RY).

Before discussing this further, we first relate the statement of Proposition 2.5 to Walsh’s theory of
stochastic integrals with respect to martingale measures. Let us recall that Walsh’s theory of stochastic
integration is based on the concept of martingale measure, which is a stochastic process of the form
{M;(A), 7, t € [0,T], A € By(RY}, where B,(R?) denotes the set of bounded Borel sets of R¢, and
(Ft)¢ is a filtration satisfying the usual conditions. For the precise definition of a martingale measure,
we refer to [41, Chapter 2]. Hence, in order to use Walsh’s construction, one has first to extend the
generalized random field {W (¢), ¢ € C5°(R4 x RY)} to a martingale measure. More precisely, using
an approximation procedure similar to the one used in Lemma 2.4, one extends the definition of W to
indicator functions of bounded Borel sets in R, x R (for details see [7] or [34, p. 13]). Then one sets

Mi(A) = W(1j0,()1a(¥), £ €[0,T], A € By(RY. (2.5)
Moreover, if we let (), be the filtration generated by {M;(A), A € By(R%)} (completed and made

right-continuous), then the process {M;(A), 7, t € [0,T], A € B,(RY)} defines a worthy martingale
measure in the sense of Walsh [41]. Its covariance measure is determined by

(M(@A), MB)), = t / A (14 % 1)),
Rd

t €[0,T], A B € By(RY), and its dominating measure coincides with the covariance measure (see [7]).
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One easily checks that, for ¢ € S(RY),

W) = / / 10.1(5) 0 (0) M(ds, d),
R4 JRA

where the integral on the right-hand side is Walsh'’s stochastic integral.

2.3. The real-valued stochastic integral for spatially homogeneous noise

The aim of this section is to exhibit the relationship between the stochastic integral constructed
in Section 2.1 and the random field approach of Walsh [41] and Dalang [6]. Recall that the stochastic
integral with respect to M defined in [41] only allows function-valued integrands, and this theory was
extended in [6] in order to cover more general integrands, such as certain processes with values in the
space of (Schwartz) distributions. We are going to show that these two integrals can be interpreted in
the context of Section 2.1.

Recall that Walsh’s stochastic integral g - M is defined when g € P., where P, is the set of
predictable processes (w, t, x) — g(t, x;w) such that

T
lgll%:=E (/ dt /d A(dx) (1g(t, %) * 1g(t, *)I)(X)) < oo.
0 R

For g € P, we can consider that g € L?(£2;Uy) and set

T
lgI2=E(lgI3,) = E ( /0 dt / @) @6 *C, *))(x)). (26)
R

In [6], Dalang considered (in the case A(dx) = f(x)dx) the set Py, which is the completion with
respect to || - ||, of the subset & of P, that consists of functions g(s, x;w) such that x — g(s, x; ®) €
S(RY), for all s and w, and he defined the stochastic integral g - M for all g € Py.

Finally, in order to use the stochastic integral of Section 2.1, let (e;); C S(RY) be a complete
orthonormal basis of U, and consider the cylindrical Wiener process {W(¢)} defined in Proposition
2.5. For any predictable process g € [*(£2 x [0, T];U), the stochastic integral of g with respect to W is

T o0 T
g.w=/0 gdeS:=Z/0 (g5, €, dWis(e)), (2.7)
j=1

and the isometry property is given by

E((g-W)*) =E <</0rgs dWs>2> =E (/OT llgsllZ ds) ) (2.8)

We note that the right-hand side of (2.7) is essentially the definition of W(¢) in [24,26,27]. We also
use the notation

T
f / g(s,y) W(ds, dy)
0o Jrd

instead of fOT g dW,.

Proposition 2.6. (a)If g € P, theng € [2(£2 x [0, T];U)and g - M = g - W, where the left-hand side
is a Walsh integral and the right-hand side is defined as in (2.7).

(b)Ifg € Py, theng € [?(£2 x [0, T];U) and g - M = g - W, where the left-hand side is a Dalang
integral and the right-hand side is defined as in (2.7).
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Proof. Let us prove part (a) in the statement. We recall the inclusion P, C Py, observed in [6], and
we note thatif g € P, then

T
1812 00 i) = E ( |t [ 2@ e e *))(x)) < gl < +oo, (29)
0 R

and, in particular g € [?(§2 x [0, T];U). Indeed, the equality in (2.9) holds when g € Cgo([0, T] x RY),
and it also holds (by monotone approximation) for g(s, x) = 1(4,1;(s) 1a(x), when A is a product of open
intervals, and finally, it holds for all g € P, via the Monotone Class Theorem (using arguments similar
to those in the proof of [4, Theorem 2.6(b)]).

Secondly, in order to check the equality of the integrals, we use the fact that the set of elementary

processes is dense in (P4, || - |I;) (see [41, Proposition 2.3]). Hence, by inequality (2.9), it suffices to
show that both integrals coincide when g is an elementary process of the form
g(t, x; w) = 1 () 1a)X (), (2.10)

where0 <a<b <T,A € By(RY) and X is a bounded and F,-measurable random variable.
On one hand, when g has the particular form (2.10), according to [41] and (2.5),
T
| [ e nmid a0 = ) — M) = [WlanO 1) - WieaO 1)
o Jr
= W1 () 1a(x))X.

On the other hand, by the very definition of the integral (2.7),

T 00 b 00
[ edwe =Y [ Xty awiie) =x 3 (1n ey [Wale) — Watey)]
0 j=17a j=1

&

Il
-

=X ) (1ae)y Wlen()e) = XW (1 (-)1a()),

]

which implies that

T T
/ / g(t,x)M(dt,dx) = f g dW,,
0 Jrd 0

for all g of the form (2.10). This concludes the first part of the proof.

Concerning part (b), let us point out that P, is the completion of & with respect to || - ||, (see
(2.6)), where the latter coincides with the normin L*(£2 x [0, T];U) for smooth elements. Hence, since
& C Py C L*(£2x[0,T]; U),any || - ||o-limitg of a sequence (g,), C & will determine a well-defined
element in [*(£2 x [0, T];U).

Moreover, as a consequence of this, we will only need to check the equality of the integrals for
integrands g in &. Since such elements are contained in P, Dalang’s integral of g with respect to the
martingale measure M turns out to be a Walsh integral, so that we can conclude by using the first part
of the proof. O

Remark 2.7. According to Proposition 2.6, when one integrates an element of P, it is possible to
use either the Walsh integral or the integral with respect to a cylindrical Wiener process. However,
the Walsh integral enjoys additional properties, in part because it is possible to make use of the
dominating measure, which can be very useful in certain estimates. For example, establishing Holder
continuity of the solution to the 1-dimensional stochastic wave equation, in which a Walsh integral
appears, is an easy exercise [41, Exercise 3.7], while for the 3-dimensional stochastic wave equation,
this is quite involved [12].
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2.4. Examples of integrands

In this section, we aim to provide useful examples of random distributions which belong to
[2(£2 x [0, T];U), that is, for which we can define the stochastic integral (2.7) with respect to W.

Recall that an element ® € S'(RY) is a non-negative distribution with rapid decrease if © is a non-
negative measure and if

/ (14 K2 0(dx) < +oo,
]Rd

for all k > 0 (see [39]).
Recall that u is the spectral measure of W. We consider the following hypothesis.

Hypothesis 2.8. Let I" be a function defined on R with values in S’ (RY) such that, for all t > 0, I"(t)
is a non-negative distribution with rapid decrease, and

T
f dt /du(ds) IFL (D) < oo. (2.11)
0 R
In addition, I" is a non-negative measure of the form I'(t, dx) dt such that, forall T > 0,

sup I'(t, Rd) < Q.
0<t<T

The main examples of integrands are provided by the following proposition (see [29, Proposition
3.3 and Remark 3.4]). In comparison with the analogous result by Dalang [6, Theorem 2], Proposition
2.9 does not require that the stochastic process Z has a spatially homogeneous covariance (see
Hypothesis A in [6]).

Proposition 2.9. Assume that I satisfies Hypothesis 2.8. Let Z = {Z(t,x), (t,X) € [0,T] x R%} be a
predictable process such that

sup  E(|Z(t,x)") < o0, (2.12)
(t,x)€[0, T|xRd

for some p > 2. Then, the random measure G = {G(t, dx) = Z(t, x)I['(t, dx), t € [0, T]} is a predictable
process with values in [P(§2 x [0, T];U). Moreover,

T
E(IGIF,) =E [/ dt / pu(dg) |f<r(t>2<r))<s)|2]
0 R

and
T
E(IG-WPP) < Cf de | sup E(1Z(t, x)|") / w(dg) |FI () &)1
0 xeRd RY
The integral of G = {G(¢t, dx) = Z(t, x)I"(t, dx), t € [0, T]} with respect to W will be also denoted by

T
G-W=/ / (s, Y)Z(s, y)W (ds, dy). (2.13)
0o Jrd

It is worth pointing out two key steps in the proof of this proposition (see [29]): the first is to check that
under Hypothesis 2.8, I" belongs to Ur = L*([0, T];U); the second is to notice that if I" and Z satisfy,
respectively, Hypothesis 2.8 and condition (2.12), then G(t) = Z(t, * )I'(t, * ) defines a distribution
with rapid decrease, almost surely.

Remark 2.10. We note that [5] presents a further extension of Walsh'’s stochastic integral, with which
it becomes possible to integrate certain random elements of the form Z(t, x )I"(t, x ), where I" is a
tempered distribution which is not necessarily non-negative. This extension is useful for studying the
stochastic wave equation in high spatial dimensions.



76 R.C. Dalang, L. Quer-Sardanyons / Expositiones Mathematicae 29 (2011) 67-109

2.5. The Dalang-Mueller extension of the stochastic integral

We briefly summarize here the function-valued stochastic integral constructed in [9]. This is an
extension of Walsh’s stochastic integral, where one integrates processes that take values in L*(R¢) (or
a weighted L?-space) and the value of the integral is in the same L2-space.

Suppose that s — I'(s) € S'(R?) satisfies:
(1) Foralls >0, FI'(s) is a function and
T
| ts s [ waniFroe - ni <+
0 gerd JRA

(2) Forall¢ € C°(RY), sup g<s<rI'(s) * ¢ is a bounded function on RY.
Suppose that s — Z(s) € L*(RY) satisfies:

(3) For0 <s<T,Z(s) € [>(RY) as., Z(s) is F;-measurable, and s — Z(s) is mean-square continuous
from [0, T] into L?(RY).

For such I and Z, one sets

T
Irgim / ds / & (FZOGP) / WADIFTOE ~ P < +ov. (2.14)
0 R R

Then the stochastic integral

T
vpz = / / (s, »x—y)Z(s,y) M(ds, dy) (2.15)
0 Jrd
is defined as an element of [2(£2 x RY, dP x dx), such that

E(lvrzlb e ) =1r.z (2.16)
This definition is obtained in three steps.

(a) If, in addition to (1), I'(s) € c®(RY), for 0 < s < T,and in addition to (3), Z(s) € ¢5°(R?) and there
is a compact K C R¢ such that supp Z(s) C K, for 0 < s < T, then

T
vrz(x) = / f I(s,x — y)Z(s,y)M(ds, dy),
0 Jrd

where the right-hand side is a Walsh stochastic integral. Equality (2.16) is checked by direct
calculation (see [9, Lemma 1]).

(b) If I' is as in (a) and Z satisfies (3), then one checks that

lim lim IF-Z—(Zl[—m.m])*</fn =0,

m—0o0 nNn—00

where (Y,) C C§° (RY) is a sequence that converges to the Dirac distribution, and one sets

vrz = lim lim v ,
r.z m—>00 N—00 Ty @, m)*Vn

where the limits are in [?(£2 x RY, dP x dx).
(c) If I" satisfies (1) and (2), and Z satisfies (3), then one checks that

nILHgO Ir_raynz =0
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and one sets
Ur,z = nango Ursym, Z»
where the limit is in [?(£2 x R% dP x dx): see [9, Theorem 6].

In comparison with the stochastic integral of Section 2.3, we remark that the process Z verifies
SUDse(0. 7] E(||Z(s)||fz(Rd)) < o0, rather than (2.12), and the resulting integral v, 7, as a random

function of x, belongs to L(£2 x RY).
We now relate this stochastic integral to the one defined in Section 2.3.

Proposition 2.11. Assume that I" and Z satisfy conditions (1), (2) and (3) above. Then:

(i) For almost all x € RY, the element I'( -, x — » )Z( -, * ) belongs to [*(£2 x [0, T];U). Hence, as in
(2.7), we can define the (real-valued) stochastic integral

T
Irz(T, x)::f / L(s,x—y)Z(s,y) W(ds, dy), for a.a.x RY,
0o Jrd

(i) Zr,z(T, %) € (2 x RY) and || Z £ (T, *)||fz(ngd) =Irz.

(iii) Zp z(T, %) = vp 7 in [>(£2 x RY).

Proof. We will split the proof in three steps, which essentially correspond to the construction of the
Dalang-Mueller integral v .

Step 1. Let us assume first that I" and Z satisfy the hypotheses in (a) above. Then, as we pointed
out there, for all x € RY, the stochastic integral vr z(x) can be defined as a Walsh stochastic
integral. Hence, by Proposition 2.6(a), the integrand (s, y) — I'(s, x — ¥)Z(s, y) defines an element
in 2(£2 x [0, T];U) and, forallx € RY, v ,(x) = Zr,z(T,x). Condition (ii) in the statement can be
deduced from this latter equality and (2.16).

Step 2. Assume now that I" is as in Step 1 and Z satisfies condition (3). Then, as in (b) above, there
exists a sequence of processes (Z,), such that, for all n > 1, Z,, satisfies the hypotheses in (a) and
Iy z,—z converges to zero as n tends to infinity. For this sequence,

vr,z:= HILH;O vr,z, = nlLﬂ;O Ir,z,(T, %) (2.17)

by Step 1, where the limit is in [?(£2 x RY).
We now check property (i) in the statement of the proposition. Observe that, by Proposition 2.9,

/ de |1 (. x = ®)Za( ) = 2B 00,1109
R4 T

T
= / dxE </ ds / w(dm|F(C (s, x — *)[Zy(s, %) — Z(s, *)])(77)|2> . (2.18)
Rd 0 Rd

Use the very last lines in the proof of [9, Lemma 1] to see that this is equal to I z,_z. Since this
quantity converges to zero as n — oo, we deduce that there exists a subsequence (n;); such that,

for almost all x € RY,

0.

Jim 7Gx = )2y (8) = T X026 g0 0 =
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This implies that, for almost all x € R, the element (s, y) — I'(s, x — y)Z(s, y) belongs to [*(£2 x
[0, T];U), and we can define the (real-valued) stochastic integral

r
I["Z(T,X):=/ f I'(s,x—y)Z(s,y) W(ds, dy), (2.19)
0o Jrd
and
Ir,z(T.X) = lim Zr 2, (T,x)  in [2(£2).
Jj—o0
Notice that

1Zr, 2, (T, %) = Zr 2 (T, ) 1 gty = 120202 (T ) 1o - (2.20)

By the isometry property (2.8), this is equal to (2.18), and therefore to I z,_z, which tends to 0 as
n — oo. Therefore, using Step 1, we see that

2 : 2 :
||IF,Z(Tv *)”LZ(QXRd) = nllpgo ”ZF,Zn (T! *)”LZ(.QX]Rd) = nlggo IF,Zn = IF,Z'

which proves (ii). The arguments following (2.20) and (2.18) prove (iii).

Step 3. In this final part, we assume that I" and Z satisfy conditions (1), (2) and (3). Then, it is
a consequence of step (c) above that there exists (I};), such that, for all n > 1, I',, verifies the
assumptions of the previous step and

lim I['n_r‘z =0.
n— 00

In order to prove parts (i), (i) and (iii) for this case, one can follow exactly the same lines as we
have done in Step 2. We omit the details. O

As we will explain in Section 4.6, for the particular case of the stochastic wave equation, it is useful
to consider stochastic integrals of the form v ; which take values in some weighted L?-space. We
now describe this situation.

Fix k > d and let 6 : R? — R be a smooth function for which there are constants 0 < ¢ < C such
that

cAAX™) <0k < C(A X7,

The weighted L%-space Lé is the set of measurable g : RY — R such that ||g||, < 400, where

gl = / £ () dx.
Rd

Consider a function s — I'(s) € S'(RY) that satisfies (1), (2) above, and, in addition,
(4) There is R > 0 such that for s € [0, T], supp I'(s) C B(0, R).
For a stochastic process Z, we consider the following hypothesis:

(5) For0<s<T,Z(s) € Lé a.s., Z(s) is Fs-measurable, and s — Z(s) is mean-square continuous from
[0, T] into L2.

Then the stochastic integral

;
]z = / / (s, » =y)Z(s, y)M(ds, dy) (2.21)
0o Jrd
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is defined as an element of [?(£2 x RY, dP x 6(x)dx), such that

0 2 0
E(”vr,z”Lg) <Ir,

where
T
It 2= / ds E(|Z(s, %)1%,) sup f w(dn)|FI(s)(E —n)l*.
0 ¥ gerd JRI

This definition is obtained by showing that Z (s, *):= Z(s, * )1j—n,n;( * ) also satisfies (5) as well as (3).
Therefore, vfﬂ' 7, = Ur.z, is defined as an element of [2(£2 x RY, dP x dx), and one checks that this
element also belongs to L*(£2 x RY, dP x 6 (x)dx), and

lim 17 =0
n— 00 I\Z~2Zy !

provided that I" satisfies (1), (2) and (4). Then one sets
7] T
vy, = nan;o U,z

where the limit is in L?(£2 x R%, dP x 0(x)dx): see [9, Theorem 12].

2.6. Hilbert-space-valued integrals and tensor products

In this section, we return to the general setting of Section 2.1 and we explain how the real-valued
stochastic integral defined there can be naturally extended to a Hilbert-space-valued integral. In
Section 3.6, we will show that this extended stochastic integral is equivalent to the stochastic integral
of Da Prato and Zabczyk [14], that we will present in Section 3.3.

As far as we know, the stochastic integral that we present here does not appear explicitly in the
literature. Nevertheless, in the particular case where the cylindrical Wiener process is given by the
spatially homogeneous noise of Section 2.2, a definition of such Hilbert-space-valued integrals has
been given in [35], in [38, Chapter 6], and in [29, Section 3] (for a particular form of the integrands, as
in Proposition 2.12 below). For related papers where this type of integral has also been used, we refer
the reader for instance to [24,26,36].

Let V and H be Hilbert spaces with inner product (-, -),, and (-, -), respectively, and B = {B;(h),

t >0, h € V} be acylindrical Wiener process on V with covariance Q (see Definition 2.1). Recall that
Vo denotes the Hilbert space V endowed with the inner product (h, g)vQ = (Qh, g)y.-

Let Vo ® H be the Hilbert space tensor product of V, and H. We recall that if (vj); and (fi)x denote
complete orthonormal bases of V;; and H, respectively, then (v;®f);, « defines a complete orthonormal
basis of Vo ® H and any element X € Vo ® H can be represented in the following forms (see e.g. [42,
Section 3.4]):

o0 [o¢] 0]
X=) X*uefi=) (ZX"kUj) ® fir
J k=1 =1 \j=1
where X¥ € R and
3 () < oo, (222)
=

so that ||X||§Q®H = Zﬂ=1(xf~ k)2, This representation shows that the tensor product Vo ® H is

isomorphic to the set of “matrices” (X/¥) satisfying (2.22).
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We will define an H-valued stochastic integral g - B of any predictable process g € L*(£2 x
[0, T]; Vo ® H). More precisely, note first that if g is such a process, then for all s€ [0, T], g =

D=t g (4 ®f),and

( f 181, g ds) —F ( [O D% ds) < +oo. (223)
Ji k=

For any k € N, let g¥ be the stochastic process

oo
gh=> gy, seloTl].
j=1

Then gk defines a predictable element in L2(£2 x [0, T];Vj ). Indeed, for all s, we have that gs" e Vg as,
and by (2.23),

(/ g1, ds)—E(/ (")’ ><E</0m (& ><+oo.

Asin (2.1), this implies that the real-valued stochastic integral g - B is well-defined and satisfies

T
E(E“ B?)=E ( / 841y, ds) :
0

We now define the H-valued stochastic integral of g with respect to B as follows:

g B=) " Bfi (2.24)

k=1

We also use the notation

T
g-B:/ g, dBs.
0

One easily verifies that the above series converges in L*(£2;H) and the isometry property in this
case reads

T
£l 813) = ([ 1o ).
0

We now provide some examples of processes that can be integrated in the sense just defined. For
this, we consider the spatially homogeneous Gaussian noise defined in Section 2.2, so that we use the
Hilbert space U introduced in Section 2.2 and the standard cylindrical Wiener process W = {W(¢p),
t >0, ¢ € U} defined in Proposition 2.5. We denote by (e;); a complete orthonormal basis of U. We
have the following Hilbert-space-valued counterpart of Proposition 2.9. Its proof follows the same
lines as the analogous result for real-valued integrals (see [29, Proposition 3.3 and (3.13)]).

Proposition 2.12. Assume that I" satisfies Hypothesis 2.8. Let K = {K(t, x), (t,x) € [0,T] x R%} bea
predictable process with values in H such that

sup  E(JIK(t,0)[}) < oo,
(t,x)€[0, T]xRd
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for some p > 2. Then the element G = {G(t, dx) = K(t,x)I"(t, dx), t € [0, T]}is a predictable process with
values in [P(£2 x [0, T]; U ® H). Moreover,

T &8 T
E( | ||Gf||é®Hdr)=ZE[ | e u(ds)|f<c’<<t))<s)|2],
0 k=1 0 Rd

where G¥ € [(£2 x [0, T];U) is the predictable process defined by G:={G*(t,dx) = KX(t,x)I'(t,
dx), (t,x) € [0, T] x RY}, with K¥(t,x) = (K(t, ), fi)y, and

T
E(IG-Bly) < C[ dt (SUPE(IIK(RX)IIZ)> /d 1(d&)|Fr ()1
0 R

xeRd

3. Infinite-dimensional integration theory

In this section, we sketch in Sections 3.1-3.3 the construction of the infinite-dimensional stochastic
integral in the setup of Da Prato and Zabczyk in [14]. For this, we will define the general concept of
Hilbert-space-valued Q -Wiener process and study its relationship with the cylindrical Wiener process
considered in Section 2.1. Then we will show in Sections 3.4 and 3.5 that the stochastic integral
constructed in Section 2.1 can be inserted into this more abstract setting. In particular, we will treat
specifically the case of the standard cylindrical Wiener process given by the spatially homogeneous
noise described in Section 2.2. In Section 3.6, we establish the equivalence between the Hilbert-space-
valued integral of Section 2.6 and the stochastic integral of Sections 3.3 and 3.5.

We begin by recalling some facts concerning nuclear and Hilbert-Schmidt operators on Hilbert
spaces.

3.1. Nuclear and Hilbert-Schmidt operators

Let E, G be Banach spaces and let L(E, G) be the vector space of all linear bounded operators from E
into G. We denote by E* and G* the dual spaces of E and G, respectively.

An element T € L(E, G) is said to be a nuclear operator if there exist two sequences (g;); C G and
(¢))j C E* such that

o0
T(x) = Zaj @i(x), forallx € E,
=

o0
> llajlg gillg. < +oo.
j=1

The space of all nuclear operators from E into G is denoted by L(E, G). When endowed with the norm

o0 o0
1Tl = inf 3> " lgllg Igille- : TG =Y ajp(0, x € Ep,

j=1 j=1

it is a Banach space.
Let H be a separable Hilbert space and let (e;); be a complete orthonormal basis in H. For T € L;(H,
H), the trace of T is

o0

TrT =Y (T(e). &)y (3.1)

=
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One proves that if T € L{(H) := L{(H, H), then Tr T is a well-defined real number and its value does
not depend on the choice of the orthonormal basis (see, for instance, [ 14, Proposition C.1]). Further,
according to [14, Proposition C.3], a non-negative definite operator T € L(H) is nuclear if and only if,
for an orthonormal basis (e;); on H,

o0

> (T(e). )y < +oc.

=1

Moreover, in this case, Tr T = ||T||;.
Let V and H be two separable Hilbert spaces and (ex), a complete orthonormal basis of V. A bounded
linear operator T : V — H is said to be Hilbert-Schmidt if

o0
> IT(e i < +oo.
k=1

It turns out that the above property is independent of the choice of the basis in V. The set of Hilbert-
Schmidt operators from V into H is denoted by L,(V, H). The norm in this space is defined by

o 1/2
ITIl, = (Z ||T(ek>||,2,> : (3.2)

k=1
and defines a Hilbert space with inner product

e}

= (S(ew), T(ew)y (3.3)

k=1

Finally, let us point out that (3.1) and (3.2) imply that if T € L,(V, H), then TT* € L{(H), where T* is
the adjoint operator of T, and

IT|I3 = Tr (TT*). (3.4)

We conclude this section by recalling the definition and some properties of the pseudo-inverse of
bounded linear operators (see, for instance, [33, Appendix C]).
LetT € L(V,H)and Ker T := {x € V : T(x) = 0}. The pseudo-inverse of the operator T is defined by

—1
T—lzz(r‘(mm) L T(V) — (KerT)™.

Notice that T is one-to-one on (Ker T)* (the orthogonal complement of Ker T) and T~! is linear and
bijective.

If T € L(V) is a bounded linear operator defined on V and T~! denotes the pseudo-inverse of T,
then (see [33, Proposition C.0.3]):

1. (T(V), (-, -)r(v)) defines a Hilbert space, where

XYy =T, T M)y, xyeTV).

2. Let (ey)r be an orthonormal basis of (Ker T)'. Then (T(ex))x is an orthonormal basis of

TV, s dry)-

Finally, according to [33, Corollary C.0.6],if T € L(V,H)and we set Q := TT* € L(H), then we have
ImQY?2 =ImT and

IRy = IT"' @Iy, x€lImT,

where Q ~'/2 is the pseudo-inverse of Q /2.
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3.2. Hilbert-space-valued Wiener processes

The stochastic integral presented in Da Prato and Zabczyk [14] is defined with respect to a class of
Hilbert-space-valued processes, namely Q-Wiener processes, which we now introduce.

We consider a separable Hilbert space V and a linear, symmetric (self-adjoint) non-negative
definite and bounded operator Q on V such that Tr Q < + o¢.

Definition 3.1. A V-valued stochastic process {W;, t > 0} is called a Q-Wiener process if (1) Wy = 0,
(2) W has continuous trajectories, (3) W has independent increments, and (4) the law of W, — W is
Gaussian with mean zero and covariance operator (t — s)Q, forall0 <s <'t.

We recall that according to [14, Section 2.3.2], condition (4) above means that for any h € V and
0 < s <, the real-valued random variable (W; — Wi, h),, is Gaussian, with mean zero and variance
(t —s)(Qh, h)y. In particular, using (3.1), we see that E (|| W, ||f,) = t Tr Q, which is one reason why the
assumption Tr Q < oo is essential.

Let (e;); be an orthonormal basis of V that consists of eigenvectors of Q with corresponding
eigenvalues A, j € N*. Let (B;); be a sequence of independent real-valued standard Brownian motions
on a probability space (£2, F, P). Then the V-valued process

We=Y VA Bit)e (35)
j=1

(where the series converges in L?(£2; ([0, T]; V))), defines a Q-Wiener process on V (see (2.1.2) in
[33]). We note that \/A; e; = Q'/%(e;). In the special case where V is finite-dimensional, say dim V = n,
then Q can be identified with an n x n-matrix which is the variance-covariance matrix of {;}, and
{W} has the same law as {Q '/2W?}, where {)V?} is a standard Brownian motion with values in R".

If {W,, t > 0} is a Q-Wiener process on V, there is a natural way to associate to it a cylindrical
Wiener process in the sense of Definition 2.1. Namely, forany h € V and t > 0, we set W; (h):={(W, h)y.
Using polarization, one checks that {W(h), t >0, h € V} is a cylindrical Wiener process on V with
covariance operator Q. Note that in this case, W;(¢;) = \/)T] B;j(t), so the Brownian motions §; in (3.5)
are given by B;(t) = W;(v;), where

v=2x ""e=0"%e). forj>1 with i #0. (3.6)

In particular, (v;); is a complete orthonormal basis of the space V; of Section 2.1.
However, it is not true in general that any cylindrical Wiener process is associated to a Q -Wiener
process on a Hilbert space. Indeed, we have the following result (see [25, p. 177]).

Theorem 3.2. Let V be a separable Hilbert space and W a cylindrical Wiener process on V with covariance
Q. Then, the following three conditions are equivalent:

1. W is associated to a V-valued Q-Wiener process W, in the sense that (W, h), = W;(h),for allh e V.
2. For any t > 0, h — W,(h) defines a Hilbert-Schmidt operator from V into L*(§2, F, P).
3. TrQ <+ o0.

If any one of the above conditions holds, then the norm of the Hilbert-Schmidt operator h — W (h),
as an element of L,(V, [*(2, F, P)), is given by

IWell, = E(IWelg) = ¢ TrQ.

As a consequence of the above result, if dim V = + oo and if W is a standard cylindrical Wiener
process on V, that is Q = Idy, then there is no Q-Wiener process W associated to W. However, as
we will explain in Section 3.5, it will be possible to find a Hilbert-space-valued Wiener process with
values in a larger Hilbert space V; which will correspond to W in a certain sense.
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3.3. H-valued stochastic integrals

We now sketch the construction of the infinite-dimensional stochastic integral of [ 14]. Let V and H
be two separable Hilbert spaces and let {W;, t > 0} be a Q-Wiener process defined on V. We denote
by (F;)¢ the (completed) filtration generated by W. In [ 14], the objective is to construct the H-valued
stochastic integral

t
/ o dw,  te[0.T],
0

where @ is a process with values in the space of linear but not necessarily bounded operators from V
into H.
Consider the subspace Vo := Q!/?(V) of V which, endowed with the inner product

(h,g)o := (Q_Vzh‘ Q_l/zg)Vv
is a Hilbert space. Here Q /2 denotes the pseudo-inverse of the operator Q'/? (see Section 3.1). Let
us also set

L3 := Ly (Vo, H),

which is the Hilbert space of all Hilbert-Schmidt operators from V; into H, equipped, as in (3.3), with
the inner product

o0
(®,¥),9 = > (@8, vE),, @V el (3.7)
j=1

where (¢); is any complete orthonormal basis of Vy. In particular, using the fact that we can take

&=1Are=Q"%(), j=1,1>0, (3.8)

where the (e;); are as in (3.5) (see condition 2. in the final part of Section 3.1) and applying (3.4), the
norm of ¥ € L can be expressed as

2
IIlIIIIfg = 1% 0 Q"2 y.py = Tr (¥Q¥™).

We note that in the case where dimV =n < + ocoanddim H = m < + oo, then it is natural to identify
¥ € L9 with an m x n-matrix and Q with an n x n-matrix. The norm of ¥ corresponds to a classical
matrix norm of ¥ Q'/? (whose square is the sum of squares of entries of ¥ Q /).

Let ® = {&,, t € [0, T|} be a measurable Lg—valued process. We define the norm of @ by

T 1/2
||<15||r1=[5 ([ ®sl1% dS)] .
0 2

The aim of [14, Chapter 4], is to define the stochastic integral with respect to W of any Lg—valued
predictable process @ such that ||@||; < oo. More precisely, Da Prato and Zabczyk first consider
simple processes, which are of the form @ = @1, (t), where @, is any F,-measurable L(V, H)-
valued random variable and 0 < a < b < T. For such processes, the stochastic integral takes values in
H and is defined by the formula

t
/ D dWs:=DPo(Whnr — Want), te[0,T] (3.9)
0

The map @ +— fo @,dW; is an isometry between the set of simple processes and the space My of
square-integrable H-valued (F;)-martingales X = {X;, t € [0, T]} endowed with the norm ||X| =
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[E(|| Xt ||,2,)]1/2. Indeed, as it is proved in [14] (see also [33, Proposition 2.3.5]), the isometry property
for simple processes reads

T
E f @, dW;
0

Remark 3.3. The appearance of | -|; can be understood by considering the case where
D(t) = Pol(qgp(t), where @y € L(V, H) is deterministicand 0 < a < b < T.Indeed, in this case, using
(3.9) and the representation (3.5),

o(1[ @) =1 V- sl

2
) =@} (3.10)
H

T
/ (pt th
0 H

and the right-hand side is equal to

Y nb-a|ooe], =b-a) 2@ e},
j ]

T
= (b-a)|eoQ”|; , , =E (/ [EXF ds) .
0

Once the isometry property (3.10) is established, a completion argument is used to extend the
above definition to all Lg—valued predictable processes @ satisfying ||@|l; < oo. The integral of @ is
denoted by

T
DW= / @, dW;
0
and the isometry property (3.10) is preserved for such processes:

E(l@ - Wi = 1211

The details of this construction can be found in [ 14, Chapter 4].

Let us conclude this section by providing a representation of the stochastic integral @ -V in terms
of ordinary It0 integrals of real-valued processes. Indeed, observe first that the expansion (3.5) can be
rewritten in the form

o0
W= B0, (3.11)
=1
where (€)); is defined in (3.8).

Proposition 3.4. Let (fi), be a complete orthonormal basis in the Hilbert space H. Assume that @ = {®y,
t €0, T]}is any Lg-valued predictable process such that ||®@||; < co. Then

T 00 o0 T
f cmdwtzz(z / <q>f<é,-).fk>,,dﬂ,-<r>)fk. (3.12)
0 k=1 \j=1 70

We note for future reference that this proposition remains valid even for cylindrical Wiener
processes: see Section 3.5 below, and, in particular, Remark 3.9.
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Proof of Proposition 3.4. First of all, we will prove that, under the standing hypotheses, the right-
hand side of (3.12) is a well-defined element in L?(§2;H). For this, we will check that

o0 00 T 2
E kZ]: (Z/O (Pe(@), fiy dﬂj(t)) = |3,
= j=

where the right-hand side is finite, by assumption.
Since (B;); is a family of independent standard Brownian motions,

00 00 T 2 2
E ; (2;/0 (®(®), i)y dﬂj(ﬂ) Z E [(/ (@), fiy dﬁj(t)> }
— ]:

k,j=1

and the right-hand side is equal to

T
/ (@@ dt—E[/ Z||a>f(éj)||i,dt}=f[f ||q>f||fgdr]
k,j=1 1 0

and the last termis equal to | @ ||%. Hence, the series on the right-hand side of (3.12) defines an element
in [2(£2;H) and its norm is given by ||® ||;. Therefore, by the isometry property of the stochastic
integral (see (3.10)), in order to prove equality (3.12), we only need to check this equality for simple
processes. Namely, assume that @ is of the form @, = @14 (t), where @ is a F;-measurable L(V,
H)-valued random variable and 0 < a < b <T. Then, by (3.9),

T
f qjt th == ¢O(Wb - Wa)-
0

On the other hand,

[e°] e T [e°]
(e (&), fi)y dB;(0) | fiu = (®0(&), fidy (Bj(b) — Bj(a)fk,
= Jo

kj=1

and the right-hand side is equal to

> (Bi(b) — Bi(@) @0 (&) = By (Z(ﬂj(b) - ,Bj(a))éj) = Do(Wp — Wa),

j=1 j=1

where the last equality follows from (3.11). The proof is complete. O

3.4. The case where H = R

We consider a cylindrical Wiener process W on some separable Hilbert space V with covariance Q,
such that Tr Q < + oco. By Theorem 3.2, W is associated to a V-valued Q -Wiener process WW. We shall
check that the stochastic integral with respect to W, constructed in Section 2.1, is equal to an integral
with respect to W, constructed in [ 14] and sketched in Section 3.3, when the Hilbert space H in which
the integral takes its valuesis H = R.

In Section 2.1, we defined the Hilbert space V and the stochastic integral

T
g~W=/ gs dWs,
0
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for any predictable stochastic process g € L*(£2 x [0, T];Vq), with the isometry property

T 2
(e w?) = [ e, a)
Foranys € [0, T]and g € L*(£2 x [0, T];V,), we define an operator &¢ : V — R by

D) = (g My, MeEV. (3.13)
We denote by L9 the set Ly(Vo, H), with Vo = Q/4(V)and H = R.

Proposition 3.5. Under the above assumptions, @3 = {®%, s e [0, T]} defines a predictable process with
values in L = L (Vy, R), such that

T T
([ romiyes) = ([ e, o). (314
0 0

Therefore, the stochastic integral of @8 with respect to W can be defined as in Section 3.3 and in fact,
T T
/ @f dw :/ gs dW;. (3.15)
0 0

Proof. We first check (3.14). Let e; be asin (3.5), & be as in (3.8) and v; be as in (3.6), so that &; = Q (vj).
By (3.7) with H = R, and by (3.13),

o0 o0 o0
2
”(p.sg ”2 = E (8s, e] § (g5, QU] § (85, U] ”gs”vQ
j=1 j=1 Jj=1

We conclude that (3.14) holds. We note for later reference that this equality || ||, = ||g ||vQ remains
valid even if Tr Q = + o0.

Since, by hypothesis, the right hand-side of (3.14) is finite, we deduce that @£ is a square integrable
process with values in Lg and the stochastic integral fOT @f dw is well-defined.

It remains to prove (3.15). For this, we apply Proposition 3.4 in the following situation: H = R, with
one basis vector f, = 1, @ is defined in (3.13), and the sequence of independent standard Brownian
motions in (3.12) is given by B;(t) = W;(v;). Therefore,

T o T
| etom=3 [ ot@aso.
0 j=170

and the right-hand side is equal to

o] T 00 T T
> e awiw =3 [ tu, i) = [ g aw.
j=1 0 j=1 0 0

This completes the proof. O

3.5. Thecase TrQ = +00

In Proposition 2.5, we showed that the covariance operator of the standard cylindrical Wiener
process {W,(g), t > 0, g € U}associated with the spatially homogeneous noise that we considered in
Section 2.2 is Q = Idy, which implies that Tr Q = +o00. Therefore, we cannot make use of Proposition
3.5 since, in this case, there is no Q-Wiener process associated to W. However, there is the related
notion of cylindrical Q-Wiener process, which we now define.
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Let (V, || - |ly) be aHilbert space. Let Q be a symmetric non-negative definite and bounded operator
onV, possibly such that Tr Q = +o00. Let (¢;); be an orthonormal basis of V that consists of eigenvectors
of Q with corresponding eigenvalues A;,j € N*. Define Vy = Q'/?(V) as in Section 3.3.

It is always possible to find a Hilbert space V; and a bounded linear injective operator J
Vo - llv) = Vi, I - lly,) such that the restriction Jo :]|VO : Vo, Il - Ilvy) = Vo, Il - llv,) is Hilbert-
Schmidt. Indeed, as explained in [33, Remark 2.5.1], we may choose Vi =V, (-, -}y, = (-, -}y, ar € (0,
oo) for all k > 1such that )~ a? < +o0, and defineJ : V — V by

Jy) =) a(helye heV, (3.16)
k=1

where (ey)y is an orthonormal basis of V. Then, for g € Vo, g = Y _;°; (g, &)y, & where & = Q'2(ep),
k > 1, we have

[o¢] [o¢]
Jo(g) = Zak(g, ek)vyV Ak ek = Zak(g. €k)vp ek
k=1 k=1

andsojo : (Vo, I - lly,) = (V. |l - lly) is clearly Hilbert-Schmidt.
As an operator between Hilbert spaces, from Vj to V3, Jo has an adjoint J§ : V; — V,. However, if
we consider V, and V; as Banach spaces, it is more common to consider the adjoint J! : Vi — V.

Proposition 3.6 ([14, Proposition 4.11] and [33, Proposition 2.5.2]).

1. Define Q; = JoJ; : Vi = ImJy — V;. Q; is symmetric (self-adjoint), non-negative definite and
Tr Q; < + oo.

2. Let & = Q!/2(ej), where (g)); is a complete orthonormal basis in V, and let (8;); be a family of
independent real-valued standard Brownian motions. Then

W= B(Oo@),  t>0, (3.17)

=1

is a Q;-Wiener process in V.
3. LetI : Vo — V{ be the one-to-one mapping which identifies Vo with its dual Vi, and consider the
following diagram:

I -1
Vit vis vl v,
Then, for all s, t > 0 and hy, h, € V7,
E ((h1, We) 1 (ha, Wed1) = (€ AT 0 J5) (), (71 0 Jg) (), (3.18)
where (., -); denotes the dual form on V{ x V.
4. 1mQ,”* = ImJ, and

Ihllo = 1Qr Jolly, = Io®llgizg,, — he Vo,

where Q, enotes the pseudo-inverse o .Thus, Jo : Vg — 1) is an isometry.
here Q; /% d h d fQ,”*.Th Vo — Q2(V

Remark 3.7. (a)Part 3 in the Proposition’s statement is commonly abbreviated in the following formal
form (see, for instance, [31, Proposition 1.1]): for all s, t > 0 and hy, h, € V},

E ({h1, Ws)q (ha, We)1) = (E A s)(hy, ha)y,.
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(b) The Q;-Wiener process {W;, t > 0} obtained in Proposition 3.6 is usually also called a
cylindrical Q-Wiener process. As it is pointed out in [14, p. 98], if Tr Q < + oo, then we can take
ar=1in(3.16),s0V; =V and] Idy, and we get the classical concept of Q-Wiener process. In this
case, one can take Vy = Vo, 17" = = Qly, and the equality (3.18) reduces to

E ({h1, Ws)1 (ha, Wi)1) = (E A $)(Qhy, ha)y.

Proof of Proposition 3.6. Statement 1. follows from (3.4) and the fact that J, is Hilbert-Schmidt.
Concerning 2., we observe that for h € Vj,

N 2
E (W, h)j,) =E (Z ﬂj(f)(lo(éj)-h>v1) '

j=1

and the right-hand side is equal to

tZ]o(e,)h =ty (@S, = I, =t (M. 15 M), =t (JoJs ), ),
j=1

Let us prove now part 3. For the sake of clarity, we will prove the statement for s =t and h; = h;.
Hence, let t > 0 and h € V. We denote by (-, -), the dual form on V§ x Vq. Then, by (3.17), the
relation between Jo and J;, and the properties of I and the family (8;);, we obtain

2

E((h W)?) = E <h. Zﬂ;(t)Jo(éj)> :
=1

1

and the right-hand side is equal to

tZ h.Jo(@) —tZ<Jo<h> 2). —rZ<<I Lot B), =107 oI,

For 4., we refer the reader to [33, Proposition 2.5.2]. O

Let {W}, t > 0} be as in (3.17). A predictable stochastic process {®;, t € [0, T]} will be integrable
with respect to W if it takes values in L, (Q11/2 (V1),H) and

T
e dt .
(f | t”Lz(Q VD). H) ><+oo

By part 4 of Proposition 3.6, we have

1/2

D eli=0L(Vo,H) & ®of,' el Q" *(Vi),H).

Definition 3.8. For any square integrable predictable process @ with values in Lg such that

T
E (/ el dt> < 400,
0 2

the H-valued stochastic integral @ - W is defined by

T T
/ & dWs :=/ @ 05 dWs.
0 0
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Remark 3.9. We note that the class of integrable processes with respect to W does not depend on
the choice of V3, and one checks immediately that even though Tr Q = + oo, formula (3.12) remains
valid.

We now relate this notion of stochastic integral with the stochastic integral with respect to the
cylindrical Wiener process of Section 2.1. Let {W,, t € [0, T]} be a cylindrical Wiener process with
covariance Q on the Hilbert space V, and let g € [3(£2 x [0, T];Vq) be a predictable process, so that
g - W is well defined as in Section 2.1. By Proposition 3.6, we can consider the cylindrical Q-Wiener
process {W;, t € [0, T]} defined by

o0
W= Bi()Jo(&) (3.19)

j=1
as in formula (3.17) with B;(t) = W,(v), where v; = Q~2(e;), & = Q'/%(e;) and (e)); denotes
a complete orthonormal basis in V consisting of eigenfunctions of Q, so that (vj); is a complete

orthonormal basis in Vg . This process takes values in some Hilbert space V;.
For g € [?(£2 x [0, T]; Vg ), we define, as in (3.13), the operator

D) =(g.n)y, MNeEV,
which takes values in H = R. Recall that Vo = Q/?(V) and V, = Q ~"/3(V).

Proposition 3.10. The process {®%, s € [0, T]} defines a predictable process with values in L,(Vy, R),
such that

T T
E(/ ||¢§||§ds)=£(/ ||gs||5qu),
0 0
T T
/ ¢deS:/ g dW;.
0 0

Proof. First, we will prove that ®¢ € L,(Vo, R), for s € [0, T]. As in the first part of the proof of
Proposition 3.5, |®¢], = ||g5||VQ. This gives the equality of expectations in the statement of the
proposition, and the right-hand side is finite by assumption.

Concerning the equality of integrals, we note that by definition,

T T
/@SdWs ::/ @ 05" dws,
0 0

where the right-hand side is defined using the finite-trace approach of Section 3.3. We note that by
Proposition 3.6, part 4, (Jo(€;)); is a complete orthonormal basis of Qll/2 V).

According to Proposition 3.4 with H = R, a single basis element f; = 1 of H, Bj(s) = W(v;), and
e; there replaced by Jo (¢;), formula (3.12) becomes

and

T o0 T
/ ofo)itam =3 / % 0 J57 (Jo (@) dB(s),
0 j=170

and the right-hand side is equal to

3 f <bg<e,)dws<vj>—2 f 0.5), dwsm)—z f g0y, W),
j=1

The last expressionisequaltog - W. 0O
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Remark 3.11. Proposition 3.10 allows us in particular to associate the spatially homogeneous noise
of Section 2.2, viewed as a cylindrical Wiener process with covariance Idy in Proposition 2.5, with a
cylindrical Q-Wiener process as in Proposition 3.6, with Q = Idy, on the Hilbert space U of Section
2.2, and to relate the associated stochastic integrals.

3.6. Equivalence of Hilbert-space-valued integrals

This section is devoted to proving that the Hilbert-space-valued stochastic integral introduced in
Section 2.6 is in fact equivalent to the stochastic integral of Da Prato and Zabczyk described in Sections
3.3 and 3.5.

We consider a cylindrical Wiener process W on a separable Hilbert space V with covariance Q,
such that Tr Q < + oo, and let W be the V-valued Q-Wiener process associated to W (see Theorem
3.2). We fix a separable Hilbert space H and a complete orthonormal basis (f), of H. In Section

2.6, we defined the H-valued stochastic integral g - W = fOT gs dW of any predictable g € [*(£2 x
[0, T]:Vo ® H).

The equivalence that we shall prove is based on the well-known generic fact that the tensor product
Vo ® H is canonically isometric and isomorphic to the space L,(Vy, H) of Hilbert-Schmidt operators
defined on the dual space of V; and taking values in H (see e.g. [1, Section 12.3]). Notice that the
space Vj is non other than Vo = QY2(V). Let (ej); be a complete orthonormal basis of V consisting
of eigenvectors of Q. As we have already seen, v; = Q~/%(¢;) and & = Q'/?(ej) define complete
orthonormal bases of V, and V;, respectively. If we are given an operator ¥ € Ly(Vp, H), then its
associated element X¥ € Vy ® H is given by

le — Z X{l"k (v] ®fk) with X{'[‘,k = <l1/(éj)'fk>H‘
Jo k=1

Moreover, one easily checks that |||, v, 1y = IX¥ llv,en-

Proposition 3.12. Let ® = {&,, t € [0, T]} be a predictable process in L*(£2 x [0, T];L,(Vy, H)), so that
we can define the H-valued stochastic integral fOT @, dW; in the sense of Da Prato and Zabczyk (see
Section 3.3). Let g® = {g?, t € [0, T]} be the predictable process in I*($2 x [0, T];Vq ® H) which is
associated to @. That is, for allt € [0, T] we have

g’ =Y @V wef), with  (@Y* = (). fi), (3:20)

J k=1

Then the H-valued stochastic integral fOT gf’ dW; of Section 2.6 is well-defined and

T T
/gt‘det:/ @ dW,.
0 0

Proof. First, note that Proposition 3.4 and the fact that W;(h) = (W, h)y, forall h € V, yield

T o0 00 T
/ @, dW, :Z(Z / (@ @), fi)y, dwf<v,->)fk.
0 k=1 \j=1 Y0

On the other hand, by definition of the integral of g® with respect to W (see (2.24)),

T o %) T o] ok
/0 g dwt=k;[ /0 (Z(gf y v,») dwt}fk.

=
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Each of the integrals in the above series takes values in R and is defined by (2.1). Thus

T [e9) [e] T
| e dw[=2(2 | <g:°>f~kdwf<vj>)ﬁc.
0 j=170

k=1

By (3.20), the proposition is proved. O

Remark 3.13. Using Remark 3.9, we see that Proposition 3.12 remains valid in the case where W is a
cylindrical Wiener process on V with covariance Q such that Tr Q = +o0.

4. Spde’s driven by a spatially homogeneous noise

This section is devoted to presenting a class of spde’s in RY driven by a spatially homogeneous noise.
In Section 4.1, we present the real-valued approach using the notion of a mild random field solution
of the equation. Section 4.2 gives two examples: the stochastic heat equation in any spatial dimension
and the stochastic wave dimension in spatial dimensions d = 1, 2, 3. In Section 4.3, we establish an
existence and uniqueness result which extends a theorem of [6]. In Section 4.4, we present the infinite-
dimensional formulation of these spde’s. In Section 4.5, we examine the relationship between these
two formulations, and conclude that they are equivalent (see Proposition 4.10). In Section 4.6, we
examine the relationship with the approach of [9].

We are interested in the following class of non-linear spde’s:

Lu(t, x) = o (u(t, X))W(t, x) + b(u(t, X)), (4.1)

t>0,x € RY where L denotes a general second order partial differential operator with constant
coefficients, with appropriate initial conditions. The coefficients o and b are real-valued functions
and W (t, x) is the formal notation for the Gaussian random perturbation described at the beginning
of Section 2.2.

If L is first order in time, such as the heat operator L=09/0 t — A, where A denotes the Laplacian
operator on R%, then we impose initial conditions of the form

u(0,x) = up(x) xe€RY (4.2)

for some Borel function ug:RY — R. If L is second order in time, such as the wave operator
L=29 2|0 t> — A, then we have to impose two initial conditions:

au
u(0.x) = uo®, = (0.0 =vo(®), xe€ R, (4.3)
for some Borel functions ug, vy : RY — R.
4.1. The random field approach
We now describe the notion of mild random field solution to Eq. (4.1). Recall that we are given
a filtered probability space (£2, F, (#;), P), where (F;); is the filtration generated by the standard
cylindrical Wiener process W of Proposition 2.5, and we fix a time horizon T > 0. A real-valued

adapted stochastic process {u(t, x), (t,x) € [0,T] x R} is a mild random field solution of (4.1) if
the following stochastic integral equation is satisfied:

t
u(t,X)=Io(t,X)+/ / Lt —s,x—y)o(u(s,y) W(ds,dy)
0 Jrd

+ / ds / L (s,dy)b(u(t —s,x —y)), as., (4.4)
0 Rd

for all (t,x) € [0,T] x RY. In (4.4), I" denotes the fundamental solution associated to L and I(t, x)
is the contribution of the initial conditions, which we define below. The stochastic integral on the
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right hand-side of (4.4) is as defined in Section 2.3. In particular, we need to assume that for any (t, x),
the fundamental solution I'(t — -, x — x ) satisfies Hypothesis 2.8, and to require that s — I'(t —s,
x —x )o(u(s, x)),s €0, t], defines a predictable process taking values in the space U of Section 2.2
such that

E (/ It =s,x — %)o (us, *))||3,ds) < 400
0

(see Sections 2.2 and 2.4). As we will make explicit in Section 4.3, these assumptions will be satisfied
under certain regularity assumptions on the coefficients b and o (see Theorem 4.3).

The last integral on the right-hand side of (4.4) is considered in the pathwise sense, and we use the
notation “I'(s, dy)” because we will assume that I"(s) is a measure on RY. Concerning the term Io(t,
x), if L is a parabolic-type operator and we consider the initial condition (4.2), then

Io(t,x) = (I"(t) % up) (x) = /

uo(x —y) I'(t,dy). (4.5)
Rd

On the other hand, in the case where L is second order in time with initial values (4.3),

)
Io(t,x) = (I"(t) * vo) (x) + T (I"(t) * up) ()

a
= / vo(x —y) I'(t, dy) + — (/ up(x —y) I'(t, dJ’)>- (4.6)
Rd 3t R4

4.2. Examples: stochastic heat and wave equations

In the case of the stochastic heat equation in any space dimension d > 1 and the stochastic wave
equation in dimensions d = 1, 2, 3, following [6, Section 3] (see also [29, Examples 4.2 and 4.3]), the
fundamental solutions are well-known and the conditions in Hypothesis 2.8 can be made explicit.

Indeed, let I" be the fundamental solution of the heat equation in RY, d > 1, so that

L x>
r(t,x) = (4nt) exp ~a )

In particular, we have FI'(t)(£) = exp(—4m?t|£]?), £ € RY and, because

T
/ exp(—4m2t|E)?) dt = !
0 4n2|g|?

we conclude that condition (2.11) in Hypothesis 2.8 holds if and only if

wu(dg)
./Rd 11 EP < +o0. (4.7)

Now let I be the fundamental solution of the wave equation in R, with d = 1, 2, 3. This restriction
on the space dimension is due to the fact that the fundamental solution in R? with d > 3 is no longer
a non-negative distribution (for results on the stochastic wave equation in spatial dimension d > 3,
we refer the reader to [5]: see Remark 2.10). It is well known (see [17, Chapter 5]) that

(1 — exp(—47°T|E|?)),

1/2

1 1 _ 1
M) =Sk, HEx = ﬂ(fz — X3 Tso)do) = yrrdCO

where o, denotes the uniform surface measure on the three-dimensional sphere of radius t, with total
mass 4 t2. This implies that, for each t, I'4(t) has compact support. Furthermore, for all dimensions
d > 1, the Fourier transform of I"4(t) is

sin(2wt|€|)

Flay(t)(§) = g |
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Elementary estimates show that there are positive constants c; and ¢, depending on T > 0 such that

T ;a2
C1 S/ sin“ (2 t|€]) dt < C '
T+[E12 ~ Jo  Am?|EP? 1+

Therefore, I' 4 satisfies condition (2.11) if and only if (4.7) holds.
For d = 1, Iy(t, x) is given by the so-called d’Alembert’s formula (see, for instance, [ 16, p. 68]):

X+t
I(}(t, X) = % [ug(x +t) + ug(x — )] + %f vo(y) dy, x € R. (4.8)

x—t

For d = 2 (see [16, p. 74]),

dy, xeR.

2 1 Up(y + tvg) + Vip(y) - (x — y)
L% =-— 2 21/2
2wt |x—y|<t (t - |X _y| ) /
Finally, for d = 3 (see [16, p. 77]), for x € R3,
1
4 t?

It is important to remark that in the above formulas, we have implicitly assumed that all integrals that
appear are well defined. Indeed, in Lemma 4.2 below, we will exhibit sufficient conditions on uy and
vo under which such integrals exist and are uniformly bounded with respect to t and x.

l(t.x) = / (tvo(x —y) +uo(x —y) + Vo (x —y) - y) or(dy). (4.9)
R3

4.3. Random field solutions with arbitrary initial conditions

The aim of this section is to prove the existence and uniqueness of a mild random field solution to
the stochastic integral equation (4.4).

We are interested in solutions that are [’-bounded, as in (4.10) below, and L?>-continuous. This is
only possible under certain assumptions on the initial conditions. In particular, the initial conditions
will have to be such that the following hypothesis is satisfied.

Hypothesis 4.1. (¢, x) — Io(t, X) is continuous and sup, v (o, ryxrd o (t, X)| < +o0.

For the particular case of the heat equation in any spatial dimension and the wave equation with
d € {1, 2, 3}, sufficient conditions for Hypothesis 4.1 to hold are given in the next lemma.

Lemma 4.2. Consider the following two sets of hypotheses:

(i) Heat equation. uy : R — R is measurable and bounded.

(ii) Wave equation. When d = 1, ug is bounded and continuous, and vg is bounded and measurable. When
d=2,uy € C'(R?) and there is qy €]2, o] such that ug, Vug, vo all belong to L9 (R?). When d = 3,
ug € C1Y(R?), up and Vug are bounded, and vy is bounded and continuous.

Then under condition (i) or (ii), Hypothesis 4.1 is satisfied.

Proof. Assume first that L is the heat operator on RY, d > 1, with initial condition u, satisfying (i).
Then, by (4.5),

_ lyl?
sup  [Io(t, )] < lluollos sup f @rt)~ " exp (—— dy = [|upllo < +00.
(t, x)€[0, T]xRY te]o, T Jrd 2t

Secondly, assume that L is the wave operator on R¢, d = 1, 2, 3, and that condition (ii) is satisfied.
We make explicit the dependence on the space dimension by denoting Ig (t,x),d=1, 2, 3, the term
Io(f, X).

By (4.8), if d = 1 it is clear that

sup  |Ip(t, )] < C(lluollo + llvolloo)-
(t,x)e[0, TIXR
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To deal with the case d =2, we refer to [26, pp. 808-809]. In this reference, the explicit formula
I(t,x) = %(t2 — |x|2);1/2 was used to show that

sup |15, X)| < Clluollo + [ Vtolloo + [lv0lloc)-
(t,x)e[0, TIxR

Finally, for the case d = 3 we have, by (4.9):

3 Us(Ra)
o (£, %)| = C(llvollee + lltiolloe + IVUolloo) sup —
selo,T[ S

)

where o denotes the uniform surface measure on the three-dimensional sphere of radius s. In
particular, the total mass of o is proportional to s> and, therefore, Ig(t, x) is uniformly bounded with
respecttot € [0, T] and x € R3.

Finally, the continuity property of (t, x) — Io(t, x) follows from the hypotheses and the explicit
formulas for Iy(t, x) given in Section 4.1. This concludes the proof. O

The next theorem discusses existence and uniqueness of mild random field solutions to equation
(4.4). Since this theorem covers rather general initial conditions, it is an extension of Theorem 13 in
[6]. Indeed, in this reference, only vanishing initial data could be considered, because of the spatially
homogeneous covariance required for the process Z in the construction of the stochastic integral
used there for the wave equation when d = 3 (see [6, p. 10 and Theorem 2]). Of course, in the case
of the stochastic wave equation in spatial dimensions d = 1, 2, there are many results on existence
and uniqueness of mild random field solutions with non-vanishing initial conditions: see for instance
[3,7,26,28].

Theorem 4.3. Assume that Hypotheses 2.8 and 4.1 are satisfied and that o and b are Lipschitz functions.
Then there exists a unique mild random field solution {u(t, x), (t,x) € [0, T] x R%} of Eq. (4.4). Moreover,
the process u is L*>-continuous and for all p > 1,

sup  E(Ju(t,x)|’) < +oo. (4.10)
(t,x)€[0, T|xRd

Proof. The proof is similar to those of [26, Theorem 1.2] and [6, Theorem 13]. We define the Picard
iteration scheme

u’(t,x) = I(t, x),

t
u"+1(t,x)=u°(t,x)+/ f I'(t—s,x—y)o (s, y) Wds, dy)
0 JRrd

—I—/ / b(u"(t — s, x — y)) I'(s,dy) ds, (4.11)
0 Jrd

for n > 0. We prove by induction on n that the process {u"(t, x), (t,x) € [0, T] x R%} is well defined
and, forp > 1,

sup  E(Ju"(t,%)|P) < 400, (4.12)
(t,x)€[0, T|x R4

for every n > 0.
Notice that by Hypothesis 4.1, the process u is locally bounded, and the Lipschitz property on o
yields

sup o @l(t, x)|P < +o0.
(t,x)€[0, T]x R4

By Proposition 2.9, this implies that the stochastic integral

t
7°(t, ) zf /dl"(t—s,x—y)o(uo(s,y))W(ds.dy)
0 R
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is well-defined and

t
E(Z°(t,0)P) < cf ds sup (14 |u%(s, 2)[?) /dmds)w(t Gk
0 R

zeRrd

IA

T
C sup (1+|u0(s,z)|”)/ dsj(s), (4.13)
0

(s,2)€[0, T|xRd

where

J@s) = /d 1(d§)|FT ($)(E)I.
R

In order to deal with the pathwise integral

t
Jo(t.x):f ds/ (s, dy) b®(t —s,x — y)),
0 RA

we apply Hélder's inequality with respect to the finite measure I"(s, dy) ds on [0, T] x R? and use the
Lipschitz property of b:

|7° (&, %) P < c/ ds /d r(sdy) (14 —s,x—yP). (4.14)
0 R

The latter term is uniformly bounded with respect to t and x. Together with (4.13), this implies
that {u'(t, x), (t,x) € [0, T] x RY} is a well-defined measurable process. Further, by (4.13), (4.14)
and Hypothesis 2.8,

sup  E(Jul(t,x)P) < +o0.
(t,x)€[0, T]xR4

Consider now n > 1 and assume that {u"(t,x), (t,x) € [0, T] x R%} is a well-defined measurable
process satisfying (4.12). Using the same arguments as above, one proves that the integrals Z""1(t, x)
and 7"t (¢, x) exist, so that the process u™! is well-defined and is uniformly bounded in I”(£2). This
proves (4.12).

The next step consists in showing that the bound (4.12) is uniform with respect to n, that is

sup sup  E(Ju"(t,x)|”) < +oo. (4.15)
n=0 (¢, x)e[0, T]xR4

Indeed, the same kind of estimates as in the first part of the proof show that forn > 1,

zeRd

t
E(u" (6, 0P) < C (1 +/ ds (1 + sup E(Iu"(S.Z)IP)) Jt =9+ 1))-
0

We conclude that (4.15) holds by the version of Gronwall’s Lemma presented in [6, Lemma 15].
Now we show that the sequence (u"(t, x))n>1 converges in [P(£2). Following the same lines as in
the proof of [6, Theorem 13], let

Mp(t) ;= sup  E(u"'(s,x) — u"(s, x)|P).

(s, x)€[0, t]x R4

Using the Lipschitz property of b and o, and applying the same arguments as above, we obtain the
estimate

t
My(t) < C/ ds Mp—1($)(J(t —5) + 1).
0

Hence, we apply again [6, Lemma 15] to conclude that (u"(t, x)),>1 converges uniformly in [’(£2) to a
limit u(t, x). The process {u(t, x), (t,x) € [0, T] x R%} has a measurable version that satisfies Eq. (4.4).
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Indeed, let us sketch the calculations concerning the stochastic integral term Z" (¢, x) of (4.11): we will
prove that

lim sup E(|Z"(t,x) — Z(t,x)|P) = 0.
M09 (1, x)€l0, TIxRY

By the Lipschitz property of o, Proposition 2.9 and Hypothesis 2.8,
t p
E(7°(t.%) — (6 0P) < E( | [, re=sx=ploa 6 - ot mws ) )

0 Jrd

IA

t
C/ ds sup E(Ju""'(s,2) —u(5,2)|”)/ w(d&)|FI(t —s) (&)
0 zeRrd R4
<C sup E(u"U(s,z) —u(s, z)P)
(s,z)€[0, T]x R4

and this last term converges to zero, as n tends to infinity. The pathwise integral term can be studied
in a similar manner. Therefore, the process u solves (4.4). Finally, uniqueness of the solution can be
checked by standard arguments. O

4.4. Spatially homogeneous spde’s in the infinite-dimensional setting

Stochastic partial differential equations of the form (4.1) on RY and driven by a spatially
homogeneous Wiener process have been studied, in the context of Da Prato and Zabczyk [14], in
a series of works: [15, Section 11.4], and [20,21,30-32]. The aim of this section is to sketch the
formulation used in those papers, focusing mostly on the one used by Peszat and Zabczyk in [32].
Then, in Section 4.5, we will compare their solution with the mild random field solution of Section
4.1.

In [32], the stochastic wave equation with d = 1, 2, 3 and the stochastic heat equation in any space
dimension are considered. This meshes well with the case considered in Section 4.3. However, we note
that the stochastic wave equation in higher dimensions (d > 3) can also be formulated and solved in
the infinite-dimensional setting, but using a slightly different formulation (see [30]).

4.4.1. General framework
We first recall the generic setup for evolution equations in infinite-dimensional spaces. These are
usually written
{du(t) = (Au(t) + F(u(t))) dt + B(u(t)) dw, t €]0,TJ,
(4.16)
u(0) = h.
In this equation, (W) is a cylindrical Q-Wiener process on a Hilbert space V, h is an element of a
Hilbert space H, F is a mapping from H into H, and B is a mapping from H into L(U, H). The operator
A:D(A) CH — H is the infinitesimal generator of a (strongly) continuous semigroup (S(t))cer,
(meaning, generically, that S(0) = Iy, S(t + s) = S(t)S(s),and for h € D(A), %S(t)h = AS(t)h = S(t)Ah,
so that one sometimes writes S(t) = ).
The process (W;) is assumed to be adapted to a filtration {;, t € R, }, such that for all s, t € Ry,
Weas — W is independent of 7.
An adapted H-valued process {u(t), t € [0, T]} is a mild solution of (4.16) provided for all t € [0, T],
as.,

t

t
u(t) =S(t)h —i—/ S(t —s)F(u(s)) ds —i—/ S(t — s)B(u(s)) dws. (4.17)
0 0

Of course, (S(t)), F, B and (W;) must satisfy certain conditions in order that this equation make
sense, and further conditions in order to guarantee existence and uniqueness of the solution. It is
also necessary to specify the meaning of the two integrals in (4.17): the first is essentially a Bochner
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integral, and for the second, one assumes that for all h € H and t € R, S(t)B(h) belongs to L,(Vy, H),
where Vo = Q'/2(V). For existence and uniqueness, F and B must typically satisfy at least Lipschitz
and linear growth conditions (see, for instance, [15, Theorem 5.3.1]).

In order to place the spde (4.1) in this framework, it is necessary to specify all the ingredients above
(V,wW,H,A,S,F,and B). We begin with V and w.

4.4.2. Spatially homogeneous noise

To begin with, we note that in [32]—and, indeed, in the above mentioned companion papers—a
slightly more general spatially correlated noise than the one described in Section 2.2 has been used.
More precisely, one considers a spatially homogeneous Wiener process (W}, t > 0} with values in
the space S'(R?) of tempered distributions. Denoting by (-, -) the usual duality action of S'(R%) on
S(RY), this means that for all ¢ € S(RY), {(W/, p), t € Ry} is a centered Gaussian process and there
exists A € §'(RY) such that for all ¢, € S(RY) and s, t € R,

E((We o) (Wi ) = (s A0 (A, @ ),

where g?/(x) = 1 (—x). The Schwartz distribution A must be the Fourier transform of a symmetric
and non-negative tempered measure 4 on RY.

Remark 4.4. In the particular case where A is a non-negative measure satisfying the conditions of
Section 2.2, we recover the covariance operator of the cylindrical Wiener process W on the Hilbert
space U defined in Proposition 2.5 (see (2.2)):

E((W o)W v)) =6 AD) f RICHICE V) (X) = E (Ws(@)W: (). (4.18)
R

In order to relate this general noise to the one defined in Section 2.2, let U be the Hilbert space
defined in Section 2.2, and let U* be the dual of U. The following characterization of U* is given in [31,
Proposition 1.2]. Recall that [2(RY, ;1) stands for the subspace of [2(R, x) consisting of all functions
¢ such that& = ¢.

Lemma 4.5. A distribution g € S'(RY) belongs to U* if and only if thereis ¢ € I2 (RY, 1) such that g =
F(¢pw). Moreover, if g, = F(p1e) and ga = F(pa i), with ¢y, ¢o € L*(R?, 1), then
(81, &)y = (91, ¢2)12(Rd'm.

Remark 4.6. The previous lemma allows us to determine the explicit form of the isometry I : U — U*.
More precisely, as stated in Remark 2.3, any element g € U can be written in the form g = 7~ '¢, with
¢ € [>(RY; dw). Then, for such g, I(g) € U* is defined by

I(g) = F(pu).

Moreover, we have the following lemma whose proof is straightforward. In this lemma, S(RY)
denotes the family of functions ¢ € S(R?) such that ¢ = ¢.
Lemma 4.7. Let ¢ € U be such that ¢ € S(R?). Then I(¢) = ¢ * A.

As it has been explained in [31, p. 191] (see, in particular, Proposition 1.1 therein), W* may be
regarded as a U*-valued cylindrical Q-Wiener process with Q = Idy+ (so that the generic Hilbert
space V used in (4.16) is V = U*). More precisely, let U} be a Hilbert space such that there exists a
dense Hilbert-Schmidt embedding J* : U* — U7 (see Proposition 3.6). Then

WE =Y B (€), (4.19)
j=1

where (e;")j is a complete orthonormal basis in U*, and the g;j(t) are independent standard Brownian
motions (note that Q'/?2 = Q ~1/2 = Idy). Therefore, we will be able to define Hilbert-space-valued
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stochastic integrals with respect to W*, as has been described in Section 3.5. Note that U* is sometimes
called the reproducing kernel Hilbert space associated to W* (see, for instance, [14, Section 2.2.2] or
[31, p. 191]).

4.4.3. The space H and the operators A, S, F and B

In [32], mild solutions to the formal Eq. (4.1) are considered in a Hilbert space H of the form
LZZ, = [*(RY, ¥ (x)dx), where 9 € C>®(RY) is a strictly positive even function such that (x) = e,
for | x | > 1. Let us also denote by H; the weighted Sobolev space which is the completion of S(R?)
with respect to the norm

1/2
¥l = (/d [l P + VY ()] ﬁ(x)dx) .
R

The operator A is the Laplacian A, with domain the classical Sobolev space H%2. In the case of the heat
equation, where L = d/dt — A, the associated semigroup S(t) is such that

SHex) = fd Tt,x—yeydy, ¢eS®), t>0 xecRY (4.20)
R

where I is the fundamental solution of the heat equation in R? (see Section 4.2), and it is shown in
[31, Lemma 3.1] that S has a unique extension to a (holomorphic) semigroup on Lzz,, which we still
denote by S.

The operators F and B are the so-called Nemitskii operators associated respectively to the functions
b and o appearing in (4.1), and are defined by

F(v)(x) := b(v(x)), B(v)(x) := a(v(x)), v E le,, x € R

With the choices just made, the mild formulation (4.17), with W replaced there by W*, is a
formalization of (4.1) in the case where L = % — A (the stochastic heat equation).

4.4.4. The case of the stochastic wave equation

In the case of the wave equation, L = 8%/ t> — A, the formulations (4.16) and (4.17) are not
immediately applicable, because L is not first-order in time. At least two approaches are possible:
the second-order equation (in time) can be written as a system of first-order equations, or one can
focus on the mild formulation (4.17), with S(t) defined by

S =TIt)*g,
where I'(t) is now the fundamental solution of the wave equation, as in Section 4.2. In this case, S(t)
no longer defines a semigroup. Nevertheless, this approach was used in [32] in order to treat the heat
and wave equations in a unified manner.

When L = % — A, we will restrict ourselves to spatial dimensions d € {1, 2, 3}. Let I" be the
fundamental solution associated to L, let ug € Hj, vy € L2, and fix a time horizon T > 0. By definition,
amild L% -valued solution of (4.1) with L = 3%/3 t* — A, is an F,-adapted process {u(t), ¢ € [0, T]} with
values in [2 satisfying

t
u(t) = %(F(t) *Up) + I'(t) x vg —I—/ 't —s)*b(u(s))ds
0

—|—/ T(t —s)xou(s)) dw;. (4.21)
0

The stochastic integral on the right-hand side of (4.21) has to be defined. This requires interpreting
the integrand I'(t — s) * o (u(s)) in the framework of Section 3.5.

Recall that, as in Section 3.5 and since Q = Idy+ and so U* = (U*)q, we will be able to define the
stochastic integral with respect to W* of any predictable process @ taking values in the space L,(U*,
H),whereH = L129- Therefore, it is necessary to interpret I'(t — s) * o (u(s)) as an element of L,(U*, H).
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Let U*C be the dense subspace of U* consisting of all g = F(¢u) with ¢ € S(RY). According to
[32, p. 427], it holds that U*® c ¢,(RY), the space of bounded and continuous functions on R¢. For
u € L% and t > 0, define the following operator:

K(t, u)(n) = I'(t) * (un), neu*’, (4.22)

Then it is shown in Lemma 3.3 of [32] that, for all t > 0 and u € L2, iC(t, u) has a unique extension to a
Hilbert-Schmidt operator from U* into Lﬁ. Thus extended, K(t, -) becomes a bounded linear operator
from Lf, into L (U*, L??)_ Therefore, if u is an Lf?—valued adapted process, we can define the stochastic
integral as follows:

t t
/ (Lt —s)xou(s)) dw; = / K(t —s, o (u(s))) dw;. (4.23)
0 0

In the formulation above, o (u(s)) denotes the function o (u(s))(x) := o(u(s, x)),x € RY, which belongs
to 2.

This definition of the stochastic integral (4.23) is the one that is used in the mild formulation (4.21).
The main result in [32] on existence and uniqueness of a solution to Eq. (4.21) is the following (see
[32, Theorem 0.1]).

Theorem 4.8. Assume that d € {1, 2, 3} and that the coefficients b and o are Lipschitz functions. Suppose
that there is k > 0 such that A + k dx is a nonnegative measure (where dx denotes Lebesgue measure),
and the spectral measure (. satisfies

wu(d§)
/Ra T <t (4.24)

Then, for arbitrary ug € Hg and vy € L2, there exists a unique le9 -valued solution to Eq. (4.21).

4.4.5. The stochastic heat equation

We now return to the case of the stochastic heat equation, namely we consider Eq. (4.1) when
L=0/0t — A, with any spatial dimension d > 1.

Letting I" be the fundamental solution of the heat equation in R¢, and defining S as in (4.20), the
formulation in (4.17) is equivalent (see [32, Section 5]) to the equation

t

t
u(t) = I'(t) *ug +/ '(t —s)*b(u(s))ds +/ T(t —s) *o(u(s)) dw;. (4.25)
0 0

Similar to (4.23), the stochastic integral here is defined by

t t
/ It —s)xo(s))dw; = f P(t —s, o (u(s)) dwy,
0 0

where the operator P(t, u), foru € le, and t > 0, is defined as in (4.22), but I" is now the fundamental
solution of the heat equation in RY. As explained in [32, Section 5], the equivalence between (4.25)
and (4.17) can be understood through the equality

Pt,u)(n) =SSOy, uely, neU™’

Moreover, [32, Lemma 5.3] states that P(-, u) defines a square-integrable process with values in
L,(U*, le,), which implies that the above stochastic integral is well-defined.

The main result in [32] on existence and uniqueness of a solution to Eq. (4.25) is the following (see
[32, Theorem 0.2]).

Theorem 4.9. Assume that d > 1 and that the coefficients b and o are Lipschitz functions. Suppose that
there is k > 0 such that A + k dx is a nonnegative measure, and the spectral measure w satisfies (4.24).
Then, for arbitrary ug € le,, there exists a unique L§ -valued solution to Eq. (4.25).
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4.5. Relation with the random field approach

We now examine the relationship between the random field solution to equation (4.4) in the case
of the stochastic wave and heat equations and the L§ -valued solution to equations (4.21) and (4.25),
respectively. For this, we assume that the cylindrical Wiener process W considered in the beginning
of Section 4.1 and the cylindrical Q-Wiener process W* (with Q = Idy+) that appears in (4.21) are
related as follows.

Let (e;j); be a complete orthonormal basis of the Hilbert space U such thate; € SRY), forallj > 1.
Assume that the e]f* and the g;(t) that appear in (4.19) are given by

ef=1I(g) and  B;(t) = Wi(e), (4.26)

where I is the isometry described in Remark 4.6 (in particular, (e}‘) is the dual basis of (e;), that is,
(e]f", e")u* v =i «)- Recall that J* : U* — Uj denotes a Hilbert-Schmidt embedding between U* and
a possibly larger Hilbert space U;; moreover, by Proposition 3.6, (j*(e;‘))j defines a basis in U7.

Let us consider {u(t, x), (t,x) € [0, T] x RY}, the mild random field solution of (4.4) as given in
Theorem 4.3, in the case where L is either the wave operator in spatial dimension d € {1, 2, 3} or the
heat operator with d > 1 (so as to have a specific form for Io(t, x)). Then for all (t, x) € [0, T] x RY,

t
Ut %) = Io(t, %) + / / (¢ — 5. x — y)o (u(s,y)) W(ds, dy)
0 Jrd

+ / / b(u(t —s,x —y)) I'(s,dy)ds, as., (4.27)
0o Jrd

Here, the expression for Iy(t, x) is given either by (4.5) or (4.6), and we assume that the initial
conditions satisfy the hypotheses specified in Lemma 4.2. The coefficients o and b are Lipschitz
functions. Recall that (t, x) — u(t, x) is mean-square continuous and satisfies

sup  E(Ju(t,x)|?) < +o0. (4.28)
(t, x)€[0, T|xRd

This section is devoted to proving the following result.

Proposition 4.10. Let {u(t,x), (t,x) € [0,T] x RY} be the mild random field solution of (4.27),
where L is either the wave operator in spatial dimension d € {1, 2, 3} or the heat operator withd > 1.
Let u(t) = u(t, = ). Then {u(t), t € [0, T} is the mild Lg—valued solution of (4.21) or (4.25), respectively.

Proof. This proof is written for the case of the stochastic wave equation in spatial dimension d € {1,
2, 3}, but also applies to the stochastic heat equation withd > 1.

In view of the integral Egs. (4.27) and (4.21), it is clear that the most delicate part in the proof
corresponds to the analysis of the stochastic integral terms. Hence, we will start by assuming that
both the initial conditions and the drift term b vanish. In this case, {u(t, x), (t,x) € [0, T] x R%} solves
the integral equation

t
u(t,x) = / f I'(t—sx—you(s,y)W(dsdy), as.
0 Jrd
for all (t, x) € [0, T] x RY. Let us use the following notation for the above stochastic integral:

t
Z(t,x) = / / Lt —sx—you(s,y) W(ds,dy).
0 Jrd

For any (t, x) € [0, T] x RY, the above integral is a real-valued random variable and it is well-defined
because the integrand satisfies the hypotheses described in Section 2.4, thatis, I'(t —-, x — %)
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verifies Hypothesis 2.8 and {o (u(s, y)), (5,y) € [0, t] x R} is a predictable process such that

sup E(jos,y)?) <C|1+ sup  E(u(s,y)?) ] < +oo. (4.29)
(s,y)€l0, TIxRd (s, y)€[0, t] xRd

Let u(t) =u(t, » ), t €[0, T]. We aim to prove that {u(t), t € [0, T]} defines a square-integrable
stochastic process with values in the weighted space Lf, which satisfies

u(t) = / It —s)xou(s)dwy, t € [0, T].
0

Hence, our objective is to prove that {Z(t, ), t € [0, T]} defines an element in L?>(£2 x [0, T]; L§) and

t
I(t,*):/ It —s) *o(u(s)) dw;.
0

In order to simplify the notation, we will write Z(s, y) := o(u(s, y)) and let Z(s) denote the function
Z(s)y)=Z(s,y).y € R".
We will split the proof into several steps.

Step 1. We shall check that {Z(t, %), t € [0, T]} belongs to L*(§2 x [0, T]; Lg) and that, for any fixed
(t,x) € [0, T] x RY, the real-valued stochastic integral Z(t, x) can be written as a stochastic integral
with respect to a Hilbert-space-valued Wiener process.

Notice that the norm of Z(-, %) in L*(§2 x [0, T]; le,) coincides with the norm of u( - ) in the same
space, and the latter is given by

T
E(/ dt/ dxz?(x)|u(t,x)|2>.
0 R

By (4.28) and the fact that ¢ is integrable over RY, this quantity is finite. In particular, we also
deduce that Z belongs to L*(£2 x [0, T]; ).

On the other hand, let us recall that Z(t, x) is a stochastic integral with respect to the cylindrical
Wiener process {Ws(h), s € [0, T], h € U} (see Section 2.2) with covariance operator Q = Idy and
s+ I'(t —s,x — » )Z(s) is a predictable process in *(£2 x [0, T], U) by Proposition 2.9. Hence, by
Proposition 3.10, the stochastic integral Z(t, x) may be written as

t
I(t, x) = / DL* dwy, (4.30)
0

where similar to (3.19),

o0
W= Wi(e)J(e),
j=1
J : U — Uj is a Hilbert-Schmidt embedding from U into a possibly larger space U; (note that U,
need not be the dual of U] mentioned after (4.26)), and {®5* s € [0, t]} is the predictable and
square integrable process with values in the space L, (U, R) of Hilbert-Schmidt operators from U
into R, given by

®L*(h) = ([(t —s,x —®)Z(s), h)y, heU.
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Moreover,

t t
E(/O ||q>§*||f2(u_R>ds>:E(/o ||1"(t—s,x—*)Z(s)||f,ds>.

Step 2. Recall that we aim to prove that
t
Z(t,*) = / (Lt —s)*Z(s))dwy, tel0,T], (4.31)
0

where this equality must be understood in L2(£2 x [0, T]; Lf,).

Lett € [0, T] and (fi)x be a complete orthonormal basis in Lf,. We will find a suitable expansion

of Z(t, ) in terms of (f;),. Indeed, by (4.30) and since Z(t, x) defines a square integrable L§ -valued
random variable, we have the following representation:

I(t, %) = Z [/ dx 9 (x) ([ qu”dws) -fk(x)]fk. (4.32)
R4 0

k=1

Then, by definition of the stochastic integral with respect to W and using representation (3.12) in
Proposition 3.4 (for H = R), for all x € R¢,

t t o0 t
/ QLN dW; = / oL o) dw, = Zf DL o7 (J () dWs(ey),
0 0 j=1Y0

o t
=y / DL (e) dpB;(s), (4.33)

where we have made use of (4.26). Hence, plugging (4.33) into (4.32), we see that

I(t*) =) [ / dx ¥ (x) (Z / L% (e)) d,sj(s)> . fk(x):| fie (4.34)
Rd j=1 0

k=1

Step 3. We now give an analogous representation for the stochastic integral on the right-hand side
of (4.31). For this, we will again apply Proposition 3.4 directly to the right-hand side of (4.31); notice
that here, H = le,, and the J* in (4.19) cancels with the (J*)~! in the definition of the stochastic
integral. Therefore, taking (4.26) into account, we see that

t o o t
/ Mt—s)«Z(s)dw =Y (Z / (P —9) % (Z©)1E)). fi)e d,Bj(s)> fe  (435)
0 k=1 \j=1 /0 v

where (fi)x and B; are as in Step 2. Recall that, on the left-hand side of (4.35), I"(t — s) * Z(s) is the
formal notation for the Hilbert-Schmidt operator defined on U* and taking values in le, such that,
forany n € U%*, (I (t = 5) * Z(5)) () = K(5,Z(s)) () = [ (t =) * (Z(s)n).

By Lemma 4.7, I(e;) = ej * A (because ¢; € S(RY)), so equality (4.35) can be written in the form

t
f I'(t —s)*Z(s)dw*
0

00 o0 t
-y (Z | ( [ o [re -9+ 26+ )] e ~fk<x)> dﬁ,-(s))fk.
0 R

j=1
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Applying Fubini’s Theorem and comparing the latter expression with (4.34), we~observe that, in
order to prove (4.31), it suffices to check that, for almost all x € R? and any ¢ € S(RY),

D) =[I(t—s)* (Z(s)(p* A)](x), se€]0,t].

By definition of the operator @!* and expanding the convolutions on the right-hand side above,
this equality is equivalent to

(C(t—s,x—=%)Z(s), )y = /

R

r(t—s,dz)Z(s,x —z)/ Aldy) p(x —z —y).
d Rd

Notice that this is precisely the statement of Lemma 4.11 below. Therefore, we can conclude that
(4.31) holds.

Step 4. Let us finally sketch the extension of what we have proved so far to the case of Egs.
(4.27) and (4.21). That is, we consider a general Lipschitz continuous drift b and initial conditions
Up, Vg satisfying the hypotheses specified at the beginning of the section. Hence, {u(t, x), (t,x) €
[0, T] x RY} satisfies (4.27).

One proves that the process {u(t), t € [0, T]} belongs to L?(£2 x [0, T]; L§) as we have done
in Step 1. Indeed, an immediate consequence of the proof of Theorem 4.3 is that each term in Eq.
(4.27) is bounded in L?(£2), uniformly with respect to (¢, x) € [0, T] x R This clearly implies that
each term in (4.27) defines an element in L*(£2 x [0, T1; L3).

It follows that the stochastic integral fot I (t —s)*o(u(s)) dw* is well-defined and, by Steps 2
and 3 above, we have

t t
/ 't —s)*ou(s))dw" = / / r(t—s, x—=y)o(u(s,y)) Ws,dy),
0 0 Jrd

where the x symbol on the right-hand side stands for the variable in L§.
Concerning the pathwise integral in (4.21), we have

t t
/ It —s)*xbu(s))ds = / ds / I'(t —s,dy) b(u(s, »—y))
0 0 R4

t
= / ds / (s, dy) b(u(t —s, x —y)).
0 R4
It is also clear that the contributions of the initial conditions in Eqs. (4.27) and (4.21) coincide as
elements in [*([0, T]; Lg). We have therefore proved that {u(t), t € [0, T]} is the mild solution of
(4.21), which concludes the proof of Proposition 4.10. O

We now state and prove the following technical lemma, which was used in the proof of Proposition
4.10.

Lemma 4.11. Fixt € [0, T]. Then, for all¢p € S(R?) andx € RY, the stochastic process (2L (@), s €
[0, t]} given by

(@) = (I (t = 5,x=%Z(), @)y

coincides, as an element in [*($2 x [0, t]), with {K.*(¢), s € [0, t]}, where

Ke*(p) = / I(t—s,dz)Z(s, x —z)/ Aldy) p(x —z — y).
Rd Rd

Proof. In order to prove the statement, we will first approximate {®5*(¢), s € [0, t]} by a sequence
of smooth processes.
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More precisely, as it has been explained in [29, Proposition 3.3], for any (s, x) € [0, t] x R%, we can
regularize the element I"(t — s,x —  )Z(s) of U by means of an approximation of the identity (v,,), C
cgo(Rd), and we can assume that v, is symmetric, for all n, and |Fy;| < 1. Then, for any s € [0, t],
set JL*(s) 1= ym * (I'(t — s,Xx — %)Z(s)). Again by [29, Proposition 3.3], J;*(s) belongs to S(RY) and,
asn — oo, Ji* converges to I'(t — - ,x — % )Z in L2([0, t] x £2;U). Define

oLX(h) = {y*(),h),,  heU.
This operator is well-defined because J;; *(s) is a smooth function and, in fact, it defines an element in

L2([0, t] x £2; Ly(U, R)).

Moreover, ®4¥ —  @“* in [2([0, t] x 2; [(U,R)), as n — oo. Indeed, this is an immediate
consequence of the fact that the norm of @5 * — ®"* is given by

t t o0
E (f || P — (pt'X”fz(u,R) ds) =E (/ Z |<J}§,X(s) —I(t—sx— *)Z(s).ej)u|2 ds)
0 0 j=1

t
=E (/ |16%s) = It = s,x = w2z, ds) ,
0
where (e;); is a complete orthonormal basis in U. The last term above tends to zero because, as

mentioned before, J'* — I'(t — -, x — *)Z in L2([0, t] x £2;U).

Therefore, for any ¢ € S(RY) (in fact, for any ¢ € U), the sequence of real-valued processes
(L *(9))n converges to @"*(¢) in L2(£2 x [0, t]). In particular, @5 *(¢) converges weakly to ®'*(¢),
thatis, forany0 <a<b<tandA € F,

b b
E (IA/ ds d>rﬂ:’s‘(<p)> — E (lA/ ds dist"‘(go)). (4.36)

We will conclude the proof by checking that the left-hand side of (4.36) also converges to

b
E (1A f ds zc@«@). (4.37)

For this, note that, by definition of @ %, the left-hand side of (4.36) can be written as

b
E(lA/ ds (j,§~X(s),<p)U).

Because J5*(s) and ¢ are smooth functions, we can explicitly compute the inner product in the above
expression:

(5%6), o), = / Ad2) / dy J5 (5, )y — 2) = / dy J5(5,9) (A % ) ()
R Rd R
= / dy </ r'(t—s,dz) wn(y—x+z)Z(s,x—z)> (A*x@) ()
Rd RrA

=/ r(r—adz)Z(ax—z)(/ dywncy—x+z)(A*¢>(y)>.
Rd Rrd



106 R.C. Dalang, L. Quer-Sardanyons / Expositiones Mathematicae 29 (2011) 67-109

and so the term on the left-hand side of (4.36) equals

b
E(]A[ ds/ F(t—s,dz)Z(s,x—z)/ dywn(x—z—y)(A*go)(y)>. (4.38)
a R4 R4

Since p € S(RY), the function y — (A * ¢)(y) is continuous in R? and lim |y, (A * ¢)(y) = 0. This
implies that, for any x, z € R,

lim ) dyyn(x —z —y) (A* @) ) = (A* @) (x —2).

n—oo R

Moreover, because v, and ¢ belong to S(R?), we can apply the definition of the Fourier transform of
tempered distributions:

fRd dywn(x—z—wmw)(y)‘ -

/ ) Py~ 2 = YO Fo®)
R

< / ()| Fe ()]
Rd

< +o0.

Thus, in order to apply the Dominated Convergence Theorem in (4.38), it remains to prove that

b
E (L\/ ds /dl"(t—s, dz)lZ(s,x—z)l) < +o00,
a R

and this follows from the hypothesis on I and the process Z. So we have proved that the limit of
(4.38), as n goes to infinity, is

b
E<]Af ds/ F(t—s,dz)Z(s,x—z)f A(dy)ga(x—z—y)).
a RA Rd

This shows that the left-hand side of (4.36) converges to (4.37), which concludes the proof. O

4.6. Relation with the Dalang—Mueller formulation

In this section, we examine the relationship between the mild random field solution to equation
(4.27) and the solution introduced by Dalang and Mueller in [9] (see also [11]), which is based on the
1?-valued stochastic integration framework that was summarized in Section 2.5. Let Lg be the space
defined in Section 2.5.

In [9], the authors consider solutions to the following stochastic wave equation in R?, for any d > 1:

9% u .
W(t' X) — Au(t,x) = o (u(t, x))W(t, x), (4.39)

with initial conditions
ou d
u(0,x) = up(x), E(O'X) =v(x), x€R

where ug, vy : R — R are appropriate Borel functions. The noise W(t, x) corresponds to the spatially
homogeneous Gaussian noise described in Section 2.2.
We denote by H~!(R?) the Sobolev space of distributions such that

1
2 = dé¢ —— 2 .
19121 e /R E PP < oo

According to [9, Section 5], an adapted Lg -valued process {u(t,x ),t € [0, T]}is amild Lé -valued solution
to (4.39) if t > u(t, =) is mean-square continuous from [0, T] into L2 and the following L}-valued
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stochastic integral equation is satisfied:

u(t,*) = I'(t) * vy + % (C(t) *up) + / /d r'(t—s, x—=y)o(u(s,y))M(ds, dy), (4.40)
o Jr

where I" denotes the fundamental solution of the wave equation in RY. The stochastic integral in
(4.40) takes values in Lﬁ and is defined in the final part of Section 2.5. The main result on existence
and uniqueness of solutions to Eq. (4.40) is the following (see [9, Theorem 13]).

Theorem 4.12. Assume that the spectral measure 1 satisfies (4.7),ug € L>(RY),vo € H-'(RY) and o isa
Lipschitz function. Then Eq. (4.40) has a unique mild Lﬁ -valued solution.

In order to be able to compare the solution of the above equation with the mild random field
solution to (4.27), we consider space dimensions d € {1, 2, 3} and we set b = 0. The main result of
this section is the following.

Theorem 4.13. Let d € {1,2,3},and let {u(t, x), (t,x) € [0, T]xR%} be the mild random field solution of
(4.27) in the case of the stochastic wave equation (d € {1, 2, 3} and with b =0). Let u(t) = u(t, *).
Then {u(t), t € [0, T]} is the Lé -valued solution of (4.40).
Proof. For simplicity, we assume that the initial conditions vanish (the extension to the general case
is straightforward). Recall that d € {1, 2, 3} and {u(t, x), (t,x) € [0, T] x RY} satisfies the integral
equation

u(t,x) =ZIr z(t,x), as. (4.41)

for all (¢, x) € [0, T] x RY, where

t
Ir z(t,X) ::/ / r(t—sx—yZ(s,y) W(ds,dy)
0 Jrd

and Z(s,y) := o(u(s,y)). In order to prove that {u(t, ), t € [0, T|}is the solution of (4.40), we observe
that u(t, ») € L2 ass., since

E(Ju(t.#)12) = f (0% 000 dx < 00
R

by (4.28). Next, we note that t — u(t, ) from [0, T] into Lé is mean-square continuous, since

E(Jlu(t, ») — u(s, *)Ilfg) = /d E((u(t, x) — u(s, x))*) 6(x) dx,
R
and we observe that as s — t, by (4.28) and since (t, x) — u(t, x) is L*(£2)-continuous, the right-hand

side converges to 0 by the Dominated Convergence Theorem.
Fort € [0, T], define

t
Vv (%) = / /d I(t—s, x—y)o(u(s,y)) M(ds, dy),
0o Jr
where the stochastic integral is defined as in (2.21). It remains to show that

Irz(t,%) = v} ,(t,%) in [*(£2 x RY, dP x 0(x)dx). (4.42)

For this, set Z,(s,¥) = Z(s,y) 1|_;, nje ), so that, by definition,

vl St %) = lim v, (%) in P2 x R%, dP x 0(x)dx),
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where v?ﬂvzn (t, ) is defined as in (2.15). By Proposition 2.11, Uer,zn (t,%) = Zr.z,(t,%) in *(2 x

RY, dP x dx), therefore also in L?(£2 x R% dP x 6(x)dx). In order to establish (4.42), it suffices to
show that

E(IZr,z(t, %) — Ir, z,(t, *)”fé) — 0 asn— oo. (4.43)

The expectation in (4.43) is equal to

/ dx6(x) E ((Ir,zn_z(t, X))Z)
R4

t 2
zf dx0(x)E (/ / F(t—s,X—y)(Zn(s.y)—Z(s,y))W(ds.dy)>
RrY 0 Jrd

Forn>t,letD; ,=[-n+t, n— t]9. As can be seen from the formulas given in Section 4.2, for x € De¢ n,
the support of I'(t — s,x — * ) is contained in [ — n, n]¢, and by definition, Z,(s,y) = Z(s,y) fory €[— n,
n]¢ and s € [0, t]. Therefore, the above expression is equal to

f dx6(x) E ((Ir,znfz(f. x))z) : (4.44)
Rd\Dt, n

We notice that by Proposition 2.9,

t
E((zraz@n)’) < [ ds supE (@ts.y) = 26907) [ uide) 17T e = 9@,
0 R

yerd

and

sup E ((Za(s,y) — Z(s,y))*) < sup E((Z(t, x))*) < oo,

yeRrd yeRrd

by (4.28) and the Lipschitz property of . Therefore, the expression in (4.44) converges to 0 as n — oo.
This proves (4.43), and concludes the proof. O
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