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Abstract Ala substitution of potential metal-ion binding resi-
dues in the main ligand-binding pocket of the Zn2+-activated G
protein-coupled receptor 39 (GPR39) receptor did not decrease
Zn2+ potency. In contrast, Zn2+ stimulation was eliminated by
combined substitution of His17 and His19, located in the N-termi-
nal segment. Surprisingly, substitution of Asp313 located in
extracellular loop 3 greatly increased ligand-independent signal-
ing and apparently eliminated Zn2+-induced activation. It is pro-
posed that Zn2+ acts as an agonist for GPR39, not in the
classical manner by directly stabilizing an active conformation
of the transmembrane domain, but instead by binding to His17

and His19 in the extracellular domain and potentially by divert-
ing Asp313 from functioning as a tethered inverse agonist through
engaging this residue in a tridentate metal-ion binding site.
� 2008 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

In addition to its structural and catalytic role in a multitude

of proteins such as enzymes and transcription factors, Zn2+

also acts as a signaling molecule. Thus, many cell types secrete

Zn2+, including neurons, pituitary cells, prostate epithelial

cells, mast cells, granulocytes, Paneth cells in the intestine, exo-

crine pancreatic cells as well as b-cells of the endocrine pan-

creas [1]. Moreover, a number of cell-surface proteins are

affected by Zn2+; including ion channels, neurotransmitter

transporters and seven transmembrane domain (7TM), G pro-

tein-coupled receptors [2,3]. Within the 7TM receptor family,

Zn2+ inhibits binding and/or activation of the D4 dopamine

receptor, the l-opioid receptor, and the D2 dopamine receptor

[4–6]; while it stimulates and/or potentiates the NK3 receptor,
Abbreviations: GPR39, G protein-coupled receptor 39; 7TM, seven
transmembrane domain; ECL, extracellular loop; IP, inositol phos-
phate; ELISA, enzyme-linked immunosorbent assay
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the MC1 and MC4 melanocortin receptors and the b2-adrener-

gic receptor [7–10].

G protein-coupled receptor 39 (GPR39) is a 7TM receptor

belonging to the Ghrelin receptor family which is expressed

in metabolic, endocrine tissues such as the gastrointestinal

tract, the liver, adipose tissue and the endocrine pancreas

[11]. Originally, we described that Zn2+ acts as a potent and

efficacious agonist for GPR39, which has been confirmed by

several groups, while a report that a fragment from the ghrelin

precursor called obestatin could be a ligand for GPR39 has not

been independently reproduced [12–16]. Interestingly, in an at-

tempt to characterize a GPR39-activating component from fe-

tal bovine serum, Zn2+ was ultimately isolated as being this

factor [17]. In the current study, we map the Zn2+-binding site

in GPR39 through mutagenesis and pharmacological charac-

terization of the mutants (Fig. 1).
2. Materials and methods

2.1. Receptor construction
The cDNA of the human GPR39 was provided by K. Hansen (7TM

Pharma) and corresponds to GenPept NP_001499. The M2 FLAG epi-
tope was inserted at the N-terminus. Mutants constructed using the
PCR overlap extension method [18] were verified by DNA sequencing.
2.2. Cell culture
HEK-293 cells were grown at 37 �C in 5% CO2, 95% humidity in

DMEM with Glutamax, 10% fetal bovine serum, 100 U/mL Penicillin
G and 100 lg/mL streptomycin. The doxycycline-inducible GPR39
stable cell line was created using the FLP-In T-Rex system (Invitro-
gen).
2.3. Inositol phosphate accumulation assay
Twenty thousands cells/well were seeded O/N in 96 well plates then

transient transfections were performed using 30 ng receptor DNA/well
with Effectene reagent (Qiagen). Fresh medium containing 10 lCi/mL
myo-[2-3H]inositol was added the next day. Following �24 h incuba-
tion, cells were washed with HBSS, compounds were added to cells
in HBSS with 10 mM LiCl and incubated for 45 min at 37 �C. Cells
were lysed in 10 mM formic acid on ice for P 30 min. Ysi-SPA beads
were reconstituted (10 mL/g) and then diluted 8-fold in H2O before
use. Eighty microliters were combined with 20 lL cell lysate in white
96 well plates, shaken 5–30 min, centrifuged at 400·g for 5 min, incu-
bated at RT P 8 h and radioactivity (cpm) measured in a TopCount-
NXT scintillation counter (Packard). Experiments were performed in
triplicate.

2.4. Cell surface ELISA
�48 h post-transfection (as above), cells were washed with PBS,

fixed for 10 min in 3.7% formaldehyde, washed (3 · 10 min) with
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Serpentine diagram of human GPR39. Amino acid residues conserved in human, mouse and rat GPR39 are shown in gray circles; those
analyzed in this study are shown as white letters in black circles.
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PBS, blocked for 30 min in PBS with 3% milk powder and 50 mM
Tris–HCL pH 7.5, incubated with 1/1000 dilution of anti-FLAG anti-
body (SIGMA) in blocking buffer for 1–2 h, washed, incubated in 1/
1250 dilution of goat anti-mouse horse radish peroxidase-conjugated
secondary antibody (Pierce) in blocking buffer for 1 h, washed, visual-
ized by addition of 100 lL TMB Plus substrate (Kem-En-Tec) and
reaction was stopped with 100 lL 0.2 M H2SO4. Absorbance was mea-
sured at 450 nm, 1 s on a Wallac Victor2 (Perkin Elmer). Experiments
were performed in quadruplicate.

2.5. Data analysis
Concentration–response curves were generated and EC50 values

determined using Prism (version 5, GraphPad Software) and fitting
normalized data by non-linear regression to a four-component logistic
equation [log(agonist) versus response � variable slope].
Fig. 2. Functional responses in a stable inducible GPR39 cell line.
GPR39 expression was induced by addition of 0 (r), 1 (.), 2 (j), 5 (m),
or 10 (d) ng/mL doxycycline for �24 h prior to inositol phosphate
accumulation assays in response to Zn2+. Data are expressed in cpm.
The inset shows cell surface expression at each induction level as a
percent of the maximal expression as determined by ELISA. Data
shown are means ± S.E.M. of at least three separate experiments.
3. Results

Previously we and others have demonstrated that human

GPR39 is activated by Zn2+ [15,17,19]. Mouse and rat

GPR39 exhibit similar concentration-response curves for

Zn2+, as compared to human GPR39, in inositol phosphate

(IP) accumulation assays (data not shown) in agreement with

a recent report using Zn2+-induced Ca2+ mobilization as a

functional read out [17]. Thus, Zn2+ activation appears to be

a conserved characteristic of GPR39. To further support a di-

rect action of Zn2+ on GPR39, we generated a doxycycline-

inducible HEK-293 cell line in which increasing Zn2+ activa-

tion of IP accumulation was observed as a function of increas-

ing cell surface expression of GPR39 as determined by enzyme-

linked immunosorbent assay (ELISA) (Fig. 2).

In proteins, Zn2+ is most efficiently coordinated by His, Cys,

Asp and Glu residues [20]. Because the four extracellular Cys
residues in GPR39 all are involved in disulfide bridge forma-

tion and therefore not available to bind Zn2+, these were not

included in the present study (manuscript in preparation). A

total of sixteen residues located either in the main ligand-bind-

ing pocket or in the extracellular domains were replaced indi-

vidually or in combinations with Ala residues and the mutant

receptors were transiently expressed in HEK-293 cells and

monitored for cell surface expression and spontaneous as well

as Zn2+-induced IP accumulation (Figs. 3 and 4, Table 1).



Fig. 3. Inositol phosphate accumulation assays. Zn2+ concentration-
response curves (CRC) for GPR39 mutants (A) H17A (B) H19A (C)
H17A/H19A (D) H111A/H186A/H198A/H199A/H312A. The dashed
line shows wild-type GPR39 for comparison. Insets show cell surface
expression of each mutant as a percent of wild-type GPR39 expression
as determined by ELISA. Data shown are means ± S.E.M. of three or
more separate experiments.
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Previously, we have built activating metal-ion sites in the b2-

adrenergic receptor through introduction of metal-ion binding

residues at key positions on the opposing faces of TM-III and

TM-VII [21,22]. In this context, it was surprising that no del-

eterious effect – rather a 2-fold increase – was observed in
Zn2+ potency upon Ala-substitution of either HisIII:04

(His111) or GluVII:06 (Glu330) in GPR39, because these resi-

dues are located on the opposing faces of TM-III and TM-

VII. Like these two residues, GluIII:09 (Glu116) is facing the

main-ligand-binding pocket of GPR39 and is conserved in

the ghrelin receptor, where it is known to be a major anchor

point for both peptide and non-peptide agonists [23–25].

However, in GPR39 GluIII:09 (Glu116) is apparently not part

of the Zn2+-binding site as Ala substitution did not lead to a

decrease but rather to an almost 15-fold increase in the agonist

potency of Zn2+ (Table 1). This mutant had a somewhat

decreased expression level (Table 1); however, as shown in

Fig. 2 a decrease in the expression level of GPR39 does

not lead to increased potency for Zn2+. Thus, the activating

metal-ion binding site of GPR39 does not appear to

be located in the main ligand-binding pocket of the receptor

as substitutions of potential metal-coordinating residues in this

pocket all appear to increase the potency of Zn2+, rather than

decreasing it.

In the extracellular domains of GPR39, Ala substitution of

most potential metal-ion binding residues had little or no effect

on activation by Zn2+, i.e. only decreasing the potency of the

metal ion by a maximum of 2- to 3-fold. Importantly, although

individual substitutions of either His17 or His19 located in the

N-terminal segment with Ala residues decreased the potency of

Zn2+ by 3.4-fold and 2.4-fold, respectively (Fig. 3A and B), the

combined H17A/H19A double mutant did not respond to

Zn2+ at all (Fig. 3C). Ala substitution of four other residues

in ECL-2 also showed somewhat decreased Zn2+ potencies as

compared to wild-type GPR39, including His186 (2.4-fold),

His198 (3-fold), His199 (3.1-fold) and Glu200 (2.7-fold) (Table

1). However, these residues are not essential for the Zn2+-in-

duced activation as, for example, a receptor with a combina-

tion of multiple of these His residues replaced with Ala had

a Zn2+ response similar to wild-type GPR39 (Fig. 3D).

Surprisingly, Ala substitution of Asp313, located in the mid-

dle of extracellular loop 3 (ECL-3), resulted in a receptor dis-

playing very high constitutive activity (Fig. 4A). Although

difficult to determine due to this high ligand-independent

signaling, it was not possible to detect a significant stimula-

tory effect of Zn2+ in the D313A GPR39 mutant. In contrast,

Ala substitution of the neighboring residue His312 did not

significantly affect constitutive or Zn2+-induced activity

(Fig. 4B).
4. Discussion

When initiating the mapping of the Zn2+-binding site in

GPR39, we expected to find a site where Zn2+, by analogy to

other small molecule agonists of 7TM receptors, would act

as an agonist by ‘‘holding’’ the receptor in an active conforma-

tion through binding between the extracellular ends of TM-III,

-VI and -VII [22,26]. However, based on the results of the pres-

ent study, we propose instead a very different mechanism of ac-

tion, where Zn2+ binds in the extracellular domain to a site

involving His17 and His19, located in the N-terminal extension.

The relatively high Zn2+ potency indicates that a third residue

is involved in the Zn2+ binding, which in principle could be lo-

cated in the main ligand-binding pocket. However, this notion

is not supported by the mutational analysis. Instead we suggest

that Asp313 located in ECL-3, which appears to normally



Fig. 4. Inositol phosphate accumulation assays. Zn2+ concentration-response curves (CRC) for GPR39 mutants (A) D313A (B) H312A. The dashed
line shows wild-type GPR39 for comparison. Insets to the right show cell surface expression of each mutant as a percent of wild-type GPR39
expression as determined by ELISA. Data shown are means ± S.E.M. of three or more separate experiments.

Table 1
Pharmacological characterization of WT and mutant GPR39a

Potency, EC50 Nc % C.A. Emax
d Expression

�Log (M) lM Foldb

WT 4.5 ± 0.08 28 1.0 30 36 ± 1 100 100
D16A 5.2 ± 0.54 6 0.2 4 39 ± 7 60 ± 8 68 ± 6
H17A 4.0 ± 0.12 94 3.4 4 24 ± 5 75 ± 10 102 ± 4
H19A 4.2 ± 0.16 68 2.4 4 29 ± 7 71 ± 6 100 ± 4
H17A/H19A > 3 > 1000 > 36 7 28 ± 4 31 ± 4 88 ± 4
E22A/E24A 5.2 ± 0.13 6 0.2 5 38 ± 4 75 ± 5 49 ± 5
E90A 4.9 ± 0.13 14 0.5 4 65 ± 5 120 ± 11 74 ± 4
H111A 4.9 ± 0.20 14 0.5 4 25 ± 5 85 ± 9 38 ± 2
E116A 5.6 ± 0.22 2 0.07 4 37 ± 10 59 ± 6 9 ± 3
E177A 5.2 ± 0.31 6 0.2 5 27 ± 3 38 ± 5 24 ± 4
H186A 4.2 ± 0.18 68 2.4 4 28 ± 6 73 ± 7 88 ± 2
H198A 4.1 ± 0.15 83 3.0 5 42 ± 3 88 ± 8 92 ± 4
H199A 4.1 ± 0.18 86 3.1 4 23 ± 5 48 ± 5 101 ± 6
E200A 4.1 ± 0.11 76 2.7 5 30 ± 3 86 ± 7 96 ± 6
H312A 4.9 ± 0.13 11 0.4 4 22 ± 5 71 ± 7 113 ± 14
D313A > 3 > 1000 > 36 4 86 ± 11 98 ± 16 86 ± 14
E330A 4.8 ± 0.11 16 0.6 5 23 ± 1 58 ± 3 94 ± 6
H111/186/198/ 199/312A 4.5 ± 0.21 34 1.2 3 32 ± 8 82 ± 12 30 ± 9

aTransiently transfected HEK-293 cells were analyzed for function in inositol phosphate accumulation assays in response to 10-point Zn2+ con-
centrations and for cell surface expression by ELISA. Values shown are ±S.E.M., where applicable.
bDetermined by EC50 mutant � EC50 WT.
cN represents the number of separate experiments.
dEmax values represent % wild-type efficacy at maximal Zn2+ challenge (1 mM).
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function as what could be considered a ‘‘tethered inverse ago-

nist’’, participates in the metal-ion binding. Thus, Zn2+ could

act as an agonist by engaging Asp313 in a tridentate metal-

ion binding site involving also His17 and His19 in the N-termi-

nal domain, and thereby preventing Asp313 from acting as an

inverse agonist which would increase receptor signaling.
Thus, removal of the side chain of Asp313 through Ala sub-

stitution results in a highly constitutively-active receptor,

which did not respond normally to Zn2+. Interestingly, in the

ghrelin receptor a SNP resulting in introduction of an acidic

Glu residue in ECL-2 for an Ala residue selectively eliminates

the high constitutive signaling of that receptor, which – in an
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opposite manner – is analogous to the situation in GPR39, i.e.

the mutation introduces an acidic ‘‘tethered inverse agonist’’

instead of removing it [27,28]. This proposed mode of action

of Zn2+ in GPR39 is reminiscent of how Cu2+ acts in the me-

tal-ion site engineered trypsin of Craik and coworkers, where

the metal-ion engages the His residue of the active triad of

the enzyme in an engineered, neighboring metal-ion site which

prevents the residue from being part of the catalytic process

[29].

Most naturally-occurring Zn2+ sites that have been mapped

in 7TM receptors are located in the upper part of the main

binding pocket or in the extracellular domains. For example,

in the NK3 receptor, Zn2+ acts as an allosteric modulator

through binding to two His residues located i and i+4 at the

extracellular end of TM-V [7]. In the melanocortin MC1 recep-

tor, a free Cys residue in ECL-3, possibly in combination with

a key Asp residue at the extracellular end of TM-III, appears

to form the binding site through which Zn2+ acts as an ago-

allosteric modulator [8]. Zn2+ inhibition of ligand binding in

the l-opioid receptor requires a His residue at the extracellular

end of TM-VII and may also involve an Asp residue in ECL-2;

whereas in the dopamine D2 receptor, two His residues at the

extracellular end of TM-VI/ECL-3 appear to form the binding

site for the metal ion [5,6]. In contrast, in the b2-adrenergic

receptor a His residue in intracellular loop 3 negated the

Zn2+-enhanced binding [9,10]; however this residue was not

responsible for the Zn2+-mediated potentiation of cAMP accu-

mulation. It should be noted that, for example, two His resi-

dues located in the N-terminal domain of the b2-adrenergic

receptor were not addressed in that study and that these resi-

dues – by analogy to the observations in the present study of

GPR39 – could well be responsible for the potentiating effect

of Zn2+.

Zn2+ is likely the endogenous ligand for GPR39. In the

endocrine pancreas Zn2+ functions as a chemical messenger

co-stored and secreted from the insulin-producing b-cells

[11,30]. Zn2+ inhibits glucagon secretion from the neighbor-

ing a-cells and it has been argued that the main signal initi-

ating glucagon secretion during hypoglycemia is in fact the

decrease in Zn2+ [31,32]. Zn2+ also appears to have an auto-

crine feedback function on the b-cells. Interestingly, treat-

ment with Zn2+ can prevent or ameliorate both

streptozotocin-induced and spontaneous diabetes in mice

[33–35]. Moreover, a non-synonymous polymorphism in a

Zn2+ transporter (ZnT-8) was recently reported to be associ-

ated with type-2 diabetes and autoantibodies directed against

this protein were found in 60–80% of new onset type-1 dia-

betes [36,37]. Both type-1 and type-2 diabetes are associated

with excessive apoptosis of pancreatic b-cells [38]. Zn2+ is a

potent inhibitor of cell death and Zn2+-depletion can lead to

apoptosis [39,40]. Recently, GPR39 was demonstrated to in-

hibit cell death and it is tempting to speculate that the pro-

tective action of Zn2+ in diabetes models could be mediated

through GPR39 [41].
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