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Abstract

Fuzzy integrals, in general, and Sugeno integrals, in particular, are well known aggregation
operators. They can be used in a great variety of decision making applications. Nevertheless,
their use is not easy as their interpretation is not straightforward. In this paper we study the
interpretation of fuzzy integrals, focusing on Sugeno ones, and we show their application to
fuzzy inference systems when the rules are not independent.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Within aggregation operators, fuzzy integrals are known to be one of the most
powerful and flexible functions as they permit the aggregation of information under
different assumptions on the independence of the information sources. In particular,
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they can be used to model situations in which sources are independent as well as
in situations in which such independence cannot be assured.

The most well-known integrals are the Choquet [4] and the Sugeno [14] integrals.
Generalizations of such integrals include e.g. the t-conorm integral [12], the twofold
integral [16] or the Composition aggregation operators in [3]. See also [9].

The flexibility of such operators is also due to the fact that they generalize several
of the most widely-known and used aggregation functions. In particular, they gener-
alize the arithmetic and weighted mean, as well as the median and linear combina-
tion of order statistics (or OWA [19]).

The flexibility of such operators is tightly related with the difficulties of using them
in practical applications.

Fuzzy integrals combine the data supplied by several information sources accord-
ing to a fuzzy measure. This fuzzy measure, that (using Artificial Intelligence termi-
nology) represents the background knowledge on the information sources, is a set
function from the set of information sources into an appropriate domain (e.g. the
[0,1] interval or an ordered set D). Typically, this fuzzy measure represents the
importance or relevance of the sources when computing the aggregation.

For building a real system, several difficulties arise. One of them is that the set
function needs to be defined, and this requires 2n� 1 values, where n is the number
of information sources. Thus, there is a curse of dimensionality. Another difficulty
for the use of fuzzy integrals in real applications is that their interpretation is not
easy. In this respect, an interpretation was introduced in [10] for the Choquet inte-
gral. Instead, for the Sugeno integral, although there exist some work on the math-
ematical properties of such integrals, there is not yet a clear interpretation of their
operational principles. Let alone, about the meaning of the fuzzy measures they need
to operate.

In this paper we study the interpretation of fuzzy integrals, focusing on Sugeno
integrals. We give some examples and describe an application that corresponds to
their use in fuzzy systems.

The structure of the paper is as follows. In Section 2 we review some results that
are needed in the rest of the paper. Then, in Section 3 we study the interpretation of
the Sugeno integral. Section 4 is devoted to the use of Sugeno integrals for fuzzy
inference systems. Section 5 gives interpretation of other integrals. Finally, the paper
finishes with some conclusions.
2. Preliminaries

Basic definitions of aggregation operators are described in this section. We focus
on fuzzy integrals (Choquet, Sugeno and twofold integrals). Weighted minimum and
weighted maximum are also reviewed as they will also be used in the rest of the
paper. See [11,1] for details on fuzzy measures and fuzzy integrals and [2] for a
broader view of the field of aggregation operators. Definitions given below are based
on a set X that corresponds to the set of information sources. In this paper, we
assume that X is finite.
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Definition 1. A set function l : 2X ! [0,1] is a fuzzy measure if it satisfies the
following axioms:

(i) l(;) = 0, l(X) = 1 (boundary conditions).
(ii) A � B implies l(A) 6 l(B) (monotonicity) for A,B 2 2X.
Definition 2 [4]. Let l be a fuzzy measure on (X, 2X). Then, the Choquet integral
Cl(f) of f :X ! [0,1] with respect to l is defined by

Clðf Þ :¼
Xn
j¼1

f ðxsðjÞÞðlðAsðjÞÞ � lðAsðjþ1ÞÞÞ;

where f(xs(i)) indicates that the indices have been permuted so that

0 6 f ðxsð1ÞÞ 6 
 
 
 6 f ðxsðnÞÞ 6 1; AsðiÞ ¼ fxsðiÞ; . . . ; xsðnÞg;Asðnþ1Þ ¼ ;:
Definition 3 [14]. Let l be a fuzzy measure on (X, 2X). Then, the Sugeno integral
Sl(f) of a function f :X ! [0, 1] with respect to l is defined by

Slðf Þ :¼
_n
j¼1

f ðxsðjÞÞ ^ lðAsðjÞÞ;

where f(xs(i)) indicates that the indices have been permuted so that

0 6 f ðxsð1ÞÞ 6 
 
 
 6 f ðxsðnÞÞ 6 1; AsðiÞ ¼ fxsðiÞ; . . . ; xsðnÞg;Asðnþ1Þ ¼ ;:

Here ^ denotes the minimum and _ denotes the maximum.
Definition 4 ([16,13]). Let lC and lS be two fuzzy measures on (X, 2X). Then, the
twofold integral of a function f :X ! [0,1] with respect to the fuzzy measures lS

and lC is defined by

TIlS ;lC ðf Þ :¼
Xn
i¼1

_i
j¼1

f ðxsðjÞÞ ^ lSðAsðjÞÞ
 !

lCðAsðiÞÞ � lCðAsðiþ1ÞÞ
� � !

;

where f(xs(i)) indicates that the indices have been permuted so that

0 6 f ðxsð1ÞÞ 6 
 
 
 6 f ðxsðnÞÞ 6 1; AsðiÞ ¼ fxsðiÞ; . . . ; xsðnÞg;Asðnþ1Þ ¼ ;:
Definition 5. Let u be a n-dimensional vector, that is, u :¼ (u1, . . . ,un) 2 Rn.

(1) u is a possibility distribution or a possibilistic weighting vector of dimension n if
and only if ui 2 [0,1] for all i 2 {u1, . . . ,un} and maxi ui = 1.

(2) [5] Let u be a possibilistic weighting vector of dimension n, then a mapping
WMin : [0,1]n ! [0,1] is a weighted minimum of dimension n if

W Min
u

ða1; . . . ; anÞ ¼ min
i

maxð1� ui; aiÞ:
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(3) [5] Let u be a possibilistic weighting vector of dimension n, then a mapping
WMax: [0,1]n ! [0, 1] is a weighted maximum of dimension n if

W Max
u

ða1; . . . ; anÞ ¼ max
i

minðui; aiÞ:
3. Interpretation of the Sugeno integral

Although in Definition 3 the Sugeno integral takes the range [0,1] for the input
values and also [0,1] for the range of fuzzy measures l, the definition would be valid
for other domains. In particular, any linearly ordered scale D (i.e., D is a linearly or-
dered set of categories) is suitable for computing

Slðf Þ :¼
_n
j¼1

f ðxsðjÞÞ ^ lðAsðjÞÞ:

This is so, because this expression only involves operations that are consistently de-
fined in an ordinal scale. Note that _(a,b) = a if and only if a P b and that
^(a,b) = a if and only if a 6 b. At the same time, the ordering s in f(xs(j)) can be com-
puted as long as there is an order on f(xj).

Taking into account this ordinal setting, it is clear that given a set X, both f(x) (for
x 2 X) and l(A) (for A � X) should be into the same codomain D. Otherwise, the
integral cannot be applied because the minimum cannot be applied to combine
f(x) and l(A). So, in some sense, both l and f should denote the same concept.

As l denotes some importance, reliability, satisfaction or similar concepts, the
same should apply to f. Accordingly, the Sugeno integral combines a kind of e.g.
importance or reliability leading to another value for importance or reliability. In
fact, there are some applications of Sugeno integral in the literature (e.g. [14,18]) that
fit with this perspective.

This situation is illustrated in the following example, where the values to be aggre-
gated and the measure (the values in the codomain D) are related with reliability.
Example 1. Let X be a set of experts X = {x1,x2, . . . ,xn} that evaluate the reliability
of a given machine. Say, a new Japanese copy machine. Then, we consider f(xi) as the
reliability of such copy machine according to expert xi. At the same time, we also
consider the reliability of subsets of experts. So, l(A) is the reliability of experts in A

all together.
For expressing the reliabilities, any ordered set D is appropriate. Nevertheless, for

applying the Sugeno integral we need to consider the same set D to express both the
reliability of experts and the reliability of copy machines. In other words, we have
that for all A � X it holds l(A) 2 D and that for all xi 2 X it holds f(xi) 2 D.

Making the example concrete, let X = {x1,x2,x3} be a set of three experts, then with
l({x1}) = 0.2, l({x2}) = 0.3 and l({x3}) = 0.4 we express that the expert x3 is more
reliable than the expert x2 and that x2 ismore reliable than x1. Let l({x1,x2}) = 0.3 and
l({x1,x3}) = 0.4 represent that joining x1 to x2 or to x3 does not imply a larger
reliability than the one of x2 or x3 alone. Instead, with l({x2,x3}) = 0.8 we express that
joining both x2 and x3 their reliability is greatly increased. Finally, according to the
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boundary conditions, we set l(;) = 0 and l(X) = 1. This is, the set of all experts has the
maximum reliability (equal to 1), and that the empty set is not reliable.

Then, when experts assign a particular reliability to the copy machine, we can
compute an overall reliability using the Sugeno integral. For example, let f(x1) = 0.3,
f(x2) = 0.7 and f(x3) = 0.6 be experts� opinions on the reliability of the copy machine.
In this case, the Sugeno integral leads to 0.6, that corresponds in this case to the
value of one of the most relevant experts.

Another example follows. In this case, the codomain D stands for satisfaction. We
use then this example to show the application of the Sugeno integral to alternative
selection.

Example 2. Let us consider a traveler in Japan that intends to visit Tokyo, Kyoto
and Nagano and considers several alternative places for staying. Then, let
X = {x1,x2,x3} denote the three mentioned cities. That is, x1 corresponds to Tokyo,
x2 to Kyoto and x3 to Nagano. Then, we consider the degree of satisfaction of the
traveler visiting such cities. Such degree is expressed with the fuzzy measure l(A)
described in Table 1. The measure of satisfaction is monotonic increasing (the more
cities are visited, the greater the satisfaction) and is bounded. Here, the boundary
conditions mean that no visit implies no satisfaction, and that visiting all cities has
maximum satisfaction (equal to 1).

The degree of satisfaction with respect to visiting certain towns, will be combined
with the degree of satisfaction of doing the travel itself to the particular towns. Such
degree of satisfaction will be in proportion to the accessibility of such towns from the
particular location of the traveler. This degree of satisfaction will be expressed by a
function f :X ! D. Assuming that the traveler is located at Tsukuba, the most
accessible town is Tokyo. Then, the second accessible town is Nagano and, finally,
Kyoto. Therefore, f(x1) > f(x3) > f(x2). Table 2 gives measures for such accessibility
from Tsukuba. The values for the measure are expressed using the same terms than
the degree of satisfaction. This is, f(x) is comparable with l(A).

Using l and f, we can define lf(xi) :¼ l({x j f(x) P f(xi)}). This expression stands
for the degree of satisfaction of visiting xi and all those cities that are at least as
Table 1
Fuzzy measure for the traveler example: satisfaction degree for visiting cities in X = {x1,x2,x3}

Set {x1} {x2} {x3} {x1,x2} {x2,x3} {x1,x3} X

l 0.7 0.5 0.2 0.9 0.6 0.8 1

Here, x1 corresponds to Tokyo, x2 to Kyoto and x3 to Nagano.

Table 2
Accessibility degrees from Tsukuba

Set x1 x2 x3

f 0.8 0.4 0.5



Table 3
Satisfaction degree for each city for the traveler example

Set x1 x2 x3

lf 0.7 1 0.8
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accessible as xi. Roughly speaking, in what accessibility concerns, if we visit a place
xi with a given accessibility f(xi), then we assume that all places with a greater
accessibility than xi will be also visited. So, in fact, we are considering each f(xi) as a
threshold for selecting the visits. Formally speaking, if we visit xi, it is possible to
visit as well all those cities with a greater degree of possibility than xi. This is, all
those cities in the set {x j f(x) P f(xi)}. Accordingly, lf(xi) is the degree of satisfaction
the traveler achieves when decides to visit xi. Table 3 gives the values for lf for each
of such towns. The next step for computing a degree of satisfaction of being located
in a particular town (in this case Tsukuba), we need to consider the combination of
the degrees of satisfaction of visiting some towns and of the degrees of accessibility
of visiting such towns.

To do such combination, we first consider for each city xi, both degrees of
accessibility f(xi) and satisfaction lf(xi). Two cases can be considered with respect to
such f(xi) and lf(xi):

• Case f(xi) P lf(xi): In this case, as it is relatively easy to access town xi, much con-
cern is given to the satisfaction lf(xi). Accordingly, the degree of xi cannot be lar-
ger than lf (xi).

• Case lf(xi) P f(xi): In this case, the traveler must give special importance to the
physical accessibility of xi, and this constraints the degree of xi. Thus, the combi-
nation is f(xi).

To take both aspects into account, the degrees are combined by means of the
^ (the minimum) operator. Thus, f(xi) ^ lf(xi) is the evaluation of visiting xi.

Taking everything into account, the place xi with the largest evaluation
f(xi) ^ lf (xi) stands for the evaluation of staying in Tsukuba. This largest evaluation
corresponds to the Sugeno integral of f with respect to l, that in this example is equal
to SIlðf Þ ¼ maxxi f ðxiÞ ^ lf ðxiÞ ¼ 0:7.

In this latter example, we have shown the use of the Sugeno integral to evaluate
the satisfaction of the traveler of staying in a particular town. This interpretation of
the Sugeno integral can be used in an alternative selection problem. For example, to
determine which is the most suitable town for the traveler to stay. In this situation,
several towns {ti}i will be considered and for each one a function fti should be de-
fined. At the same time, the satisfaction of visiting certain towns will be expressed
(as in Example 2) in terms of a fuzzy measure l. This fuzzy measure will be constant
through the whole computation. Then, the integration of fti with respect to l for
each ti will give the degree of satisfaction of finally staying in town ti. The town with
the best evaluation will be the one selected.



Table 4
Accessibility degrees from Osaka

Set x1 x2 x3

g 0.4 1 0.7

Table 5
Satisfaction degree for each city for the traveler example when staying in Osaka

Set x1 x2 x3

lg 1 0.5 0.6
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Example 3. Let us consider two alternatives for the traveler�s staying: Tsukuba and
Osaka. Then, given the conditions of Example 2, the satisfaction degree of staying in
Tsukuba is 0.7 (see Example 2) and the one of staying in Osaka is SIl(g) = 0.6 when
the accessibility degrees from Osaka, denoted by g, are the ones displayed in Table 4.
Table 5 gives function lg.

As, SIl(g) < SIl(f), it means that the traveler will chose to stay in Tsukuba instead
of staying in Osaka.

From an operational perspective, it can be considered that the Sugeno integral
proceeds like by ‘‘saturation’’. It selects the importance that overcomes (saturates)
a certain degree or threshold. In fact, as the threshold is decreasing while the inputs
are increasing, it finds a tradeoff (or compromise) between the importance or reliabil-
ity of the set and the importance that the members of the set have assigned. This fol-
lows from the graphical interpretation of the integral (see, e.g., [21]).
4. Sugeno integral for fuzzy inference systems

In this section we consider a different scenario where the central role is played by
certainty degrees. This is, we will describe an application of the Sugeno integral
where certainty degrees will be aggregated. The application scenario consists on a
set of fuzzy rules (although any knowledge based system would lead to a similar sce-
nario) where each rule assigns degrees of satisfaction to particular output values.

Before going into details, we will first review fuzzy inference systems.

4.1. Fuzzy inference systems

Fuzzy inference systems are knowledge based systems defined in terms of sets of
rules that include fuzzy sets in their definition. In this section we will only review
those elements that are needed latter on in this paper. In particular, we will focus
on standard (flat or one-stage) fuzzy inference systems. See e.g. [6,20] for more de-
tails and e.g. [17,8] for some recent state-of-the-art applications.
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Fuzzy rules Ri (for i in {1, . . . ,n}) in fuzzy inference systems have the following
structure:

Ri : IF x1 is A1
i and . . . and xm is Am

i THEN y is Bi:

Here, Aj
i and Bi denote fuzzy terms, defined by fuzzy sets. For example, Aj

i might cor-
respond to a fuzzy set expressing that xj is low, medium or high.

For simplicity, we will only consider here systems that have a single input variable
x. Therefore, the structure of the rules is as follows:

Ri : IF x is Ai THEN y is Bi:

Given a set of fuzzy rules {Ri}i, and given a particular value for variable x, say x0,
the system computes the output value for variable y. At present, there are two main
approaches for computing such distribution. They correspond to two interpretations
of the set of rules: conjunctive and disjunctive rules. We will study them below.
Nevertheless, in both cases, the output is computed through the obtention of the
so-called possibility distribution on the range of y, a function from the range of y
into [0,1].

The possibility distribution of the system is built, in an element-wise manner, from
similar distributions obtained for each rule Ri. This is, the final possibility, or cer-
tainty, degree that y takes a particular value y0 is defined as the aggregation of
the degrees that y equals y0 according to each rule Ri. Denoting by fi(y0) the certainty
degree that rule Ri assigns to y0 and denoting by l(A) the certainty degree of rules
Ri 2 A, we will show that the outcome of a fuzzy inference system for y0 (for both
conjunctive and disjunctive interpretations) can be expressed in terms of a Sugeno
integral.

This construction using Sugeno integral links, as it will be shown below, fuzzy
inference with Weighted Minimum and Weighted Maximum [22], and the latter
operators with the Sugeno integral (one of their generalizations).

The next two sections focus on the two types of fuzzy systems. First we consider
the case of disjunctive rules and, then, the case of conjunctive rules. As we see it, the
examples considered validate our interpretation of the Sugeno integral. The use of
Sugeno integral for disjunctive rules was previously suggested in [15].

4.2. The case of disjunctive rules

Let us consider a fuzzy inference system with n rules interpreted in a disjunctive
manner. Then, the output of the system when x = x0 is computed as follows:

(1) Compute the satisfaction degree for the antecedent of all rules Ri. This corre-
sponds to compute ai, where ai corresponds to the degree of satisfaction of ‘‘x0
is Ai’’. In our case, as there is a single condition in the antecedent, ai = Ai(x0).

(2) Compute the conclusion of rule Ri. For systems defined in terms of disjunctive
rules, the output of a rule is often computed using Mamdani�s approach. This
approach is equivalent to compute the output for A 0 = {x0} as either
[j(A 0 � Rj) or A 0 � ([jRj) with � being a max-min composition and Rj being
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the intersection of Aj and Bj. See e.g. [7] for a proof. We apply Mamdani�s
approach computing [j(A 0 � Ri).From an operational point of view, Mam-
dani�s approach is as follows: for each rule Ri, its output fuzzy set Bi is clipped
according to the degree of satisfaction ai. According to this, the output of such
fuzzy rule Ri is Bi ^ Ai(x0).

(3) Compute the output of the set of rules {Ri}i. This is, the fuzzy output ~B (for the
whole system) is computed as the union of the outputs of each rule Ri. Using,
maximum for the union (the most usual operator) we obtain

~B ¼
_n
i¼1

ðBi ^ Aiðx0ÞÞ.

(4) Finally, the output fuzzy set ~B is usually defuzzified. In what follows, we skip
the defuzzificatioin stage as it is not relevant for our study.

Let us now consider the membership of the fuzzy output ~B for a given element y0
in Y. This is, let us consider the computation

~Bðy0Þ ¼
_n
i¼1

ðBiðy0Þ ^ Aiðx0ÞÞ.

On the light of the weighted maximum (see Definition 3) this expression can be
rewritten as

~Bðy0Þ ¼ W Max
u

ðB1ðy0Þ; . . . ;Bnðy0ÞÞ; ð1Þ

where the weighting vector u is defined as u = (A1(x0), . . . ,An(x0)) or, in general,
u = (a1, . . . ,an). Note that the weighting vector is independent of the value y0. Thus,
for a given x0, the same aggregation operator with the same weights is applied to all
y0 in Y.

4.3. The case of conjunctive rules

Let us now consider the case of conjunctive rules. In this case there are two alter-
native expressions for computing the output of the system for a particular input A 0.
Such expressions are: \j (A 0 � Rj) and A

0 � (\jRj). Although these two expressions do
not lead, in general, to the same output, they are equal when A 0 is a single value. As
this is the case here, we will use \j (A 0 � Rj) for convenience.

In this case, the output of the system when x = x0 is computed as follows:

(1) Compute A 0 � Rj for each rule Rj.
(2) Compute the intersection of all such outputs.

Using the minimum (denoted ^) to compute the intersection, we have that the
output is

~B ¼
n̂

i¼1

ðA0 � RiÞ.
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This can be rewritten for all y0 2 Y as follows:

~Bðy0Þ ¼
n̂

i¼1

ððA0 � RiÞðy0ÞÞ;

where Ri is the relation built from Ai and Bi using an implication function I (see [7]
for details on implication functions and a description of several of their families).
Formally speaking, Ri is defined as Ri = I(Ai,Bi). Now, due to the fact that
A 0 = {x0}, we have that the expression above of A 0 � Ri corresponds to I(Ai(x0),
Bi(y)). Considering this latter expression, we can rewrite ~Bðy0Þ as follows:

~Bðy0Þ ¼
n̂

i¼1

ðIðAiðx0Þ;Biðy0ÞÞÞ.

Selecting an appropriate implication I, the expression above for ~Bðy0Þ can be
expressed in terms of a weighted minimum (see Definition 3). In particular, the
Kleene–Dienes implication I(a,b) = max(1 � a,b) is the one that makes this corres-
pondence possible. Note that with this implication, ~Bðy0Þ can be rewritten as

~Bðy0Þ ¼
n̂

i¼1

ðIðAiðx0Þ;Biðy0ÞÞÞ ¼
n̂

i¼1

maxð1� Aiðx0Þ;Biðy0ÞÞ. ð2Þ

Therefore, when the weighting vector u is defined as u = (A1(x0), . . . ,An(x0)), the fol-
lowing equality holds:

~Bðy0Þ ¼ W Min
u

ðB1ðy0Þ; . . . ;Bnðy0ÞÞ: ð3Þ
4.4. Using the Sugeno integral

The last two sections have shown that inference in fuzzy rule based systems can be
formalized in terms of aggregation operators. We have seen that weighted max was
used when rules are interpreted in a disjunctive manner, and that weighted min was
used when rules are interpreted in a conjunctive manner. As the Sugeno integral is
known to generalize both WMin and WMax, the output of a fuzzy inference system
can be generally understood as the integration of the values Bi(y0) with respect to a
fuzzy measure constructed from the values in the weighting vector u = (A1(x0), . . . ,
An(x0)).

In particular, let lwmax
u and lwmin

u be fuzzy measures with lwmax
u ðZÞ ¼ maxi2Zui

and lwmin
u ðZÞ ¼ 1�maxi62Zui where Z � X and X :¼ {1,2, . . . ,n}. Then, since

WMaxuðf Þ ¼ SIlwmax
u

ðf Þ and WMinuðf Þ ¼ SIlwmin
u

ðf Þ, we can rewrite expressions
(1) and (3), respectively, as follows:

~Bðy0Þ ¼ SIlwmax
u

ðB1ðy0Þ; . . . ;Bnðy0ÞÞ; ð4Þ
~Bðy0Þ ¼ SIlwmin

u
ðB1ðy0Þ; . . . ;Bnðy0ÞÞ; ð5Þ

where u = (A1(x0), . . . ,An(x0)).
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The consequences of this formalization is that both conjunctive and disjunctive
fuzzy rule based systems are expressed in a unified way in terms of the Sugeno inte-
gral. The solely difference between the two approaches is how the fuzzy measure is
defined from u. In the case of disjunctive rules, a possibility measure lwmax

u is used.
Instead, in the case of disjunctive rules, a necessity measure lwmin

u is used.
Moreover, as it is known (see [7]) that \j(A 0 � Rj) � [j(A 0 � Rj), it is easy to see

that the two Sugeno integrals defined above (or, more precisely, the two fuzzy mea-
sures lwmax

u and lwmin
u in conjunction with the Sugeno integral) define an interval for

each y0. It is clear that the use of other fuzzy measures would lead to other values for
the certainty degree of y0 (in, or around, the same interval).

An important aspect that cannot be skipped is that the weighting vectors used
above are not, strictly speaking, possibilistic weighting vectors (or possibility distri-
butions). This is so because, in general, u does not satisfy maxui = 1 as it is often the
case that there is no i such that Ai(x0) = 1. The practical consequences of this fact is
that the aggregation operator Cu that use them does not satisfy unanimity (i.e., it
does not hold Cuða; a; . . . ; aÞ 6¼ a). Nevertheless, this property is not a consequence
of using the Sugeno integral but it is a property that already held for the weighted
minimum and the weighted maximum.

The rewriting of the fuzzy inference system in terms of Sugeno integrals yields to
an important consequence. While WMin and WMax assume independence between
the values to be aggregated, the Sugeno integral does not require such independence.
Therefore, the Sugeno integral is a natural operator to combine the conclusions of
several rules in a fuzzy rule based system when such rules are not independent.
Fig. 1 illustrates this situation.

Fig. 1 represents (left) the case of a fuzzy rule based system with two input vari-
ables x and y. The rules are assumed to follow a grid-like structure, a common struc-
ture in real-world fuzzy control applications. This is the case of fuzzy systems
represented in a tabular form. In general, such systems are defined in terms of fuzzy
partitions [7], one for the domain of each variable. In our case, let fAx

i gi and fAy
jgj be

the fuzzy partitions of the domains of x and y, then for each pair ðAx
i ;A

y
jÞ a fuzzy rule

is defined. Accordingly, for almost any pair of input values (x0,y0), four rules are
applied. This is the case, for example, when firing the rules for x0 = 2 and y0 = 2
Fig. 1. Graphical representation of two different fuzzy inference systems with two input variables: regions
correspond to fuzzy rules (the membership functions for each of the two variables is also given).
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indicated with a circle in Fig. 1 (left). Exceptions to this situation correspond to the
knots or the lines in the figure, when only one or two fuzzy rules are applied. Note
that the regions in the figure represent a rule for which the sets Ax

i and Ay
j are satisfied

for a degree of at least 0.5.
Instead, in the case represented on the right hand side, not all rules follow the

grid-like structure and there is a region (around x0 = 2, y0 = 2) where the number
of rules to be applied do not have an homogeneous structure. In fact, the number
of rules to be applied depends on the values (x0,y0).

The regularity of the rules in systems following a grid-like structure makes the use
of Sugeno integral with fuzzy measures lwmax

u or lwmin
u adequate. In this case there

are no major interactions between the outcomes of the rules. Each rule has its
own area of influence. Instead, rules not following this pattern are usually not inde-
pendent, as there are regions that accumulate several rules. In such regions, the out-
come of the rules bias the outcome of the whole system. In this case, other fuzzy
measures might be used to reduce the influence of such accumulation of rules and,
thus, take into account the interaction among rules.

The example given below illustrate such situations.

Example 4. Let us consider the following set of four rules, each with one input
variable x and one output value y, to model the relation (x,x2):

R1: IF x is 1 THEN y is 1,
R2: IF x is 2 THEN y is 3.7,
R3: IF x is 1.95 THEN y is 4.04,
R4: IF x is 1.9 THEN y is 4.4.

Let us consider the following triangular fuzzy numbers to represent the fuzzy sets
in the consequent: (0.2,1.00,2.3), (1.6,3.7,6.3), (1.7,4.04,6.6) and (1.8,4.4, 6.8). Here,
a triangular fuzzy number (a,b,c) stands for the triangular fuzzy set defined with the
normal point b and the support (a,c).

It can be easily observed that rules R2, R3 and R4 are redundant as they try to give
information about the same region on the domain of x (i.e. the region around the
value 2).

Now, let us consider the application of the rules to the input value x0 = 1.6
considering that the rules are disjunctive. Assume that all rules are fired and that the
degree of satisfaction of rules Ri (ai = Ai(x)) are a = (0.25,0.625,0.6875,0.75). Then,
the fuzzy set ~B will include the outcomes of the four rules. Fig. 2 shows the result of
firing such rules. This output has been computed following the description in Section
4.2 using the fuzzy measure lwmax

u defined in Table 6. Recall that this procedure
corresponds to the Mamdani approach for applying fuzzy rules.

This figure shows that as rules R2, R3 and R4 conclude all about a value near 4,
such region has a larger influence in the output (a larger dark region) than the one
that would be obtained by a single rule. It should be underlined that such influence
can be positive (i.e., increasing the output value) or negative (i.e., decreasing the



Table 6
Fuzzy measure l ¼ lwmax

u for Example 4

l({R1,R2,R3,R4}) = 0.75
l({R1,R2,R3}) = 0.6875
l({R1,R2,R4}) = 0.75
l({R1,R3,R4}) = 0.75
l({R2,R3,R4}) = 0.75
l({R1}) = 0.25
l({R2}) = 0.625
l({R4}) = 0.75
l({R1,R2}) = 0.625
l({R1,R3}) = 0.6875
l({R1,R4}) = 0.75
l({R2,R3}) = 0.6875
l({R2,R4}) = 0.75
l({R3,R4}) = 0.75
l({R3}) = 0.6875
l(;) = 0

1.0

1.0 3.7 4.04 4.4

Fig. 2. Outcome of the rules.
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output value). The sign depends on the shape and position of the membership
functions.

The influence of the rules in the output can be quantified applying a
defuzzification method to the fuzzy set. We have selected the center of gravity as
such defuzzification method. The example described above with four rules leads to a
defuzzified value equal to 2.8356. Instead, if only rules R1 and R3 were applied (with
a1 and a2), the final output would be 2.5491. Alternatively, if we replace rules R2, R3

and R4 by a rule with an average consequent fired with the average (a2 + a3 + a4)/3
we get a defuzzified value of 2.5521. Note that the ideal output for x = 1.6 equals to
1.62 = 2.56. Thus, in this example, the redundancy of the rules bias the output
towards larger values.

A way to solve the problem illustrated in Example 4, is to use the Sugeno integral
but with a fuzzy measure different than lwmax

u . In particular, and as an example, we
can consider the fuzzy measure l1 defined in Table 7. This measure reduces the effect
of the redundant rules. It has been defined so that l1(Z) is lower than l when Z



Table 7
Fuzzy measure l1 to solve the inconveniences of Example 4

l1({R1,R2,R3,R4}) = 0.75
l1({R1,R2,R3}) = 0.4583
l1({R1,R2,R4}) = 0.5
l1({R1,R3,R4}) = 0.5
l1({R2,R3,R4}) = 0.75
l1({R1}) = 0.25
l1({R2}) = 0.2083
l1({R4}) = 0.25
l1({R1,R2}) = 0.25
l1({R1,R3}) = 0.25
l1({R1,R4}) = 0.25
l1({R2,R3}) = 0.4583
l1({R2,R4}) = 0.5
l1({R3,R4}) = 0.5
l1({R3}) = 0.2292
l1(;) = 0

Fig. 3. Using Sugeno integral for combining fuzzy rules.
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contains some of the {R2,R3,R4} but not all of them (in fact, it is proportional to the
number of redundant rules in Z). Note e.g. that l({R1,R3}) = 0.6875 in the original
fuzzy measure but that l1({R1,R3}) = 0.25 in the new one. Similarly, l({R1,
R3,R4}) = 0.75 while for the new measure l1({R1,R3,R4}) = 0.5.

With such new fuzzy measure l1, the defuzzified value (for the input x = 1.6)
equals to 2.4827, that is more similar to the goal 2.56 than the original 2.8356. Note
that this value is also similar to the outcome when only one of the redundant rules is
used. Fig. 3 illustrates the results of the combination using Sugeno integral with both
the original measure l and the alternative measure l1.
5. Interpreting the other integrals

Another well-known integral is the Choquet integral that generalizes, among
other operators, the weighted mean. The main difference between the Choquet
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integral and the weighted mean is that the latter uses a weighting vector, that corre-
sponds to a probability distribution, while the Choquet integral uses a fuzzy mea-
sure. Under this consideration, the fuzzy measure can be understood as a kind of
probability distribution with some uncertainty. On this basis, and taking into ac-
count that the weighted mean can be understood as an expected value, the Choquet
integral can be interpreted as a kind of expectation for such probability with
uncertainty.

Twofold integrals were defined as a generalization of Choquet and Sugeno inte-
grals. They correspond, in fact, to two-step fuzzy integrals: a Choquet integral of Su-
geno integrals. Accordingly, such integrals can be interpreted in terms of the
Choquet integral and the Sugeno integral. In particular, turning into the example
of the rule based system, we can use the twofold to define a fuzzy inference system
with randomness on the rules. This is detailed in the following example:

Example 5. Let us consider a rule based fuzzy inference system. Let Bi(y0) be the
certainties that rules Ri assign to a particular value y0. Then, lS(A) is the certainty
assigned to the set of rules A. Naturally, lS(A) is computed from ai (the degree in
which rules xi have been fired) either using lwmax

u ; lwmin
u or any other composite

measure. Additionally, lC corresponds to some prior knowledge about the
appropriatedness/accuracy of the rules. So, a probability distribution (or a fuzzy
measure) is defined over the set of rules.

Then, to combine the values of Bi(y0) taking into account lS(A) and lC the
twofold integral of Bi(y0) with respect to lS(A) and lC will be used.
6. Conclusions

In this paper we have considered the interpretation of the Sugeno integral. In par-
ticular, we have shown that in the Sugeno integral both the measure and the values
being aggregated are in the same domain. Such values can be interpreted as impor-
tances, reliabilities or certainties. Several examples are given. In particular, we have
shown that the Sugeno integral can naturally be applied to fuzzy inference systems.
In fact, we have shown that the Sugeno integral is a natural extension of the oper-
ators used in fuzzy inference systems to aggregate the outcomes of the rules. Besides,
we have outlined an interpretation for the Choquet and twofold integrals.
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