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a b s t r a c t

The notion of a competition multigraph was introduced by C. A. Anderson, K. F. Jones, J.
R. Lundgren, and T. A. McKee [C. A. Anderson, K. F. Jones, J. R. Lundgren, and T. A. McKee:
Competition multigraphs and the multicompetition number, Ars Combinatoria 29B (1990)
185–192] as a generalization of the competition graphs of digraphs.
In this note, we give a characterization of competitionmultigraphs of arbitrary digraphs

and a characterization of competition multigraphs of loopless digraphs. Moreover, we
characterize multigraphs whose multicompetition numbers are at most m, where m is a
given nonnegative integer and give characterizations of competition multihypergraphs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Cohen [2] introduced the notion of a competition graph in connection with a problem in ecology in 1968 (see also [3]).
Let D = (V , A) be a digraph that corresponds to a food web. A vertex in the digraph D stands for a species in the food web,
and an arc (x, v) ∈ A in Dmeans that the species x preys on the species v. For vertices x, v ∈ V , we call v a prey of x if there
is an arc (x, v) ∈ A. If two species x and y have a common prey v, they will compete for the prey v. Cohen defined a graph
which represents the competition among the species in the food web. The competition graph C(D) of a digraph D = (V , A) is
an undirected graph G = (V , E) which has the same vertex set V and has an edge between two distinct vertices x, y ∈ V if
there exists a vertex v ∈ V such that (x, v), (y, v) ∈ A. We say that a graph G is a competition graph if there exists a digraph
D such that C(D) = G. This notion is applicable not only in ecology but also in channel assignments, coding, and modeling
of complex economic and energy systems (see [6]).
Dutton and Brigham [4] gave a characterization of competition graphs, and also characterized the competition graphs of

acyclic digraphs. Roberts and Steif [8] characterized the competition graphs of loopless digraphs. Opsut [5] showed that the
problem of determining whether a graph is the competition graph of an acyclic digraph or not is an NP-complete problem.
Competition graphs are closely related to edge clique covers and the edge clique cover numbers of graphs. A clique of a

graph G is a subset of the vertex set of G such that its induced subgraph of G is a complete graph. For a clique S of a graph G
and an edge xy of G, we say xy is covered by S if both x and y are contained in S. An edge clique cover of a graph G is a family
of cliques of G such that each edge of G is covered by some clique in the family. The minimum size of an edge clique cover
of G is called the edge clique cover number of the graph G, and is denoted by θe(G).
Anderson, Jones, Lundgren, and McKee [1] generalized the notion of competition graphs to competition multigraphs. A

multigraph M = (V , E, µ) consists of a graph (V , E) and a multiplicity µ : E → N, where N = {1, 2, 3, . . .} denotes the set
of positive integers.
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Definition. The competition multigraph CM(D) of a digraph D = (V , A) is a multigraph M = (V , E, µ) such that (V , E) is
the competition graph of D, and the multiplicityµ(xy) of an edge xy ∈ E is the number of common preys of x and y in D. We
say that a multigraphM is a competition multigraph if there exists a digraph D such that CM(D) = M .

Anderson et al. [1] also gave a characterization of the competition multigraphs of acyclic digraphs by using edge clique
partitions of multigraphs. For a multigraphM = (V , E, µ), we call a clique of the graph (V , E) a clique ofM .

Definition. Let M = (V , E, µ) be a multigraph. A multifamily F = {S1, . . . , Sr} of cliques of M is called an edge clique
partition of the multigraphM if each edge xy ofM is covered by exactly µ(xy) cliques Si in the multifamily F .
Theminimumsize of an edge cliquepartition of amultigraphM is called the edge clique partition number of themultigraph

M , and is denoted by θ∗(M).

Note that the edge clique partition number of a multigraph M = (V , E, µ) and the edge clique cover number of the
underlying graph G = (V , E) of M have the relation θe(G) ≤ θ∗(M) since an edge clique partition of M is an edge clique
cover of G.
A characterization of the competition multigraph of an acyclic digraph given by Anderson et al. is the following.

Theorem 1.1 ([1, Theorem 1]). Let M = (V , E, µ) be a multigraph. Then, M is the competition multigraph of an acyclic digraph
if and only if there exist an ordering v1, . . . , vn of the vertices of M and an edge clique partition {S1, . . . , Sn} of M such that
vi ∈ Sj ⇒ i < j.

Now let us recall the definition of the multicompetition number of a multigraph. Note that the notion of the (ordinary)
competition number of a graph was introduced by Roberts [7].

Definition. The multicompetition number of a multigraph M = (V , E, µ) is the smallest nonnegative integer k such that
(V ∪ Ik, E, µ) is the multicompetition graph of some acyclic digraph D, where Ik denotes a set of k isolated vertices and
V ∩ Ik = ∅. The multicompetition number of a multigraphM is denoted by k∗(M).

This note is organized as follows: In Section 2,we give a characterization of competitionmultigraphs of arbitrary digraphs
and a characterization of competition multigraphs of loopless digraphs. In Section 3, we characterize multigraphs whose
multicompetition numbers are at mostm, wherem is a given nonnegative integer, which is a generalization of Theorem 1.1.
In Section 4, we introduce the notion of a competition multihypergraph, which is a generalization of both a competition
multigraph and a competition hypergraph introduced by Sonntag and Teichert [9], and we give characterizations of
competition multihypergraphs.

2. Competition multigraphs

Theorem 2.1. Let M be amultigraphwith n vertices. Then,M is the competitionmultigraph of a digraph if and only if θ∗(M) ≤ n.

Proof. LetM = (V , E, µ) be a multigraph with V = {v1, . . . , vn}.
Suppose that M is a competition multigraph. Then there exists a digraph D = (V , A) such that CM(D) = M . Put

Sj := {vi ∈ V | (vi, vj) ∈ A}(j = 1, . . . , n). For any x and y in Sj, xy is an edge in M since vj is a common prey of x and
y in D, and thus Sj is a clique ofM . If xy ∈ E is an edge with multiplicityµ(xy) = p, then there exist exactly p common preys
vi1 , . . . , vip ∈ V of x and y in D. Then exactly p cliques Si1 , . . . , Sip contain both x and y. Hence the family {S1, . . . , Sn} is an
edge clique partition ofM , and thus we conclude θ∗(M) ≤ n.
Next, suppose that θ∗(M) ≤ n. Then there exists an edge clique partition F = {S1, . . . , Sr} of M with r ≤ n. If xy ∈ E

is an edge with multiplicity p in M , then there exist exactly p cliques Si1 , . . . , Sip ∈ F such that each clique contains both
x and y. Now we define a digraph D as follows; V (D) = V , and A(D) = ∪rj=1{(vi, vj) | vi ∈ Sj}. Then the competition graph
of this digraph D is the graph (V , E), and x and y have exactly p common preys vi1 , . . . , vip ∈ V in the digraph D. Thus the
multiplicity of the edge xy in CM(D) is equal to p. Hence we have CM(D) = M , and thus we conclude M is a competition
multigraph. �

In ordinary situations, it is natural to assume that there are no species that prey on themselves in a food web. This
assumption corresponds to the condition that a digraph D is loopless, i.e., D does not have an arc with the form (v, v).
Let V be a finite set, and Di be a subset of V and vi ∈ V for each i = 1, . . . , r . Then, (v1, . . . , vr) is called a system of

distinct representatives for {D1, . . . ,Dr} if v1, . . . , vr are distinct and vi ∈ Di for i = 1, . . . , r .

Theorem 2.2. Let M be a multigraph. Then the following statements are equivalent.
(a)M is the competition multigraph of a loopless digraph.
(b) There exist an ordering v1, . . . , vn of the vertices of M and an edge clique partition {S1, . . . , Sr} of M such that r ≤ n and

vj 6∈ Sj(j = 1, . . . , r).
(c) There exists an edge clique partition {S1, . . . , Sr} of M such that r ≤ n and {D1, . . . ,Dr} has a system of distinct

representatives, where Dj := V (M)− Sj (j = 1, . . . , r).
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Proof. LetM = (V , E, µ) be a multigraph with V = {v1, . . . , vn}.
(a)⇒(b): Let D = (V , A) be a loopless digraph such that CM(D) = M . Put Sj := {vi ∈ V | (vi, vj) ∈ A} (j = 1, . . . , n).

Then {S1, . . . , Sn} is an edge clique partition ofM . Since D is loopless, we have vj 6∈ Sj (j = 1, . . . , n).
(b)⇒(c): Let v1, . . . , vn be an ordering of the vertices of M and {S1, . . . , Sr} be an edge clique partition of M such that

r ≤ n and vj 6∈ Sj (j = 1, . . . , r). Then (v1, . . . , vr) is a system of distinct representatives for {D1, . . . ,Dr}.
(c)⇒(a): Let {S1, . . . , Sr} be an edge clique partition ofM such that r ≤ n and that {D1, . . . ,Dr} has a system of distinct

representatives (v1, . . . , vr). Then we have vj 6∈ Sj (j = 1, . . . , r). We define a digraph D as follows; V (D) = V , and
A(D) = ∪rj=1{(vi, vj) | vi ∈ Sj}. Then we have CM(D) = M , and that D has no loops since vj 6∈ Sj. �

3. Multigraphs with a bounded multicompetition number

In this section, we give a characterization of multigraphs whose multicompetition numbers are at mostm.

Theorem 3.1. Let M be a multigraph with n vertices, and m be a nonnegative integer. Then, k∗(M) ≤ m if and only if there exist
an ordering v1, . . . , vn of the vertices of M and an edge clique partition {S1, . . . , Sn+m} of M such that vi ∈ Sj ⇒ i < j.

Proof. Suppose that k∗(M) ≤ m. Let M ′ := M ∪ Im = M ∪ {z1, . . . , zm}, where z1, . . . , zm are extra isolated vertices.
Then the multigraph M ′ is the competition multigraph of some acyclic digraph D. By Theorem 1.1, there exist an ordering
v1, . . . , vn, vn+1, . . . , vn+m of the vertices ofM ′ and an edge clique partition {S1, . . . , Sn+m} ofM ′ such that vi ∈ Sj ⇒ i < j.
Here we may assume that vn+1, . . . , vn+m are isolated vertices in M ′ since M ′ has at least m isolated vertices and isolated
vertices have no necessity to be contained in the cliques Sj. Hence M ∼= M ′ − {vn+1, . . . , vn+m}, and {S1, . . . , Sn+m} is an
edge clique partition ofM ′− {vn+1, . . . , vn+m}. Therefore the ordering v1, . . . , vn given above and the edge clique partition
{S1, . . . , Sn+m} satisfy the condition vi ∈ Sj ⇒ i < j.
Conversely, suppose that there exist an ordering v1, . . . , vn of the vertices of M and an edge clique partition

{S1, . . . , Sn+m} of M such that vi ∈ Sj ⇒ i < j. Put M ′ := M ∪ Im = M ∪ {vn+1, . . . , vn+m}, where vn+1, . . . , vn+m are
new isolated vertices. Then, the edge clique partition {S1, . . . , Sn+m} of M is also that of M ′. Now the ordering v1, . . . , vn,
vn+1, . . . , vn+m of the vertices ofM ′ and the edge clique partition {S1, . . . , Sn+m} ofM ′ satisfy the condition vi ∈ Sj ⇒ i < j.
Thus, by Theorem 1.1,M ′ = M ∪ Im is the competition multigraph of an acyclic digraph. Hence we have k∗(M) ≤ m. �

Remark 3.2. By definition, a multigraph M is the competition multigraph of an acyclic digraph if and only if the
multicompetition number is 0. So Theorem 1.1 follows as a corollary of Theorem 3.1 in the casem = 0.

Corollary 3.3. Let M = (V , E, µ) be a multigraph with n vertices. Then the following statements are equivalent.
(a) The multicompetition number of M is at most m.
(b) There exist an ordering v1, . . . , vn of the vertices of M and an edge clique partition {S1, . . . , Sn+m} of M such that

vi ∈ Sj ⇒ i < j.
(c) There exist an ordering v1, . . . , vn of the vertices of M and an edge clique partition {S1, . . . , Sn+m−1} of M such that

vi ∈ Sj ⇒ i ≤ j.
(d) There exist an ordering v1, . . . , vn of the vertices of M and an edge clique partition {S1, . . . , Sn+m−2} of M such that

vi ∈ Sj ⇒ i ≤ j+ 1.

Proof. LetM = (V , E, µ) be a multigraph with n vertices. Theorem 3.1 includes the equivalence of (a) and (b).
Suppose that (b) holds. Let v1, . . . , vn be an ordering of the vertices ofM and {S1, . . . , Sn+m} be an edge clique partition

ofM such that vi ∈ Sj ⇒ i < j. Then we have S1 = ∅. Putting S ′j := Sj+1 for j = 1, . . . , n + m − 1, we have an edge clique
partition {S ′1, . . . , S

′

n+m−1} ofM with vi ∈ Sj ⇒ i ≤ j, and thus (c) holds.
Suppose that (c) holds. Let v1, . . . , vn be an ordering of the vertices ofM and {S1, . . . , Sn+m−1} be an edge clique partition

of M such that vi ∈ Sj ⇒ i ≤ j. Then we have S1 ⊆ {v1}. So S1 is not covering any edge of M . Putting S ′j := Sj+1 for
j = 1, . . . , n+m− 2, we have an edge clique partition {S ′1, . . . , S

′

n+m−2} ofM with vi ∈ Sj ⇒ i ≤ j+ 1, and thus (d) holds.
Suppose that (d) holds. Let v1, . . . , vn be an ordering of the vertices ofM and {S1, . . . , Sn+m−2} be an edge clique partition

of M such that vi ∈ Sj ⇒ i ≤ j + 1. Putting S ′1 := ∅ S
′

2 := ∅, and S
′

j := Sj−2 for j = 3, . . . , n + m, we have an edge clique
partition {S ′1, . . . , S

′
n+m} ofM with vi ∈ Sj ⇒ i < j, and thus (b) holds. �

Corollary 3.4. Let M = (V , E, µ) be a multigraph with n vertices. Then, k∗(M) ≤ 1 if and only if there exist an ordering
v1, . . . , vn of the vertices of M and an edge clique partition {S1, . . . , Sn} of M such that vi ∈ Sj ⇒ i ≤ j.

Proof. It follows from the equivalence of (a) and (c) in Corollary 3.3 withm = 1. �

Corollary 3.5. Let M = (V , E, µ) be a multigraph with n vertices. Then, k∗(M) ≤ 2 if and only if there exist an ordering
v1, . . . , vn of the vertices of M and an edge clique partition {S1, . . . , Sn} of M such that vi ∈ Sj ⇒ i ≤ j+ 1.

Proof. It follows from the equivalence of (a) and (d) in Corollary 3.3 withm = 2. �
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Remark 3.6. Note that, ifm ≥ 3, then it seems to be impossible in general to characterize multigraphs with n vertices and
the multicompetition number at mostm by using edge clique partitions of size n, like Corollaries 3.4 and 3.5.

At the end of this section, we give a characterization of nontrivial triangle-free connected multigraphs with the
multicompetition number 1. AmultigraphM is called triangle-free ifM does not contain a clique of size 3. A trivialmultigraph
is the multigraph which consists of one vertex and no edges. The multicompetition number of a nontrivial triangle-free
connected multigraphM is given explicitly as follows.

Theorem 3.7 ([1, Corollary 1]). Let M = (V , E, µ) be a nontrivial multigraph. If M is triangle-free and connected, then

k∗(M) =
∑
e∈E

µ(e)− |V | + 2.

As a corollary of the above theorem, we have the following result.

Corollary 3.8. Let M = (V , E, µ) be a nontrivial triangle-free connected multigraph. Then, k∗(M) = 1 if and only if the
underlying graph (V , E) of M is a tree and µ(e) = 1 for all e ∈ E.

Proof. LetM = (V , E, µ) be a nontrivial triangle-free connected multigraph. Note that a connected graph (V , E) is a tree if
and only if |V | − 1 = |E| holds. If (V , E) is a tree and µ(e) = 1 for all e ∈ E, then we have k∗(M) = 1 by Theorem 3.7.
Suppose that k∗(M) = 1. Then we have

∑
e∈E µ(e) − |V | + 2 = 1 by Theorem 3.7. This equation implies |V | − 1 =∑

e∈E µ(e) ≥ |E|. Since M is connected, we have |E| ≥ |V | − 1. Thus we have |E| = |V | − 1 and
∑
e∈E µ(e) = |E|. Hence

(V , E) is a tree and µ(e) = 1 for all e ∈ E. �

4. Competition multihypergraphs

Sonntag and Teichert [9] introduced competition hypergraphs and characterized them. The competition hypergraph of a
digraph D = (V , A) is a hypergraph (V , E)which has the same vertex set as D and e ⊆ V is a hyperedge if and only if there
exists a vertex v ∈ V such that |e| ≥ 2 and e = {u ∈ V | (u, v) ∈ A}.
In this section,we generalize competitionmultigraphs and competition hypergraphs to ‘‘competitionmultihypergraphs’’.

Amultihypergraph (V , E, µ) consists of a hypergraph (V , E) and amultiplicityµ : E → N, whereNdenotes the set of positive
integers.

Definition. The competition multihypergraph of a digraph D = (V , A) is a multihypergraphM = (V , E, µ) such that (V , E)
is the competition hypergraph of D, and the multiplicity µ(e) of a hyperedge e ∈ E is the number of vertices v such that
e = {u ∈ V | (u, v) ∈ A}.

Theorem 4.1. Let M = (V , E, µ) be a multihypergraph. Then,M is the competition multihypergraph of a digraph if and only if∑
e∈E µ(e) ≤ |V |.

Proof. LetM = (V , E, µ) be a multihypergraph with V = {v1, . . . , vn}.
Suppose thatM is the competition multihypergraph of a digraph. Then there exists a digraph D = (V , A) such that its

competition multihypergraph isM. Put

e′j := {vi ∈ V | (vi, vj) ∈ A} (j = 1, . . . , n).

Then we have a multifamily E ′ := {e′1, . . . , e
′
n}. Then the hyperedge set E of M is given by E = {e′j ∈ E ′ | |ej| ≥

2} =: {e1, . . . , et} and the multiplicity µ(ej) of ej ∈ E is given by µ(ej) = |{e′ ∈ E ′ | ej = e′}|. Thus we conclude∑
e∈E µ(e) ≤ |E

′
| = n.

Next, suppose that
∑
e∈E µ(e) ≤ n. Let E = {e1, . . . , et}. We define a digraph D as follows;

V (D) := V , A(D) :=
t⋃
j=1

j∑
l=1

µ(el)⋃
k=
j−1∑
l=1

µ(el)+1

{(vi, vk) | vi ∈ ej}.

Then we can check thatM is the competition multihypergraph of this digraph D. �

We can show the following characterizations similarly (we omit proofs).

Theorem 4.2. Let M = (V , E, µ) be a multihypergraph. Then,M is the competition multihypergraph of a loopless digraph if
and only if there exist an ordering v1, . . . , vn of the vertices of M and an ordering e1, . . . , et of the hyperedges of M such that∑t
j=1 µ(ej) ≤ n and vj 6∈ ej(j = 1, . . . , t).
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Theorem 4.3. Let M = (V , E, µ) be a multihypergraph. Then,M is the competition multihypergraph of an acyclic digraph if
and only if there exist an ordering v1, . . . , vn of the vertices of M and an ordering e1, . . . , et of the hyperedges of M such that
vi ∈ ej implies i <

∑j
l=1 µ(el).
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