Remarks on the Euler Equation*

J. P. Bourguignon

Centre de Mathématiques, École Polytechnique, 17 Rue Descartes, Paris $5{ }^{e}$

> AND
H. Brezis

Département de Mathématiques, Université Paris VI, 4 Place Jussieu, Paris 5e
Received May 30, 1973

Introduction

Let Ω be a bounded domain of \mathbb{R}^{N} with smooth boundary $\partial \Omega$ and outward normal n. The motion of an incompressible perfect fluid is described by the Euler equation

$$
\begin{align*}
& \partial u_{i} / \partial t+\sum_{j=1}^{N} u_{j}\left(\partial u_{i} / \partial x_{j}\right)=f_{i}+\partial \bar{\omega} / \partial x_{i}, \quad 1 \leqslant i \leqslant N \\
& \operatorname{div} u=0 \text { on } \Omega \times(0, T), \tag{1}\\
& u \cdot n=0 \text { on } \partial \Omega \times(0, T), \tag{2}\\
&\left.u\right|_{t=0}=u_{0} \text { on } \Omega, \tag{3}
\end{align*}
$$

where $f(x, t)$ and $u_{0}(x)$ are given, while the velocity $u(x, t)$ and the pressure $\bar{\omega}(x, t)$ are to be determined.

The Euler equation has been considered by several authors including L. Lichtenstein (1925-30), J. Leray (1932-37), M. Wolibner (1938). T. Kato proved the existence of a global solution for $N=2$ [3] and of a local solution for $\Omega=\mathbb{R}^{3}$ [4]. Recently, D. Ebin and J. Marsden [2] have proved the existence of a local solution in the general case. Their proof relies heavily on techniques of Riemannian geometry on infinite dimensional manifolds. Our purpose is to present

[^0]a more "classical" proof of their result by reducing (1)-(4) to an ordinary differential equation on a closed set of a Banach space; actually, we get a slightly more general result valid for L^{p} data instead of L^{2} data.

The main theorem is the following
Theorem 1. Let $1<p<+\infty$, and let $s>(N / p)+1$ be an integer. Suppose $u_{0} \in W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$ with $\operatorname{div} u_{0}=0$ on Ω and $u_{0} \cdot n=0$ on $\partial \Omega$. Suppose $f \in C\left([0, T] ; C^{s+1+\alpha}\left(\Omega ; \mathbb{R}^{N}\right)\right)$ with $0<\alpha<1^{1}$. Then there exists $0<T_{0} \leqslant T$ and a unique function

$$
u \in C\left(\left[0, T_{0}\right] ; W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)\right)
$$

satisfying (1)-(4).
We thank D. Ebin and J. P. Penot for helpful conversations.

1. Notations and Preliminaries

Let $W^{s, p}$ be the Sobolev space of real-valued functions in L^{p} such that all their derivatives up to order s are in L^{p}. In the following we assume that $s>(N / p)+1$ so that by the Sobolev embedding theorem $W^{s, p}(\Omega) \subset C^{1+\alpha}(\bar{\Omega})$ with $\alpha=s-1-N / p$. The norm in $W^{s, p}$ is denoted by \| $\|_{s, p}$. Let

$$
\mathscr{D}^{s, p}=\left\{\eta \in W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right) ;\right.
$$

$$
\left.\eta \text { is bijective from } \bar{\Omega} \text { onto } \bar{\Omega} \text { and } \eta^{-1} \in W^{s, v}\left(\Omega ; \mathbb{R}^{N}\right)\right\} .
$$

Note that $\eta \in \mathscr{D}^{s, p}$ if and only if $\eta \in W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$ and η is a C^{1} diffeomorphism with $\eta(\partial \Omega) \subset \partial \Omega$.

Let

$$
\mathscr{D}_{u}^{s, p}=\left\{\eta \in \mathscr{D}^{s, p} ;|\mathrm{Jac} \eta|=1 \text { on } \Omega\right\},
$$

where Jac η denotes the Jacobian matrix of η and $|\mathrm{Jac} \eta|$ its determinant. Note that $\eta \in \mathscr{Z}_{\mu}^{s, p}$ if and only if $\eta \in W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right), \mid$ Jac $\eta \mid=1$ on Ω and $\eta(\partial \Omega) \subset \partial \Omega$.
Let

$$
T_{e} \mathscr{D}^{s, p}=\left\{u \in W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right) ; u \cdot n=0 \text { on } \partial \Omega\right\}
$$

and

$$
T_{e} \mathscr{D}_{\mu}^{s, p}=\left\{u \in T_{\varepsilon} \mathscr{D}^{s, p} ; \operatorname{div} u=0 \text { in } \Omega\right\} .
$$

[^1]Recall that if $V(x, t) \in C^{1}(\bar{\Omega} \times[0, T])$ is such that V is tangent to the boundary, i.e., $V(x, t) \cdot n(x)=0$ on $\partial \Omega \times[0, T]$ and if $\eta(x, t)$ is the flow generated by V, i.e. the solution of

$$
(d \eta / d t)(x, t)=V(\eta(x, t), t),
$$

then

$$
\begin{equation*}
(d / d t)|\operatorname{Jac} \eta(x, l)|_{t \tau \tau}=(\operatorname{div} V)(\eta(x, \tau), \tau)|\operatorname{Jac} \eta(x, \tau)| . \tag{5}
\end{equation*}
$$

So that in particular if div $V=0$ on $\Omega \times[0, T]$, then

$$
\{\mathrm{Jac} \eta(x, t)|=|\operatorname{Jac} \eta(x, 0)| \quad \text { on } \Omega \times[0, T] .
$$

The following lemmas are well-known (see, e.g., [5]).
Lemma 1 (Neumann problem). Given an $f \in W^{k, p}(\Omega)(k \geqslant 0$ an integer) and a $g \in W^{k+1-1 / p, p}(\partial \Omega)$ such that

$$
\int_{\Omega} f d x=\int_{\Omega \Omega} g d \sigma,
$$

there exists a $u \in W^{k+2, p}(\Omega)$ satisfying

$$
\begin{array}{lll}
\Delta u=f & \text { on } \quad \Omega, \\
\frac{\partial u}{\partial n}=g & \text { on } \quad \partial \Omega .
\end{array}
$$

In addition,

$$
\|\operatorname{grad} u\|_{k+1, p} \leqslant C\left(\|f\|_{k, p}+\|g\|_{k+1-1 / p, p}\right) .
$$

Lemma 2. Given an $f \in W^{k, p}\left(\Omega ; \mathbb{R}^{N}\right)$, there exists a unique $g \in T_{e} \mathscr{D}_{\mu}^{k, p}$ and $a \bar{\omega} \in W^{k+1, p}(\Omega)$ such that

$$
f=g+\operatorname{grad} \bar{\omega} .
$$

We set $g=P(f) . P$ is called the projection on divergence free vector fields; it is a bounded operator in $W^{k, p}\left(\Omega ; \mathbb{R}^{N}\right)$. P is related to the solution of the Neumann problem in the following way: let $\bar{\omega} \in W^{k+1, p}(\Omega)$ be a solution of

$$
\left\{\begin{array}{lll}
\Delta \bar{\omega}=\operatorname{div} f & \text { on } & \Omega, \\
\frac{\partial \bar{\omega}}{\partial n}=f \cdot n & \text { on } & \partial \Omega .
\end{array}\right.
$$

Then

$$
g=P f=f-\operatorname{grad} \bar{\omega} .
$$

2. Reduction of the Euler Equation to an Ordinary Differential Equation

Following an idea of V. Arnold [1], we shall work as in [2] with Lagrange variables. So, we use the configuration η of the fluid (i.e. the flow generated by u) as unknown. As we shall see, this leads us to the study of a second-order "ordinary" differential equation.

Assuming (1)-(4) has a solution u, let η be the flow of u :

$$
\begin{equation*}
(d \eta / d t)(x, t)=u(\eta(x, t), t), \quad \eta(x, 0)=x . \tag{6}
\end{equation*}
$$

Let us rewrite the equation (1)-(4) in terms of η. Equation (4) becomes

$$
(d \eta / d t)(x, 0)=u_{0}(x) .
$$

Equation (3) corresponds to the fact that, for each $t, \eta(\cdot, t)$ is a diffeomorphism from $\bar{\Omega}$ onto itself and Eq. (2) is equivalent to

$$
|\operatorname{Jac} \eta(x, t)|=1 \quad \text { on } \quad \Omega \times[0, T] .
$$

In order to write down (1) in terms of η, we eliminate the pressure $\bar{\omega}$ by applying P to (1). Using (2) we get

$$
(\partial u / \partial t)+P\left(\sum_{j} u_{j}\left(\partial u \mid \partial x_{j}\right)\right)=P f .
$$

On the other hand, by differentiating (6) with respect to t, we obtain

$$
\begin{aligned}
\left(\partial^{2} \eta / \partial t^{2}\right)(x, t) & =\sum_{i}\left(\partial u / \partial x_{i}\right)(\eta(x, t), t)\left(\partial \eta_{i} / \partial t\right)(x, t)+(\partial u / \partial t)(\eta(x, t), t) \\
& =\sum_{i} u_{i}(\eta(x, t), t)\left(\partial u / \partial x_{i}\right)(\eta(x, t), t)+(\partial u / \partial t)(\eta(x, t), t) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left(\partial^{2} \eta / \partial t^{2}\right)(x, t)=\left[(I-P) \sum_{i} u_{i}\left(\partial u / \partial x_{i}\right)\right](\eta(x, t), t)+(P f)(\eta(x, t), t) . \tag{7}
\end{equation*}
$$

If we keep in mind that

$$
u=(\partial \eta / \partial t)\left(\eta^{-1}, t\right),
$$

we can consider (7) as an equation involving only η.
A crucial observation is that (7) should not be regarded as a partial differential equation in η but rather as an ordinary differential equation in η (this fact is outlined in [2, p. 147]).

We first write (7) as a system

$$
\left\{\begin{array}{l}
\frac{d \eta}{d t}=v \\
\frac{d v}{d t}=\left[(I-P) \sum_{i}\left(v \circ \eta^{-1}\right)_{i} \frac{\partial}{\partial x_{i}}\left(v \circ \eta^{-1}\right)\right](\eta, t)+(P f)(\eta, t)
\end{array}\right.
$$

or

$$
\begin{equation*}
(d / d t)(\eta, v)=A(t ; \eta, v) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
A(t ; \eta, v)=\left(v, B\left(v \circ \eta^{-1}\right) \circ \eta+(P f)(\eta, t)\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
B v=(I-P)\left(\sum_{i} v_{i} \frac{\partial v}{\partial x_{i}}\right) . \tag{10}
\end{equation*}
$$

We shall work in the space $X=W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right) \times W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$. Clearly, A is not everywhere defined on X and not even on an open subset because of the additional requirement $\eta \in \mathscr{D}_{\mu}^{s . p}$. Thus we cannot apply standard existence theorems for ordinary differential equations, but shall use the following theorem which is a particular case of a result of R. Martin [6].

Theorem 2. Let F be a closed subset of a Banach space X, and let $A(t, z):[0, T) \times F \rightarrow X$ be locally Lipschitz in z and continuous in t. Suppose that for each $(t, z) \in[0, T] \times F$ the following holds

$$
\begin{equation*}
\lim _{h \downarrow 0} \frac{1}{h} \operatorname{dist}(z+h A(t, z), F)=0 .^{2} \tag{11}
\end{equation*}
$$

Then for every $z_{0} \in F$ the equation

$$
d z / d t=A(t, z), \quad z(0)=z_{0}
$$

admits a local solution $z \in C^{1}\left(\left[0, T_{0}\right] ; F\right)$.
We shall apply Theorem 2 with $F=\left\{(\eta, v) \in X ; \eta \in \mathscr{D}_{\mu}^{s, p}\right.$ and $\left.v \circ \eta^{-1} \in T_{e^{\prime}}^{\mathscr{D}_{\mu}^{s, p}}\right\}$ which is clearly closed in X.

The main steps in proving Theorem 1 are the following:
(a) Prove that $A(t ; \eta, v)$ is locally Lipschitz in (η, v) from F into X (see Section 3).

[^2]One has to be rather careful because the mapping $\eta \mapsto \eta^{-1}$ is not locally Lipschitz from $\mathscr{\bigotimes}_{\mu}^{s, p}$ into itself (it is only continuous); similarly, the mapping $[\psi, \eta] \mapsto \psi \circ \eta$ is not locally Lipschitz from $\mathscr{D}_{\mu}^{s, p} \times \mathscr{D}_{\mu}^{s, p}$ into $\mathscr{D}_{\mu}^{s, p}$.
(b) Prove that $A(t ; \eta, v)$ is tangent to F in the sense of (11) (see Section 4).

Remark. In case $f=0$, Eq. (7) represents the equation of geodesics on the manifold $\mathscr{D}_{\mu}^{s, 2}$ for an appropriate weak Riemannian metric. Since the metric is weak (i.e. the topology induced by this metric is weaker than the topology of $\mathscr{D}_{\mu}^{s^{2}}$), the existence of a Riemannian connection and of geodesics does not follow at once, but is proved in [2].

3. A is Locally Lipschitz

First of all, we observe the following.
Lemma 3. Let f be as in Theorem 1. The mapping $(t, \eta) \mapsto(P f)(\eta, t)$ is continuous in t and locally Lipschitz in η.

Proof. As $t \rightarrow t_{0}, f(\cdot, t) \rightarrow f\left(\cdot, t_{0}\right)$ in $C^{s}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)$, and therefore $P f(\cdot, t) \rightarrow P f\left(\cdot, t_{0}\right)$ in $W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$. We conclude by Lemma A. 4 that $P f(\eta, t) \rightarrow P f\left(\eta, t_{0}\right)$ in $W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$.

For a fixed $t, f(\cdot, t) \in C^{s+1+\alpha}(\bar{\Omega})$ and so $P f(\cdot, t) \in C^{s+1+\alpha}(\bar{\Omega})$. Thus, by Lemma A.3, $\eta \mapsto(P f)(\eta, t)$ is locally Lipschitz from $\mathscr{D}_{\mu}^{s, p}$ into $W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$.
Remark. It is actually sufficient to assume that $f \in W^{s+1, p}\left(\Omega, \mathbb{R}^{N}\right)$ and use the remark following Lemma A. 5 instead of Lemma A.3.

We shall now prove
Theorem 3. The mapping $(\eta, v) \mapsto B\left(v \circ \eta^{-1}\right) \circ \eta$ (B is defined in (10)) is locally Lipschitz from F into $W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$.

The proof of Theorem 3 relies on an appropriate factorization of B. Note that if $u \in T_{e} \mathscr{O}_{\beta}^{s, p}$, we have by Lemma 2, Bu=grad $\bar{\omega}$ where $\bar{\omega}$ is a solution of

$$
\begin{array}{ll}
\Delta \bar{\omega}=\operatorname{div}\left(\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) & \text { on } \Omega \\
\frac{\partial \bar{\omega}}{\partial n}=\left(\sum_{i} u_{i}-\frac{\partial u}{\partial x_{i}}\right) \cdot n & \text { on } \quad \partial \Omega
\end{array}
$$

But

$$
\operatorname{div}\left(\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right)=\sum_{i, j} \frac{\partial}{\partial x_{j}}\left(u_{i} \frac{\partial u_{j}}{\partial x_{i}}\right)=\sum_{i, j} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}}
$$

(since $\operatorname{div} u=0$) and

$$
\left(\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) \cdot n=\sum_{i, j} u_{i} \frac{\partial u_{j}}{\partial x_{i}} n_{j}=\beta(\cdot ; u, u)
$$

where $\beta(x ; u, u)$ denotes the second fundamental form of $\partial \Omega$. More precisely, let $\delta(x)$ be a smooth function on \mathbb{R}^{N} such that

$$
\begin{aligned}
\Omega & =\left\{x \in \mathbb{R}^{N} ; \delta(x)>0\right\}, \\
\partial \Omega & =\left\{x \in \mathbb{R}^{N} ; \delta(x)=0\right\},
\end{aligned}
$$

and $\operatorname{grad} \delta=-n$ on $\partial \Omega$. For $u \in T_{e} \mathscr{D}_{\mu}^{s, p}$, we have $u . \operatorname{grad} \delta=0$ on $\partial \Omega$ and by differentiation we obtain

$$
u \cdot \operatorname{grad}[u \cdot \operatorname{grad} \delta]=0 \quad \text { on } \quad \partial \Omega,
$$

i.e.,

$$
\sum_{i, j} u_{i} \frac{\partial}{\partial x_{i}}\left(u_{j} \frac{\partial \delta_{i}}{\partial x_{j}}\right)=0 \quad \text { on } \quad \partial \Omega .
$$

Therefore on $\partial \Omega$ we have

$$
\begin{equation*}
\sum_{i, j} u_{i} \frac{\partial u_{j}}{\partial x_{i}} n_{j}=\sum_{i, j} \frac{\partial^{2} \delta}{\partial x_{i} \partial x_{j}} u_{i} u_{j}=\beta(\cdot ; u, u) . \tag{12}
\end{equation*}
$$

Note that β is a quadratic form in u depending smoothly on $x \in \partial \Omega$. We consider first the mapping Q defined by

$$
Q(\eta, v)=\left(\eta, \sum_{i, j}\left(\frac{\partial u_{j}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}}\right) \circ \eta, \beta(\eta ; v, v)\right),
$$

where $u=v \circ \bar{\eta}^{\mathbf{1}}$, which maps F into Z, where
$Z=\left\{(\eta, f, g) \in \mathscr{D}_{\mu}^{s, p} \times W^{s-1, p}(\Omega) \times W^{s-1 / p, p}(\partial \Omega) ; \int_{\Omega} f d x=\int_{\partial \Omega} g \circ \eta^{-1} d \sigma\right\}$.
Next, let $S(\eta, f, g)$ be defined from Z into $W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$ by

$$
S(\eta, f, g)=(\operatorname{grad} \pi) \circ \eta,
$$

where π is a solution of

$$
\begin{array}{lll}
\Delta \pi=f \circ \eta^{-1} & \text { on } \quad \Omega, \\
\frac{\partial \pi}{\partial n}=g \circ \eta^{-1} & \text { on } & \partial \Omega .
\end{array}
$$

Therefore we obtain

$$
B\left(v \circ \eta^{-1}\right) \circ \eta=(S \circ Q)(\eta, v),
$$

and it is sufficient to prove the following propositions:
Proposition 1. The mapping $(\eta, v) \mapsto Q(\eta, v)$ is locally Lipschitz from F into Z.

Proposition 2. The mapping $(\eta, f, g) \mapsto S(\eta, f, g)$ is locally Lipschitz from Z into $W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$.

The following lemma will be very useful.
Lemma 4. Let $f \in W^{s, p}(\Omega)$ and $\eta \in \mathscr{D}_{\mu}^{s, p}$. Then

$$
\left\|\left(\operatorname{grad}\left(f \circ \eta^{-1}\right)\right) \circ \eta-\operatorname{grad} f\right\|_{s-1, p} \leqslant C_{n}\|\eta-e\|_{s, p}\|f\|_{s, p},
$$

where e denotes the identity of Ω and C_{η} a constant depending only on $\|\eta\|_{s, p}$.

Proof of Lemma 4. We have

$$
\operatorname{grad}\left(f \circ \eta^{-1}\right)={ }^{t}\left(\operatorname{Jac} \eta^{-1}\right) \cdot(\operatorname{grad} f)\left(\eta^{-1}\right)
$$

and

$$
\left(\operatorname{grad}\left(f \circ \eta^{-1}\right)\right) \circ \eta==^{t}\left(\operatorname{Jac} \eta^{-1}\right)(\eta) \operatorname{grad} f=(\operatorname{Jac} \eta)^{-1} \cdot \operatorname{grad} f .
$$

We deduce from Lemma A. 1 that

$$
\begin{aligned}
\left\|\left(\operatorname{grad}\left(f \circ \eta^{-1}\right)\right) \circ \eta-\operatorname{grad} f\right\|_{s-1, p} & \leqslant C\left\|(\operatorname{Jac} \eta)^{-1}-I\right\|_{s-1, p}\|\operatorname{grad} f\|_{s-1, p} \\
& \leqslant C\left\|(\operatorname{Jac} \eta)^{-1} \circ(I-\operatorname{Jac} \eta)\right\|_{s-1, p}\|f\|_{s, p} .
\end{aligned}
$$

Remark. Lemma 4 holds true for any first-order differential operator and in a particular grad can be replaced by div or by curl.

Proof of Proposition 1. From Lemma 4, it follows easily that $(\eta, f) \mapsto\left(\operatorname{grad}\left(f \circ \eta^{-1}\right)\right) \circ \eta$ is locally Lipschitz from $\mathscr{D}_{\mu}^{s, p} \times W^{s, p}(\Omega)$
into $W^{s-1, p}\left(\Omega ; \mathbb{R}^{N}\right)$. Indeed, by Lemma A. 4 (applied with $\alpha=s-1$ and $q=p^{*}$), we have

$$
\begin{aligned}
& \left\|\left(\operatorname{grad}\left(f \circ \eta_{1}^{-1}\right)\right) \circ \eta_{1}-\left(\operatorname{grad}\left(f \circ \eta_{2}^{-1}\right)\right) \circ \eta_{2}\right\|_{s-1, p} \\
& \quad \leqslant C\left\|\left(\operatorname{grad}\left(f \circ \eta_{1}^{-1}\right)\right) \circ \eta_{1} \circ \eta_{2}^{-1}-\operatorname{grad}\left(f \circ \eta_{2}^{-1}\right)\right\|_{s-1, p}\left(\left\|\eta_{2}\right\|_{s, p}^{s-1}+1\right) \\
& \quad \leqslant C\left(\eta_{1}, \eta_{z}\right)\left\|\eta_{1}-\eta_{2}\right\|_{s, p}\|f\|_{s, p}
\end{aligned}
$$

where $C\left(\eta_{1}, \eta_{2}\right)$ is locally bounded. Hence, by Lemma A.1, the mapping

$$
(\eta, v) \mapsto \sum_{i, j} \frac{\partial\left(v_{i} \circ \eta^{-1}\right)}{\partial x_{j}}(\eta) \frac{\partial\left(v_{j} \circ \eta^{-1}\right)}{\partial x_{i}}(\eta)
$$

is locally Lipschitz.
It remains to check that $(\eta, v) \mapsto \beta(\eta ; v, v)$ is locally Lipschitz from F into $W^{s-1 / p, p}(\partial \Omega)$. This is clear (by Lemma A.5) since $\beta(x ; v, v)$ is smooth in x and quadratic in v.

In the proof of Proposition 2, we shall use the following:
Lemma 5. There is a positive constant α such that

$$
\alpha\|w\|_{s, p} \leqslant\|\operatorname{div} w\|_{s-1, p}+\|\operatorname{curl} w\|_{s-1, p}+\|w \cdot n\|_{s-1 / p, p}+\|w\|_{s-1, p}
$$

for all $w \in W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$, where curl u denotes the matrix with coefficients $\varphi_{i j}=\left(\partial w_{i} / \partial x_{j}\right)-\left(\partial w_{j} / \partial x_{i}\right)$.

Proof of Lemma 5. We have

$$
\left(\partial^{2} w_{i} / \partial x_{i} \partial x_{j}\right)-\hat{\partial}^{2} w_{j} / \partial x_{i}{ }^{2}=\partial \varphi_{i j} / \partial x_{i},
$$

and thus for all $1 \leqslant j \leqslant N$,

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}}(\operatorname{div} w)-\Delta w_{j}=\sum_{i} \frac{\partial \varphi_{i j}}{\partial x_{i}} . \tag{13}
\end{equation*}
$$

Let $\nu=\left(\nu_{j}\right) \in C^{\infty}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)$ be such that $\nu=n$ on $\partial \Omega$ and let $U=$ $\sum_{j} v_{j} w_{j}$. So that

$$
\Delta U=\sum_{j} v_{j} \frac{\partial}{\partial x_{j}}(\operatorname{div} w)-\sum_{i, j} v_{j} \frac{\partial \varphi_{i j}}{\partial x_{i}}+2 \sum_{i, j} \frac{\partial \nu_{j}}{\partial x_{i}} \frac{\partial w_{j}}{\partial x_{i}}+\sum_{j}\left(\Delta \nu_{j}\right) w_{j} .
$$

Therefore, by a regularity theorem for the Dirichlet problem ((see [5]), we have

$$
\begin{aligned}
\|U\|_{s, p} & \leqslant C\left(\|\Delta U\|_{s-2, p}+\left\|\left.U\right|_{a_{\Omega}}\right\|_{s-1 / p, p}\right) \\
& \leqslant C^{\prime}\left(\|\operatorname{div} w\|_{s-1, p}+\|\operatorname{curl} w\|_{s-1, p}+\|w\|_{s-1, p}+\|w \cdot n\|_{s-1 / p, p}\right)
\end{aligned}
$$

Finally, for all $1 \leqslant i \leqslant N$,

$$
\begin{aligned}
V_{i} & =\sum_{j} v_{j} \frac{\partial w_{i}}{\partial x_{j}}=\sum_{j} \frac{\partial}{\partial x_{i}}\left(v_{j} w_{j}\right)-\sum_{j} \frac{\partial \nu_{j}}{\partial x_{i}} w_{j}+\sum_{j} v_{j} \varphi_{i j} \\
& =\frac{\partial U}{\partial x_{i}}-\sum_{j} \frac{\partial v_{j}}{\partial x_{i}} w_{j}+\sum v_{j} \varphi_{i j} .
\end{aligned}
$$

Hence, $\partial w_{i} / \partial \eta=V_{i \mid \partial \Omega} \in W^{s-1-1 / p, p}(\partial \Omega)$ and we have the estimate

$$
\left\|\frac{\partial w_{i}}{\partial n}\right\|_{s-1-1 / p, p} \leqslant C\left(\|U\|_{s, p}+\|w\|_{s-1, p}+\|\operatorname{curl} w\|_{s-1, p}\right) .
$$

On the other hand, by (13), $\Delta w_{i} \in W^{s-2, p}(\Omega)$. Moreover,

$$
\left\|\operatorname{grad} w_{i}\right\|_{s-1, p} \leqslant C\left(\left\|\Delta w_{i}\right\|_{s-2, p}+\left\|\frac{\partial w_{i}}{\partial n}\right\|_{s-1-1 / n, p}\right)
$$

so that by (13) and the previous estimate we get
$\|w\|_{s, p} \leqslant C\left(\|\operatorname{div} w\|_{s-1, p}+\|\operatorname{curl} w\|_{s-1, p}+\|w\|_{s-1, p}+\|w \cdot n\|_{s-1 / p, p}\right)$.
Remark. For any norm $\|\|\cdot\|\|$ on $W^{s-1, p}$ which is weaker than $\left\|\|_{s-1, p}\right.$, there is a constant $\alpha>0$ such that

$$
\alpha\|w\|_{s, p} \leqslant\|\operatorname{div} w\|_{s-1, p}+\|\operatorname{curl} w\|_{s-1, p}+\|w \cdot n\|_{s-1 / p, p}+\|w\|,
$$

since the injection $W^{s, p} \subset W^{s-1, p}$ is compact.

Proof of Proposition 2. We have to estimate

$$
X==\left\|\left(\operatorname{grad} \pi_{1}\right) \circ \eta_{1}-\left(\operatorname{grad} \pi_{2}\right) \circ \eta_{2}\right\|_{s, p}
$$

where

$$
\Delta \pi_{i}=f_{i} \circ \eta_{i}^{-1} \quad \text { on } \Omega, \quad\left(\partial \pi_{i} / \partial n\right)=g_{i} \circ \eta_{i}^{-1} \quad \text { on } \partial \Omega, \quad i=1,2 .
$$

By Lemma A. 4 we know that

$$
X \leqslant C\left(\eta_{2}\right)\left\|\left(\operatorname{grad} \pi_{1}\right) \circ \eta_{1} \circ \eta_{2}^{-1}-\operatorname{grad} \pi_{2}\right\|_{s p} .
$$

We shall use the Remark following Lemma 5 to estimate

$$
\left\|\left(\operatorname{grad} \pi_{1}\right) \circ \eta_{1} \circ \eta_{2}^{-1}-\operatorname{grad} \pi_{2}\right\|_{s, p} .
$$

Let

$$
\begin{aligned}
& X_{1}=\| \operatorname{div}\left[\left(\operatorname{grad} \pi_{1}\right) \circ \eta_{1} \circ \eta_{2}^{-1}-\operatorname{grad} \pi_{2} \|_{s-1, p}\right. \\
& X_{2}=\| \operatorname{curl}\left[\left(\operatorname{grad} \pi_{1}\right) \circ \eta_{1} \circ \eta_{2}^{-1}-\operatorname{grad} \pi_{2} \|_{s-1, p}\right. \\
& X_{3}=\left\|\left[\left(\operatorname{grad} \pi_{1}\right) \circ \eta_{1} \circ \eta_{2}^{-1}-\operatorname{grad} \pi_{2}\right] \cdot n\right\|_{s-1 / p, p} \\
& X_{4}=\left\|\left(\operatorname{grad} \pi_{1}\right) \circ \eta_{1} \circ \eta_{2}^{-1}-\operatorname{grad} \pi_{2}\right\|,
\end{aligned}
$$

where we choose

$$
\|u\|=\sup \left\{\int_{\Omega} u \cdot \zeta d x ; \zeta \in C^{r}\left(\bar{\Omega} ; \mathbb{R}^{N}\right), \zeta=0 \text { on } \partial \Omega \text { and }\|\zeta\|_{C^{s}} \leqslant 1\right\} .
$$

We have

$$
\operatorname{div} \operatorname{grad} \pi_{2}=\Delta \pi_{2}=f_{2} \circ \eta_{2}^{-1}
$$

and

$$
\operatorname{div}\left[\left(\operatorname{grad} \pi_{1}\right) \circ \eta_{1} \circ \eta_{2}^{-1}\right]=\left[\operatorname{div}\left(\operatorname{grad} \pi_{1}\right)\right] \circ \eta_{1} \circ \eta_{2}^{-1}+R
$$

where, by the Remark following Lemma 4 (used with $f=\left(\operatorname{grad} \pi_{1}\right) \circ \eta$ and $\eta=\eta_{1} \circ \eta_{2}^{-1}$), we have

$$
\begin{aligned}
\|R\|_{s-1, p} & \leqslant C\left(\eta_{1}, \eta_{2}\right)\left\|\eta_{1}-\eta_{2}\right\|_{s, p}\left\|\operatorname{grad} \pi_{1}\right\|_{s, p} \\
& \leqslant C^{\prime}\left(\eta_{1}, \eta_{2}\right)\left\|\eta_{1}-\eta_{2}\right\|_{s p}\left(\left\|f_{1} \circ \eta_{1}^{-1}\right\|_{s-1, p}+\left\|g_{1} \circ \eta_{1}^{-1}\right\|_{s-1 / p, p}\right) \\
& \leqslant C^{\prime \prime}\left(\eta_{1}, \eta_{2}\right)\left\|\eta_{1}-\eta_{2}\right\|_{s, p}\left(\left\|f_{1}\right\|_{s-1, p}+\left\|g_{1}\right\|_{s-1 / p, p}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
X_{1} \leqslant & C^{\prime \prime \prime}\left(\eta_{1}, \eta_{2}\right)\left\|\eta_{1}-\eta_{2}\right\|_{s, p}\left(\left\|f_{1}\right\|_{s-1, p}+\left\|g_{1}\right\|_{s-1 / p, p}\right) \\
& +\left\|f_{1} \circ \eta_{2}^{-1}-f_{2} \circ \eta_{2}^{-1}\right\|_{s-1, p}
\end{aligned}
$$

and thus
$X_{1} \leqslant C^{\prime \prime \prime}\left(\eta_{1}, \eta_{2}\right)\left[\left\|\eta_{1}-\eta_{2}\right\|_{s, p}\left(\left\|f_{1}\right\|_{s-1, p}+\left\|g_{1}\right\|_{s-1} \cdot p, p\right)+\left\|f_{1}-f_{2}\right\|_{s-1, p}\right]$.
Similarly, since curl grad $=0$, we get

$$
X_{2} \leqslant C\left(\eta_{1}, \eta_{2}\right)\left\|\eta_{1}-\eta_{2}\right\|_{s, p}\left(\left\|f_{1}\right\|_{s-1, p}+\left\|g_{1}\right\|_{s-1 / p, p}\right)
$$

Next letting $\eta=\eta_{1} \circ \eta_{2}^{-1}$ we have

$$
\begin{aligned}
X_{3} & \leqslant\left\|\left(\operatorname{grad} \pi_{1}\right) \circ \eta \cdot(n-n \circ \eta)\right\|_{s-1 / p, p}+\left\|\frac{\partial \pi_{1}}{\partial n}(\eta)-\frac{\partial \pi_{2}}{\partial n}\right\|_{s-1 / p, p} \\
& \leqslant C\left(\eta_{1}, \eta_{2}\right)\left[\left\|\eta_{1}-\eta_{2}\right\|_{s, p}\left(\left\|f_{1}\right\|_{s-1, p}+\left\|g_{1}\right\|_{s-1 / p, p}\right)+\left\|g_{1}-g_{2}\right\|_{s-1 / p, p}\right] .
\end{aligned}
$$

Finally we estimate X_{4}; let $\zeta \in C^{s}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)$ be such that $\zeta=0$ on $\partial \Omega$. Let

$$
\begin{aligned}
K(\zeta) & =\int_{\Omega}\left[\left(\operatorname{grad} \pi_{1}\right) \circ \eta-\operatorname{grad} \pi_{2}\right] \cdot \zeta d x \\
& =\int_{\Omega}\left[\left(\operatorname{grad} \pi_{1}\right) \cdot\left(\zeta \circ \eta^{-1}\right)-\operatorname{grad} \pi_{2} \cdot \zeta\right] d x .
\end{aligned}
$$

Let ω and ω_{η} be solutions of the equations

$$
\left\{\begin{array} { l }
{ \Delta \omega = \operatorname { d i v } \zeta \quad \text { on } \Omega } \\
{ \frac { \partial \omega } { \partial n } = 0 \quad \text { on } \partial \Omega }
\end{array} \quad \left\{\begin{array}{l}
\Delta \omega_{n}=\operatorname{div}\left(\zeta \circ \eta^{-1}\right) \quad \text { on } \Omega \\
\frac{\partial \omega_{n}}{\partial n}=0 \quad \text { on } \partial \Omega .
\end{array}\right.\right.
$$

We can always assume that

$$
\begin{gathered}
\|\omega\|_{C^{s}} \leqslant C\|\zeta\|_{C^{s}} \\
\left\|\omega_{\eta}-\omega\right\|_{s, p} \leqslant C\left\|\zeta \circ \eta^{-1}-\zeta\right\|_{s-1, p} \leqslant C\left(\eta_{1}, \eta_{2}\right)\left\|\eta_{1}-\eta_{2}\right\|_{s, p}\|\zeta\|_{C^{s}}
\end{gathered}
$$

by Lemma A.3. Thus

$$
\begin{aligned}
\left\|\omega_{\eta} \circ \eta-\omega\right\|_{s-1, p} & \leqslant\left\|\omega_{\eta} \circ \eta-\omega \circ \eta\right\|_{s-1, p}+\|\omega \circ \eta-\omega\|_{s-1, p} \\
& \leqslant C_{\eta}\left(\left\|\omega_{\eta}-\omega\right\|_{s-1, p}+\|\omega\|_{C^{*}}\|\eta-e\|_{s, p}\right)
\end{aligned}
$$

by Lemma A. 3 and A.4. Hence

$$
\left\|\omega_{\eta} \circ \eta-\omega\right\|_{s-1, p} \leqslant C\left(\eta_{1}, \eta_{2}\right)\left\|\eta_{1}-\eta_{2}\right\|_{s, p}\|\zeta\|_{c^{\prime}} .
$$

But

$$
\begin{aligned}
K(\zeta)= & \int_{\Omega}\left[\pi_{1} \cdot \Delta \omega_{n}-\pi_{2} \cdot \Delta \omega\right] d x \\
= & \int_{\Omega}\left(\Delta \pi_{1} \cdot \omega_{n}-\Delta \pi_{2} \cdot \omega\right) d x-\int_{\partial \Omega}\left(g_{1} \circ \eta_{1}^{-1} \cdot \omega_{n}-g_{2} \circ \eta_{2}^{-1} \cdot \omega\right) d \sigma \\
= & \int_{\Omega}\left[\left(f_{1} \circ \eta_{1}^{-1}\right) \cdot \omega_{n}-\left(f_{2} \circ \eta_{2}^{-1}\right) \cdot \omega\right] d x \\
& -\int_{\partial \Omega}\left[\left(g_{1} \circ \eta_{1}^{-1}\right) \cdot \omega_{n}-\left(g_{2} \circ \eta_{2}^{-1}\right) \cdot \omega\right] d \sigma .
\end{aligned}
$$

The first term can be estimated by

$$
\left\|f f_{1}-f_{2}\right\|_{L^{\infty}(\Omega)}\|\omega\|_{L^{1}(\Omega)}+\left\|f_{1}\right\|_{L^{1}(\Omega)}\left\|\omega_{\eta} \circ \eta-\omega\right\|_{L^{\infty}(\Omega)},
$$

while the second term can be estimated by

$$
\begin{gathered}
\left\|g_{1}-g_{2}\right\|_{L^{\infty}(\partial \Omega)}\left\|\omega_{n}\right\|_{L^{1}(\partial \Omega)}+\left\|g_{2}\right\|_{L^{\infty}(\partial \Omega)}\left\|\omega_{n}-\omega\right\|_{L^{1}(\partial \Omega)} \\
+\left\|g_{2}\right\|_{L i p}\left\|\eta_{1}^{-1}-\eta_{2}^{-1}\right\|_{L^{1}(\partial \Omega)}\left\|\omega_{\eta}\right\|_{L^{\infty}(\partial \Omega)} .
\end{gathered}
$$

So finally

$$
\begin{aligned}
K(\zeta) \leqslant & C\left(\eta_{1}, \eta_{2}\right)\|\zeta\|_{C^{\bullet}}\left[\left\|f_{1}-f_{2}\right\|_{L^{\infty}(\Omega)}+\left\|\eta_{1}-\eta_{2}\right\|_{s, p}\left\|f_{1}\right\|_{L^{1}(\Omega)}\right. \\
& \left.+\left\|g_{1}-g_{2}\right\|_{L^{\infty}(\partial \Omega)}+\left\|\eta_{1}-\eta_{2}\right\|_{s, p}\left(\left\|g_{2}\right\|_{L^{\infty}(\Omega \Omega)}+\left\|g_{2}\right\|_{L i p}\right)\right],
\end{aligned}
$$

and

$$
X_{4}=\sup _{\zeta} \frac{K(\zeta)}{\|\zeta\|_{C^{s}}} .
$$

4. A is "Tangent" to the Closed Set F

Let u and γ be given so that $u \in W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$ with $\operatorname{div} u=0$ on Ω and $u \cdot n=0$ on $\partial \Omega$ and $\gamma \in W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$ satisfying

$$
\operatorname{div}\left(\gamma-\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right)=0 \quad \text { on } \Omega, \quad\left(\gamma-\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) \cdot n=0 \quad \text { on } \partial \Omega .
$$

In order to prove that A is tangent to F, we shall exhibit a curve $\eta \in C^{2}\left(I ; \mathscr{D}_{\mu}^{s, p}\right)\left(I=\left[0, t_{0}\right], t_{0}\right.$ small enough) such that $\eta_{0}=e, \dot{\eta}_{0}=u$, $\ddot{\eta}_{0}=\gamma$. This curve will be a "good approximation" in $\mathscr{D}_{\mu}^{s, p}$ of $e+t u+\left(t^{2} / 2\right) \gamma$.

Theorem 4. Let $u \in \mathscr{D}_{\mu}^{s, p}$ and $\gamma \in W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$ with $s>(N / p)+1$ such that

$$
\operatorname{div}\left(\gamma-\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right)=0 \quad \text { on } \Omega, \quad\left(\gamma-\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) \cdot n=0 \quad \text { on } \partial \Omega .
$$

Then there exists a curve η_{1} satisfying $\eta \in C^{2}\left(I ; \mathscr{D}_{\mu}^{s, p}\right)$

$$
\begin{align*}
& \eta_{0}=e, \tag{14}\\
& \dot{\eta}_{0}=u, \tag{15}\\
& \ddot{\eta}_{0}=\gamma . \tag{16}
\end{align*}
$$

Remark. Conversely, if η is a curve satisfying (14), then $u=$ $\dot{\eta}_{0} \in T_{e} \mathscr{D}_{\mu}^{s, p}$ and $\gamma=\ddot{\eta}_{0} \in W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$ verify
$\operatorname{div}\left(\gamma-\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right)=0 \quad$ on Ω and $\left(\gamma-\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) \cdot n=0 \quad$ on $\partial \Omega$.
The proofs of Theorem 4 and its Remark are based on the following lemma.

Lemma 6. Let Ol and \mathscr{B} be Banach spaces, and let φ be a C^{2} mapping defined on a neighborhood of 0 in $0 t$ with values into \mathscr{B}, such that $\varphi(0)=0$ and $D_{0 \varphi}$ is a split surjection (i.e. $D_{0} \varphi$ is onto \mathscr{O} and $\operatorname{ker} D_{0} \varphi$ has a topological complement in al).

Given U, V in $O l$, there exists a curve $\zeta \in C^{2}(I ; O Z)$ such that

$$
\begin{gather*}
\varphi\left(\zeta_{t}\right)=0 \quad \text { for } t \in I, \quad \zeta_{0}=0, \tag{17}\\
\zeta_{0}=U, \tag{18}\\
\zeta_{0}=V, \tag{19}
\end{gather*}
$$

if and only if U and V satisfy

$$
\begin{gather*}
D_{0} \varphi \cdot U=0, \tag{20}\\
D_{0} \varphi \cdot V+D_{0}^{2} \varphi(U, U)=0 . \tag{21}
\end{gather*}
$$

Proof of Lemma 6. It is easy to check that $U=\zeta_{0}$ and $V=\xi_{0}$ satisfy necessarily (20) and (21) by differentiating (17). The converse relies on the implicit function theorem. Let $\mathscr{C}=\operatorname{ker} D_{0} \varphi$, and let P be a continuous projection from \mathscr{O} onto \mathscr{C}. Define $\psi: \mathscr{O} \rightarrow \mathscr{B} \times \mathscr{C}$ by $\psi(u)=(\varphi(u), P u)$, so that $D_{0} \psi=D_{0} \varphi \times P$ is an isomorphism from $O t$ onto $\mathscr{B} \times \mathscr{C}$. Therefore, by the implicit function theorem, ψ is a C^{2} isomorphism from a neighborhood of 0 in O onto a neighborhood of 0 in $\mathscr{B} \times \mathscr{C}$. For t small enough, consider

$$
\zeta_{t}=\psi^{-1}\left(0, t U+\left(t^{2} / 2\right) P V\right) .
$$

Therefore, $\varphi\left(\zeta_{1}\right)=0$ and $P \zeta_{i}=t U+\left(t^{2} / 2\right) P V$. Consequently, $D_{0} \varphi \cdot \dot{\zeta}_{0}=0$ and $P \dot{\zeta}_{0}=U$, which implies $\dot{\zeta}_{0}=U$. Nlso,

$$
D_{0} \varphi \cdot \tilde{\zeta}_{0}+D_{0}{ }^{2} \varphi(U, U)=0
$$

and $P \ddot{\zeta}_{0}=P V$. Hence, $D_{0} \varphi\left(\ddot{\zeta}_{0}-V\right)=0$ and $P\left(\ddot{\zeta}_{0}-V\right)=0$, which implies $\xi_{0}=V$.

Proof of Theorem 4. Let $C l=W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$ and let

$$
\mathscr{B}=\left\{(f, g) \in W^{s-1, p}(\Omega) \times W^{s-1 / p, p}(\partial \Omega) ; \int_{\Omega} f d x=\int_{\partial \Omega} g d \sigma\right\} .
$$

We consider the mapping φ defined on $O t$ by $\varphi(u)=\left(\varphi_{1}(u), \varphi_{2}(u)\right)$ where

$$
\begin{aligned}
& \varphi_{1}(u)=|\operatorname{Jac}(e+u)|-\frac{1}{\operatorname{Vol} \Omega} \int_{\Omega}|\operatorname{Jac}(e+u)| d x-\frac{1}{\operatorname{Vol} \Omega} \int_{\partial \Omega} \delta \circ(e+u) d \sigma, \\
& \varphi_{2}(u)=-\delta \circ(e+u)_{\partial \Omega}
\end{aligned}
$$

(recall that δ is smooth and $\partial \Omega=\{x ; \delta(x)=0\}$). Observe that φ takes its values in \mathscr{B} and that φ is C^{∞} since $|\mathrm{Jac}|$ is a polynomial in the first derivatives (we suppose $s>(N / p)+1$; cf. Lemma A.1) and since δ is C^{∞}. For u small enough, $\varphi(u)=0$ implies that $(e+u) \in \mathscr{D}_{\mu}^{s, p}$. Indeed, $\eta=(e+u)$ is a C^{1} diffeomorphism and $\eta(\partial \Omega) \subset \partial \Omega$. Therefore, $\eta \in \mathscr{D}^{s, p}$ and since $|\operatorname{Jac} \eta|=C$ is constant on Ω, we have $\operatorname{Vol} \Omega=\operatorname{Vol} \eta(\Omega)=$ $\int_{\Omega}|\mathrm{Jac} \eta| d x=C \operatorname{Vol} \Omega$; so that $C=1$ and $\eta \in \mathscr{D}_{\mu}^{s, p}$. For $v \in O$, we have the expansion

$$
|\mathrm{Jac}(e+t v)|=1+t \operatorname{div} v+\frac{t^{2}}{2}\left(|\operatorname{div} v|^{2}-\sum_{i, j=1}^{N} \frac{\partial v_{i}}{\partial x_{j}} \frac{\partial v_{j}}{\partial x_{i}}\right)+\cdots
$$

since for any matrix $M=\left(m_{i j}\right)$ we know that

$$
|I+\epsilon M|=1+\epsilon \operatorname{tr} M+\frac{\epsilon^{2}}{2}\left(|\operatorname{tr} M|^{2}-\sum_{i, j=1}^{N} m_{i j} m_{j i}\right)+\cdots
$$

Hence,

$$
D_{v} \varphi_{1} \cdot v=\operatorname{div} v-\frac{1}{\operatorname{Vol} \Omega} \int_{\Omega} \operatorname{div} v d x+\frac{1}{\operatorname{Vol} \Omega} \int_{\partial \Omega} v \cdot n d \sigma=\operatorname{div} v ;
$$

and $D_{0} \varphi_{2} \cdot v=v \cdot n$. Consequently, $D_{0} \varphi \cdot v=(\operatorname{div} v, v \cdot n)$ is a split surjection onto \mathscr{B}. Also

$$
\begin{aligned}
D_{0}{ }^{2} \varphi_{1}(v, v)= & \lim _{\epsilon \rightarrow 0} \frac{\varphi_{1}(\epsilon v)+\varphi_{1}(-\epsilon v)}{\epsilon^{2}}=|\operatorname{div} v|^{2}-\sum_{i, j=1}^{N} \frac{\partial v_{i}}{\partial x_{j}} \frac{\partial v_{j}}{\partial x_{i}} \\
& -\frac{1}{\operatorname{Vol} \Omega} \int_{\Omega}\left(|\operatorname{div} v|^{2}-\sum_{i, j=1}^{N} \frac{\partial v_{i}}{\partial x_{j}} \frac{\partial v_{j}}{\partial x_{i}}\right) d x \\
& -\frac{1}{\operatorname{Vol} \Omega} \int_{\partial \Omega} \sum_{i, j=1}^{N} \frac{\partial^{2} \delta}{\partial x_{i} \partial x_{j}} v_{i} v_{j} d \sigma
\end{aligned}
$$

and

$$
D_{0}{ }^{2} \varphi_{2}(v, v)=-\sum_{i, j=1}^{N} \frac{\partial^{2} \delta}{\partial x_{i} \partial x_{j}} v_{i} v_{j}=-\beta(\cdot ; v, v)
$$

We apply now Lemma 6 with $U=u$ and $V=\gamma$. Conditions (20) and (21) are satisfied since

$$
D_{0} \varphi \cdot u=(\operatorname{div} u, u \cdot n)=0
$$

and by (12),

$$
\begin{gathered}
D_{0} \varphi_{1} \cdot \gamma+D_{0}{ }^{2} \varphi_{1}(u, u)=\operatorname{div} \gamma-\sum_{i, j=1}^{N} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}}+\frac{1}{\operatorname{Vol} \Omega} \int_{\Omega} \sum_{i, j=1}^{N} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}} d x \\
-\frac{1}{\operatorname{Vol} \Omega} \int_{\partial \Omega} \sum_{i, j=1}^{N} \frac{\partial^{2} \delta}{\partial x_{i} \partial x_{j}} u_{i} u_{j} d \sigma=0 \\
D_{0} \varphi_{2} \cdot \gamma+D_{0}{ }^{2} \varphi_{2}(u, u)=\gamma \cdot n-\sum_{i, j=1}^{N} \frac{\partial^{2} \delta}{\partial x_{i} \partial x_{j}} u_{i} u_{j}=0
\end{gathered}
$$

Theorem 5. A is "tangent" to F in the following sense:

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\operatorname{dist}((\eta, v)+h A(t ; \eta, v), F)}{h}=0 \quad \text { for all } \quad(\eta, v) \in F, \tag{22}
\end{equation*}
$$

where $\operatorname{dist}(\cdot, F)$ denotes the distance to the closed set F in the space $X=W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right) \times W^{s, p}\left(\Omega ; \mathbb{R}^{N}\right)$.

Proof of Theorem 5. We recall that

$$
A(t ; \eta, u)=\left(u, B\left(u \circ \eta^{-1}\right) \circ \eta+P\left(f_{t}\right) \circ \eta\right)
$$

(where f_{t} is the given field of external forces),

$$
F=\left\{(\eta, u) \in X ; \eta \in \mathscr{D}_{u}^{s, p} \text { and } u \circ \eta^{-1} \in T_{e} \mathscr{D}_{\mu}^{s, p}\right\} .
$$

We start by proving (22) for the case $\eta=e$. We observe then that $u \in T_{e} \mathscr{D}_{\mu}^{s, p}$ and $\gamma=B(u)+P\left(f_{i}\right)$ meets the requirements of Theorem 4, i.e.,
$\operatorname{div}\left(\gamma-\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right)=0 \quad$ on $\Omega \quad$ and $\quad\left(\gamma-\sum_{i} u_{i} \frac{\partial u}{\partial x_{i}}\right) \cdot n=0 \quad$ on $\partial \Omega$ since $\gamma-\sum_{i} u_{i}\left(\partial u / \partial x_{i}\right)=P\left(f-\sum_{i} u_{i}\left(\partial u / \partial x_{i}\right)\right)$ by the definition of B. From Theorem 4 we know that there exists a curve $\eta \in C^{2}\left(I ; \mathscr{D}_{\mu}^{s, p}\right)$ with initial data (e, u, γ). Since $\left(\eta_{h}, \dot{\eta}_{h}\right) \in F$, we have

$$
(1 / h) \operatorname{dist}[(e, u)+h A(t ; e, u), F] \leqslant(1 / h) \operatorname{dist}\left[(e, u)+h A(t ; e, u),\left(\eta_{h}, \dot{\eta}_{h}\right)\right] .
$$

By construction of η, the right-hand side tends to 0 as $h \rightarrow 0$, which proves Theorem 5 at $\eta=e$. For the general case, we just have to notice that

$$
A(t ; \eta, u)=A\left(t ; e, u \circ \eta^{-1}\right) \circ \eta,
$$

that $\eta(F)=F$ for $\eta \in \mathscr{D}_{\mu}^{s, p}$, and that the map $v \mapsto v \circ \eta$ is continuous (cf. Lemma A.4). Therefore, we can apply the result at e, completing the proof of Theorem 5 .

APPENDIX: Product and Composition of Functions in Sobolev Spaces

1. Product of Two Functions

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with smooth boundary.
Lemma A.1. Let $\alpha \geqslant 1$ be an integer, and let $1 \leqslant p \leqslant+\infty$, $1 \leqslant q \leqslant+\infty$.

If $u \in W^{\alpha, p}(\Omega)$ and $v \in W^{\alpha, q}(\Omega)$, then $u, v \in W^{\alpha, r}(\Omega)$, where r is defined by

$$
\begin{gather*}
1 / r=(1 / p)+(1 / q)-\alpha / N \quad \text { when } \max \{p, q\}<N / \alpha, \tag{1}\\
r \text { arbitrary }<\min \{p, q\} \quad \text { when } \max \{p, q\}=N / \alpha \tag{2}\\
(r=1 \text { if } p=q=N=\alpha=1), \\
r=\min \{p, q\} \quad \text { when } \quad \max \{p, q\}>N / \alpha . \tag{3}
\end{gather*}
$$

In addition, $\|u \cdot v\|_{W^{\alpha}, r} \leqslant C\|u\|_{W^{\alpha, p}}\|v\|_{W^{\alpha, q}}$, where C depends only on α, p, q, r, and Ω.

Proof. By induction on α, the proof is easy for $\alpha==1$. In order to show that $u \cdot v \in W^{\alpha, r}(\Omega)$, we have to prove that $u: v \in L^{r}(\Omega)$ (which is straightforward) and that $D u \cdot v+u \cdot D v \in W^{\alpha-1, r}(\Omega)$. By symmetry, it is sufficient to check that $D u \cdot v \in W^{\alpha-1, r}(\Omega)$. But $D u \in W^{\alpha-1, p}(\Omega)$ and $v \in W^{\alpha, q}(\Omega) \subset W^{\alpha-1, q^{*}}(\Omega)$, where q^{*} is determined by

$$
\frac{1}{q^{*}}= \begin{cases}\frac{1}{q}-\frac{1}{N} & \text { when } q<N \\ \text { arbitrarily small with } \\ \frac{1}{q^{*}}<\frac{1}{q} & \text { when } q=N \\ 0 & \text { when } q>N\end{cases}
$$

We have now to distinguish three cases:
Case 1. $\max \{p, q\}<N / \alpha$ and thus $\max \left\{p, q^{*}\right\}<N /(\alpha-1)$. By the induction assumption, we know that $D u \cdot v \in W^{\alpha-1, s}(\Omega)$ where $1 / s=(1 / p)+\left(1 / q^{*}\right)-(\alpha-1) / N=(1 / p)+(1 / q)-\alpha / N$.

Case 2. $\max \{p, q\}=N / \alpha$. Either $p \leqslant q=N / \alpha$, so that $q^{*}=$ $N /(\alpha-1)$. Thus, $\max \left\{p, q^{*}\right\}=N /(\alpha-1)$ and by the induction assumption we know that $D u \cdot v \in W^{\alpha-1, s}(\Omega)$ for any $s<\min \left\{p, q^{*}\right\}=$ $p=\min \{p, q\}$. Or $q<p=N / \alpha$, so that $\max \left\{p, q^{*}\right\}<N /(\alpha-1)$ and by the induction assumption $D u \cdot v \in W^{\alpha-1, s}(\Omega)$ with

$$
1 / s=(1 / p)+\left(1 / q^{*}\right)-(\alpha-1) / N=(1 / p)+(1 / q)-\alpha / N=1 / q
$$

Hence $D u \cdot v \in W^{\alpha-1, s(\Omega)}$ with $s=\min \{p, q\}$.
Case 3. $\max \{p, q\}>N / \alpha$. Either $q>N / \alpha$ so that

$$
\max \left\{p, q^{*}\right\}>N /(\alpha-1)
$$

and by the induction assumption $D u \cdot v \in W^{\alpha-1, s}(\Omega)$ with $s=$ $\min \left\{p, q^{*}\right\} \geqslant \min \{p, q\}$. $\operatorname{Or} p>N / \alpha$ and $q \leqslant N / \alpha ;$ by the induction assumption $D u \cdot v \in W^{\alpha-1, s}(\Omega)$, for s as follows: when

$$
\max \left\{p, q^{*}\right\}<N /(\alpha-1)
$$

we have $1 / s=(1 / p)+\left(1 / q^{*}\right)-(\alpha-1) / N$ and $1 / s<1 / q$. Therefore, $D u \cdot v \in W^{\alpha-1, s}(\Omega)$ with $s=\min \{p, q\}$. When

$$
\max \left\{p, q^{*}\right\} \geqslant N /(\alpha-1)
$$

we have $D u \cdot v \in W^{--1, s, s}(\Omega)$ for any $s<\min \left\{p, q^{*}\right\}$ and in particular we can choose $s=\min \{p, q\}$.

2. Composition of Two Mappings

Let $\Omega^{\prime} \subset \mathbb{R}^{M}$ be a bounded domain with smooth boundary.
Lemma A.2. Let $\alpha \geqslant 1$ be an integer, and let $1 \leqslant p \leqslant+\infty$ with $\alpha>N / p$. Let $F \in C^{\alpha}\left(\overline{\Omega^{\prime}}\right)$, and let $G \in W^{\alpha, p}\left(\Omega ; \mathbb{R}^{M}\right)$ such that $G(\Omega) \subset \bar{\Omega}^{\prime}$. Then $F \circ G \in W^{\alpha, p}(\Omega)$ and

$$
\|\boldsymbol{F} \circ G\|_{W^{\alpha}, \boldsymbol{p}} \leqslant C\|F\|_{C^{\alpha}}\left(\|G\|_{W^{\alpha, \phi}}^{\alpha}+1\right),
$$

where C depends only on α, p, Ω, and Ω^{\prime}.
Proof. By induction on α, the proof is easy for $\alpha=1$. In order to show that $F \circ G \in W^{\alpha, p}(\Omega)$, we have to check that $F \circ G \in L^{p}(\Omega)$ (which is obvious) and that ($D F \circ G$) $\cdot D G \in W^{\alpha-1, p}(\Omega)$.

Since $\alpha-1>N / p^{*}$, we know by the induction assumption that $D F \circ G \in W^{a-1, p^{*}}(\Omega)$ with

$$
\left.\|D F \circ G\|_{W^{\alpha-1, p^{*}}} \leqslant C\|F\|_{C^{\alpha}}\|G\|_{W^{\alpha-1, p *}}^{\alpha-1}+1\right) .
$$

But $D G \in W^{\alpha-1, p}(\Omega)$ and from Lemma A. 1 (Case 3) we get $(D F \circ G) \cdot D G \in W^{\alpha-1, p}(\Omega)$ with the corresponding estimate.

Remark. A slightly sharper version of Lemma A. 2 can be found in [7].

Lemma A.3. Let $\alpha \geqslant 1$ be an integer and let $1 \leqslant p \leqslant+\infty$ with $\alpha>N / p$. Let $F \in C^{\alpha+1}\left(\overline{\Omega^{\prime}}\right)$, and let $G \in W^{\alpha, p}\left(\Omega ; \mathbb{R}^{M}\right)$ and

$$
H \in W^{\alpha, p}\left(\Omega ; \mathbb{R}^{M}\right)
$$

such that $G(\Omega) \subset \bar{\Omega}^{\prime}, H(\Omega) \subset \bar{\Omega}^{\prime}$. Then

$$
\begin{aligned}
& \|F \circ G-F \circ I\|_{W^{\alpha}, \boldsymbol{p}} \\
& \quad \leqslant C\|F\|_{C \alpha+1}\|G-H\|_{W^{\alpha, p}}\left(\|G\|_{W_{\alpha, ~}^{x}}^{\alpha}+\|H\|_{W_{\alpha}^{\alpha}, \boldsymbol{p}}^{\alpha}+1\right),
\end{aligned}
$$

where C depends only on α, p, Ω and Ω^{\prime}.

Proof. By induction on α, the proof is easy for $\alpha=1$. In order to show that (4) holds, we have to check that

$$
\|F \circ G-F \circ H\|_{L^{p}} \leqslant C\|F\|_{C^{1}}\|G-H\|_{W^{1, p}}
$$

(which is obvious) and that

$$
\|(D F \circ G) \cdot D G-(D F \circ H) \cdot D H\|_{W^{\alpha-1}},
$$

can be bounded by the right-hand side in (4). But

$$
\begin{aligned}
& (D F \circ G) \cdot D G-(D F \circ H) \cdot D H \\
& \quad=(D F \circ G-D F \circ H) \cdot D G+(D F \circ H) \cdot(D G-D H) .
\end{aligned}
$$

The first term in the right-hand side is bounded in $W^{\alpha-1, p}(\Omega)$ by

$$
C\|F\|_{C^{\alpha+1}}\|G-H\|_{W^{\alpha-1, p *}}\left(\|G\|_{W^{\alpha-1, p}}^{\alpha-1}+\|H\|_{W^{\alpha-1, p *}}^{\alpha-1}+1\right)\|G\|_{W^{\alpha, p}, ~}
$$

(using the induction assumption and Lemma A. 1 with $q=p^{*}$), while the second term in the right-hand side is bounded in $W^{\alpha-1, p}$ by

$$
C\|G-H\|_{W^{\alpha}, \boldsymbol{p}}\|F\|_{C^{\alpha}}\left(\|H\|_{W^{\alpha}-1, p * *}^{\|-1}+1\right)
$$

(using Lemmas A. 1 and A.2).
The following result differs essentially from Lemma A. 2 by the fact that we assume only that $F \in W^{\alpha, p}$ (instead of C^{α}), but G is here a diffeomorphism.

Lemma A.4. Let $\alpha \geqslant 2$ be an integer, and let $1 \leqslant p \leqslant q \leqslant+\infty$ such that $\alpha>(N / q)+1$. Let $F \in W^{\alpha, p}(\Omega)$, and let $G \in \mathscr{D}^{\alpha, q}(\Omega)$ (i.e. $G \in W^{\alpha, q}\left(\Omega ; \mathbb{R}^{N}\right)$ and G is a C^{1} diffeomorphism from $\bar{\Omega}$ onto $\left.\bar{\Omega}\right)$. Then $F \circ G \in W^{\alpha, p}(\Omega)$ and

$$
\|F \circ G\|_{W_{\alpha}, \phi} \leqslant C\|F\|_{W_{\alpha}, \boldsymbol{p}} \frac{1}{\inf |\operatorname{Jac} G|^{1^{1 / p}}}\left(\|G\|_{W^{\alpha}, Q}^{\alpha}+1\right),
$$

where C depends only on α, p, q and Ω.
Proof. By induction on α, we consider first the case where $\alpha=2$. It is clear that $F \circ G \in L^{p}(\Omega)$ and

$$
\|F \circ G\|_{L^{p}} \leqslant \frac{1}{\inf / \mathrm{Jac} G \Gamma^{1 / \nu}}\|F\|_{L^{\infty}} .
$$

Also, $D(F \circ G)=(D F \circ G) \cdot D G$ belongs to $W^{1, p}(\Omega)$ by Lemma A. 1 since $D G \in W^{1, q}(\Omega)(q>N)$ and $D F \circ G \in W^{1, p}(\Omega)$ with

$$
\|D F \circ G\|_{W^{1, p}} \leqslant \frac{1}{\inf \backslash \operatorname{Jac} G!^{1 / p}}\left(\|D F\|_{L^{p}}+\left\|D^{2} F\right\|_{L^{p}}\|D G\|_{L^{\infty}}\right) .
$$

In the general case, we have to check that $F \circ G \in L^{p}(\Omega)$ and that ($D F \circ G$) $\cdot D G \in W^{\alpha-1, p}(\Omega)$. By the induction assumption, we know that $D F \circ G \in W^{\alpha-1, p}(\Omega)$ (since $\left.\alpha-1>\left(N / q^{*}\right)+1\right)$ and

$$
\|D F \circ G\|_{W^{\alpha-1, p}} \leqslant C\|F\|_{W^{\alpha-1, p}} \frac{1}{\inf |\operatorname{Jac} G|^{1 / p}}\left(\|G\|_{W^{\alpha}-1, q^{*}}^{\alpha-1}+1\right) .
$$

From Lemma A.1, we conclude that $(D F \circ G) \cdot D G$ belongs to $W^{\alpha-1, p}(\Omega)$ with the corresponding estimate.

Lemma A.5. Let $\alpha \geqslant 2$ be an integer, and let $1 \leqslant p \leqslant q \leqslant+\infty$ be such that $p<+\infty$ and $\alpha>(N / q)+1$. Let $F \in W^{\alpha, p}(\Omega)$; then the mapping $G \mapsto F \circ G$ is continuous from $\mathscr{D}^{\alpha, q}(\Omega)$ into $W^{\alpha, p}(\Omega)$.

Proof. Given $\delta>0$, there exists $\tilde{F} \in C^{\alpha+1}(\bar{\Omega})$ such that

$$
\|F-\tilde{F}\|_{W^{\alpha}, D}<\delta
$$

We have

$$
F \circ G-F \circ H=(F \circ G-\check{F} \circ G)+(\tilde{F} \circ G-\tilde{F} \circ H)+(\tilde{F} \circ H-F \circ H)
$$

The first and third terms in the right-hand side can be bounded in $W^{\alpha, p}(\Omega)$ (using Lemma A.4) by

$$
C \delta \frac{1}{\inf |\operatorname{Jac} G|^{1 / p}}\left(\|G\|_{W^{\alpha}, q}^{\alpha}+1\right)+C \delta \frac{1}{\inf |\operatorname{Jac} H|^{1 / p}}\left(\|H\|_{W^{\alpha}, 4}^{\alpha}+1\right),
$$

while the second term can be bounded in $W^{\alpha, q}(\Omega)$ (and a fortiori in $W^{\alpha, p}(\Omega)$), using Lemma A.3, by

$$
C\|\tilde{F}\|_{C^{\alpha+1}}\|G-H\|_{W^{\alpha}, \varepsilon}\left(\|G\|_{W^{\alpha}, a}^{\alpha}+\|H\|_{W^{\alpha}, 4}^{\alpha}+1\right) .
$$

Remark. More generally, one can show, under the assumptions of Lemma A.5, that if $F \in W^{\alpha+\beta, p}(\Omega)$, then the mapping $G \mapsto F \circ G$ is of class C^{β} from $\mathscr{D}^{\alpha, q}(\Omega)$ into $W^{\alpha, p}(\Omega)\left[\mathscr{D}^{\alpha, q}(\Omega)\right.$ is provided with an appropriate manifold structure].

3. Integration of Vector Fields

Let $F(x, t): \Omega \times[0, T] \rightarrow \mathbb{R}^{N}$ be a vector field tangent to $\partial \Omega$ on $\partial \Omega$ (i.e. $F(x, t) \cdot n(x)=0$ for $x \in \partial \Omega$ and $t \in[0, T]$).

Lemma A.6. Assume $F \in C\left([0, T] ; W^{\alpha, p}\left(\Omega ; \mathbb{R}^{N}\right)\right)$ with

$$
\alpha>(N / p)+1 \quad \text { and } \quad 1 \leqslant p<+\infty .
$$

Then the differential equation

$$
\begin{aligned}
(d u / d t)(x, t) & =F(u(x, t), t) \\
u(x, 0) & =x
\end{aligned}
$$

has a solution $u \in C^{1}\left([0, T] ; \mathscr{D}^{\alpha, p}(\Omega)\right)$.
Remark. Lemma A. 6 is not used in our paper, but it answers a question raised by Ebin and Marsden [2] who proved the same result for the case where $p=2$ and $\alpha>(N / 2)+2$.

Proof. When $\alpha=2$ (so that $p>N$), we have

$$
F \in C\left([0, T] ; C^{1, \lambda}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)\right),
$$

where $\lambda=1-N / p$. In this case, it is well-known that there exists a solution $u \in C^{1}\left([0, T] ; C^{1, \lambda}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)\right)$ and in addition (d/dt) $D u=$ $D F(u, t) \cdot D u$. On the other hand, $x \mapsto u(x, t)$ is a diffeomorphism for all $t \in[0, T]$ since

$$
(d \mid d t)|\mathrm{Jac} u(x, t)|_{t=\tau}=\operatorname{div} F(u(x, \tau), \tau)|\operatorname{Jac} u(x, \tau)| \geqslant-C|\operatorname{Jac} u(x, \tau)|
$$

and thus $|\operatorname{Jac} u(x, t)| \geqslant e^{-C t}$. Hence, $D F(u(x, t), t) \in W^{1, p}\left(\Omega ; \mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ for all $t \in[0, T]$; more precisely, the mapping $t \mapsto D F(u(x, t), t)$ is continuous from [0,T] into $W^{1, p}\left(\Omega ; \mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ (as in the proof of Lemma A.5). For a fixed $u \in C^{1}(\bar{\Omega}, \bar{\Omega})$, the operator $v \mapsto D F(u, t) \cdot v$ is bounded from $W^{1, p}\left(\Omega ; \mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ into itself (by Lemma A.1). Therefore, the linear differential equation $d v / d t=D F(u, t) \cdot v$ (considered in the Banach space $W^{1, p}\left(\Omega ; \mathbb{R}^{N} \times \mathbb{R}^{N}\right)$) has a solution

$$
v \in C^{1}\left([0, T] ; W^{1, p}\left(\Omega, \mathbb{R}^{N} \times \mathbb{R}^{N}\right)\right) .
$$

Consequently, $D u \in C^{1}\left([0, T] ; W^{1, p}\left(\Omega ; \mathbb{R}^{N} \times \mathbb{R}^{N}\right)\right)$ and

$$
u \in C^{1}\left([0, T] ; W^{2, p}\left(\Omega ; \mathbb{R}^{N}\right)\right) .
$$

In the general case, the proof is by induction on α. Since

$$
F \in C\left([0, T] ; W^{\alpha-1, \nu^{*}}\left(\Omega ; \mathbb{R}^{N}\right)\right),
$$

we know from the induction assumption that $u \in C^{1}\left([0, T] ; \mathscr{D}^{\alpha-1, q}(\Omega)\right)$, where $q=p^{*}$ for $p \leqslant N$ and q is any finite number for $p>N$.

Lemma A. 4 shows that $D F(u, t) \in W^{\alpha-1, p}\left(\Omega ; \mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ for all $t \in[0, T]$; more precisely, it follows from Lemma A. 5 that the mapping $t \mapsto D F(u(x, t), t)$ is continuous from $[0, T]$ into $W^{\alpha-1, p}\left(\Omega ; \mathbb{R}^{N} \times \mathbb{R}^{N}\right)$. Therefore, the linear differential equation

$$
d v / d t=D F(u, t) \cdot v
$$

has a solution $v \in C^{1}\left([0, T] ; W^{\alpha-1, p}\left(\Omega ; \mathbb{R}^{N} \times \mathbb{R}^{N}\right)\right)$. Consequently, $D u \in C^{1}\left([0, T] ; W^{\alpha-1, p}\left(\Omega ; \mathbb{R}^{N} \times \mathbb{R}^{N}\right)\right)$ and $u \in C^{1}\left([0, T] ; W^{\alpha, p}\left(\Omega ; \mathbb{R}^{N}\right)\right)$.

References

1. V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966), 319-361.
2. D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. 92 (1970), 102-163.
3. T. Kato, On the classical solutions of the two-dimensional non-stationary Euler equation, Arch. Rational Mech. Anal. 25 (1967), 188-200.
4. T. Kato, Non-stationary flows of viscous and ideal fluids in R^{3}, J. Functional Analysis 9 (1972), 296-305.
5. J. L. Lions and E. Magenes, Problèmes aux limites non homogènes, Ann. Sc. Norm. Pisa 16 (1962), 1-44.
6. R. H. Martin, Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414.
7. J. Moser, A rapidly convergent iteration method and non-linear partial differential equations I, Ann. Sc. Norm. Sup. Pisa 20 (1966), 265-315.

[^0]: * Part of this paper was written while the first author was visiting at SUNY (Stony Brook) and the second author was visiting at the University of Chicago.

[^1]: ${ }^{1}$ In fact, it is sufficient to assume $f \in C\left([0, T] ; W^{s+1, p}\left(\Omega ; \mathbb{R}^{N}\right)\right)$

[^2]: ${ }^{2}$ Where $\operatorname{dist}(\cdot, F)$ denotes the distance to F.

