View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Efficient Specialisation in Prolog Using the
Hand-Written Compiler Generator LOGEN

Michael Leuschel

Declarative Systems and Software Engineering, Dept. of Flectronics and
Computer Science, University of Southampton, Southampton SO17 1BJ, UK
E-MAIL: mal@ecs.soton.ac.uk

WWW: http://www.ecs.soton.ac.uk/ “mal

Jesper Jorgensen

Dept. of Mathematics and Physics, Royal Veterinary and Agricultural University,
Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
E-MAIL: jesper@dina.kuvl. dk

Abstract

The so called “cogen approach” to program specialisation, writing a compiler gen-
erator instead of a specialiser, has been used with considerable success in partial
evaluation of both functional and imperative languages. In earlier work we have
shown that this approach is also applicable to partial evaluation of logic program-
ming languages, also called partial deduction.

In this paper we extend upon this by allowing partially instantiated datastruc-
tures (via binding types), which are especially important in the context of logic
programming. We also extend cogen to directly support a large part of Prolog’s
declarative and non-declarative features and how semi-online specialisation can be
efficiently integrated. Benchmarks show that the resulting cogen is very efficient,
generates very efficient generating extensions (executing up to several orders of
magnitude faster than current online systems) which in turn perform very good
and non-trivial specialisation, even rivalling existing online systems.

1 Introduction and Overview

Partial evaluation has over the past decade received considerable attention
both in functional, imperative and logic programming. In the context of pure
logic programs, partial evaluation is sometimes referred to as partial deduction,
the term partial evaluation being reserved for the treatment of impure logic
programs.

(©2000 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

https://core.ac.uk/display/82371053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Guided by the Futamura projections a lot of effort, specially in the func-
tional partial evaluation community, has been put into making systems self-
applicable. A partial evaluation or deduction system is called self-applicable
if it is able to effectively ! specialise itself. In that case one may, according
to the second Futamura projection, obtain compilers from interpreters and,
according to the third Futamura projection, a compiler generator (cogen for
short).

However writing an effectively self-applicable specialiser is a non-trivial
task — the more features one uses in writing the specialiser the more complex
the specialisation process becomes, because the specialiser then has to handle
these features as well. However, the actual creation of the cogen according to
the third Futamura projection is not of much interest to users since cogen can
be generated once and for all when a specialiser is given. Therefore, from a
user’s point of view, whether a cogen is produced by self-application or not is
of little importance; what is important is that it exists and that it is efficient
and produces efficient, non-trivial compilers. This is the background behind
the approach to program specialisation called the cogen approach: instead
of trying to write a partial evaluation system which is neither too inefficient
nor too difficult to self-apply one simply writes a compiler generator directly.
This is not as difficult as one might imagine at first sight: basically the cogen
turns out to be just a simple extension of a “binding-time analysis” for logic
programs (something first discovered for functional languages in [4]).

The most noticeable advantages of the cogen approach is that the cogen
and the compilers it generates can use all features of the implementation
language. Therefore, no restrictions due to self-application have to be imposed
(the compiler and the compiler generator do not have to be self-applied)! As
we will see, this leads to extremely efficient compilers and compiler generators.

Although the Futamura projections focus on how to generate a compiler
from an interpreter, the projections of course also apply when we replace the
interpreter by some other program. In this case the program produced by
the second Futamura projection is not called a compiler, but a generating
extension. The program produced by the third Futamura projection could
rightly be called a generating extension generator or gengen, but we will stick
to the more conventional cogen.

The first cogen for logic programming languages was developed in [5]. In
this paper we present a much improved and more practical cogen. Due to
space restrictions we can only give an overview; full details can be found in
the technical report [7]. Basically, our main contributions are:

1. a formal specification of the concept of a binding-type analysis, allowing
the treatment of partially static structures, in a (pure) logic programming
setting and a description of how to obtain a generic algorithm for offline

! This implies some efficiency considerations, e.g. the system has to terminate within rea-
sonable time constrains, using an appropriate amount of memory.

2

partial deduction from such an analysis.

Basically, binding-types are Hilog types [2] with three pre-defined type
constructors: static, dynamic, and nonvar. This is much more refined
than the initial approach in [5] which classified arguments as either static
or dynamic and which was often too weak for logic programs, where partially
instantiated datastructures appear naturally even at runtime.

2. based upon point 1, the description of an efficient, handwritten compiler
generator (cogen) which generates efficient generating extensions. The cru-
cial idea for simplicity and efficiency of the generating extensions is to in-
corporate a specific “unfolding” predicate p, for each predicate p.

3. a way to handle both extra-logical features (such as var/1 or the if-then-
else) and side-effects (such as print/1) within the cogen. A refined treat-
ment of the call/1 predicate has also been developed, allowing improved
specialisation of higher-order programs.

4. how to handle negation, disjunction and the if-then-else conditional in the
cogen.

5. extensive benchmark results showing the efficiency of the cogen, the gener-
ating extensions but also of the specialised programs.

Compared with [5], the points 3, 4, 5 as well as the partially static struc-
tures of point 1 are new, leading to a much more powerful, practical and viable
cogen.

2 Summary of Benchmark Results

Due to space limiations we cannot delve into the formal and technical details
of our new cogen system. We therefore just present a summary of experiments
we carried out using the system.

A first study of the speed of the cogen approach was performed in [5].
However, due to the limitations of the initial cogen only very few realistic
benchmarks could be run. In particular, most of the benchmarks of the pppp
suite [6] could not be used because they require the treatment of partially
instantiated data. The improved cogen of this paper can now deal with all the
benchmarks in [6]. We thus ran our system on a selection of benchmarks from
[6]. To test the ability to specialise non-declarative built-in’s we also devised
one new non-declarative benchmark: specialising the non-ground unification
algorithm with occurs-check from [11].

The implementation of the new cogen is actually called Locen, runs under
Sicstus Prolog and is publicly available. We compare the results of Locen with
the latest versions of mixtus [10] (version 0.3.6) and rccr [8,3]. (Comparisons
of the initial cogen with other systems such as LociMix, pappy, and sp can be
found in [5]). All the benchmarks were run under SICStus Prolog 3.7.1 on
a Sun Ultra E450 server with 256Mb RAM operating under Sun0S 5.6.

3

Program MIXTUS ECCE LOGEN

with with w/o cogen genex
ex_depth 200 ms | 230 ms 190 ms | 1.5 ms 7.2 ms
grammar 220 ms | 200 ms 140 ms | 6.5 ms 1.1 ms
map.rev 70ms | 60ms 30ms |2.7ms 1.0 ms
map.reduce 30ms | 60ms 30 ms ” 1.3 ms

match.kmp 50 ms | 90 ms 40 ms 1ms 2.5 ms
model_elim 460 ms | 240 ms 170 ms 3ms 3.1 ms

regexp.rl 60ms | 110 ms 80 ms | 1.3 ms 1.4 ms
regexp.r2 240 ms | 120 ms 80 ms 7 25 ms
regexp.r3 370 ms | 160 ms 120 ms 7 10.2 ms

transpose 290 ms | 190 ms 150 ms | 1.2 ms 1.9 ms

ng_unify 2510 ms na na 5.3 ms 3.5 ms

Table 1
Specialisation Times

A summary of all the transformation times can be found in Table 1. The
times for mixTus contains the time to write the specialised program to file (as
we are not the implementors of MixTus we were unable to factor this part out),
as does the column marked “with” for scce. The column marked “w/o” is
the pure transformation time of ecce without measuring the time needed for
writing to file. The times for Locen exclude writing to file. For rocen, the
column marked by cogen contains the runtimes of the cogen to produce the
generating extension, whereas the column marked by genex contains the times
needed by the generating extensions to produce the specialised programs. To
be fair, it has to be emphasised that the binding-type analysis was carried
out by hand. In a fully automatic system thus, the column with the cogen
runtimes will have to be increased by the time needed for the binding-type
analysis. However, the binding-type analysis and the cogen have to be run
only once for every program and division. Thus, the generating extension
produced for regexp.rl was re-used without modification for regexp.r2 and
regexp.r2 while the one produced for map.rev was re-used for map.reduce.
Note that ecce can only handle declarative programs, and could therefore not
be applied on the ng_uni fy benchmark.

As can be seen in Table 1, Locen is by far the fastest specialisation system
overall, running up to almost 3 orders of magnitude faster than the existing
online systems. And, as can be seen in Table 2, the specialisation performed by
the LogeN system is not very far off the one obtained by mixTus and ecce; some-

4

AALN RS LALN

Program Original MIxTUS ECCE LOGEN
ex_depth 1470 ms 680 ms 540 ms 530 ms
1 2.16 2.72 2.77
grammar 2880 ms 200 ms 300 ms 190 ms
1 14.40 9.60 15.16
map.rev 230 ms 100 ms 150 ms 120 ms
1 2.30 1.53 1.92
map.reduce | 540 ms 180 ms 150 170 ms
1 3.00 3.60 3.18
match.kmp | 3740 ms 2570 ms 1940 ms 3260 ms
1 1.46 1.93 1.15
model_elim | 1210 ms 340 ms 320 ms 450 ms
1 3.56 3.78 2.69
regexp.rl 3240 ms 520 ms 760 ms 510 ms
1 6.23 4.26 6.35
regexp.r2 900 ms 360 ms 350 ms 300 ms
1 2.50 2.57 3.00
regexp.r3 1850 ms 550 ms 590 ms 1610 ms
1 3.36 3.14 1.15
transpose 1590 ms 70 ms 70 ms 70 ms
1 22.71 22.71 22.71
ng_unify 1600 ms 360 ms na 430 ms
1 4.44 - 3.72
Table 2

Runtimes and speedups of the specialised programs

times LoGEN even surpasses both of them (for ex_depth, grammar, regexp.rl
and regexp.r2)! Being a pure offline system, Locen cannot pass the KMP-test,
which can be seen in the timings for match.kmp in Table 2. (To be able to
pass the KMP-test, more sophisticated local control would be required, see
[9].) To be fair, both Ecce and mixTus are fully automatic systems guarantee-
ing termination, while for Logen further work in the line of [1] will be needed
so that the binding-type classifications used in the above benchmarks can
be derived automatically (while still ensuring termination). Nonetheless, the

5

LoGEN system is surprisingly fast and produces surprisingly good specialised
programs.

References

[1] M. Bruynooghe, M. Leuschel, and K. Sagonas. A polyvariant binding-time
analysis for off-line partial deduction. In C. Hankin, editor, Proceedings of the
Furopean Symposium on Programming (ESOP’98), LNCS 1381, pages 27-41.
Springer-Verlag, April 1998.

[2] W. Chen, M. Kifer, and D. S. Warren. A first-order semantics of higher-order
logic programming constructs. In E. L. Lusk and R. A. Overbeek, editors, Logic

Programming: Proceedings of the North American Conference, pages 1090-1114.
MIT Press, 1989.

[3] D. De Schreye, R. Gliick, J. Jorgensen, M. Leuschel, B. Martens, and M. H.
Sgrensen. Conjunctive partial deduction: Foundations, control, algorithms and
experiments. The Journal of Logic Programming, 41(2 & 3):231-277, November
1999. To appear.

[4] C. K. Holst. Syntactic currying: yet another approach to partial evaluation.
Technical report, DIKU, Department of Computer Science, University of
Copenhagen, 1989.

[6] J. Jorgensen and M. Leuschel. Efficiently generating efficient generating
extensions in Prolog. In O. Danvy, R. Gliick, and P. Thiemann, editors,
Proceedings of the 1996 Dagstuhl Seminar on Partial Fvaluation, LNCS 1110,
pages 238-262, Schlofl Dagstuhl, 1996. Springer-Verlag.

[6] M. Leuschel. The Ecck partial deduction system and the pppp library of
benchmarks. Obtainable via http://www.ecs.soton.ac.uk/"mal, 1996.

[7] M. Leuschel and J. Jgrgensen. Efficient specialisation in Prolog using a hand-
written compiler generator. Technical Report DSSE-TR-99-6, Department
of Electronics and Computer Science, University of Southampton, September
1999.

[8] M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and
polyvariance in partial deduction of normal logic programs. ACM Transactions
on Programming Languages and Systems, 20(1):208-258, January 1998.

[9] J. Martin and M. Leuschel. Sonic partial deduction. In Proceedings of the Third
International Ershov Conference on Perspectives of System Informatics, LNCS
1755, Novosibirsk, Russia, 1999. Springer-Verlag. To appear.

[10] D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New
Generation Computing, 12(1):7-51, 1993.

[11] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

