
p � �

URL� http���www�elsevier�nl�locate�entcs�volume���html � pages

E�cient Specialisation in Prolog Using the
Hand�Written Compiler Generator LOGEN

Michael Leuschel

Declarative Systems and Software Engineering� Dept� of Electronics and

Computer Science� University of Southampton� Southampton SO�� �BJ� UK

e�mail� mal�ecs�soton�ac�uk

www� http���www�ecs�soton�ac�uk��mal

Jesper J�rgensen

Dept� of Mathematics and Physics� Royal Veterinary and Agricultural University�

Thorvaldsensvej ��� DK����� Frederiksberg C� Denmark

e�mail�jesper�dina�kvl�dk

Abstract

The so called �cogen approach� to program specialisation� writing a compiler gen�

erator instead of a specialiser� has been used with considerable success in partial

evaluation of both functional and imperative languages� In earlier work we have

shown that this approach is also applicable to partial evaluation of logic program�

ming languages� also called partial deduction�

In this paper we extend upon this by allowing partially instantiated datastruc�

tures �via binding types�� which are especially important in the context of logic

programming� We also extend cogen to directly support a large part of Prolog�s

declarative and non�declarative features and how semi�online specialisation can be

e	ciently integrated� Benchmarks show that the resulting cogen is very e	cient�

generates very e	cient generating extensions �executing up to several orders of

magnitude faster than current online systems� which in turn perform very good

and non�trivial specialisation� even rivalling existing online systems�

� Introduction and Overview

Partial evaluation has over the past decade received considerable attention

both in functional� imperative and logic programming� In the context of pure

logic programs� partial evaluation is sometimes referred to as partial deduction�

the term partial evaluation being reserved for the treatment of impure logic

programs�

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82371053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/


Leuschel and J�rgensen

Guided by the Futamura projections a lot of e�ort� specially in the func�
tional partial evaluation community� has been put into making systems self�

applicable� A partial evaluation or deduction system is called self�applicable

if it is able to e�ectively � specialise itself� In that case one may� according
to the second Futamura projection� obtain compilers from interpreters and�
according to the third Futamura projection� a compiler generator �cogen for

short��

However writing an e�ectively self�applicable specialiser is a non�trivial

task � the more features one uses in writing the specialiser the more complex
the specialisation process becomes� because the specialiser then has to handle

these features as well� However� the actual creation of the cogen according to

the third Futamura projection is not of much interest to users since cogen can
be generated once and for all when a specialiser is given� Therefore� from a
user�s point of view� whether a cogen is produced by self�application or not is
of little importance	 what is important is that it exists and that it is e
cient

and produces e
cient� non�trivial compilers� This is the background behind
the approach to program specialisation called the cogen approach� instead
of trying to write a partial evaluation system which is neither too ine
cient

nor too di
cult to self�apply one simply writes a compiler generator directly�
This is not as di
cult as one might imagine at �rst sight� basically the cogen

turns out to be just a simple extension of a 
binding�time analysis� for logic

programs �something �rst discovered for functional languages in �����

The most noticeable advantages of the cogen approach is that the cogen

and the compilers it generates can use all features of the implementation

language� Therefore� no restrictions due to self�application have to be imposed

�the compiler and the compiler generator do not have to be self�applied�� As
we will see� this leads to extremely e
cient compilers and compiler generators�

Although the Futamura projections focus on how to generate a compiler
from an interpreter� the projections of course also apply when we replace the

interpreter by some other program� In this case the program produced by

the second Futamura projection is not called a compiler� but a generating

extension� The program produced by the third Futamura projection could
rightly be called a generating extension generator or gengen� but we will stick

to the more conventional cogen�

The �rst cogen for logic programming languages was developed in ���� In
this paper we present a much improved and more practical cogen� Due to

space restrictions we can only give an overview	 full details can be found in
the technical report ���� Basically� our main contributions are�

�� a formal speci�cation of the concept of a binding�type analysis� allowing

the treatment of partially static structures� in a �pure� logic programming
setting and a description of how to obtain a generic algorithm for o�ine

� This implies some e�ciency considerations� e�g� the system has to terminate within rea�

sonable time constrains� using an appropriate amount of memory�

�



Leuschel and J�rgensen

partial deduction from such an analysis�
Basically� binding�types are Hilog types ��� with three pre�de�ned type

constructors� static� dynamic� and nonvar� This is much more re�ned
than the initial approach in ��� which classi�ed arguments as either static
or dynamic and which was often too weak for logic programs� where partially

instantiated datastructures appear naturally even at runtime�

�� based upon point �� the description of an e
cient� handwritten compiler
generator �cogen� which generates e
cient generating extensions� The cru�

cial idea for simplicity and e
ciency of the generating extensions is to in�
corporate a speci�c 
unfolding� predicate pu for each predicate p�

�� a way to handle both extra�logical features �such as var�� or the if�then�

else� and side�e�ects �such as print��� within the cogen� A re�ned treat�

ment of the call�� predicate has also been developed� allowing improved
specialisation of higher�order programs�

�� how to handle negation� disjunction and the if�then�else conditional in the
cogen�

�� extensive benchmark results showing the e
ciency of the cogen � the gener�

ating extensions but also of the specialised programs�

Compared with ���� the points �� �� � as well as the partially static struc�

tures of point � are new� leading to a muchmore powerful� practical and viable
cogen �

� Summary of Benchmark Results

Due to space limiations we cannot delve into the formal and technical details
of our new cogen system� We therefore just present a summary of experiments
we carried out using the system�

A �rst study of the speed of the cogen approach was performed in ����

However� due to the limitations of the initial cogen only very few realistic
benchmarks could be run� In particular� most of the benchmarks of the dppd

suite ��� could not be used because they require the treatment of partially
instantiated data� The improved cogen of this paper can now deal with all the
benchmarks in ���� We thus ran our system on a selection of benchmarks from

���� To test the ability to specialise non�declarative built�in�s we also devised
one new non�declarative benchmark� specialising the non�ground uni�cation
algorithm with occurs�check from �����

The implementation of the new cogen is actually called logen� runs under

Sicstus Prolog and is publicly available� We compare the results of logen with
the latest versions of mixtus ���� �version ������ and ecce ������ �Comparisons

of the initial cogen with other systems such as logimix� paddy� and sp can be
found in ����� All the benchmarks were run under SICStus Prolog ����� on
a Sun Ultra E��� server with ���Mb RAM operating under SunOS ����

�



Leuschel and J�rgensen

Program mixtus ecce logen

with with w�o cogen genex

ex depth 
�� ms 
�� ms 
�� ms 
�� ms ��
 ms

grammar 

� ms 
�� ms 
�� ms ��� ms 
�
 ms

map�rev �� ms �� ms �� ms 
�� ms 
�� ms

map�reduce �� ms �� ms �� ms � 
�� ms

match�kmp �� ms �� ms �� ms 
 ms 
�� ms

model elim ��� ms 
�� ms 
�� ms � ms ��
 ms

regexp�r
 �� ms 

� ms �� ms 
�� ms 
�� ms

regexp�r
 
�� ms 

� ms �� ms � 
�� ms

regexp�r� ��� ms 
�� ms 

� ms � 
��
 ms

transpose 
�� ms 
�� ms 
�� ms 
�
 ms 
�� ms

ng unify 
�
� ms na na ��� ms ��� ms

Table 


Specialisation Times

A summary of all the transformation times can be found in Table �� The

times for mixtus contains the time to write the specialised program to �le �as

we are not the implementors of mixtus we were unable to factor this part out��
as does the column marked 
with� for ecce� The column marked 
w�o� is

the pure transformation time of ecce without measuring the time needed for
writing to �le� The times for logen exclude writing to �le� For logen� the
column marked by cogen contains the runtimes of the cogen to produce the

generating extension� whereas the column marked by genex contains the times

needed by the generating extensions to produce the specialised programs� To
be fair� it has to be emphasised that the binding�type analysis was carried

out by hand� In a fully automatic system thus� the column with the cogen

runtimes will have to be increased by the time needed for the binding�type
analysis� However� the binding�type analysis and the cogen have to be run

only once for every program and division� Thus� the generating extension
produced for regexp�r� was re�used without modi�cation for regexp�r� and
regexp�r� while the one produced for map�rev was re�used for map�reduce�

Note that ecce can only handle declarative programs� and could therefore not
be applied on the ng unify benchmark�

As can be seen in Table �� logen is by far the fastest specialisation system

overall� running up to almost � orders of magnitude faster than the existing
online systems� And� as can be seen in Table �� the specialisation performed by
the logen system is not very far o� the one obtained by mixtus and ecce	 some�

�



Leuschel and J�rgensen

Program Original mixtus ecce logen

ex depth 
��� ms ��� ms ��� ms ��� ms


 
�
� 
��
 
���

grammar 
��� ms 
�� ms ��� ms 
�� ms


 
���� ���� 
��
�

map�rev 
�� ms 
�� ms 
�� ms 

� ms


 
��� 
��� 
��


map�reduce ��� ms 
�� ms 
�� 
�� ms


 ���� ���� ��
�

match�kmp ���� ms 
��� ms 
��� ms �
�� ms


 
��� 
��� 
�
�

model elim 


� ms ��� ms �
� ms ��� ms


 ���� ���� 
���

regexp�r
 �
�� ms �
� ms ��� ms �
� ms


 ��
� ��
� ����

regexp�r
 ��� ms ��� ms ��� ms ��� ms


 
��� 
��� ����

regexp�r� 
��� ms ��� ms ��� ms 
�
� ms


 ���� ��
� 
�
�

transpose 
��� ms �� ms �� ms �� ms


 

��
 

��
 

��


ng unify 
��� ms ��� ms na ��� ms


 ���� � ���


Table 


Runtimes and speedups of the specialised programs

times logen even surpasses both of them �for ex depth� grammar� regexp�r�

and regexp�r��� Being a pure o�ine system� logen cannot pass the KMP�test�

which can be seen in the timings for match�kmp in Table �� �To be able to

pass the KMP�test� more sophisticated local control would be required� see

����� To be fair� both ecce and mixtus are fully automatic systems guarantee�

ing termination� while for logen further work in the line of ��� will be needed

so that the binding�type classi�cations used in the above benchmarks can

be derived automatically �while still ensuring termination�� Nonetheless� the

�



Leuschel and J�rgensen

logen system is surprisingly fast and produces surprisingly good specialised

programs�

References

�
� M� Bruynooghe� M� Leuschel� and K� Sagonas� A polyvariant binding�time
analysis for o��line partial deduction� In C� Hankin� editor� Proceedings of the
European Symposium on Programming 	ESOP
���� LNCS 
��
� pages 
���
�
Springer�Verlag� April 
����

�
� W� Chen� M� Kifer� and D� S� Warren� A �rst�order semantics of higher�order
logic programming constructs� In E� L� Lusk and R� A� Overbeek� editors� Logic
Programming
 Proceedings of the North American Conference� pages 
����


��
MIT Press� 
����

��� D� De Schreye� R� Gl�uck� J� J�rgensen� M� Leuschel� B� Martens� and M� H�
S�rensen� Conjunctive partial deduction� Foundations� control� algorithms and
experiments� The Journal of Logic Programming� �
�
 � ���
�
�
��� November

���� To appear�

��� C� K� Holst� Syntactic currying� yet another approach to partial evaluation�
Technical report� DIKU� Department of Computer Science� University of
Copenhagen� 
����

��� J� J�rgensen and M� Leuschel� E	ciently generating e	cient generating
extensions in Prolog� In O� Danvy� R� Gl�uck� and P� Thiemann� editors�
Proceedings of the ���� Dagstuhl Seminar on Partial Evaluation� LNCS 


��
pages 
���
�
� Schlo� Dagstuhl� 
���� Springer�Verlag�

��� M� Leuschel� The ecce partial deduction system and the dppd library of
benchmarks� Obtainable via http���www�ecs�soton�ac�uk��mal� 
����

��� M� Leuschel and J� J�rgensen� E	cient specialisation in Prolog using a hand�
written compiler generator� Technical Report DSSE�TR������ Department
of Electronics and Computer Science� University of Southampton� September

����

��� M� Leuschel� B� Martens� and D� De Schreye� Controlling generalisation and
polyvariance in partial deduction of normal logic programs� ACM Transactions

on Programming Languages and Systems� 
��
��
���
��� January 
����

��� J� Martin and M� Leuschel� Sonic partial deduction� In Proceedings of the Third

International Ershov Conference on Perspectives of System Informatics� LNCS

���� Novosibirsk� Russia� 
���� Springer�Verlag� To appear�

�
�� D� Sahlin� Mixtus� An automatic partial evaluator for full Prolog� New

Generation Computing� 

�
�����
� 
����

�

� L� Sterling and E� Shapiro� The Art of Prolog� MIT Press� 
����

�


