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a b s t r a c t

In this paper, an algorithm is presented for solving second-order nonlinear multi-point
boundary value problems (BVPs). The method is based on an iterative technique and the
reproducing kernel method (RKM). Two numerical examples are provided to show the
reliability and efficiency of the present method.
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1. Introduction

In this paper, we consider the following second-order multi-point boundary value problem:
u′′(x)+ b(x)u′(x)+ c(x)u(x) = f (x, u), 0 ≤ x ≤ 1,

u(0) =

m0−
i=1

αiu(ξi)+ λ1, u(1) =

m1−
i=1

βiu(ηi)+ λ2,
(1.1)

where b(x), c(x) ∈ C[0, 1], 0 < ξi, ηi < 1, and f (x, u) is a nonlinear function of u.
Multi-point boundary value problems (BVPs) arise in a variety of applied mathematics and physics. For instance, the

vibrations of a guywire of uniform cross-section and composed ofN parts of different densities can be set up as amulti-point
BVP, as in [1]; also,manyproblems in the theory of elastic stability can be handled by themethod ofmulti-point problems [2].
The existence andmultiplicity of solutions of multi-point boundary value problems have been studied bymany authors; see
[3–6] and the references therein. For two-point BVPs, there aremany solutionmethods such as orthonormalization, invariant
imbedding algorithms, finite difference, collocation methods, etc. [7–9]. However, there seems to be little discussion
about numerical solutions of multi-point boundary value problems. The shooting method is used to solve multi-point
boundary value problems in [10,11]. However, the shooting method is a trial-and-error method, and it is often sensitive
to the initial guess. This makes computation by the conventional shooting method expensive and ineffective. Geng [12]
proposed a method for a class of second-order three-point BVPs by converting the original problem into an equivalent
integro–differential equation. Lin and Lin [13] introduced an algorithm for solving a class ofmulti-point BVPs by constructing
a reproducing kernel satisfying the multi-point boundary conditions. However, the method introduced in [13,14] for
obtaining a reproducing kernel satisfying multi-point boundary conditions is very complicated, and the form of the
reproducing kernel obtained is also very complicated. Hence, the computational cost of this method is very high. Tatari and
Mehghan [15] introduced the Adomian decompositionmethod (ADM) for multi-point BVPs. Yao [16] proposed a successive
iteration method for three-point BVPs. Li and Wu [17] developed a method for solving linear multi-point BVPs. Motivated
by the interesting paper [17], we shall present an effective method for solving nonlinear multi-point BVPs.
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The rest of the paper is organized as follows. In Section 2, the algorithm for solving nonlinear multi-point BVP (1.1) is
introduced. Numerical examples are presented in Section 3. Section 4 ends this paper with a brief conclusion.

2. The algorithm for solving multi-point BVP (1.1)

Reproducing kernel theory has important applications in numerical analysis, differential equations, probability, and
statistics, amongst other fields [18–28]. Recently, using the reproducing kernel method (RKM), various two-point BVPs have
been discussed [21–28].

In this section, based on the idea of iteration and the RKM for linear two-point BVPs, we shall introduce an effective
algorithm for multi-point BVP (1.1).

2.1. Algorithm

The steps of the algorithm are as follows.
Step A: Choose a reasonable initial approximation u0(x)which satisfies the boundary condition of (1.1) for the function u(x)
in f (x, u) and approximate (1.1) in the following fashion:

u′′

k (x)+ b(x)u′

k(x)+ c(x)uk(x) = f (x, uk−1), 0 ≤ x ≤ 1, k = 1, 2, . . .

uk(0) =

m0−
i=1

αiuk(ξi)+ λ1, uk(1) =

m1−
i=1

βiuk(ηi)+ λ2.
(2.1)

Step B: Construct auxiliary two-point boundary conditions for (2.1),
uk(0) = γ0, uk(1) = γ1,

where γ0 and γ1 are constants to be determined.
Step C: Solve the following two-point BVP by means of the RKM presented in [22]:

u′′

k (x)+ b(x)u′

k(x)+ c(x)uk(x) = f (x, uk−1) , h(x), 0 ≤ x ≤ 1,
uk(0) = γ0, uk(1) = γ1.

(2.2)

The detailed process is as follows.
Introduce a new unknown function
v(x) = uk(x)− φ(x),

where φ(x) satisfies φ(0) = γ0, φ(1) = γ1, and φ(x) = γ0 + (γ1 − γ0)x.
Problem (2.2)with inhomogeneous boundary conditions can be equivalently reduced to the problemof finding a function

v(x) satisfying
v′′(x)+ b(x)v′(x)+ c(x)v(x) = g(x, γ0, γ1), 0 ≤ x ≤ 1,
v(0) = 0, v(1) = 0,

(2.3)

where
g(x, γ0, γ1) = h(x)− b(x)φ′(x)− c(x)φ(x) = h(x)+ γ0[b(x)− c(x)+ xc(x)] − γ1[b(x)+ xc(x)].

By using the RKM presented in [22], the solution and its n-term approximation can be obtained respectively (see
Section 2.2 for details):

v(x) =

∞−
i=1

i−
k=1

βikg(xk, γ0, γ1)ψ i(x), vn(x) =

n−
i=1

i−
k=1

βikg(xk, γ0, γ1)ψ i(x),

where βik, xk, and ψ i(x) are all given.
Then the solution to (2.1) and its n-term approximation are obtained immediately:

uk(x) = φ(x)+

∞−
i=1

i−
k=1

βikg(xk, γ0, γ1)ψ i(x), uk,n(x) = φ(x)+

n−
i=1

i−
k=1

βikg(xk, γ0, γ1)ψ i(x).

Step D: Incorporating the multi-point boundary conditions of (2.1) into uk,n(x), it follows that

uk,n(0) =

m0−
i=1

αiuk,n(ξi)+ λ1, uk,n(1) =

m1−
i=1

βiuk,n(ηi)+ λ2. (2.4)

Clearly, (2.4) is a system of two linear equations in two unknowns γ0 and γ1, and the constants γ0 and γ1 can be determined
easily.
Step E: Substituting the obtained γ0 and γ1 in uk,n(x), the kth n-term approximate solution uk,n(x) of multi-point BVP (1.1)
is obtained.
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2.2. Reproducing kernel method for solving (2.3)

In order to solve (2.3) using the RKM presented in [18,22], first, we construct a reproducing kernel space W 3
2 [0, 1] in

which every function satisfies the homogenous boundary conditions of (2.2).
The reproducing kernel Hilbert space W 3

2 [0, 1] is defined as W 3
2 [0, 1] = {u(x) | u′′(x) is an absolutely continuous real-

valued function, u′′′(x) ∈ L2[0, 1], u(0) = 0, u(1) = 0}. The inner product and norm in W 3
2 [0, 1] are given, respectively,

by

(u(y), v(y))W3
2

= u(0)v(0)+ u′(0)v′(0)+ u(1)v(1)+

∫ 1

0
u′′′v′′′dy

and
‖u‖W3

2
=


(u, u)W3

2
, u, v ∈ W 3

2 [0, 1].

By Cui and Lin [18] and Cui and Geng [22], it is easy to obtain its reproducing kernel (RK),

k(x, y) =


k1(x, y), y ≤ x,
k1(y, x), y > x,

(2.5)

where k1(x, y) = −
1

120 (x − 1)y

yx4 − 4yx3 + 6yx2 +


y4 − 5y3 − 120y + 120


x + y4


.

In (2.3), letting Lv(x) = v′′(x)+b(x)v′(x)+c(x)v(x), it is clear that L : W 3
2 [0, 1] → W 1

2 [0, 1] is a bounded linear operator.
Put ϕi(x) = k(xi, x) andψi(x) = L∗ϕi(x), where k(xi, x) is the RK ofW 1

2 [0, 1], L∗ is the adjoint operator of L. The orthonormal
system {ψ i(x)}

∞

i=1 ofW 3
2 [0, 1] can be derived from the Gram–Schmidt orthogonalization process of {ψi(x)}∞i=1,

ψ i(x) =

i−
k=1

βikψk(x), (βii > 0, i = 1, 2, . . .). (2.6)

By the RKM presented in [18,22], we have the following theorem.

Theorem 2.1. For (2.3), if {xi}∞i=1 is dense on [0, 1], then {ψi(x)}∞i=1 is the complete system of W 3
2 [0, 1] and ψi(x) =

Lskα(x, s)|s=xi .

Theorem 2.2. If {xi}∞i=1 is dense on [0, 1] and the solution of (2.3) is unique, then the solution of (2.3) is

v(x) =

∞−
i=1

i−
k=1

βikg(xk, γ0, γ1)ψ i(x). (2.7)

The approximate solution vn(x) can be obtained by taking finitely many terms in the series representation of v(x) and

vn(x) =

n−
i=1

i−
k=1

βikg(xk, γ0, γ1)ψ i(x).

3. Numerical examples

In this section, two numerical examples are studied to demonstrate the accuracy of the presentmethod. All computations
are performed by using Mathematica 5.1.

Example 3.1. Consider the following three-point second-order nonlinear ordinary differential equation [15,16]:

u′′
+

3
8
u +

2
1089

[u′
]
2
+ 1 = 0,

with the boundary conditions

u(0) = 0, u(1)− u(1/3) = 0.

Using the present method, it is easy to obtain the approximate solution of this problem. Taking xi =
i−1
n−1 , i = 1, 2, . . . , n,

n = 21, initial approximation u0(x) = 0, and performing the iteration twice, the numerical results obtained are compared
with those from other methods in Table 1.

Example 3.2. Consider the following singular multi-point boundary value problem:
x(1 − x)u′′(x)+ 6u′(x)+ 2u(x)+ u2(x) = f (x), 0 ≤ x ≤ 1,

u(0)+ u

2
3


= sinh

2
3
, u(1)+

1
2
u


4
5


=

sinh 4
5

2
+ sinh 1,

(3.1)

where f (x) = 6 cosh x + sinh x

2 + x − x2 + sinh x


. The exact solution is given by u(x) = sinh x.
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Table 1
Numerical results for Example 3.1.

Nodes Present method Adomian decomposition method [15] Successive iteration method [16]

0.1 0.0656 0.0656 0.0656
0.2 0.1209 0.1209 0.1211
0.3 0.1658 0.1658 0.1661
0.4 0.2001 0.2001 0.2004
0.5 0.2236 0.2236 0.2240
0.6 0.2363 0.2363 0.2367
0.7 0.2382 0.2382 0.2385
0.8 0.2291 0.2291 0.2295
0.9 0.2092 0.2091 0.2095

Table 2
Numerical results for Example 3.2.

Nodes Exact solution Relative error (Present method) Relative error (method in [12])

0.08 0.080085 7.9E−05 3.0E−08
0.24 0.242311 1.9E−05 2.6E−07
0.40 0.410752 7.0E−06 3.1E−07
0.48 0.498646 3.6E−06 4.0E−07
0.64 0.684594 6.6E−07 3.0E−07
0.72 0.783840 1.7E−06 5.2E−09
0.80 0.888106 2.2E−06 1.8E−06
0.88 0.998058 2.2E−06 2.7E−06
0.96 1.114400 2.8E−06 2.2E−05

Using the present method, it is easy to obtain the approximate solution of this problem. Taking xi =
i−1
n−1 , i =

1, 2, . . . , n, n = 21, initial approximation u0(x) =
1
54 ((−45 sinh( 23 )+30(sinh( 45 )+2 sinh(1)))x−10(sinh( 45 )+2 sinh(1))+

42 sinh( 23 )), and performing iteration the five times, the numerical results obtained are compared with those from the
method in [12] in Table 2. In [12], it is required to converted the equation into an equivalent integro–differential equation.
The present method can avoid this step and reduce the cost of computational work.

The detailed process is as follows.

Step A: Choose an initial approximation u0(x) satisfying the multi-point boundary conditions of (3.1) in the form of a + bx
for the function u(x) in f (x)− u2(x). Clearly,

u0(x) =
1
54


−45 sinh


2
3


+ 30


sinh


4
5


+ 2 sinh(1)


x − 10


sinh


4
5


+ 2 sinh(1)


+ 42 sinh


2
3


.

Approximate (3.1) in the following fashion:
x(1 − x)u′′

k (x)+ 6u′

k(x)+ 2uk(x) = f (x)− u2
k−1(x) , F(x), 0 ≤ x ≤ 1, k = 1, 2, 3, 4, 5,

uk(0)+ uk


2
3


= sinh

2
3
, uk(1)+

1
2
uk


4
5


=

sinh 4
5

2
+ sinh 1.

(3.2)

In comparison with the homotopy perturbation method (HPM) and the ADM, the technique for dealing with nonlinearity
can avoid the computation of so-called Adomian polynomials and only requires the continuity of the nonlinear term f (x, u).
Step B: Construct auxiliary two-point boundary conditions for (3.2)

uk(0) = γ0, uk(1) = γ1,

where γ0 and γ1 are constants to be determined.
Step C: Solve the following two-point BVP:

x(1 − x)u′′

k (x)+ 6u′

k(x)+ 2uk(x) = F(x), 0 ≤ x ≤ 1,
uk(0) = γ0, uk(1) = γ1.

(3.3)

Introduce a new unknown function,

v(x) = uk(x)− φ(x),

where φ(x) = γ0 + (γ1 − γ0)x.
Then problem (3.3) with inhomogeneous boundary conditions is equivalently reduced to the problem of finding a

function v(x) satisfying
x(1 − x)v′′(x)+ 6v′(x)+ 2v(x) = g(x, γ0, γ1), 0 ≤ x ≤ 1,
v(0) = 0, v(1) = 0, (3.4)
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where

g(x, γ0, γ1) = F(x)− 6φ′(x)− 2φ(x) = F(x)+ 2(2 + x)γ0 − 2(3 + x)γ1.

By using the RKM presented in Section 2.2, the n-term approximation of (3.4) can be obtained:

vn(x) =

n−
i=1

i−
k=1

βikg(xk, γ0, γ1)ψ i(x),

where βik, xk, and ψ i(x) are all given.
Then the n-term approximate solution of (3.2) is obtained immediately:

uk,n(x) = φ(x)+

n−
i=1

i−
k=1

βikg(xk, γ0, γ1)ψ i(x) = γ0 + (γ1 − γ0)x +

n−
i=1

i−
k=1

βikg(xk, γ0, γ1)ψ i(x).

Step D: Incorporating the multi-point boundary conditions of (3.2) into uk,n(x), it follows that

uk,n(0)+ uk,n


2
3


= sinh

2
3
, uk,n(1)+

1
2
uk,n


4
5


=

sinh 4
5

2
+ sinh 1. (3.5)

Clearly, (3.5) is a system of two linear equations in the unknowns γ0 and γ1, and γ0 and γ1 can be determined easily.
Step E: Substituting the obtained γ0 and γ1 in uk,n(x), the kth n-term approximate solution uk,n(x) of multi-point BVP (3.1)
is then obtained.

4. Conclusion

In this paper, a technique for dealing with nonlinearity and a method for handling nonlocal boundary conditions are
combined to solve nonlinear second-ordermulti-point BVPs. Themain advantages of the present technique for dealing with
nonlinearity over the HPM and the ADM are that it can avoid the computation of the so-called Adomian polynomials and
it has fewer requirements for nonlinear terms. Also, the present method can be extended to BVPs with nonlinear boundary
conditions.
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