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Abstract

We introduce the concept of N -differential graded algebras (N -dga), and study the moduli space of deformations of the
differential of an N -dga. We prove that it is controlled by what we call the (M, N )-Maurer–Cartan equation.
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0. Introduction

The goal of this paper is to take the first step towards finding a generalization of Homological Mirror Symmetry
(HMS) [11,12] to the context of N -homological algebra [5,10]. In [7] Fukaya introduced HMS as the equivalence
of the deformation functor of the differential of a differential graded algebra associated with the holomorphic
structure, with the deformation functor of an A∞-algebra associated with the symplectic structure of a Calabi–Yau
variety. This idea motivated us to define deformation functors of the differential of an N -differential graded algebra.
An N -dga is a graded associative algebra A, provided with an operator d : A → A of degree 1 such that
d(ab) = d(a)b + (−1)āad(b) and d N

= 0. A nilpotent differential graded algebra (Nil-dga) will be an N -dga for
some integer N ≥ 2. Theorem 10 endows the category of Nil-differential graded algebras with a symmetric monoidal
structure. We remark that such a monoidal structure cannot be constructed in a natural way for a fixed N (except for
N = 2), not even using the q-deformed Leibniz rule, see [13].

In Section 2 we consider deformations of a 2-dga into an N -dga. By deforming 2-dgas one is able to construct
a plethora of examples of N -dgas. Roughly speaking Theorem 16 tell us that a derivation of a 2-dga dA + e is an
N -differential iff

(dEnd(e) + e2)
N−1

2 (dA + e) = 0 for N odd,

(dEnd(e) + e2)
N
2 = 0 for N even.

In Section 3 we introduce a general formalism for discrete quantum mechanics. We introduce these models since
they turn out, in a totally unexpected way, to be relevant in the problem of deforming an M-differential into an N -
differential with N ≥ M . Section 4 contains our main result, Theorem 19 which provides an explicit identity called the
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(M, N )-Maurer–Cartan equation that controls deformations of an M-complex into an N -complex. The construction
of the (M, N )-Maurer–Cartan equation is based on an explicit description of coefficients ck such that

(dA + e)N
=

N−1∑
k=0

ckdk
A,

where ck depends on dA and e. In Section 5 we define a functional cs2,2N whose critical points are naturally determined
by the (2, 2N )-Maurer–Cartan equation.

In conclusion in this paper we introduce the moduli space of deformations of the differential of an N -dga and
prove that it is controlled by a generalized Maurer–Cartan equation. We point out that our methods and ideas can be
applied in a wide variety of contexts. Examples of N -dga’s coming from differential geometry are developed in [1].
A q-analogue, for q a primitive N -th root of unity, of our main result Theorem 19 is provided in [2]. In [3] we state
an N -generalized Deligne’s principle and use the constructions of this paper to study A∞-algebras of depth N .

1. N-differential graded algebras and modules

Throughout this paper we shall work with the abelian category of k-modules over a commutative ring k with
unit [6]. We will denote by A•Z-graded k-modules ⊕i∈Z Ai . We let ā ∈ Z denote the degree of the element a ∈ Aā .
The following definition is taken from [9].

Definition 1. Let N ≥ 1 an integer. An N -complex is a pair (A•, d), where A• is a Z-graded object and d : A•
→ A•

is a morphism of degree 1 such that d N
= 0.

Clearly an N -complex is a P-complex for all P ≥ N . If k is a field, then an N -complex (A•, d) is referred to as
an N -differential graded vector space (N -dgvect). An N -complex (A•, d) such that d N−1

6= 0 is said to be a proper
N -complex. Let (A•, dA) be an M-complex and (B•, dB) be an N -complex, a morphism f : (A•, dA) → (B•, dB) is
a morphism f : A•

→ B• of k-modules such that dB f = f dA.

Lemma 2. Let (A•, dA) be a proper M-complex, (B•, dB) be a proper N-complex and f : (A•, dA) → (B•, dB) be
a morphism, then (1) If Ker( f ) = 0, then M ≤ N; (2) If Im( f ) = B•, then M ≥ N and (3) If Ker( f ) = 0 and
Im( f ) = B•, then M = N.

Proof. (1) Assume that N < M and let a ∈ A• then f (d N
A (a)) = d N

B ( f (a)) = 0. This implies that d N
A (a) ∈

Ker( f ) = 0, and therefore d N
A (a) = 0 which is in contradiction with the fact that (A•, dA) is a proper M-complex.

The proof of (2) is analogous to (1), (3) follows from (1) and (2). �

Example 3. Consider V = C〈e1, e2, e3〉 the complex vector space generated by e1, e2, e3. We endow V with a Z-
graduation declaring ē1 = 0, ē2 = 1 and ē3 = 2. Define the linear map d : V → V on generators by

d(e1) = e2, d(e2) = e3, and d(e3) = 0.

(V, d) is a proper 3-complex.

Definition 4. Let (A•, d) be an N -complex, we say that an element a ∈ Ai is p-closed if d p(a) = 0 and is p-exact if
there exists an element b ∈ Ai−N+p such that d N−p(b) = a, for 1 ≤ p < N fixed. The cohomology groups are the
k-modules

p H i (A) =
Ker{d p

: Ai
→ Ai+p

}

Im{d N−p : Ai−N+p → Ai }
,

where i ∈ Z, p = 1, 2, . . . , N − 1. We set k H∗(A) = 0 for k ≥ N .

Notice that a 2-complex A• is just a complex in the usual sense and in this case p is necessarily equal to 1 and
1 H i (A) agrees with H i (A) for all i ∈ Z.

Definition 5. (a) Let N ≥ 1 be an integer. An N -differential graded algebra or N -dga over k, is a triple (A•, m, d)

where m : Ak
⊗ Al

→ Ak+l and d : Ak
→ Ak+1 are k-modules homomorphisms satisfying
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(1) The pair (A•, m) is a graded associative algebra.
(2) For all a, b ∈ A•, d satisfies the graded Leibniz rule d(ab) = d(a)b + (−1)āad(b).
(3) d N

= 0, i.e., (A•, d) is an N -complex.
(b) A nilpotent differential graded algebra (Nil-dga) is an N -dga for some integer N ≥ 2.

A 1-dga is a graded associative algebra. A 2-dga is a differential graded algebra.

Lemma 6. Let (A•, m, d) be an N-dga, then if a is p-closed and b is q-closed then ab is (p + q − 1)-closed.

Proof. The lemma follows from the identity

dn(ab) =

n∑
i=0

{
n
i

}
ā

d i (a)dn−i (b),

where
{

n
0

}
ā

= (−1)ā , and for j ≥ 1,
{

n + 1
j

}
ā

=

{
n
j − 1

}
ā

+ (−1)ā+ j
{

n
j

}
ā
.

When n = p+q −1, since d i (a) = 0 for i ≥ p, we only consider the case i < p, then n−i = p+q −1−i > q −1
and dn−i (b) = 0, because d j (b) = 0 for j ≥ q. Thus either d i (a) = 0 or dn−i (b) = 0 for all i , and we have that ab
is (p + q − 1)-closed. �

Definition 7. Let (A•, m A, dA) be an M-dga and (B•, m B, dB) be an N -dga. A morphism f : A•
→ B• is a linear

map such that f m A = m B( f ⊗ I d) + m B(I d ⊗ f ) and dB f = f dA.

A morphism f : A•
→ B• such that f (Ai ) ⊂ Bi+k is said to be a morphism of degree k. A pair of morphisms

f, g : A•
→ B• of N -dga are homotopic, if there exist h : A•

→ B• of degree N − 1 such that

f − g =

N−1∑
i=0

d N−1−i
B hd i

A.

We remark that if two morphisms f, g : A•
→ B• of Nil-dga are homotopic then they induce the same maps in

cohomology.
Let (A•, m A, dA) and (B•, m B, dB) be an M-dga and an N -dga, respectively. Defining dA⊗B = dA ⊗ I d+ I d⊗dB ,

the identity

dn
A⊗B(a ⊗ b) =

n∑
k=0

(−1)ā(n−k)dk
A(a) ⊗ dn−k

B (b) implies,

Proposition 8. The triple (A•
⊗ B•, m A⊗B, dA⊗B) is an (M + N − 1)-dga, where m A⊗B = m A ⊗ m B .

Example 9. Let (V, d) be the 3-complex of in Example 3. On the space V ⊗ V ∗ consider the base given by
Ei j = ei ⊗ e∗

j , i, j = 1, 2, 3, and define

D(Ei j ) = E(i+1) j + (−1)i+ j Ei( j−1),

by Proposition 8 and since D4(E13) 6= 0, then (V ⊗ V ∗, D) is a proper 5-dga.

Theorem 10. The category Nil-dgvect is a symmetric monoidal category. Nil-dga is the category of monoids in Nil-
dgvect. Nil-dga inherits a symmetric monoidal structure from Nil-dgvetc.

Let V • be an N -dga. By Proposition 8, (V •)⊗2 is a (2N −1)-dga, (V •)⊗3 is a (3N −2)-dga and in general (V •)⊗k

is a [k(N − 1) + 1]-dga.

Definition 11. Let (A•, m A, dA) be an N -dga and M• a graded k-module. Let K ≥ 2 be an integer. A K -
differential graded module (K -dgm) over (A•, m A, dA), is a triple (M•, mM , dM ) with mM : Ak

⊗ M l
→ Mk+l

and dM : Mk
→ Mk+1, k-module morphisms satisfying the following properties
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(1) For all a, b ∈ A• and m ∈ M•, mM (a, mM (b, m)) = mM (m A(a, b), m). If no confusion arises, we denote
mM (a, m) by am.

(2) For all a ∈ A• and m ∈ M•, dM (am) = dA(a)m + (−1)āadM (m).
(3) The pair (M•, dM ) is a K -complex, d K

M = 0.

Let (M•, mM , dM ) be a K -dgm and (N •, m N , dN ) be an L-dgm both over an N -dga (A•, m A, dA). A morphism
f : M•

→ N • of degree k is a linear map such that f (mM (a, b)) = (−1)ā f̄ m N (a, f (b)) and dM ( f (b)) = f (dN (b)),
for all a ∈ A• and b ∈ M•. Now let (M•, mM , dM ) be a K -dgm over an M-dga (A•, m A, dA) and (N •, m N , dN ) an
L-dgm over an N -dga (B•, m B, dB). The triple (M ⊗ N , m N⊗M , dM⊗N ) turns out to be a (K + L − 1)-dgm over
(A ⊗ B, m A⊗B, dA⊗B), where mM⊗N and dM⊗N are defined as before.

Definition 12. The space of endomorphisms of degree k of M• is Endk(M) =
∏

i∈ZHom(M i , M i+k), that is,
Endk(M) consists of maps f : M•

→ M• of degree k which are linear in regard to the action of A• but which
does not necessarily satisfy the relation dM f = (−1) f̄ f dM .

There are operators ◦M : End(M) ⊗ M•
→ M• and ◦E : End(M) ⊗ End(M) → End(M). Similarly to

Proposition 8, Proposition 13 below provides the natural algebraic structure on End(M).

Proposition 13. Define dEnd( f ) := dM ( f ) − (−1) f̄ f (dM ), for f ∈ End(M). The triple (End(M), ◦E , dEnd) is a
(2N − 1)-dga, and (M•, ◦M , dM ) is an N-dgm over (End(M), ◦E , dEnd).

Proof. Associativity of ◦E follows from the associativity of morphism composition. The Leibniz rule for dEnd is a
consequence of the Leibniz rule for dM . From the definition of dEnd we obtain the identity

dn
End( f ) =

n∑
k=0

(−1) f̄ (n−k)dk
M ◦ f ◦ dn−k

M

which can be proved by induction and holds for all n ≥ 1. Let n = 2N − 1 if k < N then N − 1 < n − k and thus
dn−k

M = 0. Similarly if n − k < N then dk
M = 0. �

2. Deformation theory of 2-dgas into N-dgas

Let k be a field and consider the category Artin of finite dimensional local k-algebras. If R ∈ Ob (Artin) with
maximal idealR+ then k ∼= R/R+ (R = k[[t]] andR+ = tk[[t]] are examples to keep in mind). Since k ∼= R/R+

thenR ∼= k ⊕R+ as vector spaces. We study deformation theory using the formalism which considers deformations
as functors from Artin algebras to Sets for later convenience.

Definition 14. Let A• be an M-dga, an N -deformation of A• overR is an N -dga A•

R overR, with N ≥ M , such that
A•

R/R+ A•

R is isomorphic to A• as an N -dga. Two N -deformations A•

R and B•

R are said to be isomorphic if there
exist an isomorphism Φ : A•

R → B•

R of N -dgas such that the induced isomorphism Φ̄ : A•

R/R+ A•

R → B•

R/R+ B•

R
satisfies iBΦ̄ = i A, where i A and iB are the isomorphism i A : A•

R/R+ A•

R → A• and iB : B•

R/R+ B•

R → A•.

The core of Definition 14 is to require that dAR reduces to dA, and m AR reduces to m A under the natural projection
π : A•

R → A•

R/R+ A•

R
∼= A•. Assume that A•

R = A•
⊗R as graded algebras. We have the following decomposition

A•

R = A•
⊗R = A•

⊗ (k ⊕R+) = (A•
⊗ k) ⊕ (A•

⊗R+) = A•
⊕ (A•

⊗R+).

Thus, since dAR reduces to dA under the projection π , we must have

dAR = dA + e

where e ∈ Der(A•
⊗R+) has degree 1. Moreover, the fact that d N

AR
= 0 implies that e is required to satisfy an identity

which we call the (M, N )-Maurer–Cartan equation. The next proposition is well known and considers the classical
case, that is, the (2, 2)-Maurer–Cartan equation.
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Proposition 15. Let A• be a 2-dga and A•

R = A•
⊗ R be a 2-deformation over R, dAR = dA + e where

e ∈ Der(A•
⊗R+), then e satisfies the (2, 2)-Maurer–Cartan equation given by

dEnd(e) + e2
= 0.

Proof. We have

d2
AR(a) = (dA + e)(dA + e)(a)

= d2
A(a) + dA(e(a)) + e(dA(a)) + e2(a)

= dEnd(e)(a) + e2(a), for all a ∈ A•. �

Suppose that N = 2k + n, n ∈ {0, 1} and k ∈ N, then

d N
AR = d2k+n

AR
= (d2

AR)kdn
AR = (dEnd(e) + e2)kdn

AR , thus

Theorem 16. Let A• be a 2-dga. A•

R = A•
⊗ R is an N-deformation over R with dAR = dA + e where

e ∈ Der(A•
⊗R+) of degree 1, iff e satisfies

(dEnd(e) + e2)
N−1

2 (dA + e) = 0 for N odd,

(dEnd(e) + e2)
N
2 = 0 for N even.

Theorem 16 can be easily extended to study deformations of the differential of a 2-dgm M• over a 2-dga A• as
follows.

Theorem 17. Let M• be a 2-dgm over a 2-dga A•. Then M•

R = M•
⊗ R is an N-deformation over R with

dAR = dA + e where e ∈ End(M•
⊗R+) has degree 1, iff e satisfies

(dEnd(e) + e2)
N−1

2 (dM + e) = 0 for N odd,

(dEnd(e) + e2)
N
2 = 0 for N even.

Let M be a 3-dimensional smooth manifold. The space (Ω•(M), d) of differential forms on M is a differential
graded algebra with d the de Rham differential. Let π : E → M be a vector bundle, the space (Ω•(M, E), dE )

of E-valued forms is a differential graded module over (Ω•(M), d), where dE is the differential induced by d. Let
A ∈ Ω1(M) and consider the endomorphism eA induced by A, defined by eA(ω) = A ∧ω for all ω ∈ Ω•(M, E). The
pair (Ω•(M, E), dE + eA) is a 4-dgm for any A. Moreover, according to Theorem 17 (Ω•(M, E), d + eA) is a 3-dgm
if and only if for all ω

dEnd(eA)(d + eA)ω = 0.

Since dEnd(eA)(d +eA) is an operator of degree 3, the identity dEnd(eA)(d +eA)ω = 0 holds for any k-form ω, k ≥ 1.
Thus (Ω•(M, E), d + eA) is a 3-dgm if and only if for any 0-form ω

dEnd(eA)(d + eA)ω = d(A) ∧ (dE (ω) + A ∧ ω) = 0.

Similarly, it is easy to deduce from Theorem 17 that if M is an n-dimensional smooth manifold and n < m, then
(Ω•(M, E), d + eA) is a m-complex. Let now M be a 2n-dimensional smooth manifold. Using local coordinates the
2-form dEnd(eA) can be written as Fi j dx i

∧ dx j where Fi j = ∂i A j − ∂ j Ai . Furthermore,

(Fi j dx i
∧ dx j )n

=

( ∑
α∈P(2n)

n∏
i=1

sign(α)Fai ,bi

)
dx1

∧ · · · ∧ dx2n,
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where P(2n) is the set of ordered pairings of [2n] = {1, . . . , 2n}. Recall that a ordered pairing α ∈ P(2n) is a
sequence {(ai , bi )}

n
i=1 such that [2n] =

⊔n
i=1{ai , bi } and ai < bi . By Theorem 17, (Ω•(M, E), d + eA) is a 2n-

complex if and only if the 2-form Fi j dx i
∧ dx j satisfies∑

α∈P(2n)

sign(α)

n∏
i=1

Fai ,bi = 0.

Let M be a complex manifold and consider the differential graded algebra (Ω(M), ∧, ∂̄), where ∂̄ is the Dolbault
differential. Let π : E → M be a complex vector bundle, we consider Ω(M, E) the forms with values in E . Recall [8]
that a holomorphic structure on E is given by a left differential graded module structure (Ω(M, E), ∧E , ∂̄E ) over the
2-dga (Ω(M), ∧, ∂̄). Suppose that on (Ω(M, E), ∧E , ∂̄E ) there is a left N -differential graded module structure over
the 2-dga (Ω(M), ∧, ∂̄), then in this case we say that E carries an N -holomorphic structure.

3. Discrete quantum theory

Generally speaking the following data constitute the basic set up for a (non-relativistic) quantum mechanical
system: A finite dimensional Riemannian manifold M which is thought as the configuration space of the quantum
system; A Lagrangian function L : T M → R which assigns weights to points in phase space.

Associated to this data is the Hilbert space H of quantum states which is usually taken to be L2(M), the space of
square integrable functions on M . The dynamics of the quantum system is determined by operators Ut : H → H,
where t ∈ R represents time. The kernel ωt of Ut is such that

(Ut f )(y) =

∫
M

ωt (y, x) f (x)dx .

The key insight of Feynman is that ωt (y, x) admits an integral representation

ωt (y, x) =

∫
ei
∫ t

0 L(γ,γ̇ )dt D(γ ).

The integral above runs over all paths γ : [0, t] → M such that γ (0) = x and γ (t) = y. Making rigorous sense
of this integral is the main obstacle in turning quantum mechanics a fully rigorous mathematical theory. Recall that a
directed graph Γ is given by: (i) A set VΓ called the set of vertices, (ii) A set EΓ called the set of edges and (iii) A
map (s, t) : EΓ → VΓ × VΓ . Following the pattern above, one may define a discrete quantum mechanical system as
being given by the following data

(1) A directed graph Γ (finite or infinite) which plays the role of configuration space.
(2) A map L : EΓ → R called the Lagrangian map of the system.

The associated Hilbert space is H = CVΓ . The operators Un : H → H, where n ∈ Z represents discretized time are
given by

(Un f )(y) =

∑
x∈VΓ

ωn(y, x) f (x),

where the discretized kernel ωn(y, x) admits the following representation

ωn(y, x) =

∑
γ∈Pn(Γ ,x,y)

∏
e∈γ

eiL(e).

Here Pn(Γ , x, y) denotes the set of length n paths in Γ from x to y, i.e., sequences (e1, . . . , en) of edges in Γ such
that s(e1) = x , t (ei ) = s(ei+1), i = 1, . . . , n − 1 and t (en) = y.

In Section 4 we show that the generalized Maurer–Cartan equation controlling deformations of N -dgas is
determined by the kernel of a discrete quantum mechanical system L which we proceed to introduce. Let us first
explain our notation and conventions which generalize those introduced in [4].

For s = (s1, . . . , sn) ∈ Nn we set l(s) = n, the length of the vector s, and |s| =
∑

i si . For 1 ≤ i < n, s>i
denotes the vector given by s>i = (si+1, . . . , sn), for 1 < i ≤ n, s<i stands for s<i = (s1, . . . , si−1), we also set
s>n = s<1 = ∅. N(∞) denotes the set

⊔(∞)
n=0 Nn , where by convention N(0)

= {∅}.
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We define maps δi , ηi : Nn
→ {0, 1}, for 1 ≤ i ≤ n, as follows

δi (s) =

{
1 if si = 0,

0 otherwise.
ηi (s) =

{
1 if si ≥ 1,

0 otherwise.

For an M-dga A• and e ∈ End(A•) and s ∈ Nn we define e(s)
= e(s1) · · · e(sn), where e(l)

= dl
End(e) if l ≥ 1, e(0)

= e
and e∅

= 1. In the case that ea ∈ End(A•) is given by

ea(φ) = aφ, for a ∈ A1 fixed and all φ ∈ A•,

then e(l)
a = dl

End(ea) reduces to e(l)
a = edl (a), thus

e(s)
a = e(s1)

a · · · e(sn)
a = eds1 (a) · · · edsn (a)

where [k] denotes the set {1, 2, . . . , k}. For N ∈ N we define EN = {s ∈ N(∞)
: |s| + l(s) ≤ i} and for s ∈ EN we

define N (s) ∈ Z by N (s) = N − |s| − l(s).
We introduce the discrete quantum mechanical system L by

(1) VL = N(∞).
(2) There is a unique directed edge in L from vertex s to t if and only if t ∈ {(0, s), s, (s + ei )} where ei =

(0, . . . , 1︸︷︷︸
i-th

, . . . , 0) ∈ Nl(s), in this case we set source(e) = s and target(e) = t .

(3) Edges in L are weighted according to the following table.

Source(e) Target(e) Weight(e)
s (0, s) 1
s s (−1)|s|+l(s)

s (s + ei ) (−1)|s<i |+i−1

The set PN (∅, s) consists of all paths γ = (e1, . . . , eN ), such that source(e1) = ∅, target(eN ) = s and
source(el+1) = target(el). For γ ∈ PN (∅, s) we define the weight ω(γ ) of γ as

ω(γ ) =

N∏
i=1

ω(ei ).

4. The (M, N)-Maurer–Cartan equation

Lemma 18. Let A• be an M-dga and R ∈ Ob (Artin). We define dAR = dA + e where e ∈ Der(A•
⊗ R+) has

degree 1, then

(dAR)N
=

∑
s∈EN

c(s, N )e(s)d N (s)
A ,

where the coefficient c(s, N + 1) is equal to

δ1(s)c(s>1, N ) + (−1)|s|+l(s)c(s, N ) +

l(s)∑
i=1

ηi (s)(−1)|s<i |+i−1c(s − ei , N ), (1)

and c(∅, 1) = c(0, 1) = 1.

Proof. We use an induction on N . For N = 1, since E1 = {s = ∅, s = 0}

dAR =

∑
s∈E1

c(s, 1)e(s)d1(s)
A = c(∅, 1)e(∅)d1−|∅|−l(∅)

A + c(0, 1)e(0)d1−|0|−l(0)
A

= c(∅, 1)dA + c(0, 1)e.
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Suppose our formula holds for N and let us check it for N + 1

(dAR)N+1
= (dA + e)(dAR)N

= (dA + e)

(∑
s∈EN

c(s, N )e(s)d N (s)
A

)

= dA

(∑
s∈EN

c(s, N )e(s)d N (s)
A

)
+ e

(∑
s∈EN

c(s, N )e(s)d N (s)
A

)

=

∑
s∈EN

c(s, N )dA(e(s)d N (s)
A ) +

∑
s∈EN

c(s, N )ee(s)d N (s)
A . (2)

Consider the second term of the right hand side of (2)∑
s∈EN

c(s, N )ee(s)d N (s)
A =

∑
s∈EN

c(s, N )e(0)e(s)d N (s)
A

=

∑
t∈EN+1

t1=0

c(t>1, N )e(t)d N−|t>1|−l(t>1)
A (3)

=

∑
s∈EN+1

δ1(s)c(s>1, N )e(s)d N (s)+1
A . (4)

In (3) we put t = (0, s) thus |t | = |s| and l(t) = l(s) + 1 and (4) is obtained by rewriting and changing t to s.
Now consider the first term of the right hand side of (2)∑

s∈EN

c(s, N )dA(e(s)d N (s)
A ) =

∑
s∈EN

1≤i≤l(s)

(−1)|s<i |+i−1c(s, N )e(s+ei )d N (s)
A

+

∑
s∈EN

(−1)|s|+l(s)c(s, N )e(s)d N (s)+1
A (5)

=

∑
t∈EN+1

l(t)∑
i=1
ti ≥1

(−1)|t<i |+i−1c(t − ei , N )e(t)d N−|t−ei |−l(t)
A

+

∑
s∈EN

(−1)|s|+l(s)c(s, N )e(s)d N (s)+1
A (6)

=

∑
s∈EN+1

l(s)∑
i=1

ηi (s)(−1)|s<i |+i−1c(s − ei , N )e(s)d N (s)+1
A

+

∑
s∈EN

(−1)|s|+l(s)c(s, N )e(s)d N (s)+1
A . (7)

Putting t = s + ei in the first term of (5) we obtain (6) and rewriting and changing t to s we obtain (7). Finally
collecting similar terms in (4) and (7), and using the recurrence formula we get

(dA + e)N+1
=

∑
s∈EN+1

c(s, N + 1)e(s)d N (s)+1
A ,

thus the proof is completed. �

The following result generalizes Theorem 16. It provides an explicit formula for the coefficients of the generalized
Maurer–Cartan equation introduced below.
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Theorem 19. We have,

(dAR)N
=

N−1∑
k=0

ckdk
A,

where

ck =

∑
s∈EN
N (s)=k
si <M

c(s, N )e(s) and c(s, N ) =

∑
γ∈PN (∅,s)

ω(γ ).

Proof. One checks that the coefficients c(s, N ) =
∑

γ∈PN (∅,s) ω(γ ) satisfy the recurrence formula of Lemma 18.
For this one checks that PN+1(∅, s) is naturally partitioned in three blocks. The first block contains paths that are the
composition of a path γ : ∅ → s in PN (∅, s>1) with an edge s>1 → (0, s>1) and corresponds with the first term in
(1). The second block consists of paths that are the composition of a path γ : ∅ → s in PN (∅, s) with an edge s → s
and corresponds with the second term in (1), finally the last block consists of paths that are the composition of a path
γ : ∅ → s − ei in PN (∅, s − ei ) with an edge s − ei → s and corresponds with the last term of (1). �

Let A• be an M-dga and A•

R an N -deformation over R with A•

R = A•
⊗ R. For a ∈ A1

⊗ R+ we define
ea : A•

R → A•

R by

ea(b) = ab − (−1)b̄ba.

We are assuming that the product is not graded commutative. It is easy to see that eb is a derivation of degree 1 on
A•

⊗R+. Then dAR = dA + ea is an N -deformation of dA iff ea satisfies the equation∑
s∈EN
si <M

c(s, N )e(s)
a d N−|s|−l(s)

A = 0. (8)

Eq. (8) will be called the (M, N )-Maurer–Cartan equation. We closed this section by formally introducing the
(M, N )-Maurer–Cartan functor MC N

M (A) which controls deformations of the differential dA of an N -dga A•.

Definition 20. For N ≥ M , a ∈ A1
⊗R+ is said to be an (M, N )-Maurer–Cartan element of A•

⊗R if ea satisfies
the (M, N )-Maurer–Cartan equation (8). We say that a is homotopic to a′, if ea is homotopic to ea′ as morphisms of
N -dgas.

Definition 21. We define the (M, N )-Maurer–Cartan functor MC N
M (A) : Artin → Set for each M-dga A• over k.

Functor MC N
M (A) is given by

(1) Let R be an object of Artin. MC N
M (A)(R) is the set of homotopy classes of all (M, N )-Maurer–Cartan elements

of A•
⊗R.

(2) If ϕ : R → R′ is a morphism of the category Artin and a is an (M, N )-Maurer–Cartan element of A•
⊗ R,

then (1 ⊗ ϕ)(a) is an (M, N )-Maurer–Cartan elements of A•
⊗R′. Thus we obtain a map ϕ∗ : MC N

M (A)(R) →

MC N
M (A)(R′).

The deformation theory of K -dgms over an M-dga can be defined similarly.

5. Chern–Simons actions

Let (A•, m A, dA) be a 2-dga over k and let (M•, mM , dM ) be a 2-dgm over (A•, m A, dA), consider its 2K -
Maurer–Cartan equation, that is the equation that arises when we deform the 2-dgm (M•, mM , dM ) into a 2K -dgm,
MC2K (a) = (dEnd(a) + a2)K

= 0, where a ∈ End(M•) has degree 1. Let us assume that there exists a linear
functional

∫
: End(M•) → k of degree 2K + 1, (i.e.,

∫
b = 0 if b̄ 6= 2K + 1) satisfying the following conditions:

(1)
∫

is non degenerate, that is,
∫

ab = 0 for all a, then b = 0.
(2)

∫
d(a) = 0 for all a, where d = dEnd(M•).

(3)
∫

is cyclic, that is
∫

a1a2 · · · an = (−1)ā1(ā2···ān)
∫

a2 · · · ana1.
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We define the Chern–Simons functional cs2,2K : End(M•) → k by

cs2,2K (a) = 2K
∫

π(#−1(a(dEnd(a) + a2)K )),

where

(1) k < a, d(a) > denotes the free k-algebra generated by symbols a and d(a).
(2) # : k < a, d(a) >−→ k < a, d(a) > is the linear map defined by

#(ai1d(a) j1 · · · aik d(a) jk ) = (i1 + · · · + ik + j1 + · · · + jk)a
i1d(a) j1 · · · aik d(a) jk .

(3) π : k < a, d(a) >−→ End(M•) is the canonical projection.

For K = 1 we have that cs2,2(a) is equal to

2
∫

π(#−1(a(d(a) + a2))) = 2
∫

π(#−1(ad(a) + a3)) =

∫
ad(a) +

2
3

a3,

which is the Chern–Simons functional. In general we have the following result.

Theorem 22. Let K ≥ 1 be an integer. The Chern–Simons functional cs2,2K is a Lagrangian for the 2K -
Maurer–Cartan equation, i.e., a ∈ End1(M•) is a critical point of cs2,2K if and only if (d(a) + a2)K

= 0.

Proof. We check that ∂
∂ε

cs2,2K+2(a + bε)|ε=0 = (2K + 2)
∫

bMC2K+2(a).

∂

∂ε
cs2,2K+2(a + bε)|ε=0 =

∂

∂ε
(2K + 2)π

∫
(#−1((a + bε)MC2K+2(a + bε)))|ε=0

= (2K + 2)

∫
π

(
#−1

(
∂

∂ε
(a + bε)MC2K (a + bε)MC2(a + bε)

))∣∣∣∣
ε=0

= (2K + 2)

∫
π

(
#−1

(
∂

∂ε
(a + bε)MC2K (a + bε)

))∣∣∣∣
ε=0

MC2(a)

+ (2K + 2)

∫
π

(
#−1

(
aMC2K (a)

∂

∂ε
MC2(a + bε)

))∣∣∣∣
ε=0

. (9)

For degree reasons, the second term of (9) vanishes, the inductive hypothesis yields

∂

∂ε
cs2,2K+2(a + bε)|ε=0 = (2K + 2)

∫
bMC2K (a)MC2(a)

= (2K + 2)

∫
bMC2K+2(a). �

For K = 2, 3 the Chern–Simons functional cs2,2K (a) is given by

cs2,4(a) =

∫
4
3

a(d(a))2
+ 2a3d(a) +

4
5

a5.

cs2,6(a) =

∫
3
2

a(d(a))3
+

12
5

a3(d(a))2
+

6
5

ad(a)a2d(a) + 3a5d(a) +
6
7

a7.

Acknowledgements

We thank Nicolás Andruskiewitsch, Edmundo Castillo, Eddy Pariguan, Sylvie Paycha and Jim Stasheff for helpful
suggestions. Thanks also to an anonymous referee for precise corrections. The authors’ work was partially supported
by IVIC.

References

[1] M. Angel, R. Dı́az, N-flat connections, in: S. Paycha, H. Ocampo, B. Uribe (Eds.), Proceedings of the Conference on Geometric and
Topological Methods for Quantum Field Theory, Villa de Leyva, 2005, in: Contemp. Math. Book Series, AMS. (in press) math.DG/0511242.
Preprint.

http://arxiv.org//arxiv:math.DG/0511242


M. Angel, R. Dı́az / Journal of Pure and Applied Algebra 210 (2007) 673–683 683

[2] M. Angel, R. Dı́az, On the q-analogue of the Maurer–Cartan equation, Adv. Stud. Contemp. Math. 12 (2) (2006) 315–322. math.QA/0601698.
Preprint.

[3] M. Angel, R. Dı́az, AN
∞-algebras (in preparation).

[4] R. Dı́az, E. Pariguan, Symmetric quantum Weyl algebras, Ann. Math. Blaise Pascal 11 (2004) 187–203.
[5] M. Dubois-Violette, Lectures on differentials, generalized differentials and some examples related to theoretical physics, in: Quantum

Symmetries in Theoretical Physics and Mathematics (Bariloche 2000), in: Contemp. Math., vol. 294, AMS, 2002, pp. 59–94.
[6] P. Freyd, Abelian Categories, Harper International Edition, 1964.
[7] K. Fukaya, Deformation theory, homological algebra, and mirror symmetry, January 2002. Preprint.
[8] P. Griffiths, J. Harris, Principles of Algebraic Geometry, in: Pure and Applied Mathematics, Wiley Interscience, 1978.
[9] M.M. Kapranov, On the q-analog of homological algebra. q-alg/9611005. Preprint.
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