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Abstract 

Hanlon, P., A Markov chain on the symmetric group and Jack symmetric functions, Discrete 

Mathematics 99 (1992) 123-140. 

Diaconis and Shahshahani studied a Markov chain Wf(l) whose states are the elements of the 

symmetric group S,. In W,(l), you move from a permutation n to any permutation of the form 

a(i, j) with equal probability. In this paper we study a deformation W,(a) of this Markov chain 

which is obtained by applying the Metropolis algorithm to Wf(l). The stable distribution of 

W,(a) is 6-C(Z) where C(A) denotes the number of cycles of x. Our main result is that the 
eigenvectors of the transition matrix of W,(a) are the Jack symmetric functions. We use facts 

about the Jack symmetric functions due to Macdonald and Stanley to obtain precise estimates 

for the rate of convergence of W,( (u) to its stable distribution. 

1. A Markov chain 

A number of mathematical and statistical problems lead to the considerations 
of random walks where the set of states is a finite or continuous group (see 
Diaconis [l, Chapter 31, for a thorough and entertaining discussion with 
references). Usually, in these random walks on groups, the transitional probabil- 
ity r(x, y) of going from y to x depends only on the group element xy-’ and in 
most cases only on the conjugacy class of xy-‘. Diaconis and Shahshahani [2] 
analyze a proposed card-shuffling procedure using a random walk on the 
symmetric group S, where the transitional probability ti(o, n) is (5))’ if UK’ is a 

transposition and 0 otherwise. In their random walk, you move from a 
permutation Ed to any permutation of the form n(i, j) with equal probability. We 
will denote this random walk by IV,(l). 

Let c(n) denote the number of cycles in the disjoint cycle decomposition of n. 
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It is easy to see that 

c(JG(I’, i)) = c(n) f 1. 

So at each step of the random walk Wf(l) the value of the function c changes by 
1. 

In this paper we consider a variant W,(a) of W(l) where (Y is a real number 
greater than or equal to 1. W,(a) is a Markov chain on S, and the only allowable 
moves away from a permutation JC are to permutations of the form ;rd(i, i) (it will 
be possible to stay at n). However in W,(m) you do not move to each ~t(i, i) with 
equal probability. Instead, the probability of moving from it to z(i, j) depends 
only on whether c(n(i, j)) is c(n) + 1 or c(z) - 1. The exact rule is that you are (Y 
times as likely to move to n(i,j) if c(rc(i,j)) = C(JC) - 1 than if c(rt(i,j)) = 

c(n) + 1. 
For A a partition, let A’ denote the 

function 

n(A) = 2 (i - l)A., = 2 (2). 
I i 

For o a permutation let n(a) denote n(A,) where A, is the partition whose 
columns are the cycle lengths of CT. So for example n(id) = 0. 

Definition 1.1. Let C-X be a real number with (Y 2 1. Define the random walk 
W,(a) on 5” by saying that the probability t&a, JC) of moving from n to o is 

conjugate partition and let n(A) be the 

1 

f 
cx(% Jd) = 0 

if u = x(i, j) and c(a) = C(E) - 1, 

2 

1 

f 
(y2 0 

if u = ;rG(i, j) and c(u) = C(X) + 1, 

\O otherwise. 

This matrix of transition probabilites for the cases f = 3 appears below. 

(a - W(4 
f 

if u = JG 

0 
9 

a2 

id 

(19 2) 

(1,3) 

(2,3) 

(1, 2, 3) 

(1, 3, 2) 

id 

0 

(Y 

(Y 

(Y 

0 

.O 

(12) (1,3) (~3) (1~3) (L~J) 
1 1 1 0 0 

a-1 0 0 1 1 

0 (Y-1 0 1 1 

0 0 CY-1 1 1 

(Y CX (Y 3a!-3 0 

(Y (x (Y 0 3a-3 I . (3a)_’ 
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We denote the matrix of transition probabilities for this Markov chain on S, by 
Tf((u). The reader is warned that our matrix of transition probabilities is the 
transpose of the one that usually used. 

It is clear that Tf(cu) is a nonnegative matrix and it is straightforward to check 
that the rows and columns of TV sum to 1. Note that the transition probability 
from u to a(& j) is a factor of (Y larger if c(a(i, j)) = c(a) - 1 than if 
c(a(i, j)) = c(a) + 1. Note also that Tf(l) gives the transition probabilities for the 
random walk B+(l) considered by Diaconis and Shahshahani. 

Definition 1.2. For a, n E S, and n E N define PLap’(a, n) to be the probability that 
a random walk of length 12 in W,(a) which begins at n ends at o. 

Suppose (Y > 1. We will show that 

P(“)(o, n) = lim P’“‘(a n) n > 
n--t- 

exists for all u and n. At any step in a random walk we are more likely to move 
to a permutation with fewer cycles than to a permutation with more cycles. So we 
might expect that 

P(u, q) > P’“‘(u > X2) 

wherever C(JG~) <c(q). We will show that 

and that the error term 

&(a, n) = lP:q u, 3d) - P’“‘(u , JG)] 

is exponentially decreasing with n. We will find some lower bounds for the error 
term. 

In the last section we will consider the special case where n is the identity in S, 
In this case we can get precise estimates for the asymptotic value of &(a, n). 
Quite surprisingly these estimates come from results proved recently by Mac- 
donald [8] and Stanley [ll] concerning the Jack symmetric functions. 

2. A simple estimate for P@)(o, jc) 

Let { , }& be the form on RS, given by 

1 

c(n) 

{o,n},= k if u=n, 

0 if u # 3r. 

and let Qr(a) be the matrix of this form. 
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Lemma 2.1. For all u, v E RS, we have 

{TfW4 v>, = (u, TfWvL 

Proof. We may assume u, v E S,. If u = v then 

{z&+4 U>, = (o -;:i’“’ Cr+) = {U, Tf(cu)U},. 

(y2 

If u # v and u is not of the form v(i, j) then 

{q(44 u>, = 0 = {u, Tf(+J>,. 

Suppose u = v(i, j) and c(u) = c(v) - 1. Then 

{Tf(CX)u, v}, = {v, v}, = &“), 
and 

{u, z+X)v}, = {u, CXU}, = CYc@)+’ = &u). 

This completes the proof. 0 

We will be interested in the eigenvalues and eigenvectors of Tf(cu). The 
previous lemma shows that 

Tf(4 = Tf(4’ 

where the transpose is taken with respect to the form { , }=. In particular Tf(cr) is 
diagonalizable and all its eigenvalues are real. Below we see the eigenvalues and 
corresponding eigenvectors for the matrix T,( (u). 

Eigenvalue Eigenvectors 

1 (1, o, a, a; m2, a’) 

1 - l/a (070, 0, 0, 1, -I) 

1 1 
(6,2a - 2,2cu - 2,2a - 2, -3a, -ICY) 

--- 
3 3Cr 

(0, I, -1, O,O, 0) 

(0, 0, I, -1, O,O) 

-l/LX (1, -1, -1, -1, 1, 1) 

Lemma 2.2. The matrix Tf(cx) has 1 as an eigenvalue of multiplicity 1. Moreover, 

if (Y > 1 then all other eigenvalues of Tf(a) have absolute values less than 1. 

Proof. Define ,&(a) be the vector with entries indexed by S_ whose 0th entry is 
&“(“). It is straightforward to verify that 

(we leave this computation to the reader because we will prove something more 
general in the next section). 
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Now suppose (Y > 1. In this case q(a) is a primitive nonnegative matrix (i.e., 
Tf(a) has nonnegative entries and some power of Tf((u) has all positive entries). 
This follows because every permutation can be written as a product of 
transpositions and because at least one diagonal entry of Tf(a) is positive. The 
last assertion in Lemma 2.2 is a consequence of the Perron-Frobenius theory (see 

It is well known that 

f-1 
C arfPcCO) = PO (1 - ia). (*) 

MS, 

We let K denote the inverse of the above quantity (*). The next theorem follows 
immediately from Lemma 2.2 and the ergodic theorem for Markov chains. 

Theorem 2.3. Let a be a real number greater than 1. For any a, n E S, we have 

P$@( a, Jr) = K&“‘“‘( 1 + O( Ef( a)“)) 

where 0 < cf (a) < 1. 

Remark. Diaconis points out that the Markov chain W,(o) is an example of a 
Metropolis chain for (Y > 1. The Metropolis algorithm is an algorithm for creating 
a Markov chain on a finite set X whose stationary distribution agrees with a given 
probability distribution. The actual algorithm, which was first announced in [9], 
has the following description (see also [3, Chapter 91). Let X be a finite set and 
let f : X-+ Iw be any function. The problem solved by the Metropolis algorithm is 
to create a Markov chain P(x, y) on X having stationary distribution n(x) = 
e -Bf(“‘K(j3) where K(p) is the normalizing constant 

To run the Metropolis algorithm, one begins with any symmetric Markov chain 
P*(x, y). One defines the new Markov chain p(x, y) by 

if 4~ I< JG(X), 

if y fx and n(y) 3 n(x), 

I p’(X,X)+C~*(~,y)(I-~) ifx=y, 
Y 

where the last sum is over y with n(y) < n(x). 
To see that our Markov chain Wf (a) arises according to this algorithm let 



128 P. Ha&on 

X = S,, let f(n) be the number of cycles in z and let P* be 

f -l 
P*(o, t) = 10 2 

if at-l ’ is a transposition, 

10 otherwise. 

Also let /3 = log (Y. Then 

Jr(o) = C’“‘K(/3) 

where 

ES, 

so 
n(u) = af-“‘“‘K 

which we know to be the stationary distribution of W,(a). 

For o # t we have that II(t) < II(a) iff c(a) <c(r). So for o # t, 

Kaf-c(o)-’ f -l 0 K&--C’“’ 2 
if r = a(i, j) and c(t) = c(a) + 1, 

P(a, z) = f -l 
0 2 

if r = a(& j) and c(r) = c(a) - 1, 

0 otherwise. 

So P(u, z) = tlr(t, a) hence the Metropolis chain agrees with our Markov chain 

w,(a). 

Let 1 = A,(m), A,(a), . . . , Af !(a) be the eigenvalues of TV ordered by 

absolute value. So 

1 = A,(a) > IA,(a)l > - * * > jA,!(a)l s 0. 

At this point it is natural to ask about IA,((u)( since we can take Ed = IA,(a)l 
in Theorem 2.3. In the next section we will show that 

is an eigenvalue of Tf(a) for any partition A. off. In particular this shows that 

are eigenvalues. We end this section by finding some other eigenvalues of Tf(cu) 

which are not of the form ((~n(jl’) - n(A))/a(Q. 

Definition 2.7. Let D, denote the set of partitions off into distinct odd parts. For 

A E Of let vA = v~( CY) be the vector in [w S, given by 

2rA = C sgn(r)u” 
ES, 
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where o is an arbitrarily chosen permutation with cycle type A (vi depends up to 
sign on the choice of a). 

Since A has distinct odd parts, the centralizer of any u with cycle type A lies in 
the alternating group A,. So uA is nonzero. In fact the vA, A E Of, are a basis for 
the sgn-isotopic component of the conjugation action of S, on itself (see Kostant 

m- 

Theorem 2.8. Let A E Dp Then v, is an eigenvector of Tf(cu) with eigenvalue 

(a - l)n(A’)/$J 

Proof. Write Tf(@) = D + E where D is a diagonal matrix and E has diagonal 
entries 0. It is obvious that 

DvA = ((a - l)n(l’)lrr(~))vl 

(since v, is supported on permutations 
that EvA = 0. 

of cycle type A). So it is enough to show 

It is straightforward to check that if o has cycle type A(for A E D,) then a(i, j) 
has exactly one length for all (i, j). So 

Evk = c b,t 
r 

where the sum is over permutations with exactly one cycle of even length. 
Let r, be a permutation with exactly one cycle Co of even length. We will show 

that b, = 0. In the next section we will show that Tf(a) commutes with the 
conjugation action of RS, on itself. So E also commutes with this conjugation 
action. Hence 

b,z, + c b,zcO = 2 b,z 
( > 

c” = (EQ)~” = Ev,CO 
Z#X” 5 

= E(-v,) = -b,t,, + 2 b,z. 
Z#T” 

Since rcO # t,, for r # to, we have b, = -b,, which completes the proof. •i 

CoroUary 2.9. If f i.s odd then (cr - l)/(~ is an eigenvalue of T,(a). Zf f is even then 

(a - Nf ; ‘)/4) is an eigenvalue of T,( (u). 

We now know three eigenvalues of q(m), namely 

i 

1 - llff, (f$) - l/Cx(~) -1lcu f odd, 

(fy)(I - I/a), (fT) - I/C+!J, -l/a f even. 

(2.10) 
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Their relative absolute values depend on the parameter (Y. For fixed CY, the largest 
of the three gives a lower bound for &(a). In general this is not a good lower 
bound as can be seen by considering the case f = 4. The 24 eigenvalues of T,(a) 
are given with multiplicities in the chart 

Eigenvalue Multiplicity 

1 1 

s- 116~~ 4 

-l/Cr 1 

g - 1/2CX 1 

a - l/2(% 3 

9(~.~-1)+~9~r*-2~~+9 

12Cr 
3 

9(a-l)-v9a2-2a+9 3 

12a 

rl, r2, r3 2 each 

where r,, r,, r3 are the three roots of the equation 

c - (9Cr - 9)P + (202 - 44a + 20)A - (12cr3 - 50a* + 5oa - 12) = 0. 

The lower bound for A,(a) given by (2.10) is less than 1. However for large 
values of Q: the eigenvalue 

9(a-l)+v9a*-2a+9 

12CX 

is arbitrarily close to 1. It would be interesting to have more information about 

the absolute value of A,(a). 

3. Random walks from the identity 

The goal of this section is to get precise estimates for P~&)(JG, e) where e 
denotes the identity element of S,. More generally we will obtain estimates for 
the average probability of a random walk of length n going from a permutation of 
cycle type A to a permutation of cycle type CL. 

Definition 3.1. Let A and p be partitions of f and let %A and ZP denote the 
conjugacy classes of permutations having cycle type A and p respectively. Define 
PC”)@ A) to be n ? 

V(P, A) = (Iql WA)-’ c P’ ‘(a 3-c) na > 
oe%p,.ns%?~ 
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Lemma 3.2. The matrix TV commutes with the conjugation action of S, on 
itself. 

Proof. This follows from three observations which hold for all a, 3t, t E S, and all 
lSi<jSf. 

(1) o = Ic(i, j) iff o’= Jd’(ti, rj) 
(2) c(a) = ~(a~) and c(n) = c(n’). 
(3) n(a’) =n(a). Cl 

Lemma 3.2 has the following important corollary. 

Corollary 3.3. Let A and y be partitions off and let o be any permutation of cycle 
type p. Then 

In particular 

P(a e) = P’“‘(p If) n 7 n 9 * 

Proof. Let o1 and a, be in YM with a2 = a:. Then 

P,(~2, n) = (TfWL*,, = (Tf~~n+~ = EI(% .7d”). 

so 

VW’ c P,(% n) = I%l-’ c Pn(u2, a) 
nsg neq 

and the first assertion follows. The second assertion is an immediate consequence 
of the first. 0 

In what follows we will obtain precise estimates for the P,(p, A) and so in 
particular for the P,(p, If). Thus, using Corollary 3.3, we will obtain precise 
estimates for P,,(u, e). To estimate the P& A) we must examine the restriction 
of Tf(a) to the center of IRS_ Note that Tf(a) acts on the center because the 
center is an isotypic component for the conjugation action. 

For each partition A off let PA denote the element of the center of RS, given by 

(3.4) 

It is well known that the SPA are a basis for the center of RS,. We order the basis 
in the reverse lexicographic order of A. In particular the first basis element is 

9,f = e. 

By Lemma 3.2 there exists a matrix Lf(a) = (l,,(a)) such that 

Tf(o)% = c lBA(~)~P. 
c 
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Quite remarkably, this matrix Lf((u) has appeared in an entirely different context 

as the next theorem relates. Before stating this result we recall some notation 

from Macdonald [S]. 

Fix an integer m of and let AL denote the vector space of homogeneous 

polynomials of degree f which are symmetric in variables x1, . . . , x,. For each 

partition A of f let pn(x) = Pn(xI, . 

Theorem 3.5. Let D(cu) be the endomorph&m of AL given by 

D(a)=;~xf&+~~~. 
I 1 l i+j Xi - Xj dXi 

Then 

D(~PA(x) = (m - llfpA(x) + a(i) c ~A(~P,(x). 
U 

Proof. Our proof will rely on the following observation which we state as a 

lemma. 0 

Lemma. Let M = (m,) be a linear transformation from RS, to RS, which 
commutes with the conjugation action. DeJine M” = (mih) by 

Then we can compute the entries rn$ by the following method. Choose any 
permutation jt of cycle type A. Then 

Proof. The key observation is that for any h and any JC E Fe, we have 

PA =; x Jr”. 
. SEsf 

Now fix n E V&. Then 

which proves the lemma. •i 

The content of this lemma is that we can compute the entry rniA by considering 

the effect of M on just one permutation n in V&. We will apply this lemma to 
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compute the entries L,,(a). Fix a partition A and a permutation n of cycle type A. 
The above lemma gives immediately that 

L**(a) = (a - l)n(h’)/o(;) * 

It remains to compute the off-diagonal entries. 
Let T=(Yi ,..., Y?) and A=(& ,..., S,) be an r-cycle and an s-cycle of n 

and consider the a, n entry of Tf(cu) where 

The permutation CJ has exactly the same cycles as n except that the two cycles r 
and A in n are replaced by a single cycle 

So the a, n entry of TV is CZ/LY({) and the cycle type of u is p = n[r, s tr +s] 
which means the partition obtained from h by replacing the parts r and s by their 
sum r s. This all man where u = V) u, Y 
from different cycles of JC 

let r , an of and the 3d of 
where 

a=n(y,, yj) l<i<jGr. 

The permutation u has exactly the same cycles as ;rd except that the cycle Tin n is 
replaced by two cycles 

(Ylt . . . , pi, yj+l, . . . , ~~1 and CY~+,, . . . , yj>. 

So the a, n entry of Tf((r) is l/a(g) and the cycle type of u is ,U = il[rt 
(j-i),r+i-j] h’ h w ic as above means the partition obtained from h by replacing 
r by j - i and r + i -j. This accounts for all entries man where u = .~G(u, V) and U, 
v come from the same cycle of JK So 

(3.6) 

In the formula (3.6) the second sum accounts for u of the form n(i, j) where i and 
j come from a &-cycle r and a &,-cycle A. The factor AU&, accounts for the fact 
that there are &A,, many choices for i and j from rand A. The third sum accounts 
for those u of the form n(r, s) where r and s come from the same &-cycle r. 
These pairs are chosen by first picking r (this can be done in &-ways) and then 
choosing s = r + j (mod Ak). 
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Note that 

(CY - l)n(A’) = (cu - 1) 7 (“;) 

=- l (a!; &@k - 1) + ; M2n - 2 - (A/r - I)} 
2 

-f(m - 1). (3.7) 

Comparing (3.6) and (3.7) with the first formula in the proof of Theorem 3.1 of 
[ 111 gives the result. 

The operator II(cu) is the so-called Laplace-Beltrami operator from the theory 
of the Jack symmetric functions. There has been an abundance of work on the 
Jack symmetric functions in recent years (see [5, 6, 8, 111). The Jack symmetric 
functions .I,@; CY) are the eigenfunctions of the operator D(a) hence by the 
theorem above their expansions in terms of the power sum symmetric functions 
give us the entries in the eigenvectors of &(a). Our immediate goal is to read off 
information about the eigenvalues and eigenvectors of Lf(o) from information 
available about the JA(x; (u). 

Definition 3.8. Let ( , )a be the symmetric bilinear form on the space of 
symmetric polynomials in x1, . . . , x, defined by 

(P*, pr > = 6,,2* CPA). 

The next result is due to Macdonald (see [S]). 

Theorem 3.9 (Macdonald). Suppose m 2 f. Then there are unique symmetric 
polynomials JA(xI , . . . , x, ; a) where r3. ranges over the partitions off which satisfy 
the following three conditions : 

(1) (J,, JP)n = 0 if A is different than u. 
(2) Write Jn = C, vAp(a)mp where m,, is the uth monomial symmetric function. 

Then v~,(cu) = 0 unless A (weakly) dominates u. 
(3) The coefficient IJ~,~/ is f ! 

Moreover, each JA(x ; a) is an eigenfunction of D(a) with eigenvalue eA(m ; a) 

given by 

eA(m; CY) = an(A’) - n(A) + f (m - 1). 

For each A 1 f define E,(a) to be 

G(a) = (e&r; 4 -f (m - l))/o(i) . 
Note that E,(a) does not depend on m. 
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Definition 3.10. A a partition of & For each square s = (i, j) in the Ferrer’s 

diagram of A define a*(s) and IA(s) by 

a*(s) = Ai -j and G(s) = Ai - i. 

Lemma 3.11 (Stanley [9, p.361). For each partition A let h(a) denote 

&(x; 4, A(x, a)),. Then 

L(a) = l--I (4(s) + a@*(s) + l))((G(s) + 1) + au*(s)). 
SEA 

In this paper we will need only the following three values of 6, each of which is 

easily computed using Lemma 3.11 above. 

f-1 
jr(&) = aff! n (1 + ia) 

i=O 

f-1 

ill =f! PO (i + a) 

f--3 

(3.12a) 

(3.12b) 

jf-l,l(cu) = (1 + CX(~ - 1))(2 + a(f - 2))&‘(f - 2)! n (1 + ia) (3.12~) 
i=O 

Definition 3.12. For A a partition off define 2A E RS, by 

B* = W) c c&)% 
P 

where the constants ~~,,(a) are defined by 

It is straightforward to check that 

19, pP;> = (PA(X), P,(x))~ for all 4 P. 

Hence the set of $$ is an orthonormal basis of eigenvectors for Lf((u) 

(orthonormal with respect to { }n. Moreover, the eigenvalue associated with $A 

is E,(a). 

Before stating the main result we need to know certain coefficients cap. The 

formulas below are due to either Macdonald [8] or Stanley [ll]. 

Lemma 3.13. For A = f, lf and f - 1, 1 the coefficients ~~,(a) have the following 
values : 

C f,r = P’“‘(f !/z,) 

clf,r = w(pcl>(f VqJ = (7 (-1)“*-‘)lf !lqA 

C(f-1,1),&d = (f V~pWY-f + (1 - (f - lbhl(P)Y(f - 1) 
where ml(p) is the number of parts of p equal to 1. 

(3.13a) 

(3.13b) 

(3.13c) 



136 P. Ha&on 

We can now state the main result of this section. 

Theorem 3.14. Let A. and p be partitions of f. Define constants A@, A) and 

NK A) by 

Ah 1) = 
sgn(p)sgn(il)&*) 

n{IJ (i + CY) 

) 

x 
( 

(f + ((f - l)a - l)m1(y))(f + ((f - lb - l>m(~)) 
(1+ 4f - 11x2 + a(f - 2)) ) 

Then we have the following asymptotic expansions for PLW)(p, A) which depend on 
the size of (Y relative to f: 

(1) Zf l<cu<(f”-f +2)/(f2-3f +2) then 

PF)(p, A) = Kaf+) + A@, A)a-” + 0 
((Cf~) fGY)- 

(2) Zf a>(f2-f +2)/(f*-3f +2) then 

PF)(p, A) = Kd-‘( p + fqp, A.)( ((‘9) + fs)“) + O(cP). ) 

(3) Zf a = (f’- f + 2)l(f2 - 3f + 2) then 

PF)(p, A) = Kaf+‘) + (A@, A) + B(p, A))~-” + 0( (fs)“, . 

Proof. Fix A and p partitions of J We have 

here . is ordinary dot product of vectors 

The last equality holds as 5PP . PiJo = I(e,l a,,. 

Let C,(a) be the matrix whose Ath column contains the coefficients in the expansion of 

Jk(x; a)/ji, in terms of power sums. To be precise, C,(a) is the matrix whose @, A entry 

is 

C&Y) = cB&X)lAt,z. 
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Since the A are a set of orthonormal eigenvectors for _$(m) we have 

WWf(4 = Cf(Wj?@) 
and 

(Cf(“)-‘)sr = (Cf(4),,~‘(y’~,. 

By (3.16a) we have 

&(a)” = Cf(a)diag(Ep(a)“)Cf(a)-’ 

hence 

(3.16a) 

(3.16b) 

= “‘;p”“; c,a,(cY)Ep,((u)“c*.B,(~) (3.17) 

We get an asymptotic expansion for P?iWp’(p, A) by taking those terms on the right 

hand side of (3.17) where &(a) is maximum in absolute value. The following 

chart gives the three largest values of IEs(a)l together with the corresponding 

partitions p: 

a Largest 1 2nd Largest 

I I 

i 3rd Largest 

l<a<f2-f+2 l --I f-2 2CY-’ 
ff --___ 

f’- 3f + 2 f f(f -1) 

P=f /3 = If P=f-1,l 

f’-f +2 1 
f -2 2a-’ 

@>fZ-3f +2 
f_f(f a-1 

P=f P=f-1,l p = If 

We should point out that the M-’ which appears above is actually the absolute 
value of E,l(cu) = --cy-l. From (3.17) and the chart above we have the following 
asymptotic expansions: 

(1) If l<cu<(f'-f +2)/(f2-3f +2) then 

Gpyp A) = =flzia 
” 3 

f! t(A) ((Z &W)(~ &f-t~ll))j71 

+ (5 sgn(p))(E sgn(A))i,lKn) 

+. f-2 

CC 
2CX-’ n --~ 

f f(f - 1) >> 
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Substituting the values of jf and jr/ given in (3.12) we have 

9’“‘(p A) = ( 
d-K*‘) 

n , n;‘=; (1+ icu) > ( + wWw@W(“) (y-R 

n{L; (i + (u) > 

+. f-2 

N 

2a-’ n --- 
f f(f - 1) >> 

(3.18) 

(2) If LX > (f’ -f + 2)/(f2 - 3f + 2) then 

‘(*) @P(PL, A) = 
-qJA~ 

f, ((t dF1(N))(t 6_'("))jil 

+ (f!>’ ( > 
(y2f--I(+-[(P) 

qlZA (f - II2 C-f + (1 -(f - l>ah(cl)) 

. t-f + (1 - (f - l)+h(n))( (f$ -f~)n)j7J~.~] 
+ O((Y-y 

( 
&W 

= rIf:J (1 + i&u) > 

+ ( fQf+‘-‘(q-f+ (1 -(f- lb)m1(cl))(-f+ Cl- (f- lb)%(n)) 
(f - 1) n:‘=: (1+ icu)(l + cu(f - 1))(2 + fLY(f - 2)) > 

. f_2 
cc > 

2a-’ n 

f _f(f > 
+ O(K”). 

(3) If (Y = (f’- f + 2)l(f2 - 3f + 2) then the two eigenvalues CX-’ and (f - 

2)/f - 26’lf (f - 1) are equal. So one has 

LP’“‘(j.4 A) = ( 
,f-l(r) 

> I( sgn(p)sgn(A)cr’@) 
n 3 

II;:; (1 + icu) + rI{LJ (i + (u) > 

+ faf+l-Y-f + (I- (f - l)+%(P))(-f + (I- (f - l)ah(A)) 

( (f - 1) n;:; (1+ icr)(l + tx(f - 1))(2 + a(f - 2)) >I 

& 

+ O( E”) 

where E is the next largest absolute value amongst the EB(~) after 1 and (Y-I. The 

actual size of E depends on the relative size of (Y and f. It is easy to check that in 

all cases one has E < ((f - 2)/f )a-‘. The theorem follows. 0 

It is interesting that the probabilities in the primary distribution k&f(p) for 

.Y’Ip’(p, A) do not depend on A. Intuitively this says that if you walk long enough 

then the probability of ending at a conjugacy class p does not depend on where 

you started. However Theroem 3.14 shows that the starting point A comes into 

the secondary distributions. If we restrict attention to walks which begin at the 

identity then we derive the following corollary from Theorem 3.14 and Corollary 

3.3. 
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Corollary 3.19. Define A@, A) and B(p, A) as in Theorem 3.14 and let o be a 
permutation of cycle type p. 

(1) Zf l<cu<(f”-f +2)/(f2-3f +2) then 

CP$a)(o, e) = Kaf -&) +A@, f)a-” + 0 
f -2 2a-’ n 
- ~ 

f +f(f -1) >> . 

(2) Zf cu>(f’-f +2)l(f2-3f +2) then 

@~)(a, e) = Kd- ‘b) + B(p, f )( (fy +$$$) + O(a-“). 

(3) Zf a = (f” -f + 2)l(f 2 - 3f + 2) then 

9’$mp’(o, e) = Kaf- Q) + (A&, f )) + B(P, f ))a-” +o(($.-$,“). 

4. Other problems 

There are several other problems suggested by this work. It would be 
interesting to find a more conceptual proof of the connection between Jack 
polynomials and the random walk W,(a). Also, there is a generalization L,(a) of 
the Laplace-Beltrami operator for Jack polynomials to arbitrary roots systems @. 
The Jack case corresponds to the root systems of type AP This generalized 
Laplacian is due to Heckemann and has been studied at length by Heckemann 
and Opdam (see [5, lo]). Is there a random walk on the Weyl group W of @ 
which is connected to L,(a) as happens in this paper for the root systems of type 
A,? 

There are numerous questions about the random walk W,(a) which are still 
unanswered. For example, if we start at a permutation JG, how long do we expect 
to walk in W,(w) before we reach the identity for the first time? This question is 
answered in [2] for the random walk Wf(l) but the representation-theoretic 
techniques used there do not apply in the case (Y > 1. 
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