Discrete Mathematics 99 (1992) 123-140 North-Holland 123

A Markov chain on the symmetric group and Jack symmetric functions

Phil Hanlon*

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1003, USA

Received 29 February 1989 Revised 3 November 1989

Abstract

Hanlon, P., A Markov chain on the symmetric group and Jack symmetric functions, Discrete Mathematics 99 (1992) 123-140.

Diaconis and Shahshahani studied a Markov chain $W_f(1)$ whose states are the elements of the symmetric group S_f . In $W_f(1)$, you move from a permutation π to any permutation of the form $\pi(i, j)$ with equal probability. In this paper we study a deformation $W_f(\alpha)$ of this Markov chain which is obtained by applying the Metropolis algorithm to $W_f(1)$. The stable distribution of $W_f(\alpha)$ is $\alpha^{f-c(\pi)}$ where $c(\pi)$ denotes the number of cycles of π . Our main result is that the eigenvectors of the transition matrix of $W_f(\alpha)$ are the Jack symmetric functions. We use facts about the Jack symmetric functions due to Macdonald and Stanley to obtain precise estimates for the rate of convergence of $W_f(\alpha)$ to its stable distribution.

1. A Markov chain

A number of mathematical and statistical problems lead to the considerations of random walks where the set of states is a finite or continuous group (see Diaconis [1, Chapter 3], for a thorough and entertaining discussion with references). Usually, in these random walks on groups, the transitional probability $\tau(x, y)$ of going from y to x depends only on the group element xy^{-1} and in most cases only on the conjugacy class of xy^{-1} . Diaconis and Shahshahani [2] analyze a proposed card-shuffling procedure using a random walk on the symmetric group S_f where the transitional probability $t_1(\sigma, \pi)$ is $(\frac{f}{2})^{-1}$ if $\sigma\pi^{-1}$ is a transposition and 0 otherwise. In their random walk, you move from a permutation π to any permutation of the form $\pi(i, j)$ with equal probability. We will denote this random walk by $W_f(1)$.

Let $c(\pi)$ denote the number of cycles in the disjoint cycle decomposition of π .

* The author is grateful to the Sloan Foundation, Oxford University, the University of Michigan and the National Science Foundation for partial support of this work.

0012-365X/92/\$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

It is easy to see that

 $c(\pi(i,j)) = c(\pi) \pm 1.$

So at each step of the random walk $W_f(1)$ the value of the function c changes by 1.

In this paper we consider a variant $W_f(\alpha)$ of $W_f(1)$ where α is a real number greater than or equal to 1. $W_f(\alpha)$ is a Markov chain on S_f and the only allowable moves away from a permutation π are to permutations of the form $\pi(i, j)$ (it will be possible to stay at π). However in $W_f(\alpha)$ you do not move to each $\pi(i, j)$ with equal probability. Instead, the probability of moving from π to $\pi(i, j)$ depends only on whether $c(\pi(i, j))$ is $c(\pi) + 1$ or $c(\pi) - 1$. The exact rule is that you are α times as likely to move to $\pi(i, j)$ if $c(\pi(i, j)) = c(\pi) - 1$ than if $c(\pi(i, j)) =$ $c(\pi) + 1$.

For λ a partition, let λ' denote the conjugate partition and let $n(\lambda)$ be the function

$$n(\lambda) = \sum_{i} (i-1)\lambda_i = \sum_{j} {\lambda'_j \choose 2}.$$

For σ a permutation let $n(\sigma)$ denote $n(\lambda_{\sigma})$ where λ_{σ} is the partition whose *columns* are the cycle lengths of σ . So for example n(id) = 0.

Definition 1.1. Let α be a real number with $\alpha \ge 1$. Define the random walk $W_f(\alpha)$ on S_f by saying that the probability $t_{\alpha}(\sigma, \pi)$ of moving from π to σ is

$$t_{\alpha}(\sigma, \pi) = \begin{cases} \frac{(\alpha - 1n)(\pi)}{\alpha \binom{f}{2}} & \text{if } \sigma = \pi, \\ \frac{1}{\binom{f}{2}} & \text{if } \sigma = \pi(i, j) \text{ and } c(\sigma) = c(\pi) - 1, \\ \frac{1}{\alpha \binom{f}{2}} & \text{if } \sigma = \pi(i, j) \text{ and } c(\sigma) = c(\pi) + 1, \\ 0 & \text{otherwise.} \end{cases}$$

This matrix of transition probabilities for the cases f = 3 appears below.

We denote the matrix of transition probabilities for this Markov chain on S_f by $T_f(\alpha)$. The reader is warned that our matrix of transition probabilities is the transpose of the one that usually used.

It is clear that $T_f(\alpha)$ is a nonnegative matrix and it is straightforward to check that the rows and columns of $T_f(\alpha)$ sum to 1. Note that the transition probability from σ to $\sigma(i, j)$ is a factor of α larger if $c(\sigma(i, j)) = c(\sigma) - 1$ than if $c(\sigma(i, j)) = c(\sigma) + 1$. Note also that $T_f(1)$ gives the transition probabilities for the random walk $W_f(1)$ considered by Diaconis and Shahshahani.

Definition 1.2. For σ , $\pi \in S_f$ and $n \in \mathbb{N}$ define $P_n^{(\alpha)}(\sigma, \pi)$ to be the probability that a random walk of length n in $W_f(\alpha)$ which begins at π ends at σ .

Suppose $\alpha > 1$. We will show that

$$P^{(\alpha)}(\sigma, \pi) = \lim P_n^{(\alpha)}(\sigma, \pi)$$

exists for all σ and π . At any step in a random walk we are more likely to move to a permutation with fewer cycles than to a permutation with more cycles. So we might expect that

$$P^{(\alpha)}(\sigma, \pi_1) > P^{(\alpha)}(\sigma, \pi_2)$$

wherever $c(\pi_1) < c(\pi_2)$. We will show that

$$P^{(\alpha)}(\sigma, \pi) = \alpha^{-c(\pi)} \left\{ \prod_{i=0}^{f-1} \frac{\alpha}{1+i\alpha} \right\}$$

and that the error term

$$E_n(\sigma, \pi) = |P_n^{(\alpha)}(\sigma, \pi) - P^{(\alpha)}(\sigma, \pi)|$$

is exponentially decreasing with n. We will find some lower bounds for the error term.

In the last section we will consider the special case where π is the identity in S_f . In this case we can get precise estimates for the asymptotic value of $E_n(\sigma, \pi)$. Quite surprisingly these estimates come from results proved recently by Macdonald [8] and Stanley [11] concerning the Jack symmetric functions.

2. A simple estimate for $P^{(\alpha)}(\sigma, \pi)$

Let $\{,\}_{\alpha}$ be the form on $\mathbb{R}S_f$ given by

$$\{\sigma, \pi\}_{\alpha} = \begin{cases} \frac{\alpha^{c(\pi)}}{f!} & \text{if } \sigma = \pi, \\ 0 & \text{if } \sigma \neq \pi. \end{cases}$$

and let $Q_f(\alpha)$ be the matrix of this form.

Lemma 2.1. For all $u, v \in \mathbb{R}S_f$ we have

 $\{T_f(\alpha)u, v\}_{\alpha} = \{u, T_f(\alpha)v\}_{\alpha}.$

Proof. We may assume $u, v \in S_f$. If u = v then

$$\{T_f(\alpha)u, u\}_{\alpha} = \frac{(\alpha-1)n(u)}{\alpha\binom{f}{2}} \alpha^{c(u)} = \{u, T_f(\alpha)u\}_{\alpha}.$$

If $u \neq v$ and u is not of the form v(i, j) then

 $\{T_f(\alpha)u, v\}_{\alpha} = 0 = \{u, T_f(\alpha)v\}_{\alpha}.$

Suppose u = v(i, j) and c(u) = c(v) - 1. Then

 $\{T_f(\alpha)u, v\}_{\alpha} = \{v, v\}_{\alpha} = \alpha^{c(v)},$

and

$$\{u, T_f(\alpha)v\}_{\alpha} = \{u, \alpha u\}_{\alpha} = \alpha^{c(u)+1} = \alpha^{c(v)}.$$

This completes the proof. \Box

We will be interested in the eigenvalues and eigenvectors of $T_f(\alpha)$. The previous lemma shows that

 $T_f(\alpha) = T_f(\alpha)^t$

where the transpose is taken with respect to the form $\{,\}_{\alpha}$. In particular $T_f(\alpha)$ is diagonalizable and all its eigenvalues are real. Below we see the eigenvalues and corresponding eigenvectors for the matrix $T_3(\alpha)$.

Eigenvalue	Eigenvectors
1	$(1, \alpha, \alpha, \alpha, \alpha^2, \alpha^2)$
$1-1/\alpha$	(0, 0, 0, 0, 1, -1)
$\frac{1}{3} - \frac{1}{3\alpha}$	$(6, 2\alpha - 2, 2\alpha - 2, 2\alpha - 2, -3\alpha, -3\alpha)$ $(0, 1, -1, 0, 0, 0)$ $(0, 0, 1, -1, 0, 0)$
$-1/\alpha$	(1, -1, -1, -1, 1, 1)

Lemma 2.2. The matrix $T_f(\alpha)$ has 1 as an eigenvalue of multiplicity 1. Moreover, if $\alpha > 1$ then all other eigenvalues of $T_f(\alpha)$ have absolute values less than 1.

Proof. Define $\mathcal{J}_f(\alpha)$ be the vector with entries indexed by S_f whose σ th entry is $\alpha^{f-c(\sigma)}$. It is straightforward to verify that

$$T_f(\alpha) \mathscr{J}_f(\alpha) = \mathscr{J}_f(\alpha)$$

(we leave this computation to the reader because we will prove something more general in the next section).

Now suppose $\alpha > 1$. In this case $T_f(\alpha)$ is a primitive nonnegative matrix (i.e., $T_f(\alpha)$ has nonnegative entries and some power of $T_f(\alpha)$ has all positive entries). This follows because every permutation can be written as a product of transpositions and because at least one diagonal entry of $T_f(\alpha)$ is positive. The last assertion in Lemma 2.2 is a consequence of the Perron-Frobenius theory (see [12]). \Box

It is well known that

$$\sum_{\sigma \in S_f} \alpha^{f-c(\sigma)} = \prod_{i=0}^{f-1} (1-i\alpha). \tag{(*)}$$

We let K denote the inverse of the above quantity (*). The next theorem follows immediately from Lemma 2.2 and the ergodic theorem for Markov chains.

Theorem 2.3. Let α be a real number greater than 1. For any σ , $\pi \in S_f$ we have

$$P_n^{(\alpha)}(\sigma, \pi) = K\alpha^{f-c(\sigma)}(1 + \mathcal{O}(\epsilon_f(\alpha)^n))$$

where $0 < \epsilon_f(a) < 1$.

Remark. Diaconis points out that the Markov chain $W_f(\alpha)$ is an example of a Metropolis chain for $\alpha > 1$. The Metropolis algorithm is an algorithm for creating a Markov chain on a finite set X whose stationary distribution agrees with a given probability distribution. The actual algorithm, which was first announced in [9], has the following description (see also [3, Chapter 9]). Let X be a finite set and let $f: X \to \mathbb{R}$ be any function. The problem solved by the Metropolis algorithm is to create a Markov chain P(x, y) on X having stationary distribution $\Pi(x) = e^{-\beta f(x)} K(\beta)$ where $K(\beta)$ is the normalizing constant

$$K(\beta) = \left\{\sum_{x \in X} e^{-\beta f(x)}\right\}^{-1}$$

To run the Metropolis algorithm, one begins with any symmetric Markov chain $P^*(x, y)$. One defines the new Markov chain p(x, y) by

$$p(x, y) = \begin{cases} P^*(x, y) \left(\frac{\pi(y)}{\pi(x)}\right) & \text{if } \pi(y) < \pi(x), \\ P^*(x, y) & \text{if } y \neq x \text{ and } \pi(y) \ge \pi(x), \\ P^*(x, x) + \sum_{y} P^*(x, y) \left(1 - \frac{\pi(x)}{\pi(x)}\right) & \text{if } x = y, \end{cases}$$

where the last sum is over y with $\pi(y) < \pi(x)$.

To see that our Markov chain $W_f(\alpha)$ arises according to this algorithm let

 $X = S_f$, let $f(\pi)$ be the number of cycles in π and let P^* be

$$P^*(\sigma, \tau) = \begin{cases} \binom{f}{2}^{-1} & \text{if } \sigma \tau^{-1} \text{ is a transposition,} \\ 0 & \text{otherwise.} \end{cases}$$

Also let $\beta = \log \alpha$. Then

1

$$\pi(\sigma) = \alpha^{-c(\sigma)} K(\beta)$$

where

$$K(\beta) = \sum_{\tau \in S_f} \alpha^{-c(\tau)} = K \alpha^{-f}.$$

So

$$\pi(\sigma) = \alpha^{f-c(\sigma)} K$$

which we know to be the stationary distribution of $W_f(\alpha)$.

For $\sigma \neq \tau$ we have that $\Pi(\tau) < \Pi(\sigma)$ iff $c(\sigma) < c(\tau)$. So for $\sigma \neq \tau$,

$$P(\sigma, \tau) = \begin{cases} \frac{K\alpha^{f-c(\sigma)-1}}{K\alpha^{f-c(\sigma)}} {f \choose 2}^{-1} & \text{if } \tau = \sigma(i, j) \text{ and } c(\tau) = c(\sigma) + 1, \\ {f \choose 2}^{-1} & \text{if } \tau = \sigma(i, j) \text{ and } c(\tau) = c(\sigma) - 1, \\ 0 & \text{otherwise.} \end{cases}$$

So $P(\sigma, \tau) = t_{\alpha}(\tau, \sigma)$ hence the Metropolis chain agrees with our Markov chain $W_f(\alpha)$.

Let $1 = \Lambda_1(\alpha), \Lambda_2(\alpha), \ldots, \Lambda_{f!}(\alpha)$ be the eigenvalues of $T_f(\alpha)$ ordered by absolute value. So

$$1 = \Lambda_1(\alpha) > |\Lambda_2(\alpha)| > \cdots > |\Lambda_{f!}(\alpha)| \ge 0.$$

At this point it is natural to ask about $|\Lambda_2(\alpha)|$ since we can take $\epsilon_f(\alpha) = |\Lambda_2(\alpha)|$ in Theorem 2.3. In the next section we will show that

$$(n(\lambda')\alpha - n(\lambda))/\alpha \binom{f}{2}$$

is an eigenvalue of $T_f(\alpha)$ for any partition λ of f. In particular this shows that

$$\left(\binom{f-1}{2}\alpha-1\right)/\alpha\binom{f}{2}$$
 and $-\binom{f}{2}/\alpha\binom{f}{2}$.

are eigenvalues. We end this section by finding some other eigenvalues of $T_f(\alpha)$ which are not of the form $(\alpha n(\lambda') - n(\lambda))/\alpha {f \choose 2}$.

Definition 2.7. Let D_f denote the set of partitions of f into distinct odd parts. For $\lambda \in D_f$ let $v_{\lambda} = v_{\lambda}(\alpha)$ be the vector in $\mathbb{R}S_f$ given by

$$v_{\lambda} = \sum_{\tau \in S_f} \operatorname{sgn}(\tau) \sigma^{\tau}$$

where σ is an arbitrarily chosen permutation with cycle type λ (v_{λ} depends up to sign on the choice of σ).

Since λ has distinct odd parts, the centralizer of any σ with cycle type λ lies in the alternating group A_f . So v_{λ} is nonzero. In fact the v_{λ} , $\lambda \in D_f$, are a basis for the sgn-isotopic component of the conjugation action of S_f on itself (see Kostant [7]).

Theorem 2.8. Let $\lambda \in D_f$. Then v_{λ} is an eigenvector of $T_f(\alpha)$ with eigenvalue

$$(\alpha-1)n(\lambda')/\alpha\binom{f}{2}$$

Proof. Write $T_f(\alpha) = D + E$ where D is a diagonal matrix and E has diagonal entries 0. It is obvious that

$$Dv_{\lambda} = \left((\alpha - 1)n(\lambda')/\alpha \binom{f}{2} \right) v_{\lambda}$$

(since v_{λ} is supported on permutations of cycle type λ). So it is enough to show that $Ev_{\lambda} = 0$.

It is straightforward to check that if σ has cycle type $\lambda(\text{for } \lambda \in D_f)$ then $\sigma(i, j)$ has exactly one length for all (i, j). So

$$Ev_{\lambda} = \sum_{\tau} b_{\tau}\tau$$

where the sum is over permutations with exactly one cycle of even length.

Let τ_0 be a permutation with exactly one cycle C_0 of even length. We will show that $b_{\tau_0} = 0$. In the next section we will show that $T_f(\alpha)$ commutes with the conjugation action of $\mathbb{R}S_f$ on itself. So *E* also commutes with this conjugation action. Hence

$$b_{\tau_0}\tau_0 + \sum_{\tau \neq \tau_0} b_{\tau}\tau^{C_0} = \left(\sum_{\tau} b_{\tau}\tau\right)^{C_0} = (Ev_{\lambda})^{C_0} = Ev_{\lambda}^{C_0}$$
$$= E(-v_{\lambda}) = -b_{\tau_0}\tau_0 + \sum_{\tau \neq \tau_0} b_{\tau}\tau.$$

Since $\tau^{C_0} \neq \tau_0$ for $\tau \neq \tau_0$, we have $b_{\tau_0} = -b_{\tau_0}$ which completes the proof. \Box

Corollary 2.9. If f is odd then $(\alpha - 1)/\alpha$ is an eigenvalue of $T_f(\alpha)$. If f is even then $(\alpha - 1)(\frac{f-1}{2})/\alpha(\frac{f}{2})$ is an eigenvalue of $T_f(\alpha)$.

We now know three eigenvalues of $T_f(\alpha)$, namely

$$\begin{cases} 1 - 1/\alpha, \left(\frac{f-2}{f}\right) - 1/\alpha \binom{f}{2}, -1/\alpha & f \text{ odd,} \\ \left(\frac{f-2}{f}\right)(1 - 1/\alpha), \left(\frac{f-2}{f}\right) - 1/\alpha \binom{f}{2}, -1/\alpha & f \text{ even.} \end{cases}$$
(2.10)

Their relative absolute values depend on the parameter α . For fixed α , the largest of the three gives a lower bound for $\Lambda_2(\alpha)$. In general this is not a good lower bound as can be seen by considering the case f = 4. The 24 eigenvalues of $T_4(\alpha)$ are given with multiplicities in the chart

Eigenvalue	Multiplicity
1	1
$\frac{1}{2}-1/6\alpha$	4
$-1/\alpha$	1
$\frac{1}{2}-1/2\alpha$	1
$\frac{1}{6}-1/2\alpha$	3
$\frac{9(\alpha-1)+\sqrt{9\alpha^2-2\alpha+9}}{12\alpha}$	3
$\frac{9(\alpha-1)-\sqrt{9\alpha^2-2\alpha+9}}{12\alpha}$	3
<i>r</i> ₁ , <i>r</i> ₂ , <i>r</i> ₃	2 each

where r_1 , r_2 , r_3 are the three roots of the equation

$$\lambda^3 - (9\alpha - 9)\lambda^2 + (20\alpha^2 - 44\alpha + 20)\lambda - (12\alpha^3 - 50\alpha^2 + 50\alpha - 12) = 0.$$

The lower bound for $\Lambda_2(\alpha)$ given by (2.10) is less than $\frac{1}{2}$. However for large values of α the eigenvalue

$$\frac{9(\alpha-1)+\sqrt{9\alpha^2-2\alpha+9}}{12\alpha}$$

is arbitrarily close to 1. It would be interesting to have more information about the absolute value of $\Lambda_2(\alpha)$.

3. Random walks from the identity

The goal of this section is to get precise estimates for $P_n^{(\alpha)}(\pi, e)$ where e denotes the identity element of S_f . More generally we will obtain estimates for the average probability of a random walk of length n going from a permutation of cycle type λ to a permutation of cycle type μ .

Definition 3.1. Let λ and μ be partitions of f and let \mathscr{C}_{λ} and \mathscr{C}_{μ} denote the conjugacy classes of permutations having cycle type λ and μ respectively. Define $P_n^{(\alpha)}(\mu, \lambda)$ to be

$$P_n^{(\alpha)}(\mu, \lambda) = (|\mathscr{C}_{\mu}| |\mathscr{C}_{\lambda}|)^{-1} \sum_{\sigma \in \mathscr{C}_{\mu}, \pi \in \mathscr{C}_{\lambda}} P_n^{(\alpha)}(\sigma, \pi)$$

Lemma 3.2. The matrix $T_f(\alpha)$ commutes with the conjugation action of S_f on itself.

Proof. This follows from three observations which hold for all σ , π , $\tau \in S_f$ and all $1 \le i < j \le f$.

- (1) $\sigma = \pi(i, j)$ iff $\sigma^{\tau} = \pi^{\tau}(\tau i, \tau j)$
- (2) $c(\sigma) = c(\sigma^{\tau})$ and $c(\pi) = c(\pi^{\tau})$.
- (3) $n(\sigma^{\tau}) = n(\sigma)$. \Box

Lemma 3.2 has the following important corollary.

Corollary 3.3. Let λ and μ be partitions of f and let σ be any permutation of cycle type μ . Then

$$P_n^{(\alpha)}(\mu, \lambda) = |\mathscr{C}_{\lambda}|^{-1} \sum_{\pi \in \mathscr{C}_{\lambda}} P_n^{(\alpha)}(\sigma, \pi).$$

In particular

$$P_n^{(\alpha)}(\sigma, e) = P_n^{(\alpha)}(\mu, 1^f).$$

Proof. Let σ_1 and σ_2 be in \mathscr{C}_{μ} with $\sigma_2 = \sigma_1^{\tau}$. Then

$$P_n(\sigma_2, \pi) = (T_f(\alpha)^n)_{\sigma_2, \pi} = (T_f(\alpha)^n)_{\sigma_2^{\tau}, \pi^{\tau}} = P_n(\sigma_1, \pi^{\tau}).$$

So

$$|\mathscr{C}_{\lambda}|^{-1}\sum_{\pi\in\mathscr{C}_{\lambda}}P_n(\sigma_1, \pi) = |\mathscr{C}_{\lambda}|^{-1}\sum_{\pi\in\mathscr{C}_{\lambda}}P_n(\sigma_2, \pi)$$

and the first assertion follows. The second assertion is an immediate consequence of the first. \Box

In what follows we will obtain precise estimates for the $P_n(\mu, \lambda)$ and so in particular for the $P_n(\mu, 1^f)$. Thus, using Corollary 3.3, we will obtain precise estimates for $P_n(\sigma, e)$. To estimate the $P_n(\mu, \lambda)$ we must examine the restriction of $T_f(\alpha)$ to the center of $\mathbb{R}S_f$. Note that $T_f(\alpha)$ acts on the center because the center is an isotypic component for the conjugation action.

For each partition λ of f let \mathcal{P}_{λ} denote the element of the center of $\mathbb{R}S_f$ given by

$$\mathcal{P}_{\lambda} = \frac{1}{|\mathcal{C}_{\lambda}|} \sum_{\sigma \in \mathcal{C}_{\lambda}} \sigma \tag{3.4}$$

It is well known that the \mathcal{P}_{λ} are a basis for the center of $\mathbb{R}S_{f}$. We order the basis in the reverse lexicographic order of λ . In particular the first basis element is

$$\mathcal{P}_{1'}=e.$$

By Lemma 3.2 there exists a matrix $L_f(\alpha) = (l_{\mu\lambda}(\alpha))$ such that

$$T_f(\alpha)\mathscr{P}_{\lambda} = \sum_{\mu} l_{\mu\lambda}(\alpha)\mathscr{P}_{\mu}.$$

Quite remarkably, this matrix $L_f(\alpha)$ has appeared in an entirely different context as the next theorem relates. Before stating this result we recall some notation from Macdonald [8].

Fix an integer $m \ge f$ and let Λ_m^f denote the vector space of homogeneous polynomials of degree f which are symmetric in variables x_1, \ldots, x_m . For each partition λ of f let $p_{\lambda}(x) = p_{\lambda}(x_1, \ldots, x_m)$ be the power sum symmetric function indexed by λ .

Theorem 3.5. Let $D(\alpha)$ be the endomorphism of Λ_m^f given by

$$D(\alpha) = \frac{\alpha}{2} \sum_{i=1}^{\infty} x_i^2 \frac{\partial}{\partial x_i^2} + \sum_{i \neq j} \frac{x_i^2}{x_i - x_j} \frac{\partial}{\partial x_i}$$

Then

$$D(\alpha)p_{\lambda}(x) = (m-1)fp_{\lambda}(x) + \alpha \binom{f}{2} \sum_{\mu} l_{\mu\lambda}(\alpha)p_{\mu}(x).$$

Proof. Our proof will rely on the following observation which we state as a lemma. \Box

Lemma. Let $M = (m_{\sigma\pi})$ be a linear transformation from $\mathbb{R}S_f$ to $\mathbb{R}S_f$ which commutes with the conjugation action. Define $M^\circ = (m_{\mu\lambda}^\circ)$ by

$$M\mathscr{P}_{\lambda}=\sum_{\mu}m_{\mu\lambda}^{\circ}\mathscr{P}_{\mu}.$$

Then we can compute the entries $m_{\mu\lambda}^{\circ}$ by the following method. Choose any permutation π of cycle type λ . Then

$$m_{\mu\lambda}^{\circ} = \sum_{\sigma \in \mathscr{C}_{\mu}} m_{\sigma\pi}.$$

Proof. The key observation is that for any λ and any $\pi \in \mathscr{C}_{\lambda}$ we have

$$\mathcal{P}_{\lambda} = \frac{1}{f!} \sum_{\tau \in S_f} \pi^{\tau}.$$

Now fix $\pi \in \mathscr{C}_{\lambda}$. Then

$$M\mathcal{P}_{\lambda} = \frac{1}{f!} M\left(\sum_{\tau \in S_f} \pi^{\tau}\right) = \frac{1}{f!} \sum_{\tau \in S_f} (M\pi)^{\tau}$$
$$= \frac{1}{f!} \sum_{\tau \in S_f} \sum_{\sigma \in S_f} m_{\sigma\pi} \sigma^{\tau} = \sum_{\mu} \mathcal{P}_{\mu} \left\{\sum_{\sigma \in \mathscr{C}_{\mu}} m_{\sigma\pi}\right\}$$

which proves the lemma. \Box

The content of this lemma is that we can compute the entry $m_{\mu\lambda}^{\circ}$ by considering the effect of M on just one permutation π in \mathscr{C}_{λ} . We will apply this lemma to

compute the entries $L_{\mu\lambda}(\alpha)$. Fix a partition λ and a permutation π of cycle type λ . The above lemma gives immediately that

$$L_{\lambda\lambda}(\alpha) = (\alpha - 1)n(\lambda')/\sigma\binom{f}{2}.$$

It remains to compute the off-diagonal entries.

Let $\Gamma = (\gamma_1, \ldots, \gamma_r)$ and $\Delta = (\delta_1, \ldots, \delta_s)$ be an *r*-cycle and an *s*-cycle of π and consider the σ , π entry of $T_f(\alpha)$ where

$$\sigma = \pi(\gamma_i, \, \delta_i).$$

The permutation σ has exactly the same cycles as π except that the two cycles Γ and Δ in π are replaced by a single cycle

$$(\gamma_1, \gamma_2, \ldots, \gamma_i, \delta_{i+1}, \ldots, \delta_s, \delta_1, \ldots, \delta_i, \gamma_{i+1}, \ldots, \gamma_r).$$

So the σ , π entry of $T_f(\alpha)$ is $\alpha/\alpha(\frac{f}{2})$ and the cycle type of σ is $\mu = \lambda[r, s \leftarrow r+s]$ which means the partition obtained from λ by replacing the parts r and s by their sum r+s. This accounts for all entries $m_{\sigma\pi}$ where $\sigma = \pi(u, v)$ and u, v come from different cycles of π .

Next let $\Gamma = (\gamma_1, ..., \gamma_r)$ be an *r*-cycle of π and consider the σ , π entry of $T_f(\alpha)$ where

$$\sigma = \pi(\gamma_i, \gamma_j) \quad 1 \leq i < j \leq r.$$

The permutation σ has exactly the same cycles as π except that the cycle Γ in π is replaced by two cycles

$$(\gamma_1,\ldots,\gamma_i,\gamma_{i+1},\ldots,\gamma_r)$$
 and $(\gamma_{i+1},\ldots,\gamma_i)$.

So the σ , π entry of $T_f(\alpha)$ is $1/\alpha \binom{f}{2}$ and the cycle type of σ is $\mu = \lambda [r \leftarrow (j-i), r+i-j]$ which as above means the partition obtained from λ by replacing r by j-i and r+i-j. This accounts for all entries $m_{\sigma\pi}$ where $\sigma = \pi(u, v)$ and u, v come from the same cycle of π . So

$$\alpha \binom{f}{2} T_{f}(\alpha) \mathscr{P}_{\lambda} = (\alpha - 1)n(\lambda') \mathscr{P}_{\lambda} + \alpha \sum_{u < v} \lambda_{u} \lambda_{v} \mathscr{P}_{\lambda[\lambda_{u}, \lambda_{v} \leftarrow \lambda_{u} + \lambda_{v}]} + \frac{1}{2} \sum_{k} \lambda_{k} \sum_{j=1}^{\lambda_{k}-1} \mathscr{P}_{\lambda[\lambda_{k} \leftarrow j, \lambda_{k}-j]}.$$
(3.6)

In the formula (3.6) the second sum accounts for σ of the form $\pi(i, j)$ where *i* and *j* come from a λ_u -cycle Γ and a λ_v -cycle Δ . The factor $\lambda_u \lambda_v$ accounts for the fact that there are $\lambda_u \lambda_v$ many choices for *i* and *j* from Γ and Δ . The third sum accounts for those σ of the form $\pi(r, s)$ where *r* and *s* come from the same λ_k -cycle Γ . These pairs are chosen by first picking *r* (this can be done in λ_k -ways) and then choosing $s = r + j \pmod{\lambda_k}$.

Note that

$$(\alpha - 1)n(\lambda') = (\alpha - 1)\sum_{k} {\binom{\lambda_k}{2}}$$
$$= \frac{1}{2} \left\{ \alpha \sum_{k} \lambda_k (\lambda_k - 1) + \sum_{k} \lambda_k (2n - 2 - (\lambda_k - 1)) \right\}$$
$$-f(m - 1).$$
(3.7)

Comparing (3.6) and (3.7) with the first formula in the proof of Theorem 3.1 of [11] gives the result.

The operator $D(\alpha)$ is the so-called Laplace-Beltrami operator from the theory of the Jack symmetric functions. There has been an abundance of work on the Jack symmetric functions in recent years (see [5, 6, 8, 11]). The Jack symmetric functions $J_{\lambda}(x; \alpha)$ are the eigenfunctions of the operator $D(\alpha)$ hence by the theorem above their expansions in terms of the power sum symmetric functions give us the entries in the eigenvectors of $L_f(\alpha)$. Our immediate goal is to read off information about the eigenvalues and eigenvectors of $L_f(\alpha)$ from information available about the $J_{\lambda}(x; \alpha)$.

Definition 3.8. Let $\langle , \rangle_{\alpha}$ be the symmetric bilinear form on the space of symmetric polynomials in x_1, \ldots, x_m defined by

 $\langle p_{\lambda}, p_{\mu} \rangle = \delta_{\lambda \mu} z_{\lambda} \alpha^{l(\lambda)}.$

The next result is due to Macdonald (see [8]).

Theorem 3.9 (Macdonald). Suppose $m \ge f$. Then there are unique symmetric polynomials $J_{\lambda}(x_1, \ldots, x_m; \alpha)$ where λ ranges over the partitions of f which satisfy the following three conditions:

(1) $\langle J_{\lambda}, J_{\mu} \rangle_{\alpha} = 0$ if λ is different than μ .

(2) Write $J_{\lambda} = \sum_{\mu} v_{\lambda\mu}(\alpha) m_{\mu}$ where m_{μ} is the μ th monomial symmetric function. Then $v_{\lambda\mu}(\alpha) = 0$ unless λ (weakly) dominates μ .

(3) The coefficient $v_{\lambda,1'}$ is f!

Moreover, each $J_{\lambda}(x; \alpha)$ is an eigenfunction of $D(\alpha)$ with eigenvalue $e_{\lambda}(m; \alpha)$ given by

$$e_{\lambda}(m; \alpha) = \alpha n(\lambda') - n(\lambda) + f(m-1).$$

For each $\lambda \vdash f$ define $E_{\lambda}(\alpha)$ to be

$$E_{\lambda}(\alpha) = (e_{\lambda}(m; \alpha) - f(m-1))/\alpha \binom{f}{2}.$$

Note that $E_{\lambda}(\alpha)$ does not depend on m.

Definition 3.10. Let λ be a partition of f. For each square s = (i, j) in the Ferrer's diagram of λ define $a_{\lambda}(s)$ and $l_{\lambda}(s)$ by

$$a_{\lambda}(s) = \lambda_i - j$$
 and $l_{\lambda}(s) = \lambda'_j - i$.

Lemma 3.11 (Stanley [9, p.36]). For each partition λ let $j_{\lambda}(\alpha)$ denote $\langle J_{\lambda}(x; \alpha), J_{\lambda}(x, \alpha) \rangle_{\alpha}$. Then

$$j_{\lambda}(\alpha) = \prod_{s \in \lambda} (l_{\lambda}(s) + \alpha(a_{\lambda}(s) + 1))((l_{\lambda}(s) + 1) + \alpha a_{\lambda}(s)).$$

In this paper we will need only the following three values of j_{λ} , each of which is easily computed using Lemma 3.11 above.

$$j_f(\alpha) = \alpha^f f! \prod_{i=0}^{f-1} (1+i\alpha)$$
(3.12a)

$$j_{1'} = f! \prod_{i=0}^{f-1} (i + \alpha)$$
(3.12b)

$$j_{f-1,1}(\alpha) = (1 + \alpha(f-1))(2 + \alpha(f-2))\alpha^{f-1}(f-2)! \prod_{i=0}^{f-3} (1 + i\alpha) \quad (3.12c)$$

Definition 3.12. For λ a partition of *f* define $\mathcal{J}_{\lambda} \in \mathbb{R}S_f$ by

 $\mathcal{J}_{\lambda} = (j_{\lambda}^{-\frac{1}{2}}) \sum_{\mu} c_{\lambda\mu}(\alpha) \mathcal{P}_{\mu}$

where the constants $c_{\lambda,\mu}(\alpha)$ are defined by

$$J_{\lambda}(x; \alpha) = \sum_{\mu} c_{\lambda\mu}(\alpha) p_{\mu}(\alpha)$$

It is straightforward to check that

$$\{\mathscr{P}_{\lambda}, \mathscr{P}_{\mu}\} = \langle p_{\lambda}(x), p_{\mu}(x) \rangle_{\alpha}$$
 for all λ, μ .

Hence the set of \mathscr{J}_{λ} is an orthonormal basis of eigenvectors for $L_f(\alpha)$ (orthonormal with respect to $\{ \}_{\alpha}$. Moreover, the eigenvalue associated with \mathscr{J}_{λ} is $E_{\lambda}(\alpha)$.

Before stating the main result we need to know certain coefficients $c_{\lambda\mu}(\alpha)$. The formulas below are due to either Macdonald [8] or Stanley [11].

Lemma 3.13. For $\lambda = f$, 1^f and f - 1, 1 the coefficients $c_{\lambda\mu}(\alpha)$ have the following values:

$$c_{f,\mu} = \alpha^{f-l(\mu)}(f!/z_{\mu})$$
 (3.13a)

$$c_{1',\mu} = \operatorname{sgn}(\mu)(f!/z_{\mu}) = \left(\prod_{i} (-1)^{\mu_{i}-1}\right)(f!/z_{\mu})$$
(3.13b)

$$c_{(f-1,1),\mu} = (f!/z_{\mu})\alpha^{f-l(\mu)}(-f + (1 - (f-1)\alpha)m_1(\mu))/(f-1)$$
(3.13c)

where $m_1(\mu)$ is the number of parts of μ equal to 1.

We can now state the main result of this section.

Theorem 3.14. Let λ and μ be partitions of f. Define constants $A(\mu, \lambda)$ and $B(\mu, \lambda)$ by

$$A(\mu, \lambda) = \frac{\text{sgn}(\mu)\text{sgn}(\lambda)\alpha^{l(\lambda)}}{\prod_{i=0}^{f-1}(i+\alpha)}$$

$$B(\mu, \lambda) = \left(\frac{f\alpha^{f+1-l(\mu)}}{(f-1)\prod_{i=0}^{f-3}(1+i\alpha)}\right)$$

$$\times \left(\frac{(f+((f-1)\alpha-1)m_1(\mu))(f+((f-1)\alpha-1)m_1(\lambda))}{(1+\alpha(f-1))(2+\alpha(f-2))}\right)$$

Then we have the following asymptotic expansions for $P_n^{(\alpha)}(\mu, \lambda)$ which depend on the size of α relative to f:

(1) If $1 < \alpha < (f^2 - f + 2)/(f^2 - 3f + 2)$ then

$$P_n^{(\alpha)}(\mu, \lambda) = K \alpha^{f-l(\mu)} + A(\mu, \lambda) \alpha^{-n} + O\left(\left(\left(\frac{f-2}{f}\right)\frac{2\alpha^{-1}}{f(f-1)}\right)^n\right).$$

(2) If
$$\alpha > (f^2 - f + 2)/(f^2 - 3f + 2)$$
 then

$$P_n^{(\alpha)}(\mu, \lambda) = K\alpha^{f-l(\mu)} + B(\mu, \lambda) \left(\left(\left(\frac{f-2}{f} \right) + \frac{2\alpha^{-1}}{f(f-1)} \right)^n \right) + O(\alpha^{-n}).$$

(3) If $\alpha = (f^2 - f + 2)/(f^2 - 3f + 2)$ then

$$P_n^{(\alpha)}(\mu, \lambda) = K\alpha^{f-l(\mu)} + (A(\mu, \lambda) + B(\mu, \lambda))\alpha^{-n} + O\left(\left(\frac{f-2}{f\alpha}\right)^n\right).$$

Proof. Fix λ and μ partitions of f. We have

$$P_{n}^{(\alpha)}(\mu, \lambda) = |\mathscr{C}_{\mu}|^{-1} |\mathscr{C}_{\lambda}|^{-1} \sum_{\sigma \in \mathscr{C}_{\mu}, \pi \in \mathscr{C}_{\lambda}} (T_{f}(\alpha)^{n})_{\sigma,\pi} = \mathscr{P}_{\mu} T_{f}(\alpha)^{n} \mathscr{P}_{\lambda}$$
$$= \mathscr{P}_{\mu} \cdot \left(\sum_{\beta} (L_{f}(\alpha))_{\beta\lambda}^{n} \mathscr{P}_{\beta} \right) \quad \text{here } \cdot \text{ is ordinary dot product of vectors}$$
$$= \frac{1}{|\mathscr{C}_{\mu}|} (L_{f}(\alpha))_{\mu\lambda}^{n}.$$

The last equality holds as $\mathscr{P}_{\mu} \cdot \mathscr{P}_{\beta} = |\mathscr{C}_{\mu}| \ \delta_{\mu\beta}$.

Let $C_f(\alpha)$ be the matrix whose λ th column contains the coefficients in the expansion of $J_{\lambda'}(x; \alpha)/j_{\lambda'}^{\frac{1}{2}}$ in terms of power sums. To be precise, $C_f(\alpha)$ is the matrix whose β , λ entry is

$$C_f(\alpha) = c_{\beta\lambda'}(\alpha)/\lambda_{\lambda'}^{\frac{1}{2}}.$$

$$L_f(\alpha)C_f(\alpha) = C_f(\alpha)E_{\beta'}(\alpha)$$
(3.16a)

and

hence

$$(C_f(\alpha)^{-1})_{\beta\gamma} = (C_f(\alpha))_{\gamma\beta} \alpha^{l(\gamma)} z_{\gamma}.$$
(3.16b)

By (3.16a) we have

$$L_f(\alpha)^n = C_f(\alpha) \operatorname{diag}(E_{\beta'}(\alpha)^n) C_f(\alpha)^{-1}$$

$$\mathcal{P}_{n}^{(\alpha)}(\mu, \lambda) = \frac{1}{|\mathscr{C}_{\mu}|} \sum_{\beta} (C_{f}(\alpha))_{\mu\beta} E_{\beta} (\alpha)^{n} (C_{f}(\alpha))_{\lambda\beta} \alpha^{l(\lambda)} z_{\lambda}$$

$$= \frac{z_{\mu} z_{\lambda} \alpha^{l(\lambda)}}{f!} \sum_{\beta} c_{\mu\beta} (\alpha) E_{\beta} (\alpha)^{n} c_{\lambda\beta} (\alpha)$$

$$= \frac{z_{\mu} z_{\lambda} \alpha^{l(\lambda)}}{f!} \sum_{\beta} \frac{c_{\mu\beta}(\alpha) c_{\lambda\beta}(\alpha) E_{\beta}(\alpha)^{n}}{j_{\beta}}.$$
(3.17)

We get an asymptotic expansion for $\mathscr{P}_n^{(\alpha)}(\mu, \lambda)$ by taking those terms on the right hand side of (3.17) where $E_{\beta}(\alpha)$ is maximum in absolute value. The following chart gives the three largest values of $|E_{\beta}(\alpha)|$ together with the corresponding partitions β :

	-
$\frac{1}{1 < \alpha < \frac{f^2 - f + 2}{f^2 - 3f + 2}} \qquad 1 \qquad \alpha^{-1} \qquad \frac{f - 2}{f} - \frac{f}{f}$	$\frac{2\alpha^{-1}}{f(f-1)}$
$\beta = f$ $\beta = f$ $\beta = f^{f}$ $\beta = f^{-1}$	1, 1
$\alpha = \frac{f^2 - f + 2}{f^2 - 3f + 2}$ 1 $\beta = f$ $\beta = 1^f$ and $\beta = f - 1, 1$	
$\alpha > \frac{f^2 - f + 2}{f^2 - 3f + 2} \qquad 1 \qquad \frac{f - 2}{\beta = f} - \frac{2\alpha^{-1}}{f(f - 1)} \qquad \alpha^{-1} \\ \beta = f - 1, 1 \qquad \beta = 1^f$	

We should point out that the α^{-1} which appears above is actually the absolute value of $E_{1\prime}(\alpha) = -\alpha^{-1}$. From (3.17) and the chart above we have the following asymptotic expansions:

(1) If
$$1 < \alpha < (f^2 - f + 2)/(f^2 - 3f + 2)$$
 then

$$\mathcal{P}_n^{(\alpha)}(\mu, \lambda) = \frac{z_\mu z_\lambda \alpha^{l(\lambda)}}{f!} \left\{ \left(\frac{f!}{z_\mu} \alpha^{f-l(\mu)} \right) \left(\frac{f!}{z_\lambda} \alpha^{f-l(\mu)} \right) j_f^{-1} + \left(\frac{f!}{z_\lambda} \operatorname{sgn}(\mu) \right) \left(\frac{f!}{z_\mu} \operatorname{sgn}(\lambda) \right) j_{1\ell}^{-1} \alpha^{-n} \right\} + O\left(\left(\frac{f-2}{f} - \frac{2\alpha^{-1}}{f(f-1)} \right)^n \right)$$

Substituting the values of j_f and $j_{1'}$ given in (3.12) we have

$$\mathcal{P}_{n}^{(\alpha)}(\mu,\lambda) = \left(\frac{\alpha^{f-l(\mu)}}{\prod_{i=0}^{f-1}(1+i\alpha)}\right) + \left(\frac{\operatorname{sgn}(\mu)\operatorname{sgn}(\lambda)\alpha^{l(\lambda)}}{\prod_{i=0}^{f-1}(i+\alpha)}\right)\alpha^{-n} + O\left(\left(\frac{f-2}{f} - \frac{2\alpha^{-1}}{f(f-1)}\right)^{n}\right)$$
(3.18)
(2) If $\alpha > (f^{2} - f + 2)/(f^{2} - 3f + 2)$ then

$$\begin{aligned} \mathcal{P}_{n}^{(\alpha)}(\mu,\lambda) &= \frac{z_{\mu}z_{\lambda}\alpha^{l(\lambda)}}{f!} \left\{ \left(\frac{f!}{z_{\mu}} \alpha^{f-l(\mu)}\right) \left(\frac{f!}{z_{\lambda}} \alpha^{f-l(\lambda)}\right) j_{f}^{-1} \\ &+ \left(\frac{(f!)^{2}}{z_{\mu}z_{\lambda}}\right) \frac{\alpha^{2f-l(\lambda)-l(\mu)}}{(f-1)^{2}} \left(-f + (1-(f-1)\alpha)m_{1}(\mu)\right) \\ &\cdot (-f + (1-(f-1)\alpha)m_{1}(\lambda)) \left(\left(\frac{f-2}{f} - \frac{2\alpha^{-1}}{f(f-1)}\right)^{n} \right) j_{f-1,1}^{-1} \right\} \\ &+ O(\alpha^{-n}) \\ &= \left(\frac{\alpha^{f-l(\mu)}}{\prod_{i=0}^{f-1} (1+i\alpha)}\right) \\ &+ \left(\frac{f\alpha^{f+1-l(\mu)}(-f + (1-(f-1)\alpha)m_{1}(\mu))(-f + (1-(f-1)\alpha)m_{1}(\lambda))}{(f-1)\prod_{i=0}^{f-3} (1+i\alpha)(1+\alpha(f-1))(2+\alpha(f-2))} \right) \\ &\cdot \left(\left(\frac{f-2}{f}\right) - \frac{2\alpha^{-1}}{f(f-1)}\right)^{n} + O(\alpha^{-n}). \end{aligned}$$

(3) If $\alpha = (f^2 - f + 2)/(f^2 - 3f + 2)$ then the two eigenvalues α^{-1} and $(f - 2)/f - 2\alpha^{-1}/f(f - 1)$ are equal. So one has

$$\mathcal{P}_{n}^{(\alpha)}(\mu, \lambda) = \left(\frac{\alpha^{f^{-l}(\mu)}}{\prod_{i=0}^{f^{-1}}(1+i\alpha)}\right) + \left\{\left(\frac{\operatorname{sgn}(\mu)\operatorname{sgn}(\lambda)\alpha^{l(\lambda)}}{\prod_{i=0}^{f^{-1}}(i+\alpha)}\right) + \left(\frac{f\alpha^{f^{+1-l}(\mu)}(-f + (1-(f-1)\alpha)m_{1}(\mu))(-f + (1-(f-1)\alpha)m_{1}(\lambda))}{(f-1)\prod_{i=0}^{f^{-3}}(1+i\alpha)(1+\alpha(f-1))(2+\alpha(f-2))}\right)\right\}\alpha^{-1} + O(\epsilon^{n})$$

where ϵ is the next largest absolute value amongst the $E_{\beta}(\alpha)$ after 1 and α^{-1} . The actual size of ϵ depends on the relative size of α and f. It is easy to check that in all cases one has $\epsilon < ((f-2)/f)\alpha^{-1}$. The theorem follows. \Box

It is interesting that the probabilities in the primary distribution $k\alpha^{f-l(\mu)}$ for $\mathcal{P}_n^{(\alpha)}(\mu, \lambda)$ do not depend on λ . Intuitively this says that if you walk long enough then the probability of ending at a conjugacy class μ does not depend on where you started. However Theorem 3.14 shows that the starting point λ comes into the secondary distributions. If we restrict attention to walks which begin at the identity then we derive the following corollary from Theorem 3.14 and Corollary 3.3.

Corollary 3.19. Define $A(\mu, \lambda)$ and $B(\mu, \lambda)$ as in Theorem 3.14 and let σ be a permutation of cycle type μ .

(1) If $1 < \alpha < (f^2 - f + 2)/(f^2 - 3f + 2)$ then

$$\mathscr{P}_n^{(\alpha)}(\sigma, e) = K\alpha^{f-l(\mu)} + A(\mu, f)\alpha^{-n} + O\left(\left(\frac{f-2}{f} + \frac{2\alpha^{-1}}{f(f-1)}\right)^n\right).$$

(2) If $\alpha > (f^2 - f + 2)/(f^2 - 3f + 2)$ then

$$\mathscr{P}_n^{(\alpha)}(\sigma, e) = K\alpha^{f-l(\mu)} + B(\mu, f) \left(\left(\frac{f-2}{f} + \frac{2\alpha^{-1}}{f(f-1)} \right)^n \right) + \mathcal{O}(\alpha^{-n}).$$

(3) If
$$\alpha = (f^2 - f + 2)/(f^2 - 3f + 2)$$
 then
 $\mathcal{P}_n^{(\alpha)}(\sigma, e) = K\alpha^{f-l(\mu)} + (A(\mu, f)) + B(\mu, f))\alpha^{-n} + O\left(\left(\frac{f-2}{f\alpha}\right)^n\right).$

4. Other problems

There are several other problems suggested by this work. It would be interesting to find a more conceptual proof of the connection between Jack polynomials and the random walk $W_f(\alpha)$. Also, there is a generalization $L_{\Phi}(\alpha)$ of the Laplace-Beltrami operator for Jack polynomials to arbitrary roots systems Φ . The Jack case corresponds to the root systems of type A_f . This generalized Laplacian is due to Heckemann and has been studied at length by Heckemann and Opdam (see [5, 10]). Is there a random walk on the Weyl group W of Φ which is connected to $L_{\Phi}(\alpha)$ as happens in this paper for the root systems of type A_f ?

There are numerous questions about the random walk $W_f(\alpha)$ which are still unanswered. For example, if we start at a permutation π , how long do we expect to walk in $W_f(\alpha)$ before we reach the identity for the first time? This question is answered in [2] for the random walk $W_f(1)$ but the representation-theoretic techniques used there do not apply in the case $\alpha > 1$.

Acknowledgment

The author would like to thank Persi Diaconis for his help in the preparation of this manuscript.

References

[1] P. Diaconis, Group representation in probability and statistics, Institute of Math. Statistics, Hayward, CA, 1988.

- P. Diaconis and M. Shahshahani, Generating a random permutation with random transpositions, Z. Wahr. Verw. Gebiete 57 (1981) 159-179.
- [3] J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods (Wiley, New York, 1964).
- [4] P. Hanlon, Jack symmetric functions and some combinatorial properties of Young symmetrizers, J. Combin. Theory Ser. A 47 (1) (1988) 37-70.
- [5] G. Heckemann, Root systems and hypergeometric functions II, Comput. Math. 64 (1987) 353-373.
- [6] K. Kadell, The Selberg-Jack polynomials, preprint.
- [7] B. Kostant, A theorem of Frobenius, a theorem of Amitsur-Levitsky and cohomology theory, J. Math. Mech. 7 (1958) 237-264.
- [8] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd Ed. (Oxford University Press, London, 1988).
- [9] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087-1092.
- [10] E. Opdam, Generalized hypergeometric functions associated with roots systems, Thesis, Leiden, 1988.
- [11] R.P. Stanley, Some combinatorial properties of the Jack polynomials, Adv. in Math., to appear.
- [12] R. Varga, Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1962).