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1. Introduction

Computerized symbolic computation has sped up the investigation of high-dimensional nonlinear evolution equations.
With the development of computer science, recently, direct searching for exact solitary wave and soliton-like solutions to
NEEs in high-dimensional has attracted much attention. Numerous methods have been proposed to obtain explicit solutions
of NEEs, such as the inverse scattering method [1,10], the tanh-sech method [2,11,12], the extended tanh method [3], the
homogeneous balance method [4,13], and so on.

In Ref. [5], Zhu developed the extended tanh function method by introducing a generalized Riccati equation mapping
method and its new solutions. Along this way, in this paper we plan to study a (3 + 1)-dimensional Jimbo-Miwa equa-
tion [6],

Uxxxy + SUxlxy + 3Uylxy + 2Uyr — 3y, = 0. (1.1)

It is known that this model is not Painlevé integrable. For many years, many workers have researched it and certain explicit
solutions are obtained [6-9]. In this work, using the method in [5], we obtain rich new families of its special solutions
including soliton-like solutions, cross kink-wave solutions, periodic form solutions and rational solutions.
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2. New types traveling wave solutions and periodic wave solutions
In this section we describe the generalized Riccati equation method for finding special solutions of the (3 + 1)-
dimensional Jimbo-Miwa equation
Uxxxy + 3Uxlyy + 3Uylxy + 2Uyr — 3Uy, = 0. (2.1)

For the basic idea of the generalized Riccati equation mapping method, we seek the following formal travelling wave
solutions

u=ux,y,zt)y=U(®&), E=kx+1ly+mz+ ot, (2.2)

where k,I,m and w are arbitrary constants.
Substituting (2.2) into (2.1) gives rise to ODE

KBIU@ +6k2U"U’ + 2lw — 3km)U” =0. (2.3)
Integrating (2.3) once, we have
KPIU"” + 3kA(U")? 4 Qlw — 3km)U’ = C, (2.4)

where C is an integration constant.
We next introduce a new independent variable ¢ as follows:

m
ux, y,z,) =UE =Y aig', (2.5)
i=0
where a; and b; are constants to be determined later, m is fixed by balancing the highest-order linear term with the
nonlinear term in (2.3). ¢ expresses the solution of the following generalized Raccati equation:

@) =1+ pp) +qp2 (&), (2.6)

where r, p and q are all variable real constants.
By balancing the order between U” and (U’)? in (2.4), we have m = 1. Then, we can suppose (2.5) in the form

ux,y,z,t)y=U(¢) =ao +a1¢. (2.7)

Substituting (2.7) with (2.6) into (2.4) yields a set of algebraic equations for ¢'. Setting the coefficients of ¢! to zero
yields

IC1(p? + 2qr)r + 3k*Ir?a; + (2lw — 3km)r = C
(p* + 8pqr)k’1 + 6k*Ipra; + (2lw — 3km)p =0,
(7p*q + 8¢°r)k1 + 3k1(p? + 2qr)a; + (2lw — 3km)q =0,
12k3Ipg? + 6k*Ipgqa; =0,
6k3lq> + 3k%Ig?a; = 0.
Solving these algebraic equations, we obtain

4k31gr + 3km — p2k?l
4 =—2kg, w= q+2l P2 c=o, (2.8)

and ag, k,l,m,r, p and q are arbitrary constants.
Based on the solutions of (2.6), selecting different values of r, p and q we can obtain new types solutions for (2.1).
Case I. When p% — 4qr > 0 and pq = 0 (or gr #0), the soliton and soliton-like solutions of Eq. (2.1) are

Jpr—4
uq :a0+k|: p2—4qrtanh(u§>],

Jp?—4
uzzao+k[p+,/p2—4qrcoth< il >]

us =ag +k[p +/p? — 4gr(tanh(/ p2 — 4qré) + i sech(y/ p2 — 4qr¢))].
us=ao -+ K[p +/p? — 4qr(coth(/p? — 4qr£)  csch(y/p? — 4qre)) .

2 /2 _
Us=agp+ = [2p+\/p —4Qr<tanh< P ):I:c th<pT4qr§>>],
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V(A% + B2)(p? — 4qr) — Ay/p% — 4qr cosh(,/p2 — 4qr$)}
Asinh(y/p? — 4qré) + B

Llszao—k[—p—i-

U7 =ag — k|:—p . V(B2 = A2)(p? — 4qr) + AV/p? — 4qu05h(m5)]
Asinh(y/p2 — 4qr) + B
Us = a 4qucosh(@5)
o MSinh(@g) - pcosh(@g)’
1o =ag + 4qusinh(@5)
psinh (YA 6) /37— dgr cosh (/25 )|
Uip = 4qucosh(@g)
10 =00 — JP? — 4qrsinh(y/p? — 4qré) — p cosh(y/p? — 4qré) +iy/p? — 4qr’
ui1 =do — 4qusinh(@g)

—psinh(y/p? — 4qré) + /p2 — 4qr cosh(y/p? — 4qré) + \/p2 — 4qr’
8kqr sinh(@é) cosh(@é)
—2p sinh( @5) cosh(@é) +2/p? —4qr coshz(@f) —/p? —4qr
where & =kx+ 1y + mz+ Wt, and A, B are two non-zero real constants with B2 — A2 > 0.
Case II. When p? — 4qr < 0 and pq # 0 (or gr # 0), we have the periodic solutions as:

)

2

)

2

uis =ao —k[—p+ \/4qr - tan(\/4qr — p%) £sec(y/4qr — p2¢))].
uie =ao +k[p + \/4qr —p? (cot(\/4qr — p%) £ csc(y/4qr — p%€))].
u.l7_a0_l_|: 2p+ /4qr p2<tan<ﬂs) _coth<L_p2€>>i|’

4 4
+v/(A> — B?)(4qr — p?) — AV/4qr — p2 cos(v/4qr — p Zg)}

Asinh(y/4qr — p%£) + B

U2 =dp —

u13:ao—k[ +./4qr — 2tan(

U4 =dg +k[p 4qr—p cot(

18 =dg —k[—p +

[ +V/(A? — B?)(4qr — p?) — AV/4qr — p? COS(\/4qr—p2$)]
ug=ag—k|—p— )
Asin(y/4qr — p2£) + B
N 4kgr cos(Y =02 ¢)
U0 = do .
VAqr — p? sin(#g) +p cos(—V“CIZr_ng)
akgrsin(X24 =" ¢)
U1 =4ap — )
—psin(M=P2g) 4\ Jagr — p? cos(LAIP2g)
N 4kgr cos(iwg‘)
Uz =dg )
Vaqr — p?sin(y/4qr — p2£) + p cos(y/4qr — p2&) £ \/4qr — p?
4kgr sin(iﬂg_pzs)
uz3 =do —

—psin(y/4qr — p2£) + \/4qr — p2 cos(v/4qr — p2&) + \/4qr — p?

)
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. 4qr—p2 4qr—p?2
8kgr sin(Y=4—"-¢) cos( YL ¢)
/ —p2 / —p2 / —p2
—2psin(V2UEg) cos(YE £) 4 2. /4qr — p? cos? (YL g) — \Jagr — p?

where & = kx +ly +mz + £ (4k?qrl + 3m — k?p?I)t, A and B are two non-zero real constants and satisfies A2 — B2 > 0.
Case IIl. When r =0 and pq # 0, we obtain the soliton-like solutions
Uzs =ado + 2kpd )
d + cosh(pé&) — sinh(p&)
2kp[cosh(p&) + sinh(pé)]
d + cosh(p&) + sinh(pg) ’

where & =kx +1y + mz+ (—%k3p2 + 3’g—}")t and d is an arbitrary constant.
Case IV. When q # 0 and r = p = 0, we obtain the rational solutions

2kq
qs+cr’

Upqa =0ag —

)

Uze =do +

Uz7 =do +
where & =kx + 1y + mz+ 3’2%’% and cp is an arbitrary constant.
3. Conclusion

In this paper, based on the generalized Riccati equation mapping method, we obtain abundant solutions to the (3 4+ 1)-
dimensional Jimbo-Miwa equation. To our knowledge, these solutions have not been reported in previous literatures.
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