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merit figures that estimate the optical efficiency, a key quantity for all the CSP plants that can be defined
in different ways. The description includes examples of application, discussion of results and various
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1. Introduction

Recently the sector of production of renewable energy is
experiencing a great development of systems based on the con-
centration of solar flux by means of a large number of mirrors.
These Concentrated Solar Power (CSP) plants are thermodynamic
solar energy installations that are mainly composed of a field of
heliostats, which concentrate the sunlight on a receiver, often
placed on a tower.

In order to maximize the system efficiency, the utilization of
suitable optical design software to structure the mirror field and
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the receiver is indispensable. At present for CSP systems it is
possible to utilize different codes and software tools in order to
evaluate the optical performances of the mirror field [1] and to
simulate the flux distribution on the inner surfaces of cavity or
receiver, which is practically impossible to get by real measure-
ments (for example, see Qiang Yu et al. in [2]). They permit to
obtain several merit figures, many of them introduced and
employed in literature, in order to evaluate the performance of a
whole renewable energy plant: as example, [3] proposes “net
energy” and “gross carbon emission (CO2eq)” as merit figures in
order to compare different sources for electricity generation, while
[4] utilizes “embodied energy”, devoted to total cost evaluation (it
considers only commercial energy) and “emergy”, that is the
amount of energy involved in a transformation process. Scholars
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introduced different merit figures to evaluate costs and advantages
of the sources for energy generation (in particular, to compare
their results in terms of efficiency, costs, sustainability and envir-
onmental protection), but very often they are general figures that
do not specifically characterize the optical configuration of the
heliostat field. In effect, problems and methods related to the
heliostat plant realization suggested to use appropriate merit fig-
ures to characterize the CSP optical system and to guide the design
process, as it was done for other solar systems or components.
Kumar, in [5], estimates the design parameters for a box-type solar
cooker introducing two merit figures related to heat losses and
water heating capability; Sansoni et al, in [6], investigate the
image uniformity separating the contributions of different regions
of a prismatic lens, while in [7] carefully analyze the performance
of a simulated trough collector, assessing by ray-tracing received
light and acceptance angle. All these papers evidence the necessity
of introducing some merit figures specific for the actual case. From
this point of view, the utilization of a generic optical design soft-
ware permits more flexibility to individuate the actual best merit
figures and to assess the performances concerning flux distribu-
tion and system collection efficiency with respect to dedicated
software (see [1] for a review of specific codes for solar flux cal-
culation). Obviously, the utilization of a generic optical design
software requires the development of customized methods and
design tools, as studied by Sansoni et al. in [8], but it permits to
choose the best evaluation tools. Very interesting is the work of
Segal et al., in [9-11], where the optimization is focused on the
maximization of the energy at the entrance of the receiver system
in a tower-reflector system. It is essential to highlight that the
traditional merit figures for optical systems are quite useless,
because solar divergence and component tolerances very often
generate a beam enlargement wider with respect to the optical
aberrations. Moreover, the optical aberrations exist only if the
solar field is composed of non-flat mirrors: in this case the actual
most important aberration, the astigmatism, can be significantly
reduced if a suitable plant layout is utilized; coma and spherical
aberration, for large solar plants, are often unimportant [12,13].
For this reason the best choice is a non-sequential optical design
software (like ASAP, LighTools, TracePro), from which it is possible
to obtain more useful information with respect to a traditional
(sequential) one. Basically, optical design software tools can be
split into two categories: traditional software, where the user
decides the order in which the rays hit the surfaces; lighting
simulation software, where the rays hit the surfaces in a “natural”
order, depending on their optical path (more similar to the phy-
sical reality). A sequential software permits to calculate the aber-
ration values, while the non-sequential ones focus on radiometric
and photometric quantities: the most useful of them, for the
analysis of the performances of a mirror field, are the irradiance
maps that show both “how much” (scalar quantities, i.e. the total
flux on the surface) and “how” (imaging maps, i.e. the flux dis-
tribution) of the ray tracing.

The present paper is dedicated to summarize the merit figures
utilized for the design of CSP plants using a generic optical design
software, separating the subsystems [9] and focusing on methods
and tools to evaluate the optical performance of a heliostat field in
order to choose the best plant configuration.

2. Field of heliostats

The first phase of the optical design of a CSP plant is to define
the field of mirrors, thus a set of parameters that permit to eval-
uate and classify it, from an optical point of view, must be outlined.
Defined the plant location [14], the positions where the heliostats
have to be placed are determined by the mirror size and the

acceptability of a shadowing degree and a blocking grade in var-
ious day hours/seasons. The degree of shadowing is how much a
mirror’s shadow can cover the mirror behind; the grade of
blocking defines how many rays from a heliostat to the receiver
are blocked by the rear surface of other mirrors. Many tools and
procedures developed by means of a non-sequential optical soft-
ware can be utilized in this phase in several ways: shadowing and
blocking phenomena can be evaluated in different day hours or
seasons in order to establish a convenient trade-off between land
occupation and CSP plant efficiency; the land occupation is com-
putable also by a reverse ray-tracing from the receiver toward the
mirror field, measuring the flux not intercepted by the heliostats.
Many authors studied the influence of these parameters on the
final optical efficiency of a CSP system [15-19], but the real diffi-
culty is to find a useful merit figure to compare different mirror
fields or the same heliostat field in different hours of the day or
seasons. In fact the actual input flux depends on the system con-
figuration: it varies with the cosine factor and the mirror sha-
dowing factor. Thus the efficiency (output flux / input flux) based
on the actual input flux is not very useful to compare different
layouts of the same field (for example with towers of different
height), because an increase of the shadowing (that is a decrease
of the input flux) and a proportionally identical decrease of the
output flux lead paradoxically to the same efficiency. Jafrancesco
et al,, in [20], defined a new merit figure that describes the field
collection efficiency: it is the ratio between a variable field output
flux (quantity of radiation reflected by the mirror field towards the
receiver) and a constant field input flux, defined as the product
between the DNI and the total reflecting surface, where the DNI is
the Direct Normal Insolation. Substantially this is a conventional
definition of mirror field efficiency, where the actual input flux is
replaced by the so-defined field input flux, and it is always less than
1. This definition could be useful to compare different fields lay-
outs (setting the actual sun position), but it does not take into
account the cosine factor (that is the angle between the normal to
the mirror surface and the sun rays). In effect, it has to be high-
lighted that it is mandatory to individuate the “critical parameters”
concerning the realization of a CSP plant, as the area of the mir-
roring surface or the land occupation. If the last one is the major
concern, it seems preferable to use as input flux the product of DNI
and area utilized by the CSP plant’ (obviously only to compare CSP
plants with different mirroring surface, because for the same plant
the merit figure introduced in [20] is equivalent); moreover, the
averaged cosine factor can be evaluated and considered in the
formulas in order to estimate the flux that hits the mirroring
surface without blocking.

Regarding two-dimensional (2-D) and three-dimensional (3-D)
maps that represent the distribution of the parameters of interest
(e.g. irradiance, shadowing, output flux, ...), they are the output of
a software simulation and act both as qualitative figure and as
“parameters set”. So from them it is possible to obtain various
merit figures; in fact a quantitative measurement of the perfor-
mance requires the passage from a 2-D or a 3-D map to uni-
dimensional parameters (just because there is no ordering among
the 2-D or 3-D maps, thus it is impossible a quantitative com-
parison between two configurations of CSP plant). However, the
qualitative analysis of the performance is very useful in order to
warn the designer about some weaknesses or faults in the CSP
layout that are very difficult to be obtained from consolidated
data: they typically are lack of irradiance or efficiency of a part of

! Please note that it would be possible to define a more general merit figure
too: the ratio between the averaged (annual) output flux from the mirror field and
the area of CSP plant; it would seem to permit for comparison among CSP plants in
different locations, which is really very difficult due to the design priority change
(land occupation, area of the mirroring surface, limits to tower height, etc.).
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the CSP plant. An exception is represented by the irradiance maps
on the receiver surface, which could be directly utilized as input
for a thermal analysis software.

In this perspective, a non-sequential optical software owns the
capability to calculate maps and data judged more useful during
the design phase, even if the calculus was not previously
considered.

3. Secondary optics

Also for the analysis of the secondary optics, a non-sequential
optical design software can be the best choice, because it permits
to analyze more effectively the behavior of the secondary optics. In
fact, several plant layouts (in particular concerning solar furnaces)
include the utilization of another optical component (in addition
to the heliostats) to improve the concentration on the receiver.
This component can be another mirror set, a faceted mirror or a
concentration stage, like a CPC (Compound Parabolic Concent-
rator) [21].

Generally, the most important merit figure, for the secondary
optics, is its optical efficiency, which is clearly definable as the
ratio between output flux and input flux. This ratio depends only
on layout and characteristics of the secondary optics, and it can be
used also for further optical systems that could be present. How-
ever, depending on the configuration, there are other merit figures
that can be exploited. Indeed, due to the large variety of secondary
optics, the optical analysis has to be compliant to the specific kind
of layout. An example of that is the evaluation of the CPC effi-
ciency. Various authors studied different merit figures in order to
characterize the CPCs [22,23], but they neglected the quantity of
radiation that directly exits from the output window of the CPC.
This radiation has an influence not only on the CPC efficiency [24],
but also on the need of using a cooling system for the CPC surface.
In practice, the CPC surface has a reflectivity value of about 85-95%
(it depends on the presence of a surface coating and its ageing)
and the energy absorbed by its surfaces causes both a decrease of
the flux at the CPC output window and an increase of the CPC
temperature. Therefore, it is useful to know the fraction of the
input flux that directly exits from the output window, defined as
direct fraction of the CPC. This value, that is equivalent to the ratio
between output flux and input flux when the CPC surfaces are
perfect absorbers, can be easily assessed by means of simulation
software and codes, which permit to change the surface char-
acteristics of all the optical components.

This example clearly shows that the purpose of setting a sui-
table merit figure is to permit a comparison among different
optical layouts under many point of views: in the mentioned case,
it is interesting not only the flux decrease due to the imperfect
reflectance of the CPC internal surface, but also the temperature
boost of the last one.

4. Receiver

The ultimate aim of the optical designer that deals with a
mirror field is to obtain on the receiver the established irradiance
distribution [25]. The receiver can be represented by the internal
walls of a cavity, a set of tubes or an absorbing surface. However,
there is an input window (coincident with the receiver if this is an
absorbing surface) where the entering flux is evaluated, eventually
by means of an irradiance map on the input window (regarded as
a virtual surface); other irradiance maps of the absorbed flux on
the cavity walls allow calculating the local thermal exchange with
the fluid system.

Depending on the utilized optical design software, the available
flux (input flux minus reflected flux)? can be calculated in different
ways: for example, in Lambda Research TracePro, in the irradiance
map of the input window, the reflected flux (exiting from the
cavity) is added to the true input flux because the software does
not take into account the algebraic sign of the flux. Then, in order
to calculate the available flux it is necessary to separately evaluate
the “(input+reflected) flux” and the true input flux (this latter can
be calculated setting all cavity walls as perfect absorbers). Thus,
available flux=2 - input flux - (input+reflected) flux. In any case,
the knowledge of the available flux and the evaluation of the other
losses permit to calculate the expected values of useful flux (for
example the flux transferred to the thermal medium, molten salt
or other types) and to correctly calculate the receiver size, as
Steinfed and Schubnell in [27].

From the irradiance distribution on the input window of the
receiver, it is possible to extract some data:

- the total flux that hits the input window;
- the max/min irradiance ratio (uniformity);
- the marginal irradiance.

The first parameter is a standard datum and it does not need
further explanations; concerning the uniformity, this value is
relevant if the input window coincides with the absorbing wall,
because it gives indications about its thermal stressing. Obviously,
if the receiver is a cavity the uniformity has to be calculated on the
cavity walls; in any case there is a strong dependence of uni-
formity on the calculation method, in particular the smoothing on
the irradiance map heavily affects the uniformity. Interesting is
also the marginal irradiance, another example of a parameter,
obtained by a non-sequential software, that could be useful only in
some cases and deserves some describing details. The marginal
irradiance was introduced from Jafrancesco et al. in [20] as the
irradiance on the border limit, averaged on a narrow ring at the
edge of the receiver. It measures the flux amount approximately
lost or gained if the receiver is slightly restricted or enlarged (if the
examined receiver is a cavity, the study has to refer to its input
window). The utility of the marginal irradiance is based on the fact
that the phenomena related to the receiver losses are highly
dependent on the receiver area: for example, if this area is
increased it is possible to evaluate if the gain about the collecting
flux exceeds the losses due to Planckian radiation and wind effect.
Moreover, very often the irradiance profile on the receiver (or
input window) shows a Gaussian shape, mainly due to mechanical
tolerances, pointing errors and mirror surface defects [28-30]; in
this case the ratio between marginal irradiance and maximum
irradiance easily marks the shape of the irradiance plot, ultimately
the fraction of flux that enters into the receiver. Truly all the
information is contained in an irradiance plot on a plane coin-
cident with the input window of the receiver, but they are not
directly comparable in order to evaluate the best configuration
without extrapolating one or more parameters. Then, the marginal

2 Conductive, convective and Planckian losses cannot be estimated by means of
an optical design software, then the available flux is not equal to the flux trans-
ferred to the fluid; the reflection losses, on the contrary, can be correctly evaluated
because they depend only on the reflectance of the receiver wall and on the
receiver shape [26].

3 Really the flux on the input window is very often the datum that marks the
passage between optical and thermal merit figures: the thermal designer of the CSP
plant has to set the minimum and optimum flux transferred to the fluid; if there is
an analytical or numeric evaluation of the losses variation depending on the input
window dimension, the comparison between marginal irradiance and “marginal
exitance” (due to all flux losses depending on the input window dimension) could
be a key analysis.
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irradiance is a parameter (like total flux or mean irradiance) that
permits this comparison.

Another example of extrapolation of information from two-
dimensional maps is the isocandela plot of the rays reflected by the
mirrors, which permits to correctly orientate the receiver. The
isocandela plot shows the direction of rays on the internal surface
of a hemisphere placed at the infinity (the axis of the hemisphere
is set by the user); it is a very intuitive representation of the
angular distribution of the radiation. The parameter to be extrac-
ted, in this case, is the difference between direction of the radia-
tion from the mirror field and orientation of the axis of the
receiver; if there is a secondary optics as a CPC, this parameter
affects the direct fraction of the CPC, influencing both the flux
entering into the receiver and the quantity of heat that the CPC
must dissipate.

5. Tests on a simulated solar field
5.1. Simulated layout

This section is dedicated to test some parameters introduced as
examples in the previous paragraphs; these tests are performed
referring to a simulated CSP plant; its heliostat field was realized
as a set of 186 spherical mirrors (with circular shape, radius 1 m,
height of mirror center from the ground 1.5 m), arranged in rows
and columns: the distance between two adjacent mirrors of the
same row is 3 m and the spacing between rows is 2.5 m. Setting a
reference system with Z axis in vertical direction, Y axis in the
North-South direction and X axis in the East-West direction (with
the origin on the ground), the first row has Y= —20 m, the last one
Y=47.5 m; the heliostat field spreads from X=—24 m to X=24m,
and is placed at coordinates (40.63 North, 15.38 East), located in
Italy, near Naples. A view of the CSP plant with several sun rays
traced is shown in Fig. 1; the sun is simulated as a plane surface,
placed over the heliostat field, that emits the actual solar DNI
along the direction defined by the sun position.

The receiver axis is a line that crosses the center of the
heliostat field.

The area occupied by the mirror field is about 1400 m?, while
the total reflecting surface is 584.3 m?, thus the occupation factor
is 0.417.

Due to the aim of this simulation, the DNI values were calcu-
lated using the simple model of Hottel [31]. The axis of the

Fig. 1. 3 view of the CSP plant with reference system and several rays traced; the
receiver is on the left top of the figure.

heliostat field is the North-South direction and the target is at
South with respect to the field. The beam divergence (the con-
volution between solar divergence and system imperfections and
errors) is defined as a Gaussian enlargement with standard
deviation 6=0.312 deg [29,30].

The receiver is built as a CPC (Compound Parabolic Con-
centrator) in conjunction with a cylindrical cavity. The CPC input
window is the target of the reflected rays. It has circular shape
with radius=0.5 m; in the reference system its center is placed at
(0, —20 m, 30 m). The CPC has acceptance angle=26 deg (semi-
angle) and its output window, coincident with the input window
of the cavity, has radius=0.2192 m; the specular reflectance of its
internal surface is set to 0.9 (with 0.1 of absorbance), as the surface
of the heliostats. The cylindrical cavity has radius 0.3 m and height
0.2 m; the surface absorbance of the cavity wall is set to 0.6 (the
remaining 0.4 is postulated to be Lambertian diffuse reflection).
The marginal irradiance is calculated on an annulus with central
radius coincident with the radius of the CPC input window and
thickness 1/5 of its radius.

5.2. Results

The simulations of the examined CSP plant were performed
using the non-sequential simulation software Lambda Research
TracePro, tracing about 1.2 billion of rays; configuration and input
data were set as illustrated in the previous paragraph. The first
simulations were performed on the same field (with tower
height=30 m) for different hours of the day (h 9.00 and h 12.00;
for h 12.00 the azimuth was approximated always to 0) and three
days of the year (day 21 of months June, September and Decem-
ber). The results are summarized in Table 1, where:

- DNI: Direct Normal Irradiance

- avr_cosine: average, among all the heliostats, of the angle cosine
between sun rays direction and normal to the heliostat surface

- FIF_MS: Field input flux on the mirroring surface (=DNI * Mir-
roring Surface)

- FIF_max: Theoretical field input flux on the mirroring surface,
taking into account the cosine factor but not the shadowing
factor (=DNI * Mirroring Surface * averaged cosine of mirrors
with respect to the sun direction)

— FIF_act: actual flux on the mirrors (calculated on the model, it
takes into account the shadowing too)

- FOF_max: Theoretical field output flux from the heliostat field
(= FIF_act * mirror surface reflectance)

— FOF_act: Actual field output flux from the heliostat field

- FE_MS: Field efficiency based on FIF_MS (=field output flux /
FIF_MS)

- FE_max: Field efficiency based on FIF_max (=field output flux /
FIF_max)

- FE_act: Field efficiency based on FIF_act (=field output flux /
FIF_act)

— CPC input flux: flux that enters into the CPC

- Marg_irradiance: Marginal irradiance on the CPC input window

— CPC direct fract.: fraction of the flux that enters into the CPC and
exits without being reflected on its internal surface

- Cavity input flux: flux that enters into the cavity

— Cavity available flux: cavity input flux - reflected flux

- CE_MS: Collection efficiency based on FIF_MS (=available flux /
FIF_MS)

- CE_max: Collection efficiency based on FIF_max (=available flux
| FIF_max)

— CE_act: Collection efficiency based on FIF_act (=available flux /
FIF_act)
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Table 1
Results of the mirror field simulations varying sun position and DNIL.

Parameter Jun21 h9 Jun21 h12 Sept21 h9 Sept21 h12 Dec21 h9 Dec21 h12
DNI (kW) 0.793 0.864 0.670 0.797 0.384 0.601
avr_cosine 0.85 0.92 0.90 0.98 0.93 0.99
FIF_MS (kW) 463.4 504.9 391.5 465.7 2244 351.2
FIF_max (kW) 3939 464.5 3524 454.5 209.1 349.1
FIF_act (kW) 394.8 466.0 352.7 456.1 126.0 341.7
FOF_max (kW) 3553 4194 3174 410.5 113.4 307.5
FOF_act (kW) 3333 389.8 2929 372.7 109.2 277.0
FE_MS 0.72 0.77 0.75 0.80 0.49 0.79
FE_max 0.85 0.84 0.83 0.82 0.52 0.79
FE_act 0.84 0.84 0.83 0.82 0.87 0.81
CPC input flux (kW) 2101 251.0 182.9 241.6 70.4 179.2
Marg_Irradiance (kW/m?) 157.6 183.0 137.8 1741 50.9 129.2
CPC direct fract. 0.20 0.20 0.20 0.20 0.19 0.20
Cavity input flux (kW) 190.00 227.0 165.3 218.6 63.6 162.1
Cavity available flux (kW) 158.50 189.5 1379 1824 53.3 135.2
CE_MS 0.34 0.38 0.35 0.39 0.24 0.38
CE_max 0.40 0.41 0.39 0.40 0.25 0.39
CE_act 0.40 0.41 0.39 0.40 0.42 0.40

Table 2

Results of the mirror field simulations varying the tower height (h) for two sun positions.
Parameter Jun21 h12.00 Sept21 h9.00

h = 25m h = 30m h = 35m h = 25m h = 30m h = 35m

DNI (kW) 0.864 0.864 0.864 0.670 0.670 0.670
avr_cosine 0.905 0.920 0.932 0.894 0.900 0.905
FIF_MS (kW) 504.9 504.9 504.9 391.5 391.5 391.5
FIF_max (kW) 456.9 464.5 470.5 350.0 352.4 354.3
FIF_act (kW) 458.4 466.0 472.5 350.9 352.7 354.0
FOF_max (kW) 412.6 4194 4253 315.8 317.4 318.6
FOF_act (kW) 362.4 389.8 409.9 275.5 2929 304.8
FE_MS 0.72 0.77 0.81 0.70 0.75 0.78
FE_max 0.79 0.84 0.87 0.79 0.83 0.86
FE_act 0.79 0.84 0.87 0.79 0.83 0.86
CPC input flux (kW) 241.8 251.0 252.8 179.1 182.9 181.6
Marg_Irradiance (kW/m?) 166.8 183.0 193.2 128.9 137.8 143.9
CPC direct fract. 0.20 0.20 0.21 0.21 0.20 0.21
Cavity input flux (kW) 216.6 227.0 226.2 160.1 165.3 162.6
Cavity avail. flux (kW) 181.3 189.5 188.6 133.9 137.9 135.6
CE_MS 0.36 0.38 0.37 0.34 035 0.35
CE_max 0.40 0.41 0.40 0.38 0.39 0.38
CE_act 0.40 0.41 0.40 0.38 0.39 0.38

Other simulations were performed setting the tower height h at
25m and 35 m (only for June 21, h 12.00 and September 21, h
9.00); the results are reported in Table 2.

To complete the simulations results numerically presented in
Tables 1 and 2, Fig. 2 shows the irradiance map on the CPC input
window (Jun 21, h 12.00) with the profiles in the X and Y direc-
tions of the plot.

5.3. Discussion

The variation of the averaged cosine leads to a difference
between FIF_MS and FIF_max variable among the simulations. The
difference between FIF_max and FIF_act depends on the sha-
dowing phenomenon (apart from the tolerances on the results),
that is considered in FIF_act; in FOF_max the blocking phenom-
enon is not included, while FOF_act takes it into account. The
significance of the utilization of these merit figures emerges from
the analysis of FE_MS, FE_max and FE_act. The simulation of Dec
21, h9 reaches the highest value of FE_act, but it is a misguided
result: actually, FE_MS is very low, and this means that the plant
utilizes the solar radiation in an inefficient way. Moreover, the
great difference between FE_max and FE_act proves that the
shadowing factor has large influence on the performance for the

configuration Dec 21, h9. It explains the high value of FE_act too:
the blocking is very low because the shadowing is high (practi-
cally, a large part of radiation that could be blocked does not exist
because it does not hit the mirrors due to shadowing). It is con-
firmed by the difference between FOF_max and FOF_act, that is
quite low for Dec 21, h9. It is evident that only the utilization of
various optical merit figures permits a sufficiently complete eva-
luation of the mirror field performance.

The analysis, in the examined case, is less difficult regarding the
CPC and the receiver. The value of CPC direct fraction (about 0.2 for
all the configurations) indicates that about the 8% of the power
that enters into the CPC has to be drained as heat (the 80% of the
radiation hits the CPC internal surface, that has 90% of specular
reflectance). The Marginal irradiance permits to roughly forecast
the effects of radius modifications: if the target radius becomes
0.475m the target surface difference is 0.07658 m? and, con-
sidering a marginal irradiance of 183 kW/m? (Jun 21, h 12), the
supposed total flux decreases of 14.0 kW, so it results 237 kW. A
direct simulation with target of radius 0.475 m gives the result of
236.7 kW, in perfect agreement with the “supposed total flux”,
extrapolated from the marginal irradiance. This parameter can also
be expressed as marginal linear irradiance considering the
improvement/decrement of flux that depends on the variation of
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Fig. 2. Irradiance map on the CPC input window with horizontal and vertical
profiles.

target radius (in the studied case, 575 kW/m). The reflected flux,
subtracted from the cavity input flux, leads to the available flux,
which is the flux that the designer has to maximize in order to
improve the collection efficiency.

In Table 2 the differences that depend from the height of the
target are shown for two conditions (Jun 21, h 12 and Sept 21, h 9).
The average cosine factor is lower for receiver at 25 m, greater for
receiver at 35 m. Moreover, it is conceivable that higher the target
is placed, lower will be the blocking; in fact that is demonstrated
by the values of FOF_max and FOF_act, that are closer if the tower
is higher. As a consequence the highest FE_act is obtained for the
target at 35 m. One could expect that in this case also the CE_act is
higher, but it does not happen. The reason is that the mean dis-
tance of the target from the heliostats increases if it is lifted, thus
also the spot dimension increases and the amount of flux that
enters into the CPC decreases, as the CPC input flux shows. In
particular, this behavior is highlighted by the considerable

Polar Iso-Candela Plot
Using Missed Rays
Wisr 0

3.8e+006 15 345

3.6e+006

3.4e+006

3.2e+006

3e+006
28e+006
2.6e+006
2.4e+006 78 N » V8 v 85
2.2e+006

26+006 o
1.86+006
1.6e+006
1.4+006 105 255
1.26+006
164006
800000
600000
400000
200000

165 780 195

(o

Min:8.3985e-006 W/sr, Max:3.6373e+006 W/sr, Total Flux:3.8737e+005 W
1080000 Rays
Data covers +/- 30.000 degrees from Normal

Fig. 3. Isocandela plot of all rays (the normal vector is parallel to the CPC axis).

variation of the marginal irradiance, which demonstrates that the
spot changes to become larger when the target is lifted.

Another significant and useful graphic output of the software
package is the isocandela plot: Fig. 3 presents the isocandela plot of
the rays reflected by the mirrors of the examined field for Jun 21,
h12. The acceptance angle of the CPC was set with the help of this
map, which immediately shows the intensity distribution referring
to the angles between CPC axis and rays reflected by the heliostats.

It evidences an interesting phenomenon: the directions of the
rays do not form a symmetrical shape, because the intensity is
more concentrated at lower angles (corresponding to the farthest
mirrors). For this reason could be a better choice to set the incli-
nation of the CPC (the “0” of the isocandela plot) not exactly equal
to the direction of the line connecting the center of the heliostat
field and the center of the CPC input window in order to increase
the CPC direct fraction. Really it has to be evaluated the larger spot
produced by the farthest mirrors, that leads to more relevant
losses and less contribution to the total flux that enters into the
CPC for these mirrors. Fig. 4 presents the isocandela plot, for the
same simulation as Fig. 3, taking into account only rays that enter
into the CPC.

The differences between Figs. 3 and 4 highlight the lower
contribution of the farthest mirrors to the flux that enters into
the CPC.

Finally the irradiance maps of the flux absorbed by the cavity
walls (as shown in Fig. 5, referring to the simulation of Jun 21, h
12) are very important in order to facilitate the sizing and the
correct choice of the components and to simulate, with other
specialized software, the heat transfer to the fluid or, generally, to
the medium.

In order to supply to the thermal simulation software a correct
input, it is necessary to separate the variations on the map irra-
diance due to real physical phenomena from the random ones
(aroused by the random method that a non-sequential optical
simulation software utilizes to perform the simulation). Having
fixed the rays number of the simulation, in order to decrease the
pixel noise it has to be increased the area of each pixel (by
decreasing the pixels number), but also the map resolution
decreases. Thus is very useful to determine the best trade-off
between map resolution and noise. The best way is to perform at
least another simulation with a different “seed” (the starting
number for random simulations) and to calculate an averaged
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Fig. 4. Isocandela plot of rays that enter into the CPC (normal vector parallel to the
CPC axis).

Total - Irradiance Map for Absorbed Flux
Cavity Meas_surf Local Coordinates

Wim? 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300
1. 4e+001

1.3e+00f

1.2e+00f

1.1e+00

1e+006:

900000

800000-

700000

Y (millimeters)

600000

500000

400000-

300000

200000

100000

300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300

o X (millimeters)

Min:0, Max:1.3818e+0086, Ave:4.4958e+005
Total Flux:1.2712e+005 W, Flux/Emitted Flux:0.085142, 252304 Incident Rays

Fig. 5. Absorbed flux of the cavity wall opposite to the input window.

pixel-to-pixel flux difference between the two maps with different
seed: in practice, if Py; is the radiant flux on the i-th pixel of Map_1
and P,; the radiant flux on the i-th pixel of the Map_2, ABS(Py;-P>,
1)/2 is evaluated” for every pixels couple i-th, then the averaged
value on all pixels of Map_1 and Map_2 is calculated and divided
for the total flux (averaged on the two maps) in order to obtain the
Relative Flux Difference. It is an indication of the degree of the
random pixel noise, to be compared with the tolerances of the
simulations. Due to the fact that there are many pixels per map,
even the Relative Flux Difference between only two maps leads to
acceptable results. In Fig. 6 the results of this calculation are
reported for some couples of maps (every point represents a
couple of maps with the same pixels number and different “seed”
of the simulation), with increasing pixels number (the total pixels

4 The division by 2 takes into account that the difference relies to the mean
value of the pixel flux.
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Fig. 6. Variation of the flux due to the randomness of simulations: averaged dif-
ference between fluxes on pixels.

number is shown in abscissa, the Relative Flux Difference in
ordinate). The rays number is unchanged.

The behavior of the curve is logical (the random noise scales
with the squared root of the rays number per pixel, that is roughly
proportional to the pixel area), but the values are important:
having set the acceptable tolerance for the pixel flux (for example
5%), it is possible to establish the maximum pixels number of the
map; a better resolution requests a ray-tracing with a larger rays
number.

6. Conclusions

The discussion proposed in this study suggests to utilize a
generic non-sequential optical design software to characterize the
layout of a mirror field, due to its larger flexibility with respect to
dedicated software tools. This flexibility permits to define the best
merit figures tailored on the specific study and to compare dif-
ferent configurations of heliostat fields in order to select the more
appropriate solution for every solar plant. In this perspective, the
most useful optical merit figures for a generic CSP plant were
discussed and application criteria were proposed. In particular, it
was shown that a deep comprehension of the behavior of a CSP
plant (specially concerning the efficiency) requests the utilization
of various merit figures at the same time, and it was highlighted
the risk of comparing CSP plants only on the basis of a single
definition of “efficiency”. Specific tests were carried out on a
simulated CSP plant in order to verify the effective utility of the
discussed optical merit figures. They confirmed the advantages of
their introduction and use in the design procedure: suitable merit
figures allow to compare the various configurations and to analyze
critical components to finally select the optical layout of the CSP
plant. The analyzed simulations clearly show the need to utilize
multiple optical merit figures at the same time, because by their
comparison some important information can emerge. That is due
to different “critical parameters” that can be taken into account
(land occupation, mirroring surface, tower height and more) in
order to evaluate the advantage of a specific configuration. In
particular, the simulations evidenced the difference among various
ways to evaluate the efficiency of the mirror field, showing the risk
of considering only a single merit figure to estimate the optical
performance of a CSP plant.
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