Volume 3, number 5

FEBS LETTERS

June 1969

AN INTERMEDIATE INVOLVED IN THE FORMATION OF 4-AMINOBENZOIC ACID FROM CHORISMIC ACID IN AEROBACTER AEROGENES

K.H.ALTENDORF, A.BACHER and F.LINGENS

Institut für Mikrobiologie und Molekularbiologie, Universität Hohenheim, 7 Stuttgart-Hohenheim, Germany

Received 15 May 1969

1. Introduction

The enzymatic conversion of chorismic acid, the branching intermediate of aromatic amino acid biosynthesis, to 4-aminobenzoic acid has been demonstrated by Gibson et al. [1]. Although Huang and Pittard [2] have shown that at least two genes are involved in this pathway, no conclusive evidence concerning the formation of an intermediate was available hitherto. Previous experiments scheduled to isolate such a substance from fermentation cultures of various 4-aminobenzoic acid deficient mutants of *Escherichia coli* [3,4] and *Candida guilliermondii* [5] were not successful. Therefore we felt that an organism producing a high level of chorismic acid might be better suited for this purpose.

2. Materials and methods

Aerobacter aerogenes mutant 62-1 was treated with 1-methyl-3-nitro-1-nitroso-guanidine (MNNG). Subsequently a mutant 62-1 A with an additional block in the common pathway of purine biosynthesis was isolated. Treatment of this mutant with MNNG allowed to isolate a new mutant 62-1 AC exhibiting an additional block between chorismic acid and 4aminobenzoic acid.

A. aerogenes 62-1 AC was used for accumulation studies. Cultivation and accumulation procedures were essentially as described by Gibson [6]. Regarding the purine requirement of our mutant, guanine (20 mg/l) was added to the media. An intermediate of 4-amino benzoic acid biosynthesis (compound A) could be isolated as follows: The culture medium was centrifuged and placed on a column of acid washed charcoal, which was subsequently eluted with ethanol/2 N ammonia (1:3, v/v). The eluate was evaporated to a small volume in vacuo, followed by lyophilisation. The resulting dry powder was dissolved in 0.1 M Tris-buffer (pH = 8.0) and placed on a column of DEAE-Sephadex A-25. The column was eluted with Tris-buffer. Fractions promoting the growth of E. coli mutant K 5151 in 4-aminobenzoic acid-free medium were pooled and lyophilized. The resulting colorless powder was dissolved in water. Following acidification to pH = 3.6 with N acetic acid, the sample was placed on a column of SE-Sephadex C-25 and eluted with 0.1 N sodium acetate buffer (pH = 3.6). The growth-promoting fractions were neutralized by careful addition of 0.1 N NaOH and lyophilized.

3. Results and discussion

We started from a mutant 62-1 of A.aerogenes with three genetic blocks in the pathway of aromatic amino acid biosynthesis. Under suitable conditions this mutant accumulates about 0.4 g chorismic acid/1 [6]. Following treatment with MNNG we obtained a new mutant 62-1 AC, this one exhibiting two additional blocks in the pathways of purine and 4-aminobenzoic acid biosyntheses (fig. 1).

Formation of an intermediate of 4-aminobenzoic acid biosynthesis (compound A) by *A. aerogenes* 62-1 AC could be demonstrated by growth tests using

Fig. 1. Pathway of aromatic amino acid biosynthesis. (a) genetic blocks of *A. aerogenes* 62-1 (b) additional block of mutant 62-1 AC.

Fig. 2. Growth of 4-aminobenzoic acid deficient mutants of E. coli with compound A (0) resp. 4-aminobenzoic acid (\bullet).

4-aminobenzoic acid deficient mutants of *E. coli*, namely K 430 and K 5151. Culture medium of *A. aerogenes* 62-1 AC was sterilized by filtration. Following 100-fold dilution with sterile minimal medium, this solution was inoculated with *E. coli* mutants. Growth curves are shown in fig. 2. *E. coli* K5151 attains full growth within 14 hr. Hence it follows, in agreement with the results of crossfeeding tests [3,4], that this mutant shows a genetic block prior to compound A (fig. 3). *E. coli* K 430 starts to grow not before 42 hr. However, growth begins without delay if sterile accumulate solution is preincubated at 37°C for 2 days, suggesting that decomposition of compound A yields 4-aminobenzoic acid.

Compound A was isolated by chromatographic procedures. The pure compound exhibits a UV-maximum centered at 271 nm in neutral Tris-buffer. On prolonged incubation in citrate-phosphate buffer (pH = 3.5) compound A becomes converted to 4-aminobenzoic acid, which was identified by chromatographic and UV-spectroscopic methods. Therefore it seems reasonable to assume that compound A is a labile intermediate of 4-aminobenzoic acid biosynthesis, which may no longer be converted by A. aerogenes 62-1 AC. Studies concerning the structure of compound A are presently undertaken.

Acknowledgements

A. aerogenes 62-1 was kindly supplied by Prof. F.Gibson, Canberra, Australia.

This work was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie.

References

 F.Gibson, M.Gibson and G.B.Cox, Biochim. Biophys. Acta 82 (1964) 637.

- [2] M.Huang and J.Pittard, J.Bacteriol. 93 (1967) 1938.
- [3] F.Lingens, Angew. Chem. 80 (1968) 384, Angew. Chem. Intern. Edit. 7 (1968) 350.
- [4] K.H.Altendorf, A.Bacher and F.Lingens, Z. Naturforsch., in preparation.
- [5] O.Oltmanns, A.Bacher and F.Lingens, Z. Naturforsch. 23b (1968) 1556.
- [6] F.Gibson, Biochem. J. 90 (1964) 256.