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Abstract

In an earlier paper, we have studied reset words for synchronizing automata whose states admit a
stable linear order. Here we show that the same bound on the length of the shortest reset word persists
for synchronizing automata satisfying much weaker stability restriction. This result supports our
conjecture concerning the length of reset words for synchronizing automata accepting only star-free
languages.
© 2004 Elsevier B.V. All rights reserved.
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1. Background and motivation

LetA = 〈Q,�, �〉 be a deterministic finite automaton, whereQ denotes the state set,
� stands for the input alphabet, and� : Q× � → Q is the transition function defining an
action of the letters in� onQ. The action extends in a uniqueway to an actionQ×�∗ → Q

of the free monoid�∗ over�; the latter action is still denoted by�. The automatonA is
calledsynchronizingif there exists a wordw ∈ �∗ whose action resetsA, that is, leaves
the automaton in one particular state no matter which state inQ it started at:�(q1, w) =
�(q2, w) for all q1, q2 ∈ Q. Any wordw with this property is said to be areset wordfor
the automaton.
It is rather natural to ask how long a reset word for a given synchronizing automatonmay

be. The problem is known to be NP-complete (see, e.g.[14, Section 6]), but on the other
hand, there are some upper bounds on theminimum length of reset words for synchronizing

∗ Corresponding author.
E-mail addresses:Dmitry.Ananichev@usu.ru(D.S. Ananichev),Mikhail.Volkov@usu.ru(M.V. Volkov).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.09.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82370484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:Dmitry.Ananichev@usu.ru
mailto:Mikhail.Volkov@usu.ru


4 D.S. Ananichev, M.V. Volkov / Theoretical Computer Science 330 (2005) 3–13

automata with a given number of states. The best such bound known so far is due to Pin
[11] (it is based on a combinatorial theorem conjectured by Pin and then proved by Frankl
[5]): for each synchronizing automaton withn states, there exists a reset word of length at
most(n3 − n)/6. In 1964Černý[3] produced for eachn a synchronizing automaton with
n states whose shortest reset word has length(n− 1)2 and conjectured that these automata
represent the worst possible case, that is, every synchronizing automaton withn states can
be reset by a word of length(n − 1)2. By now this simply looking conjecture is arguably
the most longstanding open problem in the combinatorial theory of finite automata (and
one of the favorite topics of Arto Salomaa’s research, see his recent publications[12–14]).
The reader is referred to the survey paper[8] for an interesting overview of the area and its
relations to multiple-valued logic and symbolic dynamics; applications of synchronizing
automata to robotics are discussed in[4].
In [2] we have studied a special kind of automata which we called monotonic. (This

term was also used in[4] but in a different sense.) Namely, an automatonA = 〈Q,�, �〉
is said to bemonotonicif its state setQ admits a linear order� such that for each letter
a ∈ � the transformation�(__, a) of Q preserves� in the sense that�(q1, a)��(q2, a)
wheneverq1�q2. We have observed that every monotonic synchronizing automaton with
n states has a reset word of length at mostn−1 and this upper bound is tight. In the present
paper, we prove that the same upper bound persists within a much wider class of automata
which are in a certain sense representative for the class of automata accepting only star-free
languages.
In order to define our generalized monotonic automata, we recall the notion of a congru-

ence on an automaton. An equivalence relation� on the state setQ of an automatonA =
〈Q,�, �〉 is said to be acongruenceonA if (q1, q2) ∈ � implies

(
�(q1, a), �(q2, a)

) ∈ �
for all statesq1, q2 ∈ Q and all lettersa ∈ �. Forq ∈ Q, we denote by[q]� the�-class con-
taining the stateq. ThequotientA/� is the automaton〈Q/�,�, ��〉 whereQ/� = {[q]� |
q ∈ Q} and the transition function�� is defined by the rule��([q]�, a) = [�(q, a)]� for
all q ∈ Q anda ∈ �.
Now let � be a congruence on an automatonA = 〈Q,�, �〉. The automaton is said to

be�-monotonicif there exists a (partial) order� on the setQ such that
(1) two states are�-comparable if and only if they belong to the same�-class; in other

words, the order� is contained in� (as a subset ofQ ×Q) and its restriction to any
�-class is a linear order;

(2) for each lettera ∈ �, the transformation�(__, a) : Q → Q preserves� .
Clearly, for� being the universal congruence,�-monotonic automata are preciselymono-

tonic automata as defined above. On the other hand, for� being the equality relation, every
automaton is�-monotonic.
We call an automatonA generalized monotonic of level
 if it has a strictly increasing

chain of congruences

�0 ⊂ �1 ⊂ · · · ⊂ �
 (1)

in which�0 is the equality relation,�
 is the universal relation, and the quotientA/�i−1 is
�i/�i−1-monotonic for eachi = 1, . . . , 
. Thus, monotonic automata of[2] are precisely
generalized monotonic automata of level 1. Here is a simple example of a generalized
monotonic automaton of level 2 which is not monotonic.
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Fig. 1. The automatonE.
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Fig. 2. The quotient automatonE/�1.

Example 1.1. The automatonEwith the state setQ = {1,2,3,4} and the input lettersa, b
whose action is shown on Fig.1 is generalized monotonic of level 2 but not monotonic.

Proof. Consider the chain of relations

�0 ⊂ �1 ⊂ �2

in which�0 is the equality relation,�2 is the universal relation, and�1 is the partition ofQ
into 2 classesQ1 = {1,2} andQ2 = {3,4} (the partition is shown in Fig.1 by the dotted
line). Obviously,�1 is a congruence onE. EndowingQwith the partial order�1 such that
1<1 2 and 3<1 4, we immediately see that the automatonE = E/�0 is �1-monotonic.
The quotient automatonE/�1 is shown in Fig.2. If we order the setQ/�1 by letting

Q1 <2 Q2, the transformations induced by the lettersaandbbecome order preserving.We
see thatE/�1 is a monotonic, that is,�2/�1-monotonic automaton. Thus, we have verified
thatE is a generalized monotonic automaton of level 2.
In order to show thatE is not monotonic, one can directly check that the action of the

lettersa andb violates each of 24 linear orders on the setQ = {1,2,3,4}. Alternatively,
one can refer to a (much stronger) result proved in[17]: the transition monoid ofE does
not divide the transition monoid of any monotonic automaton. (In automata-theoretic terms
this result means that no monotonic automaton can emulateE.) �
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The reader acquainted with paper[1] will see a strong analogy between our notion of a
generalized monotonic automaton of level
 and the concept of a transformation monoid
preserving an
-chain of interval partitions developed in[1]. In fact, our notion is nothing
but an automata-theoretic reformulation of this important concept. Since no result from[1]
is needed for the proof of our main theorem, we postpone a discussion of relationships
between[1] and the present paper till Section3. Here we only mention that from[1] it
follows that the hierarchy of generalized monotonic automata based on their level is strict:
for each
 there exists a generalized monotonic automaton whose level is precisely
.
Wewill show that everygeneralizedmonotonic synchronizingautomatonwithnstatescan

be reset by a word of lengthn−1. In fact, we will prove a much stronger result in the flavor
of Pin’s generalization[9,10] of Černý’s conjecture. Given an automatonA = 〈Q,�, �〉,
we define therankof a wordw ∈ �∗ with respect toA as the cardinality of the image of the
transformation�(__, w) of the setQ. (Thus, in this terminology reset words are precisely
words of rank 1.) In 1978 Pin conjectured that for everyk, if ann-state automaton admits a
word of rank at mostk, then it has also a word with rank at mostk and of length(n− k)2.
He[9,10]has proved the conjecture forn− k = 1,2,3 but Kari[6] has found a remarkable
counter example in the casen− k = 4.
The followingmodification of Pin’s conjecture has been recently suggested (in particular,

in [7]). Define therankr(A) of an automatonA as theminimum rank ofwordswith respect
toA. (Thus, synchronizing automata are precisely automata of rank 1.) Then the modified
conjecture is that for every automaton withn states and rankk there exists a word with
rankk and of length at most(n− k)2. Kari’s automaton does not refute this conjecture: the
automaton has 6 states and rank 1 (so it is synchronizing) and indeed admits a reset word
of length 25. In[2] we have proved that for every monotonic automaton withn states and
rankk, there is a word with rankk and of length at mostn− k. Here we will prove that the
same result holds true for generalized monotonic automata:

Theorem 1.2. Let A be a generalized monotonic automaton with n states and rank k,
1�k�n. Then there exists a word of length at mostn − k which has rank k with respect
toA.

The proof of the theorem—which uses only fairly elementary tools but is by no means
easy—is presented in the next section.

2. Proof of the main result

A subsetXof a setQ is said to beinvariant with respect to a transformation� : Q → Q

if X� ⊆ X. A subset of the state set of an automatonA = 〈Q,�, �〉 is calledinvariant if it
is invariant with respect to all the transformations�(__, a) with a ∈ �. If X is an invariant
subset, we define therestrictionofA toX as the automatonAX = 〈X,�, �X〉, where�X
is the restriction of the transition function� to the setX × �.
If X ⊆ Q andw ∈ �∗, then in order to simplify the notation we will writeX.w for the

set{�(q,w) | q ∈ X}. We need a simple lemma relating rank of an automaton with ranks
of its suitable restrictions.
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Lemma 2.1. Let X and Z be two disjoint invariant subsets of the state set of an automaton
A = 〈Q,�, �〉. If there exists a wordw ∈ �∗ such thatQ.w ⊆ X ∪ Z, thenr(AX) +
r(AZ) = r(A).

Proof. Let v be a word of minimum rank with respect toA. Then

r(AX)+ r(AZ)� |X.v| + |Z.v| = |(X ∪ Z).v|�Q.v = r(A).

On the other hand, letvX andvZ be words of minimum rank with respect to the automata
AX andAZ. Then the productvXvZ is a word of minimum rank with respect to both the
automata. Therefore,

r(A) � |Q.wvXvZ|� |(X ∪ Z).vXvZ|
= |X.vXvZ ∪ Z.vXvZ| = r(AX)+ r(AZ). �

We say that an automatonA = 〈Q,�, �〉 can bereset to each stateif for eachq ∈ Q

there is a wordw ∈ �∗ such thatQ.w = {q}.

Lemma 2.2. Let A = 〈Q,�, �〉 be a�-monotonic automaton for a congruence�, and
suppose that the quotient automatonA/� can be reset to each state.Then for each�-class
C there exists an invariant subsetZ ⊆ Q such thatr(AZ) = r(A)−1and|C.wC \Z| = 1
for a suitable wordwC ∈ �∗ of length at most|Q| − |Z| − |Q/�|.

Before proceeding with the proof of the lemma, we would like to mention that the
invariant subsetZmay be empty. In fact, this happens precisely whenA is a synchronizing
automaton. The lemma then means that there is a wordwC of length at most|Q| − |Q/�|
which compresses the classC to a singleton. There is no need in isolating this special case
because our proof works fine under the natural agreement that rank of the empty automaton
is 0.

Proof. Let � be the order from the definition of a�-monotonic automaton. Recall that
every�-class is a chain with respect to� , and therefore, every non-empty subsetSof such
a�-class contains a unique minimal element which we denote by min(S).
Let k = r(A). From the fact that the quotient automatonA/� can be reset to each of

its states it is easy to deduce that for every�-classR there exists a wordv of rankk with
respect toA such thatQ.v ⊆ R. LetM(R) be the maximal element of the set

{min(Q.v) | v is a word of rankk such thatQ.v ⊆ R}
and letvR be a word of rankk such thatQ.vR ⊆ R and min(Q.vR) = M(R). Denote byM
the set of elementsM(R) for all �-classesR ∈ Q/�. Clearly,|M| = |Q/�|.
For brevity, we will write[q] instead of[q]� for the�-class containingq ∈ Q. Consider

the set

X = {q ∈ Q | q�M([q])}.
Observe thatM ⊆ X so that, in particular, the setX is non-empty.We aim to prove thatX is
invariant. Indeed, arguing by contradiction, suppose that�(q, a) > M([�(q, a)]) for some
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q ∈ X anda ∈ �. Since the transformation�(__, a) preserves� andM([q])�q, we see
that�(M([q]), a) > M([�(q, a)]). SinceM([q]) = min(Q.v[q]), we have

�(M([q]), a) = �(min(Q.v[q]), a) = min(Q.v[q]a),

whence min(Q.v[q]a) > M([�(q, a)]). This contradicts the choice ofM([�(q, a)]) if one
takes into account that the wordv[q]a has rankk.
Next, we verify that the restrictionAX is a synchronizing automaton. Moreover, we can

show thatX.vR = {M(R)} for every�-classR ∈ Q/� so that each wordvR is a reset word
forAX. Indeed, take an arbitrary stateq ∈ X. Then�(q, vR) ∈ R becauseQ.vR ⊆ R, and
we get the following inequality in the chain〈R, �〉:

�(q, vR)� min(Q.vR) = M(R).

On the other hand,�(q, vR) ∈ X becauseX is invariant, and from the definition ofX we
obtain the opposite inequality:

�(q, vR)�M([�(q, vR)]) = M(R).

Thus,�(q, vR) = M(R).
Now consider the set

Y = {q ∈ Q | �(q,w) ∈ X for somew ∈ �∗}.
Observe thatX ⊆ Y since forq ∈ X the empty word can be chosen asw satisfying
�(q,w) ∈ X. Observe also that the setZ = Q \ Y is invariant. (This is the invariant
subset from the conclusion of the lemma.) Indeed, suppose that�(q, a) ∈ Y for some
q ∈ Z anda ∈ �. Then there is a wordw ∈ �∗ such that�(�(q, a), w) ∈ X. However,
�(�(q, a), w) = �(q, aw) whenceq ∈ Y , in a contradiction to the choice ofq.
Next we show that there is a wordw ∈ �∗ such thatQ.w ⊆ X ∪ Z. Arguing by

contradiction, suppose that for every wordw ∈ �∗ the differenceQ.w \ (X ∪ Z) is non-
empty. Letu be a word such that the differenceD = Q.u \ (X ∪Z) has minimum possible
size. Now take a stateq ∈ D. SinceD ⊆ Y , there is a wordw ∈ �∗ such that�(q,w) ∈ X.
Since the unionX ∪ Z is invariant, this implies that the differenceQ.uw \ (X ∪ Z) has
strictly less elements thanD, a contradiction.
Nowwe see that we are in the conditions of Lemma2.1: we have got two disjoint invariant

subsetsX andZ in Q and there exists a wordw ∈ �∗ such thatQ.w ⊆ X ∪ Z. From
Lemma2.1, we conclude thatr(AX)+ r(AZ) = r(A). However, we have already proved
thatAX is a synchronizing automaton, that is,r(AX) = 1, whencer(AZ) = r(A)− 1.
Now we take an arbitrary�-classC ∈ Q/�. The intersectionC ∩ Y is non-empty

becauseY ⊇ X ⊇ M � M(C). Let x be the maximal element of this intersection. Since
x ∈ Y , there is a wordv ∈ �∗ such that�(x, v) ∈ X. We choosew1 = a1a2 · · · as with
a1, a2, . . . , as ∈ � to be a word of minimum length with this property. Consider the path

x
a1−→ �(x, a1)

a2−→ �(x, a1a2)
a3−→ . . .

as−→ �(x,w1)

in the transition graph of the automatonA. This path cannot visit any state twice and only
its last state lies inX. The path also cannot leaveYbecauseZ = Q \ Y is an invariant set
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and, having once enteredZ, the path would never be able to return toX. Therefore, all states
of this path except the last one are inY \ X. Hence, the length of the wordw1 is at most
|Y | − |X|.
Consider the minimal statey in the�-class��(C,w1). Theny�M([y]) whencey ∈ X.

We have shown that the setX can be compressed by a suitable word to each state in the
setM. Therefore, there exists a word of minimum length in the set of all wordsv with the
property�(y, v) ∈ M. We represent this word asw2 = b1b2 · · · bt with b1, b2, . . . , bt ∈ �
and consider the path

y
b1−→ �(y, b1)

b2−→ �(y, b1b2)
b3−→ . . .

bt−→ �(y,w2)

in the transition graph of our automaton. Again the path cannot visit any state more than
once and only its last state lies inM. Sincey ∈ X andX is an invariant set, all states of this
path except the last one are inX \M. Hence, length of the wordw2 is at most|X| − |M|.
We letwC be the productw1w2. Then the length ofwC does not exceed

(|Y | − |X|)+ (|X| − |M|) = |Y | − |M| = |Q| − |Z| − |Q/�|
as required. To complete the proof of the lemma, it remains to verify that the image ofC
under the transformation�(__, wC) up to exactly one state is contained in the setZ, that is,
|C.wC \ Z| = 1.
To this aim, we first observe that by the choice ofy as the minimum state in the�-class

��(C,w1), we havey��(q,w1) for all q ∈ C. Applying the order preserving transforma-
tion �(__, w2) to this inequality yields

�(y,w2)��(�(q,w1), w2) = �(q,wC).

Since the wordw2 has been chosen to ensure the containment�(y,w2) ∈ M, we conclude
that�(y,w2) = M(B)whereB stands for the�-class��(C,wC). HenceM(B)��(q,wC)
for all q ∈ C.
By the choice of the wordw1 we have�(x,w1) ∈ X. Since the setX is invariant,

�(x,wC) = �(�(x,w1), w2) ∈ X, that is,�(x,wC)�M(B). Hence for allq ∈ C with
q�x we have�(q,wC)�M(B) as the transformation�(__, wC) preserves the order� .
Taking into account the inequality proved in the previous paragraph, we conclude that all
statesq ∈ C with q�x are mapped by�(__, wC) to the single stateM(B).
Finally, recall that the statexhasbeenchosen tobe themaximal element of the intersection

C ∩ Y . This means that any stateq ∈ C with q > x must belong toQ \ Y = Z. SinceZ is
an invariant set,�(q,wC) ∈ Z for all such statesq.
We see that for everyq ∈ C either�(q,wC) ∈ Z or �(q,wC) = M(B) /∈ Z. Thus,

|C.wC \ Z| = 1, as required. �
We say that the automatonA = 〈Q,�, �〉 is reducibleif there is an invariant subset

P ⊂ Q such thatr(AP ) = r(A)− 1 and|Q.vP \ P | = 1 for some wordvP of length at
most|Q| − |P | − 1. This property may seem somewhat exotic but, as the next proposition
shows, it always occurs in the situation which we are focused on. This fact is crucial for the
proof of our main result.

Proposition 2.3. Every generalized monotonic automaton is reducible.
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Proof. LetA = 〈Q,�, �〉 be a generalized monotonic automaton and (1) the correspond-
ing chain of congruences. We induct on the numbern of the states ofA.
The casen = 1 is obvious because we can letP andv be empty. Thus, letn > 1. In

order to simplify the notation, we write� for �1 and [q] for [q]�. The automatonA is
�-monotonic; let� be the corresponding partial order.
Since� strictly contains the equality relation, the automatonA/� has less thann states

and hence is reducible by the induction assumption. Thus, we can fix an invariant subsetX
ofQ/� such thatr((A/�)X) = r(A/�)−1 and a wordv1 of length|Q/�|− |X|−1 such
that |(Q/�).v1 \ X| = 1. (The setX may be empty but this does not affect the reasoning
below.) Consider the setY = {q ∈ Q | [q] ∈ X}. SinceX is invariant,Y is easily seen to be
invariant as well.
Consider the unionRof all singleton sets of the form(Q/�).w \X wherew ∈ �∗. This

union is non-empty because(Q/�).v1 \X is a singleton whence(Q/�).v1 \X ⊆ R. Now
consider the pullbackS = {q ∈ Q | [q] ∈ R} of R in Q. Since by the definitionR∩X = ∅,
we haveS ∩ Y = ∅.
We aim to show thatR is an invariant set, and henceS is also invariant. For everyr ∈ R

there is a wordw ∈ �∗ such that(Q/�.w) \ X = {r}. Suppose that��(r, a) ∈ X for
some lettera ∈ �. SinceX is invariant, we then have(Q/�).wa ⊆ X. We know that
r((A/�)X) = r(A/�)− 1 whence there exists a wordu of rankr(A/�)− 1 with respect
to (A/�)X. Then the wordswau has rankr(A/�) − 1 with respect toA/�, and this
is clearly impossible. Thus,��(r, a) /∈ X. Since the setX is invariant, this implies that
(Q/�).wa \ X = {��(r, a)}. Therefore��(r, a) ∈ R for each lettera ∈ �, and therefore,
RandSare invariant.
Since(Q/�).v1 \ X ⊆ R, we haveQ.v1 \ Y ⊆ S. HenceQ.v1 ⊆ Y ∪ S. We are in the

conditions of Lemma2.1. Applying it, we obtain

r(AY )+ r(AS) = r(A). (2)

Observe that the automaton(A/�)R can be reset to each state. Indeed, for every state
r ∈ R there is a wordw ∈ �∗ such that

{r} = (Q/�).w \X = (Q/�).w ∩ R,
but sinceR is an invariant set, we must haveR.w = {r}. Further, we can identify this
automaton with the automaton(AS)/� because both the automata have the same state
setR and the same transition function�� restricted toR. We are in a position to apply
Lemma2.2 to the automatonAS and its�-class containingQ.v1. The lemma gives us an
invariant subsetT ⊂ S such thatr(AT ) = r(AS) − 1 and a wordv2 of length at most
|S| − |T | − |R| such that(Q.v1).v2 \ T is a singleton. Now we can complete the proof by
lettingP = Y ∪T andvP = v1v2. Let us check that thesePandvP satisfy all requirements
in the definition of a reducible automaton.
The length of the wordvP is at most

(|Q/�| − |X| − 1)+ (|S| − |T | − |R|) = (|Q/�| − |X| − |R|)+ (|S| − |T | − 1).

The first summand in the right-hand side is the number of�-classes in the setQ/�\(X∪R).
It does not exceed the number of elements in these classes (because each�-class contains
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at least one element) and the latter is equal to|Q| − |Y | − |S|. Thus, the length ofvP does
not exceed

(|Q| − |Y | − |S|)+ (|S| − |T | − 1) = |Q| − |T | − |Y | − 1= |Q| − |P | − 1

as required. Finally, from (2) we obtain,

r(AP ) = r(AY )+ r(AT ) = r(AY )+ r(AS)− 1= r(A)− 1. �

Now we can prove Theorem1.2 inducting on the rankk of our generalized monotonic
automatonA = 〈Q,�, �〉. By Proposition2.3, there exists an invariant subsetP ⊂ Q such
thatr(AP ) = r(A)− 1= k − 1 and|Q.vP \ P | = 1 for some wordvP of length at most
|Q| − |P | − 1.
First consider the casek = 1. Then we haver(AP ) = 0 which means that the setP

is empty. Therefore,|Q.vP | = 1 whencevP is a reset word (that is, a word of rank 1) of
length at most|Q| − 1. Since|Q| = n andk = 1, this yields the desired boundn− k.
Now let k > 1. The equality|Q.vP \ P | = 1 means thatQ.vP ⊆ P ∪ {q} for some

q ∈ Q \ P . Applying the induction assumption to the restrictionAP , we obtain a wordw
of length at most|P | − (k − 1) such that|P.w| = k − 1. Hence

|Q.vPw| = |P.w ∪ {�(q,w)}|�q(k − 1)+ 1= k.

But r(A) = k, thereforevPw is a word of rankk and of length at most

(|Q| − |P | − 1)+ (|P | − (k − 1)) = n− k. �

For the sake of completeness we mention that the upper bound of Theorem1.2 is tight
because it is tight already for monotonic automata.

3. Discussion

In the introduction, we have mentioned in passing that our notion of a generalized mono-
tonic automaton is a precise automata-theoretic counterpart for the concept of a transforma-
tionmonoid preserving a chain of interval partitions introduced and studied byAlmeida and
Higgins[1]. The importance of the latter concept lies in the fact that, as shown in[1], that
this class of transformation monoids is representative for the class of all finite aperiodic1

monoids in the sense:
(i) every transformation monoid preserving a chain of interval partitions is aperiodic, and

conversely,
(ii) every finite aperiodic monoid divides a transformation monoid preserving a chain of

interval partitions.
We recall that finite aperiodic monoids play a distinguished role in the formal language

theory via celebrated Schützenberger’s theorem[15] stating that a language is star-free
if and only if it can be recognized by a finite aperiodic monoid. In view of this fact, the
representative property of Almeida–Higgins monoids can be reformulated as yet another

1Recall that a monoid is said to beaperiodicif all its subgroups are singletons.
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characterization of the class of star-free languages: a language is star-free if and only if
it can be recognized by a transformation monoid preserving a chain of interval partitions.
Translating the latter characterization into automata-theoretic terms reveals the role of gen-
eralized monotonic automata: a language is star-free if and only if it can be recognized by
a generalized monotonic automaton.
Let us call a deterministic finite automatonA aperiodicif the transition monoid ofA is

aperiodic, or in other words, ifA can recognize only star-free languages. Since generalized
monotonic automata are representative for the class of aperiodic automata, our Theorem
1.2 provides some evidence for the conjecture that the same statement may extend to all
aperiodic automata. In particular, we conjecture that for every aperiodic synchronizing
automaton withn states there exists a reset word of length at mostn − 1. An extensive
computer search performed by Raskovalov, a student of the second-named author, also
supports this conjecture. It shouldbementioned thataquadraticupperbound for the lengthof
resetwords for aperiodic synchronizingautomatahasbeen recently establishedbyTrahtman
[16].
On the other hand, it is not very likely that a proof of the conjecture (if it is true) can be

found by using the fact that every aperiodic automatonA can be emulated by a suitable
generalized monotonic automatonB. First of all, the property of being synchronizing does
not, generally speaking, transfer fromA to B, and also the size ofB normally exceeds
the size ofA by far so that an upper bound in terms of the size ofB may make no sense
forA.

Added in proof. Recently the authors have found a series of aperiodic synchronizing
automataAn (n = 5,6,7, . . .) with n states such that the shortest reset word for the
automatonAn has lengthn. This refutes the conjecture discussed in Section 3.
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