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Abstract

In an earlier paper, we have studied reset words for synchronizing automata whose states admit a
stable linear order. Here we show that the same bound on the length of the shortest reset word persists
for synchronizing automata satisfying much weaker stability restriction. This result supports our
conjecture concerning the length of reset words for synchronizing automata accepting only star-free
languages.
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1. Background and motivation

Let.oZ = (Q, X, o) be a deterministic finite automaton, whépedenotes the state set,
2 stands for the input alphabet, add Q x X — Q is the transition function defining an
action of the letters id onQ. The action extends in a unique way to an actibr 2* — Q
of the free monoid~™ over X; the latter action is still denoted hy The automaton/ is
calledsynchronizingf there exists a wordv € X* whose action resets/, that is, leaves
the automaton in one particular state no matter which staf@itrstarted atd (g1, w) =
d(g2, w) for all g1, g2 € Q. Any word w with this property is said to be @set wordfor
the automaton.

Itis rather natural to ask how long a reset word for a given synchronizing automaton may
be. The problem is known to be NP-complete (see,[&4y. Section 6), but on the other
hand, there are some upper bounds on the minimum length of reset words for synchronizing
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automata with a given number of states. The best such bound known so far is due to Pin
[11] (it is based on a combinatorial theorem conjectured by Pin and then proved by Frankl
[5]): for each synchronizing automaton wittstates, there exists a reset word of length at
most(n3 — n)/6. In 1964Cerny[3] produced for each a synchronizing automaton with

n states whose shortest reset word has lefgth 1)2 and conjectured that these automata
represent the worst possible case, that is, every synchronizing automatansiatks can

be reset by a word of lengttt — 1)2. By now this simply looking conjecture is arguably
the most longstanding open problem in the combinatorial theory of finite automata (and
one of the favorite topics of Arto Salomaa’s research, see his recent publiddtisist).

The reader is referred to the survey paj@ifor an interesting overview of the area and its
relations to multiple-valued logic and symbolic dynamics; applications of synchronizing
automata to robotics are discussed4h

In [2] we have studied a special kind of automata which we called monotonic. (This
term was also used id] but in a different sense.) Namely, an automatgn= (Q, %, o)
is said to banonotonicif its state sefQ admits a linear ordex such that for each letter
a € X the transformatio®(__, a) of Q preserves< in the sense thal(g1, a) <d(g2, a)
whenevelg1 < g2. We have observed that every monotonic synchronizing automaton with
n states has a reset word of length at most1 and this upper bound is tight. In the present
paper, we prove that the same upper bound persists within a much wider class of automata
which are in a certain sense representative for the class of automata accepting only star-free
languages.

In order to define our generalized monotonic automata, we recall the notion of a congru-
ence on an automaton. An equivalence relatian the state sep of an automatonz =
(0, X, 0) is said to be @ongruencen </ if (q1, q2) € p implies(6(q1, a), (g2, a)) € p
for all statesy, > € Q and all letters: € 2. Forg € Q, we denote byg], thep-class con-
taining the state. Thequotient.«//p is the automatoQ/p, X, d,) whereQ/p = {[q], |
g € Q} and the transition functiodi, is defined by the rulé,([q],, a) = [d(g, a)], for
allg € Qanda € 2.

Now let p be a congruence on an automateh= (Q, X, ). The automaton is said to
be p-monotonidf there exists a (partial) ordeg on the sefQ such that
(1) two states are<-comparable if and only if they belong to the samelass; in other

words, the ordek is contained irp (as a subset of x Q) and its restriction to any
p-class is a linear order;
(2) for each letter: € X, the transformation(_,a) : Q0 — Q preserves<.

Clearly, forp being the universal congruengemonotonic automata are precisely mono-
tonic automata as defined above. On the other hang, being the equality relation, every
automaton ig-monotonic.

We call an automator/ generalized monotonic of levelif it has a strictly increasing
chain of congruences

PoCP1C- - Cpy (1)
in which pg is the equality relatiory, is the universal relation, and the quotien/p; _ is
p;/pi_1-monotonic for eachh = 1, ..., £. Thus, monotonic automata f#] are precisely

generalized monotonic automata of level 1. Here is a simple example of a generalized
monotonic automaton of level 2 which is not monotonic.
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a b

Fig. 2. The quotient automatefy p; .

Example 1.1. The automatod with the state se® = {1, 2, 3, 4} and the input letterg, b
whose action is shown on Fifj.is generalized monotonic of level 2 but not monotonic.

Proof. Consider the chain of relations

PoC pP1C P2

in which pq is the equality relatiory, is the universal relation, ang is the partition ofQ
into 2 classe®1 = {1, 2} and Q> = {3, 4} (the partition is shown in Fidgl by the dotted
line). Obviously,p; is a congruence oéi. EndowingQ with the partial order< 1 such that
1 <1 2 and 3<1 4, we immediately see that the automatbr- &£/ pg is p;-monotonic.

The quotient automato&/p4 is shown in Fig.2. If we order the setD/p, by letting
01 <2 02, the transformations induced by the lettaendb become order preserving. We
see thatf’/p, is a monotonic, that i,/ p1-monotonic automaton. Thus, we have verified
thaté is a generalized monotonic automaton of level 2.

In order to show tha¥ is not monotonic, one can directly check that the action of the
lettersa andb violates each of 24 linear orders on the get= {1, 2, 3, 4}. Alternatively,
one can refer to a (much stronger) result provefllifi: the transition monoid o’ does
not divide the transition monoid of any monotonic automaton. (In automata-theoretic terms
this result means that no monotonic automaton can eméilate]
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The reader acquainted with pagjét will see a strong analogy between our notion of a
generalized monotonic automaton of le¢ednd the concept of a transformation monoid
preserving arf-chain of interval partitions developed fih]. In fact, our notion is nothing
but an automata-theoretic reformulation of this important concept. Since no resultlfrom
is needed for the proof of our main theorem, we postpone a discussion of relationships
between[1] and the present paper till Secti@nHere we only mention that frorfl] it
follows that the hierarchy of generalized monotonic automata based on their level is strict:
for eacht there exists a generalized monotonic automaton whose level is pregisely

We will show that every generalized monotonic synchronizing automatomsitites can
be reset by a word of length— 1. In fact, we will prove a much stronger result in the flavor
of Pin’s generalizatiofi9,10] of Cerny’s conjecture. Given an automateh= (Q, X, 9),
we define theank of awordw € X* with respect ta/ as the cardinality of the image of the
transformationd(__, w) of the setQ. (Thus, in this terminology reset words are precisely
words of rank 1.) In 1978 Pin conjectured that for evierif an n-state automaton admits a
word of rank at mosk, then it has also a word with rank at mésand of length(n — k)2.
He[9,10] has proved the conjecture for- k = 1, 2, 3 but Kari[6] has found a remarkable
counter example in the case- k = 4.

The following modification of Pin’s conjecture has been recently suggested (in particular,
in [7]). Define theankr (<) of an automatonr/ as the minimum rank of words with respect
to .«7. (Thus, synchronizing automata are precisely automata of rank 1.) Then the modified
conjecture is that for every automaton withstates and rank there exists a word with
rankk and of length at mosiz — k)2. Kari's automaton does not refute this conjecture: the
automaton has 6 states and rank 1 (so it is synchronizing) and indeed admits a reset word
of length 25. In[2] we have proved that for every monotonic automaton wigtates and
rankk, there is a word with rank and of length at most — k. Here we will prove that the
same result holds true for generalized monotonic automata:

Theorem 1.2. Let .o7 be a generalized monotonic automaton with n states and rank k
1<k<n. Then there exists a word of length at mast k which has rank k with respect
to .o7.

The proof of the theorem—which uses only fairly elementary tools but is by no means
easy—is presented in the next section.

2. Proof of the main result

A subseiX of a setQ is said to benvariant with respect to a transformatiap: Q0 — Q
if X¢ C X.A subset of the state set of an automaténr= (Q, 2, 9) is calledinvariantif it
is invariant with respect to all the transformatiai(s_, a) with a € X. If Xis an invariant
subset, we define thestrictionof .o/ to X as the automator/ y = (X, X, dx), wheredx
is the restriction of the transition functiento the setX x X.

If X € Q andw € X*, then in order to simplify the notation we will writ&.w for the
set{d(g, w) | ¢ € X}. We need a simple lemma relating rank of an automaton with ranks
of its suitable restrictions.
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Lemma 2.1. Let X and Z be two disjoint invariant subsets of the state set of an automaton
o = (0, X, 0). If there exists a wordv € 2* such thatQ.w € X U Z, thenr(</x) +
r(ﬂz) = r(&{).

Proof. Letwv be a word of minimum rank with respect td. Then
r(Zx)+r(Zz)<|Xv|+|Zv]=[(XUZ)v|<Q.v=r(H).

On the other hand, laty andv;z be words of minimum rank with respect to the automata
o/ x and.«Zz. Then the producty vz is a word of minimum rank with respect to both the
automata. Therefore,

r(o/) < |Q.wvxvz| <[(X U Z).vxvz]
= |X.wxyvz U Zuxvz| =r(Lx) +r(Ly). O

We say that an automatow’ = (Q, X, o) can bereset to each statit for eachg € Q
there is a wordy € X* such thatQ.w = {g}.

Lemma 2.2. Let .« = (Q, 2, §) be ap-monotonic automaton for a congruenpegand
suppose that the quotient automatefy p can be reset to each stafehen for eactp-class
C there exists an invariant subsétC Q suchthat (/7)) = r(<«/)—land|C.wc\Z| =1
for a suitable wordwe € 2* of length at mostQ| — |Z| — |Q/p|.

Before proceeding with the proof of the lemma, we would like to mention that the
invariant subse may be empty. In fact, this happens precisely whérs a synchronizing
automaton. The lemma then means that there is a werdf length at mostQ| — |Q/p|
which compresses the cla84o0 a singleton. There is no need in isolating this special case
because our proof works fine under the natural agreement that rank of the empty automaton
is 0.

Proof. Let < be the order from the definition of @monotonic automaton. Recall that
everyp-class is a chain with respect £, and therefore, every non-empty subSef such
a p-class contains a unique minimal element which we denote bySnin

Letk = r(<Z). From the fact that the quotient automatefy p can be reset to each of
its states it is easy to deduce that for everglassR there exists a word of rankk with
respect taeZ such thatQ.v C R. Let M (R) be the maximal element of the set

{min(Q.v) | v is a word of ranki such thatQ.v C R}

and letvg be a word of rank such thatD.vg € R and minQ.vg) = M(R). Denote byM
the set of element®/ (R) for all p-classeR € Q/p. Clearly,|M| = |Q/p|.

For brevity, we will write[¢] instead ofq], for the p-class containing € Q. Consider
the set

X={qe€Qlqg<M(gD}

Observe tha C X so that, in particular, the sitis non-empty. We aim to prove th&tis
invariant. Indeed, arguing by contradiction, supposedl@ta) > M ([d(q, a)]) for some
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g € X anda € 2. Since the transformatiof(__, a) preserves< andM ([¢]) >¢, we see
thatd(M ([q]), a) > M([5(g, a)]). SinceM ([q]) = min(Q.v|,]), we have

d(M([g)), a) = 6(MIN(Q.vig)), @) = MiN(Q.v(g1a),

whence mifQ.vi ) > M([d(g, a)]). This contradicts the choice 8 ([d(q, a)]) if one
takes into account that the worg,ja has rankk.

Next, we verify that the restriction/ x is a synchronizing automaton. Moreover, we can
show thatX.vg = {M(R)} for everyp-classR € Q/p so that each wordy, is a reset word
for o7 x. Indeed, take an arbitrary states X. Thend(q, vg) € R becaused.vg C R, and
we get the following inequality in the chaiR, <):

(g, vg) = min(Q.vg) = M(R).

On the other handj(g, vg) € X because is invariant, and from the definition of we
obtain the opposite inequality:

(g, vr) SM([0(g. vR)]) = M(R).

Thus,d(g, vg) = M(R).
Now consider the set

Y={ge€Q|dg, w)eX forsomew e X*}.

Observe thatX C Y since forg € X the empty word can be chosen assatisfying
d(q, w) € X. Observe also that the sét = Q \ Y is invariant. (This is the invariant
subset from the conclusion of the lemma.) Indeed, supposeithat) < Y for some
q € Z anda € 2. Then there is a word € X* such that¥(é(q, a), w) € X. However,
0(d(q, a), w) = d(q, aw) whenceg € Y, in a contradiction to the choice gf

Next we show that there is a word € X* such thatQ.w € X U Z. Arguing by
contradiction, suppose that for every warde X* the differenceQ.w \ (X U Z) is non-
empty. Letu be a word such that the differenée= Q.u \ (X U Z) has minimum possible
size. Now take a statpe D. SinceD C Y, there isawordv € 2* such thab (¢, w) € X.
Since the unionX U Z is invariant, this implies that the differeng@.uw \ (X U Z) has
strictly less elements thdD, a contradiction.

Now we see that we are in the conditions of Len2zrtawe have got two disjoint invariant
subsetsX andZ in Q and there exists a word € 2* such thatQ.w € X U Z. From
Lemma2.1, we conclude that(.<«/ x) +r (7 z) = r(.</). However, we have already proved
that.o7 x is a synchronizing automaton, thati$.e/x) = 1, whence (/7)) = r(</) — 1.

Now we take an arbitrary-classC € Q/p. The intersectionrC N Y is non-empty
becaus¢ > X D M > M(C). Letx be the maximal element of this intersection. Since
x € Y, there is aword € X* such thatd(x, v) € X. We choosew; = ajaz - - - a, with

ai, az, ...,as € X to be aword of minimum length with this property. Consider the path
x 2 o(x, ai) 2, o0(x, arar) N o(x, wy)

in the transition graph of the automaten. This path cannot visit any state twice and only
its last state lies itX. The path also cannot leaYebecause&Z = Q \ Y is an invariant set
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and, having once enter&dthe path would never be able to returrkiarherefore, all states
of this path except the last one arelin, X. Hence, the length of the wongd; is at most
Y1 —1X].
Consider the minimal staiein the p-classé, (C, w1). Theny <M ([y]) whencey € X.
We have shown that the sitcan be compressed by a suitable word to each state in the
setM. Therefore, there exists a word of minimum length in the set of all wordgh the
propertyd(y, v) € M. We represent this word as = b1bo - - - b, With b1, by, ..., by € X
and consider the path

b b: b by
y =5 8(y, b1) =5 8(y, bibp) => ... =5 3(y, wp)

in the transition graph of our automaton. Again the path cannot visit any state more than
once and only its last state lieslh Sincey € X andXis an invariant set, all states of this
path except the last one areXh\ M. Hence, length of the word is at most X| — |M|.

We letw¢ be the productvyw,. Then the length ofve does not exceed

(Y= 1XD + (X| = M) = Y| = [M]| = Q] = |Z]| = |Q/pl

as required. To complete the proof of the lemma, it remains to verify that the image of
under the transformatiod(__, w¢) up to exactly one state is contained in the&dhat is,
|IC.we \ Z] = 1.

To this aim, we first observe that by the choiceyafs the minimum state in theclass
0p(C, w1), we havey <d(q, w1) for all ¢ € C. Applying the order preserving transforma-
tion 6(__, wy) to this inequality yields

oy, w2) <0(d(g, w1), w2) = (g, we).

Since the worduv, has been chosen to ensure the containméntw») € M, we conclude
thato(y, wz) = M(B) whereB stands for the-classé, (C, wc). HenceM (B) <d(g, wc)
forallg € C.

By the choice of the wordv; we haved(x, w1) € X. Since the seK is invariant,
O(x, we) = 0(d(x, w1), w2) € X, that is,d(x, we) <M (B). Hence for ally € C with
g <x we haved(q, wc) < M(B) as the transformatiod(__, wc) preserves the ordeg.
Taking into account the inequality proved in the previous paragraph, we conclude that all
stateyy € C with ¢ <x are mapped by(__, wc) to the single statd/ (B).

Finally, recall that the statehas been chosen to be the maximal element of the intersection
C NY. This means that any stagec C with ¢ > x must belongtaQ \ Y = Z. SinceZ is
an invariant sety(q, wc) € Z for all such states.

We see that for every € C eitherd(g, we) € Z or o(q, we) = M(B) ¢ Z. Thus,
|C.we \ Z| = 1, as required. OJ

We say that the automato = (Q, 2, o) is reducibleif there is an invariant subset
P c Qsuchthat(«/p) = r(</) —1and|Q.vp \ P| = 1for some wordvp of length at
most|Q| — | P| — 1. This property may seem somewhat exotic but, as the next proposition
shows, it always occurs in the situation which we are focused on. This fact is crucial for the
proof of our main result.

Proposition 2.3. Every generalized monotonic automaton is reducible
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Proof. Let.«Z = (Q, X, §) be a generalized monotonic automaton and (1) the correspond-
ing chain of congruences. We induct on the numbef the states ok7.

The caser = 1 is obvious because we can Rtandv be empty. Thus, let > 1. In
order to simplify the notation, we writg for p, and[q] for [¢],. The automaton/ is
p-monotonic; let< be the corresponding partial order.

Sincep strictly contains the equality relation, the automatdiip has less than states
and hence is reducible by the induction assumption. Thus, we can fix an invariant$¥ubset
of Q/p suchthat((.<7/p)x) = r(<//p) — 1 and aword; of length|Q/p| — | X| — 1 such
that|(Q/p).v1 \ X| = 1. (The seX may be empty but this does not affect the reasoning
below.) Consider the sét = {g € Q | [¢] € X}. SinceXis invariant,Y is easily seen to be
invariant as well.

Consider the unioR of all singleton sets of the forQ/p).w \ X wherew € X*. This
union is non-empty becaus@/p).v1 \ X is a singleton whence/p).v1 \ X € R. Now
consider the pullbacK = {¢g € O | [¢] € R} of Rin Q. Since by the definitio® N X = ¢,
we haveSNY = ¢.

We aim to show thaR is an invariant set, and hen&as also invariant. For everny € R
there is a wordw € X* such that(Q/p.w) \ X = {r}. Suppose thad,(r,a) € X for
some lettere € X. SinceX is invariant, we then haveQ/p).wa € X. We know that
r((<Z/p)x) = r(<Z/p) — 1 whence there exists a woudf rankr (.«7/p) — 1 with respect
to («7//p)x. Then the wordsvau has rankr(.e7/p) — 1 with respect ta«Z/p, and this
is clearly impossible. Thusj,(r,a) ¢ X. Since the seX is invariant, this implies that
(Q/p).wa \ X = {0,(r, a)}. Therefored,(r, a) € R for each letter: € X, and therefore,
RandSare invariant.

Since(Q/p).v1\ X € R, we haveQ.v1 \ Y C S. HenceQ.v; C Y U S. We are in the
conditions of Lemm&.1 Applying it, we obtain

r(y) +r(ds) =r(d). )

Observe that the automat@r//p)r can be reset to each state. Indeed, for every state
r € R there is awordv € X* such that

r}=(Q/p)w\ X =(Q/p)wNR,

but sinceR is an invariant set, we must havgw = {r}. Further, we can identify this
automaton with the automatan/s)/p because both the automata have the same state
setR and the same transition functian, restricted toR. We are in a position to apply
Lemma2.2to the automaton/s and itsp-class containing?.v1. The lemma gives us an
invariant subse?” C S such that(«/7) = r(</s) — 1 and a wordv2 of length at most
|S| —|T| — |R| such that Q.v1).v2 \ T is a singleton. Now we can complete the proof by
letting P = Y UT andvp = vivp. Let us check that theseandvp satisfy all requirements
in the definition of a reducible automaton.

The length of the word p is at most

1Q/pl = IXI =D+ ASI =TI = |RD = (Q/pl = IX[ = |RD + (S| = IT| = D).

The first summand in the right-hand side is the numbegrofssesinthe s€/p\ (X UR).
It does not exceed the number of elements in these classes (becaugectagshcontains
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at least one element) and the latter is equatxp— |Y| — | S|. Thus, the length of p does
not exceed

QI =1YI=ISD+(SI=ITI =D =Q| = IT| - Y| -1= Q|- |P| -1
as required. Finally, from (2) we obtain,
r(p) =r(dy)+r(dr) =r(dy)+r(ds)—1=r(/)—1 [

Now we can prove Theorerh?2 inducting on the rank of our generalized monotonic
automatone/ = (Q, 2, 8). By Propositior2.3, there exists an invariant subgetc Q such
thatr(«/p) =r(e/) — 1=k —1and|Q.vp \ P| = 1 for some wordp of length at most
0] —|P| - 1.

First consider the case = 1. Then we have (< p) = 0 which means that the sEt
is empty. Therefore,Q.vp| = 1 whencevp is a reset word (that is, a word of rank 1) of
length at mostQ| — 1. Since| Q| = n andk = 1, this yields the desired boumnd- k.

Now letk > 1. The equalityQ.vp \ P| = 1 means thap.vp C P U {¢g} for some
g € Q\ P.Applying the induction assumption to the restrictiof, we obtain a wordw
of length at mostP| — (k — 1) such that P.w| = k — 1. Hence

|Q.vpw| = [P.wU{d(qg, w)}<gk—-1) +1=k.
Butr (/) = k, thereforevpw is a word of rankk and of length at most
(10— IP|—= D+ (P|—(k—1)=n—k. O

For the sake of completeness we mention that the upper bound of Théa?astight
because it is tight already for monotonic automata.

3. Discussion

In the introduction, we have mentioned in passing that our notion of a generalized mono-
tonic automaton is a precise automata-theoretic counterpart for the concept of a transforma-
tion monoid preserving a chain of interval partitions introduced and studied by Almeida and
Higgins[1]. The importance of the latter concept lies in the fact that, as shoylj,ithat
this class of transformation monoids is representative for the class of all finite apériodic
monoids in the sense:

(i) every transformation monoid preserving a chain of interval partitions is aperiodic, and
conversely,

(ii) every finite aperiodic monoid divides a transformation monoid preserving a chain of
interval partitions.

We recall that finite aperiodic monoids play a distinguished role in the formal language
theory via celebrated Schitzenberger’s theof&5j stating that a language is star-free
if and only if it can be recognized by a finite aperiodic monoid. In view of this fact, the
representative property of Alimeida—Higgins monoids can be reformulated as yet another

1Recall that a monoid is said to la@eriodicif all its subgroups are singletons.
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characterization of the class of star-free languages: a language is star-free if and only if
it can be recognized by a transformation monoid preserving a chain of interval partitions.
Translating the latter characterization into automata-theoretic terms reveals the role of gen-
eralized monotonic automata: a language is star-free if and only if it can be recognized by
a generalized monotonic automaton.

Let us call a deterministic finite automate#s aperiodicif the transition monoid of7 is
aperiodic, or in other words, i# can recognize only star-free languages. Since generalized
monotonic automata are representative for the class of aperiodic automata, our Theorem
1.2 provides some evidence for the conjecture that the same statement may extend to all
aperiodic automata. In particular, we conjecture that for every aperiodic synchronizing
automaton withn states there exists a reset word of length at most1. An extensive
computer search performed by Raskovalov, a student of the second-named author, also
supports this conjecture. It should be mentioned that a quadratic upper bound for the length of
reset words for aperiodic synchronizing automata has been recently established by Trahtman
[16].

On the other hand, it is not very likely that a proof of the conjecture (if it is true) can be
found by using the fact that every aperiodic automatércan be emulated by a suitable
generalized monotonic automatgh First of all, the property of being synchronizing does
not, generally speaking, transfer fram to 4, and also the size o normally exceeds
the size of¢/ by far so that an upper bound in terms of the sizefaihay make no sense
for o/.

Added in proof. Recently the authors have found a series of aperiodic synchronizing
automata</,, (n = 5,6,7,...) with n states such that the shortest reset word for the
automatone/,, has length:. This refutes the conjecture discussed in Section 3.
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