
Theoretical Computer Science 261 (2001) 213–226
www.elsevier.com/locate/tcs

Dynamic location problems with limited look-ahead

Fan Chunga;∗;1, Ronald Grahama;b

aDepartment of Mathematics & Computer Science, University of California, San Diego,
CA 92093, USA

bAT&T Labs, Florham Park, NJ, USA

Accepted 14 March 2000

1. Introduction

The following problem arose in connection with studies of Internet web page caching.
The general setting is as follows:
In some /xed metric space M , k “servers” S1; : : : ; Sk are given with some arbitrary

initial locations in M . Requests for service at certain points �1; �2; �3; : : : ; �N , in M
arrive over time. Immediately, after request �t is received, exactly one of several
mutually exclusive actions must be taken:

(i) Some server is moved to �t , with a resulting cost of c(�t), the “cost” of the
point �t .

(ii) No server moves. In this case, the cost for “no service” is de/ned to be mink d(Sk ;
�t), where d(x; y) denotes the distance between x and y in M .

A further feature of our model is that two parameters u; w¿0 are speci/ed, which
are used as follows. Before having to decide how to service request �t , the servers have
at their disposal the knowledge of the u+w requests �i with t−u6i6t+w−1. Thus,
the servers can only “remember” or store the past u requests �t−u; �t−u+1; : : : ; �t−1

but are allowed to know the w future requests �t; �t+1; : : : ; �t+w−1 before having to
service �t .

∗ Corresponding author.
E-mail address: fan@euclid.ucsd.edu (F. Chung).
1 Supported in part by NSF Grant No. DMS 98-01446 and Bell Communications Research, Morristown,

NJ, USA.

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00140 -7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82370478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

214 F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226

The rules which govern the choices made for servicing all the �t de/ne some algo-
rithm A. In this model, A is deterministic and can only depend on the values of the
�i which it currently knows, and nothing else. In particular, A is not allowed to make
probabilistic choices based on some source of randomness. We denote by A(�), the
cost of servicing the request sequence �=(�1; : : : ; �N).

Of course, if we are allowed to know all the �t before having to act, it is very
likely the cost of servicing � can be decreased. Let us denote by OFF(�) the minimum
possible cost of servicing � in this case. Thus, OFF(�) is the cost for an optimal o4-line
algorithm for �.
Our main interest in this paper is to investigate the eFect of being able to look ahead

(as well as utilizing the past history) on the performance of such algorithms.
For a given request sequence, let OPT(u;w)(�) denote the minimum cost of any

(u; w)-window algorithm servicing �, and we de/ne

�(u; w) := inf
�

OPT(u;w)(�)
OFF(�)

over all � with OFF(�)→∞ to avoid certain inessential degeneracies. (In our model,
we are assuming our “adversary”, i.e., the source generating the request sequence �,
is all-powerful. That is, the adversary knows everything about the servers’ strategy
and can predict everything they will do.) The basic problem then is to understand how
�(u; w) is aFected by the various parameters in our model, i.e., the metric space (M; d),
and the choice of the cost function c.
This model can be further extended by allowing “excursions”, i.e., where servers are

allowed to go to arbitrary points in M in response to a request �t . In other words, we
can replace (i) by
(i′) Some server, say Si, is moved to some vertex v, with a resulting cost of c(v) +
d(Sk ; v) + d(v; �t).

We point out that a fair amount is known when option (ii) is not allowed, w=1,
and the cost function C depends on d(Si; �t) and not just �t . In other words, some
server must always be moved to the current request, but the cost only depends on the
distance moved (see [2] or [6] for a survey). In fact, we show here that for this model,
/nite look-ahead does not help asymptotically. However, for the model of allowing
excursions, /nite values of w do make a diFerence. (We discuss this in Sections 4
and 5.)
In this paper, we will examine several special cases of our general problem. At the

end, we will formulate a number of open questions which we feel are fundamental and
interesting for these studies, and which (unfortunately) illustrate how incomplete our
knowledge is here at this point in time.

2. The value of temporal information

In this section we consider the problem of determining �(u; w) for k =1 server, for
given u and w allowing actions (i) and (ii). We /rst consider several small cases for a

F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226 215

Table 1
Values of �(u; w) for G0 with k =1 server

u\w 0 1 2 3 4

0 * 4 2 2 3
2

1 6 3 2
2 4 8

3
3 10

3
4 3

rather simple graph G0 on two vertices, 0 and 1, with d(0; 1)=1 and c(0)= c(1)= 2.
Indeed, even for this very special case, the problem of determining �(u; w) for small
values of u and w is still quite intriguing. This hints at the diNculty in treating the
problem of determining �(u; w) for arbitrary u and w (Table 1.
The proofs for these cases are not too diNcult and involve case analysis. We will

give the proofs for two cases. The remaining ones can be proved in similar ways and
proofs will be omitted.

Theorem 1. For the graph G0 with two vertices 0 and 1 with d(0; 1)=1 and c(0)=
c(1)= 2; we have �(0; 2)=2.

Proof. Let S(t) denote the location of the server after moving at time t. We assume
that S(0)= 0. First, we consider the following algorithm A. The server at x is moved
to Ox=1 − x if and only if the window shows Ox Ox. (Otherwise, it does not change.)
We claim that for any request sequence �, we have A(�)62 · OFF(�). To see this,

we dynamically partition � into blocks of the form �t+1�t+2 : : : �t+j = Ox
j−1︷ ︸︸ ︷
x : : : x, for j¿2,

where S(t)= x. There are two possibly exceptional blocks: the initial block, which may

have the form

j′︷ ︸︸ ︷
0 : : : 0

j−1︷ ︸︸ ︷
11 : : : 1, j′ �=1 is possible, and the last block, which may have the

form Oxx Ox. Then, for each block OFF pays at least 1 while A pays at most 2. Thus,
we have A(�)62 ·OFF(�), as claimed. In the other direction, for any algorithm B, we
consider the the sequence � satisfying �t+2 = Ox where S(t)= x (of course, S depends
on B). It is not diNcult to show that B(�)¿2 · OFF(�), and so, �(0; 2)=2.

Theorem 2. For the graph G0 above; we have �(2; 0)=4.

Proof. We will use the same algorithm A as above, namely, the server at x moves to
Ox if and only if the window (now into the past) shows Ox Ox. We /rst claim that for any
request sequence �, we have A(�)64OFF(�). To see this, we partition � into blocks
of the form x1x2 : : : xr11y1y2 : : : ys00 where the 11 is the /rst occurrence of 00 in the
block of x’s, and the terminal 00 is the /rst occurrence of 00 in the y’s. Thus, every
xi =1 has xi+1 =0, and every yj =0 has yj+1 =1. Suppose there are m such xi =1 and
m′ such yj =0. Then it is not hard to see that A pays at most a cost of m+m′+8 for

216 F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226

this block while OFF must pay at least m+m′+2. This then implies A(�)64OFF(�).
In the other direction, for any algorithm B, we will use the request sequence � de/ned
by taking �t = Ox where S(t − 1)= x. (This is possible because of the strength of the
adversary.) An easy argument shows B(�)¿4OFF(�) and the proof is complete.

The above theorem implies that a window into the past does matter. In the remainder
of this section, we will give upper and lower bounds for �(0; w) in terms of w.

Theorem 3. In a graph G; suppose that the cost of moving to v is c(v)= �¿2 for
all v. For given w with w¿2�; there is a request sequence � such that any (0; w)
algorithm A pays at least 1 + 2=(w + 2) times the cost OFF(�).

Proof. Suppose the graph contains one edge with two endpoints, 0 and 1. Without
loss of generality, we assume that the server S is at 0. To simplify the argument, we
assume w − 2�=2a, for an integer a¿0. (The other cases can be done in a similar
way.) Furthermore, we assume that the request sequence shown in the window of

length w has the form

2�−2︷ ︸︸ ︷
11 : : : 1

2a+2︷ ︸︸ ︷
0101 : : : 01. To proceed, there are two possibilities.

Case 1: The server stays at 0. In this case, the request sequence will then have
a block of 1’s of length w at the end of the window. We note that for these 2w
requests, the ratio of the cost of the algorithm to that of the optimum is oF by a factor
1 + 2=(w + 2).
Case 2: The server moves to 1. In this case, the request sequence will then have a

block of 0’s, say of length w, at the end of the window. Then for these 2w requests,
the ratio of the cost to the algorithm and to the optimum is again oF by a factor of a
least 1 + 2=(w + 2).

Theorem 4. In a graph G with vertex set {0; 1}; suppose that the cost of moving to v
is c(v)= �¿2 for all v. For given w with w¿2�; there is a (0; w)-window algorithm
A such that for any request sequence � algorithm A pays no more than 1 + 4�2=w
times the cost OFF(�).

Proof. We consider the following algorithm A. For a window �i+1 : : : �i+w and S(i)= x,
let j denote the least integer (if it exists) j6w such that the number p of Ox’s among
�i+1 : : : �i+j and the number q of x’s among �i+1 : : : �i+j satis/es

|p− q|¿2�+ 2:

If such a j exists, the server is moved to the majority symbol y. Otherwise, the server
does not move. It is not hard to show that Algorithm A will stay at y throughout
the next j requests. We will call this a block of type I (of length j). If such a
j does not exist, algorithm A will use the locally optimal strategy for the next w
moves and we call this a block of type II (of length w). To upper bound the cost of
Algorithm A, we partition the request sequence into blocks of types I and II. So we

F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226 217

have some consecutive blocks of type I followed by a block of type II, and so on.
For consecutive blocks of type I, the cost of algorithm A is at most the optimum plus
� (which corresponds to the possible cost of initialization). For each block of type II,
the cost for algorithm A is at most the optimum plus 2� (which corresponds to both
initialization and ending). For a block of type II, the optimum has cost at least w=(2�)
since there is at least one alternation among 2� consecutive requests. So the ratio of
the cost for algorithm A and the optimum is at most

1 +
2�

w=(2�)
:

3. More on limited look-ahead

For a given request sequence �, let OPT
(w)
k (�) denote the minimum possible cost

for servicing � with k servers over all (0; w)-window algorithms for which possibility
(ii) is prohibited, i.e., every request must be visited by some server. Clearly, we have

�k = �[1]k ¿�[2]k ¿ · · ·¿�[w]k ¿ · · · : (1)

The /rst question which occurs is whether having limited look-ahead actually makes
any diFerence. That is, are any of the inequalities in (1) strict? Unfortunately, the
answer is no.

Fact 1. For all w ¡ ∞;

�[w]k = �k :

Proof. We need to show that �[w]k = �k . Let A[w] be any on-line algorithm with look-
ahead w, and let �=(�1; �2; : : :) be any request sequence. De/ne

�[w] =

(w︷ ︸︸ ︷
�1; : : : ; �1;

w︷ ︸︸ ︷
�2; : : : ; �2;

w︷ ︸︸ ︷
�3; : : : ; �3; : : :

)
;

where each request in � is repeated w times in �[w]. What is A[w](�[w])?
Using the observation that in any of these problems, we can always restrict our

attention to algorithms which do nothing if a server is already located at the next
request, it is easy to see that the algorithm A[w] acting on �[w] induces a (normal)
on-line algorithm A acting on �, namely if A[w] selects si to move to the /rst �r in

the sequence
w︷ ︸︸ ︷

�r�r : : : �r in �[w], then A selects si to move to �r in � (see Fig. 1).
In this /gure, the (si; �r) entry of the table indicates that server si is selected to

serve request �r , etc.
A simple computation now shows that

A[w](�[w]) = A(�); OFF(�[w]) = OFF(�):

218 F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226

Fig. 1.

Therefore,

�[w]k = inf
A[w]

lim sup
OFF(�)→∞

A[w](�)
OFF(�)

¿ inf
A[w]

lim sup
OFF(�[w])→∞

A[w](�[w])
OFF(�[w])

= inf
A

lim sup
OFF(�)→∞

A(�)
OFF(�)

= �k ; (2)

where the inequality in (5) comes from the fact that the sequences of the form �[w]

are a subset of the set of all possible request sequences which A[w] must deal with.

This would be a natural (though disappointing) place to conclude the paper if this
were the end of the story. In fact, however, the story is just beginning.

F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226 219

4. Service with excursions

A variation of the k-server problem which is also studied in Manasse et al. [8] is
what they term “server problems with excursions”. In this variant, after each request
�t , it is not necessary to move a server si all the way to �t . Instead, one can move a
server si to some intermediate location x, with an associated cost of

d(si; x) + � min
{
min
j �=i

{d(sj; �t); d(x; �t)}
}
;

where �¿0 is some /xed constant. This models a situation in which it may be relatively
expensive to move a server all the way to �t , and instead “assistants” can be moved
from the intermediate location x (e.g., suppose requests are /res, servers are /rehouses
and assistants are /re trucks).
How much do excursions help? For simplicity, let us restrict ourselves to the case

�=1. De/ne OFF(�) to be the minimum possible oF-line cost for serving � with
excursions.

Fact 2. For all �;

OFF(�)62OFF(�): (3)

Proof (Sketch): We restrict our attention to k =2. The general case follows by similar
considerations. In Fig. 2 we show the behavior of some excursion algorithm achieving
OFF(�), and an associated oF-line algorithm B acting on the same sequence �. The
“graph” in Fig. 2(c) is given to help understand the analysis. We abuse notation slightly
by assuming that servers si are initially located at positions si.

Now, observe that

OFF(�)6B(�)6 d(s1; �1) + d(s2; �2) + d(�1; �3) + d(�3; �4) + · · ·
6 (d(s1; x1) + d(x1; �1)) + (d(s2; x2) + d(x2; �2))

+(d(�1; x1) + d(x1; x3) + d(x3; �3))

+(d(�3; x3) + d(x3; x4) + d(x4; �4)) + · · ·
6 2{d(s1; x1) + d(x1; �1) + d(x1; x3) + d(x3; �3) + · · ·

+d(s2; x2) + d(x2; �2) + d(x2; x5) + · · ·}
= 2OFF(�):

Here, we have used the triangle inequality for d with a vengeance.

In fact, the same inequality (3) also applies to on-line algorithms with look-ahead
w, namely by allowing excursions, such algorithms can save at most a factor of 2 in

220 F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226

Fig. 2.

cost. Now, let us de/ne

O�[w]k := inf
OA[w]

lim sup
OFF(�)→∞

OA
[w]

(�)
OFF(�)

where OA
[w]

ranges over all on-line excursion algorithms with look-ahead w.

Fact 3.

O�[w]k ¿ O�[w+1]
k :

Proof. This is clear, since more information about the future can only help.

This leads us to de/ne

O�[∞]
k := lim

w→∞ O�[w]k ;

the limiting behavior of on-line excursion algorithms as the window size tends to
in/nity. The main result relating O�[∞]

k to our (nonexcursion) ratios �k is the following.

Lemma 1. For all k;

O�[∞]
k ¿�k : (4)

F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226 221

Fig. 3.

In other words, even though we allow excursions, no matter how far we can see into
the future (a bounded amount), we cannot improve in general over what an oF-line
algorithm can achieve for which excursions are not allowed.

Proof. We /rst observe that if �t = �t+1 then any “sensible” on-line excursion algo-
rithm OA

[w]
with look-ahead w¿2, will in fact send a server to �t . This follows from

computations given in Fig. 3. The cost of the modi/ed algorithm has not increased
since by the triangle inequality,

d(x; �t)6 d(x; y) + d(y; �t)

d(�t; w)6 d(z; w) + d(z; �t):

Thus, with �[w] denoting (
w︷ ︸︸ ︷

�1; : : : ; �1;
w︷ ︸︸ ︷

�2; : : : ; �2; : : :) for �=(�1; �2; : : :) as before, we
have

O�[w]k = inf
OA[w]

lim sup
OFF(�)→∞

OA
[w]

(�)
OFF(�)

¿ inf
OA[w]

lim sup
OFF(�[w])→∞

OA
[w]

(�[w])
OFF(�[w])

= inf
B

lim sup
OFF(�)→∞

B(�)
OFF(�)

= �k ;

where B ranges over all on-line (nonexcursion) algorithms.
Therefore, O�[∞]

k ¿�k and the lemma is proved.

Our main conjecture concerning O�[∞]
k is the following.

Conjecture 2. For all k;

O�[∞]
k = �k : (5)

222 F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226

Fig. 4.

Note that if both Conjectures 1 and 2 hold then we would have O�[∞]
k = k for all k.

At present, Conjecture 2 is only known to hold for k =1. This is a consequence of
the following result.

Theorem 5. There is an on-line excursion algorithm OC
[w]

with look-ahead w¿2 such
that for all �;

OC
[w]

(�)6
(
1 +

2
	w=2

)
OFF(�): (6)

Remark. For w=1 it is easy to see that the best possible inequality for any on-line
excursion algorithm OC

[1]
is OC

[1]
(�)62OFF(�).

Proof. Let us consider a block of w consecutive requests:

�1; �2; : : : ; ��w=2�; |��w=2�+1; : : : ; �s; �s+1; : : : ; �w:

Let d(�s; �s+1) be the minimum distance among all d(�i; �i+1) where 	w=2
6i6w−1.

The algorithm OC
[w]

constructs the optimal solution for the request sequence �1; : : : ; �s
(see Fig. 4). Now, repeat this operation for the block �s+1; �s+2; : : : ; �s+w, etc. Let S
denote the set of “special” indices s. Then,⌊w

2

⌋∑
s∈S

d(�s; �s+1)6
∑
i¿1

d(�i; �i+1)62OFF(�):

Therefore,

OC
[w]

(�) =
∑
s∈S

costs +
∑
s∈S

d(�s; �s+1)

6
(
1 +

2
	w=2

)
OFF(�);

where costs denotes the sum of the distances shown in the box in Fig. 4, i.e., d(� 1; c2)+
d(c2; � 2) + · · ·+ d(cs−1; �s).

In particular, it follows that

O�[∞]
1 = 1 = �1:

F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226 223

Fig. 5.

5. Window index for a graph

Suppose our metric space M is given by a connected graph G with the shortest
path metric. That is, the distance between two vertices of G is de/ned to be minimum
number of edges contained in any path joining the vertices. In this case there is a fairly
complete theory available for on-line excursion algorithms on G with k =1 server and
limited look-ahead (again for the choice of “excursion factor” �=1). In this section
we give a brief survey of what is known for this case.

Theorem 6 (Chung et al. [4]).

For each connected graph G, there is a least value WX (G)∈{1; 2; 3; : : :}∪ {∞},
called the window index (or “windex”) of G, so that if w¿WX (G) then

O�[w]1 = 1:

In fact, there is an on-line excursion algorithm OA
[w]

with look-ahead w so that for all
�,

OA
[w]

(�)6OFF(�) + O(1):

In what follows, we give a brief summary of the basic results for this case.
First, note that when G=C4, the cycle on four vertices (see Fig. 5), we have

WX (C4)= 2. It is easy to see that WX (C4)¿1. On the other hand, it is not hard to
show that a “majority rule” excursion algorithm with look-ahead 2 is optimal for C4.
That is, if the server is currently at i1j1 and the next two requests are i2j2 and i3j3
then the server should move to Oi Oj where Oi is the most frequently occurring value in i1,
i2, i3, and Oj is the most frequently occurring value in j1, j2, j3. Other graphs having
WX =2 are trees, grids and n-cubes, for example (see [3]).

On the other hand, for the complete graph K3 on 3 vertices, WX (K3)= 3. Which
graphs G have WX (G)= 2? (Note that only the trivial graph has windex 1.)

224 F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226

Let us say that G has the unique Steiner property if for any three vertices x; y; z,
there is a unique vertex s which minimizes

d(s; x) + d(s; y) + d(s; z):

Also, we call an induced subgraph H of G a retract of G if there is a function
+ : V (G)→V (G) (vertices of G into vertices of H) such that:
(i) v∈V (H)⇒ +(v)= v,
(ii) {u; v}∈E(G) (the edges of G) ⇒ either {+(u); +(v)}∈E(H) or +(u)= +(v).
Next, let us say that a subgraph H is an isometric subgraph of G if for all x; y∈V (H),

dH (x; y) = dG(x; y):

Finally, we consider the n-cube Qn. This graph has as its set of vertices all binary n-
tuples (x1; : : : ; xn), xi =0 or 1, and edges {(x1; : : : ; xn), (y1; : : : ; yn)} precisely when the
two n-tuples diFer in just one coordinate (this metric is also known as the Hamming
metric in coding theory). We call a subset X ⊂V (Qn) majority closed if the “majority”
n-tuple formed from any three vertices in X is also in X .

Theorem 7 (Chung et al. [3]). The following conditions are equivalent for a con-
nected graph G:
(i) G has the unique Steiner property;
(ii) G is a retract of Qn for some n;
(iii) G is a majority closed isometric subgraph of Qn for some n;
(iv) WX (G)= 2.

To describe the corresponding result for general values of WX (G), we need the fol-
lowing de/nition. Given graphs Gi =(Vi; Ei), 16i6r, de/ne the Cartesian prod-
uct G1 G2 · · · Gr to be the graph with vertex set V1 × V2 × · · · × Vr and edges
{(v1; v2; : : : ; vr), (v′1; v′2; : : : ; v′r)} where for each i, either {vi; v′i}∈Ei, or vi = v′i .
For example, if K2 denotes the complete graph on two vertices (with one edge),

then

n︷ ︸︸ ︷
K2 K2 · · · K2

∼= Qn:

Theorem 8 (Chung et al. [4]). WX (G) is ;nite if and only if G is a retract of Km1

Km2 · · · Kmr for some choice of m1, m2; : : : ; mr . For such G;

WX (G) = max{mi : 16i6r}:

Corollary. Almost all graphs G have WX (G)=∞.

It is not hard to show that if the look-ahead length for G is smaller than WX (G)
then you must pay a de/nite penalty.

F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226 225

Theorem 9 (Chung et al. [4]). If w ¡ WX (G) then

O�[w]1 (G)¿1 +
1
w
: (7)

Conjecture 3. The bound in (7) is best possible.

6. Concluding remarks

There are many unresolved questions remaining, some of which we now mention.
To begin with, to what extent do the preceding results extend to the case of k¿1

servers with excursions? In particular, does the “windex” phenomenon occur? In other
words, is there always a number WXk(G) so that if w¿WXk(G) then

O�[w]k (G) = O�[∞]
k (G)?

It is not hard to show that this does in fact happen for G=K3, k =2. In this case we
have

O�[1]2 (K3) = O�[2]2 (K3) = 3;

O�[w]2 (K3) = O�[∞]
2 (K3) = 2 = �2(K3); w¿3:

What happens for G=C5 (where we know from the earlier result characterizing graphs
with /nite windex that WX1(C5)=∞)?
Can graphs G with WXk(G)¡∞ be characterized? What happens for general metric

spaces? How do the previous results change if we allow excursion factors � �= 1 (even
for k =1)?
For our basic problem from Section 2 (i.e., the graph has two vertices 0 and 1 with

c(0)= c(1)= 2; k =1), we do see an example of the “windex phenomenon”. That is,
we have �(0; 4)=3= �(t; 0) for all t¿4. In other words, if you cannot see into the
future at all, then it does not help to see more than four steps into the past. Does
this phenomenon occur for all w¡∞? Is there an eNcient algorithm for determining
�(u; w) for given large values of u and w? What happens for varying costs c(o) and
c(1)? On more general graphs? With k¿1 servers?
For graphs G and k =1, we have previously de/ned [3] the asymptotic worst-case

average excursion service cost

O�(G) := lim sup
�=(�1 ;:::;�N)

1
N
OFF(�):

For example, it is known (see [3]) that:

O�(C2m) =
m
2
; O�(C2m+1) =

m(m+ 1)
2m+ 1

:

226 F. Chung, R. Graham /Theoretical Computer Science 261 (2001) 213–226

A result of Saks [9] shows that O�(G) is always a rational number. Is there a polynomial-
time algorithm for computing O�? What happens for k¿1 servers, e.g., is

O�k(G) := lim sup
�=(�1 ;:::;�N)

1
N
OFFk(�)

always rational? Is it computable in polynomial time?
Clearly, there is much work to be done before we have a full understanding of even

this rather special topic in the /eld of on-line algorithms.

Acknowledgements

The authors wish to thank Phong Vo for suggesting this problem to us and pointing
out its connection to Internet web page caching.

References

[1] S. Ben-David, A. Borodin, R. Karp, G. Tardos, A. Wigderson, On the power of randomization in on-line
algorithms, Proc. 22nd Symp. on the Theory of Algorithms, ACM, 1990, pp. 379–386.

[2] M. Chrobak, L.L. Larmore, The server problem and on-line games, in: DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 7, American Mathematical Society, Providence,
RI, 1992, pp. 74–94.

[3] F.R.K. Chung, R.L. Graham, M.E. Saks, Dynamic search in graphs, in: Discrete Algorithms and
Complexity, Academic Press, New York, 1987, pp. 351–388.

[4] F.R.K. Chung, R.L. Graham, M.E. Saks, A dynamic location problem for graphs, Combinatorica 9
(1989) 111–131.

[5] A. Fiat, Y. Rabini, Y. Ravid, Competitive k-server algorithms, Proc. 31st Ann. Symp. on Foundation
of Computer Science, J. Comput. System Sci. 48 (1994) 410–428.

[6] A. Fiat, G.J. Woeginger (Eds.), Online Algorithms: State of the Art, Springer, Berlin, 1998.
[7] E. Grove, The harmonic on-line k-server algorithm is competitive, in: On-line Algorithms, DIMACS

Series, Discrete Mathematics and Theoretical Computer Science, vol. 7, American Mathematical Society,
Providence, RI, 1992, pp. 65–75.

[8] M.S. Manasse, L.A. McGeoch, D.D. Sleator, Competitive algorithms for server problems, J. Algorithms
11 (1990) 208–230.

[9] M.E. Saks, A limit theorem for (min,+) matrix multiplication, Math. Oper. Res. 13 (1988) 606–618.
[10] D. Sleator, R.E. Tarjan, Amortized eNciency for list update and paging rules, Comm. ACM 28 (1985)

202–208.

