Journal of Algebra 220, 449-465 (1999)
Article ID jabr.1999.7945, available online at http: //www.idealibrary.com on IIIE%I®

Relative 7-Blocks of 7-Separable Groups

A. Laradji

lmetadata, citation and similar papers at core.ac.uk

Received August 7, 1998

1. INTRODUCTION

In [8-10], Slattery has developed a m-block theory for m-separable
groups, using the B, -characters introduced by lIsaacs in [3]. These w-blocks,
in addition to being equal to the usual p-blocks when 7 = { p}, enjoy many
of the properties of the latter. Indeed, among other things, Slattery
extended the concept of defect groups to #-blocks and defined a version of
block induction, which allowed him to prove versions of Brauer’s three
main theorems.

Now let G be a finite m-separable group, and let w be a #'-special
character of some normal subgroup N of G. The purpose of the present
paper is to show that the set Irr(G| ) of irreducible characters of G lying
over u decomposes into “blocks” which behave like Slattery m-blocks.
Furthermore, in case N =<1) and u = 1, the trivial character of (1),
our blocks are just the m-blocks defined by Slattery.

The main result (Theorem 3.1) of Section 3 establishes a nice correspon-
dence between our blocks and certain m-blocks of some group closely
related to G.

In Section 4, we define defect groups for these blocks and show an
analogue of [9, Theorem 2.11] (see Theorem 4.4), as well as a version of
Brauer’s height-0-conjecture.

2. SOME mCHARACTER THEORY

The purpose of this section is to give a summary of some of the concepts
and facts needed, concerning the theory of characters of w-separable
groups developed by Isaacs. (See [3, 4, 6].)
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Throughout this paper, 7= denotes a set of rational primes, 7= denotes
the complementary set of primes, and G is a finite -separable group.

For a class function y of G, we write x° to denote the restriction of y
to the set of #'-elements of G.

In [3], Isaacs has defined a character set B_(G), such that, in case
7 = {p}, where p is prime, B_(G) forms a set of canonical lifts for the
p-modular characters of a p-solvable group. The set { x° : x € B_(G)} is
denoted by I_(G). If == {p}, then I_(G)=1Br(G), the set of all
irreducible p-Brauer characters of G. (See [3, Corollary 10.3].)

Let 6 € Irr(G). Then, there are uniquely determined non-negative
integers d,, called “decomposition numbers” such that 0° = X, d{,‘pgoo,
where ¢ runs through the set B_(G). (See [3, Corollary 10.1].) We may
also use the notation d, o for d, . Each ¢° such that d,. # 0 is called a
7r'-constituent of 6.

For 6 € Irr(G), lIsaacs constructed a pair (W, y), where Wc G, y <
Irr(W) is m-factorable (i.e., y factors into the product of a m-special
character and a =’-special character), and y“ = 4. This pair, which is
uniquely determined up to G-conjugacy by 6 is called a nucleus of 6. By
definition, 6 € B_(G) if y is «'-special.

We now assume that 6 € B_(G). Let L < G be a Hall #'-subgroup of
G. Then a constituent « € Irr(L) of 6, is called a Fong character
associated with 6 (or with 6°), provided a(1) = (1), the «'-part of 6(1).
(See [3, Definition 8.6].) By [3, Corollary 10.1(b)], if % is an irreducible
character of G, then the decomposition number d,, = [, ] = [a, 7, ].

3. RELATIVE 7BLOCKS

Let N < G and let u € Irr(N) be a #'-special character. As usual, the
set of all irreducible characters of G lying over w is denoted by Irr(G| w).

Let x, x' € Irr(G| n). Asin [8, Sect. 2], y and x’ are said to be linked if
there is ¢ € B_(G) such that d,, # 0 and d,,, # 0. The transitive exten-
sion of this linking decomposes Irr(G| ) into equivalence classes. Each
one of these classes is called a relative m-block of G with respect to (N, w)
(and the set of all the relative m-blocks of G with respect to (N, w) is
denoted by BI_(Gl| n)). Note that relative m-blocks of G with respect to
(1), 1,,,) are exactly Slattery m-blocks of G.

The purpose of this section is to show a 1-1 correspondence between
Bl _(G| w) and the set of certain a-blocks of some group closely related to
G. This correspondence allows us to conclude that relative -blocks satisfy
many of the properties enjoyed by m-blocks. To state the main theorem, we
introduce the following notation. If v € I_.(K) for some subgroup K of G,
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we write I_(G|v) to denote the set of ¢ € I_.(G) such that v is a
constituent of ¢.

(3.1) THEOREM. Let N be a normal subgroup of a w-separable group G
and let p be a w'-special character of N with T = I;( ). Then, there exist a
central extension T* of T =T/N by a w'-subgroup N* of T*, a linear
character u* of N* and bijections ¥ of 1rr(G|u) onto Ire(T*| w*) and W°
of I(G| u°) onto I_(T*| u*) such that the following statements hold:

(@ Forany 6 € I_(G|u), if & is any character of \rr(G| w) satisfying
£% = 0, we have ¥°(9) = P(¢&)°.

(b) Under the correspondences ¥ and W°, the decomposition numbers
are preserved. That is, for x € lrr(G|p) and 6 € I_(G| u°), we have d,=
Ay xyvocoy:

(c) The correspondence & — V(Z) is a bijection of Bl _(G|p) onto
the set of m-blocks of T* over w*.

In (c), by a @-block of T* over u*, we mean a m-block, whose characters
all lie over u*. This definition is justified by the fact that the characters of
every m-block of T* lie over a single T*-orbit of Irr(N*). (See the
observation preceding Theorem 2.8 in [8].)

To prove Theorem 3.1, we need the following series of preliminary
lemmas.

(3.2) LEMMA. Let N < G and let w € Wrr(N) be w'-special. Then, for
x € lrr(Gl w), if ¢ € B_(G) is such that d,, # 0, we have ¢ € Irr(G| w).

Proof. Since y lies over w, Lemma 3.1 in [4] implies that ¢° lies over
u®. 1t follows by [6, Theorem 6.2] and [3, Corollary 10.2] that ¢ lies over u.

(3.3) LEMMA. Let N < G and let u be a w'-special character of N with
T =1;(p). Let x € Irr(G| p) and let s be the unique irreducible character
of T lying over w such that ° = x. If {B,,..., B,} is the set of distinct
w'-constituents of s, then { BT, ..., BC} is the set of distinct m'-constituents

of x. Furthermore, the multiplicity of B; as a constituent of ¥° is equal to
that of BC as a constituent of x°.

Proof. Write ° = X/_,m, B, Since ¢ lies over u, each B; lies over
u®. Next, as w is uniquely determined by u°, we have T = I,(u0). It
follows by [4, Lemma 3.2] that B is irreducible for each i and that
BC # BS if j#i Now, x°=(y9)° = (y°%=Xi_ m,BC. This shows
that BC,..., B¢ are precisely the irreducible '-constituents of y and
that, for each i, the multiplicity of 3,° as a constituent of x° is equal to
that of B3, as a constituent of °.
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The following result is analogous to [8, Theorem 2.10].

(3.4) LEMMA. Let N < G and let u be a w'-special character of N with
T = I.( ). Then, there is a bijection of Bl_(T| ) onto Bl_(G| p) given by
inducing the characters. That is, a relative m-block %, of T with respect to
(N, ) corresponds to the relative m-block {6° : 0 € B,} of G with respect to
(N, w).

Proof. Let %, € Bl (T|w) and let & ={0° : 6 €.5,}. Assume that
the characters 6 and o of %, are linked. So there exists y € B_(T) such
that d,, + 0 and d,,, # 0. Since any B_-constituent of y“ links 6 and
oY, we conclude that .7 is a subset of some single relative 7-block % of
G with respect to (N, w). Next, we show that &/ = .%.

Assume, on the contrary that .o/ #.%. So we can find y €« and
X' €#\& such that d,,#0 and d,, # 0 for some ¢ € B_(G). Let
¢, € Irr(T| w) be such that ¢ = y and ¢’ = ¥'. By Lemma 3.3,
there exists ¢ € B_(T) such that (¢°)¢ = ¢° and ¢° is an irreducible
7r'-constituent of both ¢ and ¢'. Thus ¢ links ¢ and ’. However,
$% =y v and so  €5B,. It follows that ' €%B,. Therefore, x' =
()¢ €., contradicting our choice. Hence, we must have . =.%, a
relative 7-block of G with respect to (N, w).

We have obtained above an injective map from BI_(T'| w) into Bl_(G| w),
given by inducing the characters. However, if %' € Bl_(G| u), we choose
[ €. Then, there is &€ Irr(T|w) such that ¢¢ = ¢ and the relative
m-block % of T with respect to (N, u) containing ¢ gets mapped to %".
This shows that our map is onto, thus finishing the proof of the lemma.

Let N < G and let u € Irr(N) be G-invariant. In other words, (G, N, u)
is a character-triple. We say that another character-triple (I', M, v) is
isomorphic to (G, N, ) if the factor groups G/N and T'/M are isomor-
phic and the character theory of G “over” w is “‘similar” to the character
theory of T over v via the given isomorphism of G/N onto T' /M. (See [2,
Definition 11.23] for the precise definition of character-triple isomorphism.)

Assume now that (7, o) is a character-triple isomorphism from (G, N, w)
to (T, M, v). So 7 is an isomorphism of G/N onto I'/M. Let H be a
subgroup of G containing N. We write H™ to denote the subgroup
M c H” c T such that H'/M is the image of H/N under r. For every
such H, there exists a certain map o, from Ch(H| w) (the set of possibly
reducible characters y of H such that y, is a multiple of w) to Ch(H"|»).
By Lemma 11.24 in [2] o}, is a bijection.

Next, if y is any character of H, we have y¢ = x¢ forany g,g' € G
such that gg'~* € N. Therefore, for 1 € G /N, we may write x’ to denote
x 8, where g is any element of G such that gN = 7.
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For the purpose of the next section, we need character-triple isomor-
phisms (7, 0): (G, N, w) — (', M, v) that satisfy the following property:

(P) For all subgroups H of G containing N and for all y e
Ch(H| u), we have

T ( X%) = oy (x)™®

forall g =gN € G/N.
The following fact is easy to prove.

(3.5) LEMMA. (P) is preserved under composition of character-triple iso-
morphisms, each satisfying (P).

(3.6) LEMMA. Let (G, N, u) be a character-triple and let ¢: G — T be a
surjective homomorphism such that ker(¢) C ker(u). Let M = ¢(N) and
let v € Irr(M) be the character corresponding to w, viewed as a character of
N /ker(¢). Then, there is an isomorphism (t, o) from (G, N, p) to (I', M, v)
that satisfies (P).

Proof. The isomorphism (7, o) is that provided by [2, Lemma 11.26]
and the fact that this isomorphism satisfies (P) is easy to check.

(3.7) LEmmA. Let (G, N, ) be a character-triple and let & € 1rr(G) be
such that 8yu = v € Irr(N). For every subgroup H of G containing N,
define oy;: Ch(H| w) —» Ch(H|v) by 0,(0) = 68,. Let I. G/N — G /N be
the identity map. Then (i, o) is an isomorphism from (G, N, u) to (G, N, v)
that satisfies (P).

Proof. Lemma 11.27 in [2] says that (i, o) is a character-triple isomor-
phism, and the fact that (i, o) satisfies (P) is easy to verify.

Let (G, N, u) be a character-triple. By Theorem 11.28 in [2], it is
possible to find a character-triple (I, M, v) isomorphic to (G, N, u) such
that M c Z(T'). The proof of that theorem shows that the associated
isomorphism is a composition of character-triple isomorphisms of the types
of Lemmas 3.6 and 3.7. It follows by Lemma 3.5 that the isomorphism of
Theorem 11.28 satisfies (P). So, we obtain

(3.8) LEMMA. Let (G, N, ) be a character-triple. Then, there exists an
isomorphic character-triple (I', M, v) satisfying M € Z(T') and such that the
associated isomorphism satisfies (P).

Let (G, N, n) be a character-triple. The next result shows that, in case
is 7r'-special, the character-triple (', M, v) of Lemma 3.8 can be chosen so
that M is a 7r'-group. The proof is inspired by that of [5, Theorem 5.2].
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(3.9) LemmA. Let (G, N, p) be a character-triple, where w is w'-special.
Then, there exists an isomorphic triple (G*, N*, u*), where N* is a w'-group
contained in Z(G*) and such that the associated isomorphisms satisfies (P).

Proof. By Lemma 3.8, there exists an isomorphic character-triple
(', M, v), where M c Z(I') and such that the associated isomorphism
satisfies (P). (Note that T' is m-separable as I'/M = G /N is w-separable
and M is central.) Since v is linear, we may uniquely write v = a8, where
the order o(a) of « (in the group of linear characters of M) is a
a'-number and o(B) is a m-number. Note that in this situation, v is
m-factorable with « and B as its ='-special and 7-special parts, respec-
tively.

Since w is G-invariant, there exists a #'-special character ¢ € Irr(G| )
by [1, Corollary 4.8]. It follows by [2, Lemma 11.24] that there is a
character ¢ € Irr(T'|v) where (1) is a #'-number. Let (W,v) be a
nucleus of . As any nucleus of i is T'-conjugate to (W,vy) and as
M c Z(I'), we have M Cc W and y € lrr(W|v) by [9, Lemma 1.2]. By
definition, the character y is w-factorable and satisfies y“ = . Thus,
since (1) is a «'-number, y(1) is a #'-number and W contains a Hall
m-subgroup of I'. Therefore, for every p € ar, a Sylow p-subgroup S, of I'
is contained in W.

Now, factor y = ow, where o is 7'-special and  is 7-special, and note
that o is linear, since y(1) is a «'-number. Then, by [3, Lemma 2.2],
Yy = Oy 0, Where the irreducible constituents of o,, are =’'-special
linear characters and w,, is w-special. Thus, vy,, is a sum of (linear)
m-factorable characters, each of which has w,, as its a-special part.

Since v is I'-invariant and since +y lies over v, it follows that those
m-factorable characters are all equal to v. Hence, w,, =8 as B is
uniquely determined by ». This shows that B8 extends to W and hence
extends to S,M for every p € 7. Now, the quotient group S,M/M of
S,M by M is a Sylow p-subgroup of I' /M. Moreover, g is I'-invariant as
M is central in T'. Therefore, 8 is extendible to some linear character é of
I' by [2, Theorem 6.26].

Now, by Lemma 3.7, multiplication of all members of Irr(L|v) by
(871),, for all subgroups L of T" containing M, defines a character-triple
isomorphism (', M, v) — (', M, «) that satisfies (P). Next, by Lemma 3.6,
factoring out ker(«) yields an isomorphic triple (T, M, @) with a faithful
and such that the associated isomorphism (I, M, a) — (T, M, @) satisfies
(P). We have thus obtained a character-triple isomorphism (G, N, u) —
(T, M, &@). This isomorphism satisfies (P) by Lemma 3.5. Furthermore,
M c Z(T) and |M| = o(a) is a #'-number. Therefore, (T, M, &) fulfills
the desired conditions of the lemma.
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Let (G, N, u) be a character-triple, where w is 7’-special, and let L be a
Hall 7'-subgroup of G. Since L N N is a Hall #’-subgroup of N, the
restriction (w); oy Of w to L N N is irreducible by [1, Proposition 6.1].
So, we obtain the following result as a direct consequence of [3, Corollary
4.2].

(3.10) LEMMA. Let (G, N, ) be a character-triple, where w is 7'-special,
and let L be a Hall w'-subgroup of G. Then, restriction defines a bijection of
Irr(LN| ) onto Irr(L| p;  5). Furthermore, for any x € Irr(G|lp), the
multiplicity of v € Irr(LN| ) as a constituent of x; v is equal to that of vy,
as a constituent of x, .

Let (G, N, w) and (G*, N*, u*) be isomorphic character-triples. So
G/N = G*/N*, and we fix a particular isomorphism of these groups. If
N C H c G, we write H* to denote the subgroup N* ¢ H* c G* such
that H*/N* is the image of H/N under the fixed isomorphism. We also
denote the associated bijection Ch(H|w) — Ch(H*| u*) by .

(3.11) LEMMA. Let (G, N, w) be a character-triple, where w is m'-special,
and assume that (G*, N*, u*) is an isomorphic character-triple such that N*
is a m'-group. Let ¢ € Irr(G| ) such that £° € I_(G), then,

D (%) e I_(G*), and for any x € Irr(G| ), the multiplicity of &°
as a constituent of x° is equal to that of (¢*)° as a constituent of ( x*)°.

(2) the characters x,, x, € Irr(Gl ) are linked if and only if the
characters x¥, x¥ € Irr(G*| u*) are linked.

Proof. Fix a Hall 7'-subgroup L of G and recall from our discussion
preceding Lemma 3.10 that the restriction » of wto L N N is irreducible.
Let ¢ € Irr(Gl ) such that ¢° € I_(G). We begin by showing that (£*)°
is irreducible.

Suppose that (£*)° is reducible, in other words, (¢*)° = ¢° + ¢ for
characters ¢, and ¢, of G*. Since N* is a #'-group and since &* lies
over u*, we have ¢, {, € Ch(G*| u*).

Let 6,, 6, € Ch(G| n) be such that 65 = ¢, and 65 = {,. Now, let « be
any character of Irr(L|v) and let m, m,, and m, be the multiplicities of «
as a constituent of &, (6,),, and (6,), , respectively. By Lemma 3.10, there
exists a unique character y € Irr(LN| ) such that y, = « and the multi-
plicities of y as a constituent of &, (6,), v, and (6,), 5y are m, m,, and
m,, respectively. It follows by the definition of character-triple isomor-
phism that m, m,, and m, are the respective multiplicities of y* as a
constituent of the restrictions (&%), vy« ({)ny> and (&) yy Of &%,
£y, and ¢, to (LN)*.

Next, we note that (LN)* is a Hall #'-subgroup of G*, as N* is a
a’-group. Now, since (¢*)° = £ + ¢, we conclude that m = m; + m,.
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So, we have shown that for every «a € Irr(L|v), the multiplicity of « as a
constituent of ¢, is equal to the sum of the multiplicities of « as a
constituent of (6,); and (6,), . As the irreducible constituents of &, (6,);,
and (6,), all lie over v, we conclude that £ = (6,); + (8,); and hence
%= 02+ 02, contradicting the irreducibility of ¢° This shows that
(%) e I_(G*), as desired.

Next, let x € Irr(G| w). If 6 € Irr(L) is any Fong character associated
with £°, then the multiplicity n of ¢° as a constituent of x° is equal to
that of & as a constituent of y; (see Section 2).

Since & is a constituent of &, we have & € Irr(L|v). Therefore, by
Lemma 3.10, there exists a unique character n € Irr(LN| ) such that
n, = & and the multiplicity of n as a constituent of y, , is n. Now, again
by the definition of character-triple isomorphism, n is the multiplicity of
n* as a constituent of ( x*), y .

By [2, Lemma 11.24], we have £*(1) = & up*(1)/u(1) and n*(1) =
n(Dp* (1) /(). Since £(1),, = (1) = n(1), we conclude that ¢*(1),. =
7n*(1). Moreover, as & is a constituent of ¢, the character 7z is a
constituent of &,y by Lemma 3.10, and it follows that n* is a constituent
of (£*),n - This says that n* is a Fong character associated with (£*)°,
since (LN)* is a Hall #'-subgroup of G*. Consequently, the multiplicity of
(£*)° as a 7r'-constituent of y* is exactly n. This proves (1).

Next, we prove (2). First, assume that y, and y, are linked by 6
B_(G). Then 6 € Irr(G| w) by Lemma 3.2, and it follows by (1) that (6*)°
is a constituent of both ( x;)° and ( x5)°. Hence x; and x5 are linked.
Conversely, assume that y;* and x; are linked by € € B_(G*). Then
€ € lrr(G*|u*) as N* is a w'-group. Let o € Irr(G| ) be such that
o* = €. Then, any character v € B_.(G) such that d,, # 0 lies in Irr(G| )
by Lemma 3.2. It follows by (1) that (w*)° is a constituent of €° with
multiplicity d_,. Since €° is irreducible, we conclude that ¢° € I_(G).

Now, again by (1), the respective multiplicities of o° as a constituent of
x2 and x? are equal to the respective multiplicities of €° as a constituent
of (x§)° and ( x3)°. Since € links x; and xi, we conclude that y, and
X, are linked. This finishes the proof of (2).

(3.12) LEMMA. Let (G, N, w) be a character-triple, where . is '-special
and assume that (G*, N*, u*) is an isomorphic character-triple such that N*
is a w'-group. Then, the correspondence F — B* (={x* : x €%} is a
bijection of Bl_(G| p) onto the set of mw-blocks of G* over u*.

Proof. Let % € Bl (Glw). If a;, a, €% are linked, then o, o] are
linked by Lemma 3.11(2). Therefore, #* is a subset of some m-block % of

G* over u*. We claim that &* =%.
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Suppose that %* #.2%. Then, we may choose «, o, € Irr(G| w) such
that « €2, af € Z\%*, and a*, o are linked. By Lemma 3.11(2), it
follows that « and «, are linked and hence «, €%, contradicting our
choice. Therefore, #* =.%, as claimed.

So, the correspondence % — %™ is a well-defined map from Bl_(G| w)
to the set of all #-blocks of G* over u*. This map is clearly 1-1 and we
see next that it is onto. _

Let & be a w-block of G* over p*, and let 8 be any character of .%.
Then, the relative 7-block %’ of G with respect to (N, w), containing the
preimage of B8 under *, satisfies (&')* =.%. This proves that our map is
onto, thus finishing the proof of the lemma.

Finally, we are ready to prove the main result of this section.

Proof of Theorem 3.1. Let (T*, N*, u*) be a character-triple isomor-
phic to (T, N, w) as in Lemma 3.9. We use throughout this proof the =
notation, introduced just before Lemma 3.11.

Let A be the bijection of Irr(T| u) onto Irr(G| w) obtained by inducing
the characters. The composition ¥ of A~ with = is clearly a bijection of
Irr(Gl w) onto Irr(T*| w*). Next, let 6 € I_(G|u®), and note that T =
I;(u®), since u° uniquely determines w. Assume that & and &, are
characters of Irr(G|p) such that &° = &) =6. Let ¢, = A~Y(¢)) and
£, = A7 E,). We have

(207 = (&) =&t =0=¢0=(28) = (&)°.

It follows by [4, Proposition 3.2()] that ¢ = ¢} € I_(T|u®). Now,
since ¢ = ¢, Lemma 3.11(1) implies that ({;*)° = (£;5)° € I_(T*). We
have thus obtained a well-defined map ¥° from I_(G|u°) to I_(T*| u*)
taking an element 6 € I_(G| u°) to the element (£ *)°, where {* = W(¢)
for any character & € Irr(G| ) satisfying £° = 6.

We claim that W° is a bijection. First, note that W° is a composition of
two maps ® and . The map ® sends 6 € I_(G|u®) to the unique
element ¢ € I_(T|u°) satisfying ¢“ = 6, and the map Q sends 7€
I_(T| u®) to the unique element v € I_.(T*| u*) such that v = (p*)°, for
any character p € Irr(T| w) satisfying p° = 7.

By [4, Proposition 3.2(a)], ® is a bijection of I_(G| u°) onto I_(T|u°),
and to show that W is a bijection, it suffices to show that € is a bijection
of I_(T|u® onto I_(T*| w*).

Let 7,7, € I_(T|u°) such that 7, # 7,. Since 7, is irreducible, it is
obvious that the multiplicity of r, as a constituent of =, is zero. It follows
by Lemma 3.11(1) that the multiplicity of Q(r,) as a constituent of Q(r;)
is zero. Therefore, Q(7,) # Q(7,) and Q is 1-1.
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Next, let v € I_(T*| u*). Then, there exists n € B_(T*) N Irr(T*| u*)
such that » = 1° Let w be the element of Irr(T| ) satisfying w* = 1.
Since v is irreducible, Lemma 3.11(1) implies that w° € I_(T| u°). Now,
Q%) = (0*)° = ° = v. This shows that Q is onto. Therefore, Q is a
bijection, as desired.

Part (a) is trivially satisfied by the definition of ¥°. To show (b), let
x € rr(Glw) and let 6 € I_(Glu®). If ¢ is the unique element of
I_(T| u°) satisfying ¢ = 6, the multiplicity of 6 as a constituent of x°
equal to that of ¢ as a constituent of A~1( x)° by Lemma 3.3. Next, let £
be the character of B_(T) N Irr(T| w) such that {° = ¢. Then, by Lemma
3.11(1), the multiplicity of ¢ as a constituent of A~*( x)° is equal to that
of ¥o(9) = Q(p) =({*)° as a constituent of W( x)°. Therefore, the
multiplicity of 6 as a constituent of x° is equal to that of ¥°(6) as a
constituent of W( x)°. This proves (b).

Finally, (c) follows from Lemmas 3.4 and 3.12. This finishes the proof of
the theorem.

4. DEFECT GROUPS

Throughout this section, we fix a w-separable group G, a normal
subgroup N of G, and a =’-special character u of N. Let T = I;( ) and
denote by A, the bijection of Irr(T| u) onto Irr(G| n) obtained by inducing
the characters.

Now, let & € Bl_(G| ) and let %, be the relative m-block of T with
respect to (N, w) such that & = A(%,). To define the “‘defect groups” of
%, we first need to define the defect groups of %,.

Let K be the normal subgroup of T containing N such that K/N =
O (T/N). If {€ Irr(T|w), then by Lemma 2.3 in [3], there exists a
7r'-special character 6 of K such that 6 is a constituent of ;. By Lemma
3.2, for w € B_.(T) such that d,, # 0, we have » € Irr(T'|8). Hence, the
constituents of wy are precisely the constituents of ¢, by Clifford’s
theorem ([2, Theorem 6.2]). It follows that if ¢’ € Irr(T| w) is linked to ¢
by w, then ¢’ also lies over the T-orbit of 6. This implies that the
characters of %, all lie over the T-orbit of some 7'-special character v of
K and so %, is a subset of some relative w—blockfg}; of T with respect to
(K, v). Now, assume that ¢, €%, and ¢, € ,5370 satisfy d,, # 0 and
dg,, # 0 for some o € B_(T). Then, since v lies over p, the character ¢,
lies over u, and it follows that ¢, €.%,. This shows that % = 330 In other
words, %, may also be viewed as a relative mblock of T with respect to
(K, v).
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Let S = I(»). We inductively define the set of defect groups of %, as
follows:

If S =T, the defect groups of %, are the Hall m-subgroups of 7.

If S <T, then by Lemma 3.4 and via the associated bijection, there
exists a unique relative 7-block %} of S with respect to (K, v) correspond-
ing to %,, regarded as a relative 7-block of T with respect to (K, »).
Define the defect groups of %, to be the T-conjugates of any defect group
of ;. Note that, since %, determines » uniquely up to 7T-conjugacy, this
definition does not depend on the choice of ».

Finally, we define the defect groups of % to be the G-conjugates of any
defect group of %,. Since w is determined by % up to G-conjugacy, this
definition does not depend on the choice of w.

It is clear that the defect groups just defined form a single G-conjugacy
class. Furthermore, this definition agrees with that of defect groups of
Slattery m-blocks, when (N, u) = ({1),1,;,). (See [9, Definition 2.2].)

If &  Bl_(G|p), then it clearly follows from the definition of defect
groups that any Hall 7-subgroup L of N is contained in some defect
group P of &. Thus, P N N = L. But, any defect group D of % is equal
to P* for some x € G. Therefore,

DNN=P*NN=(PNN) =L Hall_(N).

So, we have the following fact.

(4.1) LemmA. Let # € Bl_(G| w). Then, for any defect group D of %,
we have D N N € Hall_(N).

Now, let (T*, N*, u*) be a character-triple isomorphic to (T, N, ) as in
Theorem 3.1, and recall from the proof of that theorem that the associated
isomorphism satisfies property (P). Accordingly, denote by ¥ the bijection
of Irr(G| w) onto Irr(T*| u*), obtained by composing A~ with the map *.

The following result shows that the defect groups of % and of V(%)
are closely related.

(4.2) THEOREM. Let B € Bl (G| w). Then, there exists a defect group D
of & such that (DNY* = DN* for some defect group D of W(B).

We prove this theorem by induction. To achieve that, we first need to
construct a certain character-triple isomorphism from a character-triple
isomorphism that satisfies (P). It should be noted that this construction is
general.

Let (r,0) (A, M,y) - (B, L, e) be a character-triple isomorphism
that satisfies (P). Let K be a normal subgroup of A containing M,
ve lrr(Kly), J =L(v), and n = o (v).
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Since (7, o) satisfies (P), we have that for every a € A, o (v*) = n°,
where b is any element of B such that bL = 7(aM). It follows by the
definition of character-triple isomorphism that J™ = Iz(n). Next, 7 re-
stricts to an isomorphism from J/M onto J7/L. So, we may define an
isomorphism 7': J/K — J7/K" by associating to the element xK of J/K,
the element yK” of J7/K’, where y is any element of 7(xM). For
KcUc/J, itis clear that the inverse image in J™ of 7'(U/K) is U".
Moreover, if y € Ch(U|v), the character o,( x) lies over n. Thus, we
obtain a well-defined map oy;: Ch(U|v) — Ch(U"|n) by taking o/,( x) =
oy(x) for y € Ch(Ulv). Let ¢’ denote the union of the maps o7, for all
K c U cJ. Now, the following fact can be easily verified.

(4.3) LEMMA. The pair (7', c') is a character-triple isomorphism from
(J, K, v) to (J7, K™, ) which satisfies (P).

Now, we are able to prove Theorem 4.2.

Proof of Theorem 4.2. Let %, be the relative 7-block of T with respect
to (N, w) such that & = A(%,). By definition, any defect group of %, is
also a defect group of %. So, it suffices to show that %, has a defect
group D such that (DN)* = DN* for some defect group D of (B =
V(B).

Let K be the normal subgroup of T containing N such that K/N =
O,(T/N), and choose a 7'-special character » of K that lies under every
character of .%,. Further, denote by S the inertial group I,(v) of v in T.

Now, since T/N = T*/N*, we have K/N = O_(T*/N*). Further-
more, as N* is a w'-group, we have O _(T*/N*)= 0, (T*)/N*. It
follows that K* = O_.(T*). Note that since every character of %, lies
over v, the m-block (Z,)* of T* lies over v* € Irr(O, (T*)).

Next, recall that the character-triple isomorphism (7, N, u) —
(T*, N*, u*) satisfies (P). So §* = I.(»*) (see the discussion preceding
Lemma 4.3) and by Lemma 4.3, we get an isomorphism (S, K, v) —
(S*, K*, v*) which satisfies (P).

First, if S = T, then S* = T* and hence I«(v*) = T*. By definition,
any Hall 7r-subgroup P of T is a defect group of .%,.

We have (PN)*/N* = PN/N and PN/N € Hall _(T/N). Therefore,
(PN)*/N* € Hall (T*/N*), and it follows that (PN)* contains a Hall
m-subgroup P of T*. Now, as [(PN)*|,» = [N*|, we conclude that (PN)*
= PN*. By Definition 2.2 in [9], P is a defect group of (%,)*. So, we are
done in this case.

Next, assume that § < T. We view %, as a relative 7-block of 7" with
respect to (K, v) and we let %, be the relative 7-block of S with respect
to (K, v) corresponding to %, via Lemma 3.4. By the definition of defect
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groups, we may choose a defect group D of %, that is also a defect group
of %.

The isomorphism (8, K, v) = (§*, K*, v*) takes any character ¢ e
Irr(S|v) to the character £* € Irr(S* | »*) and so by Lemma 3.12, the
character-set (%;)* = {0* : 6 € %} is a 7-block of S$* over »*. By induc-
tion (DK)* = DK* for some defect group D of (93’ )*,

Now, the index [DK : DN] of DN in DK is a @'-number. Furthermore,
[(DK)*:(DN)*]1=[DK:DN] as DN/N = (DN)*/N* and DK/N =
(DK)* /N*. Therefore, [(DK)* : (DN )*] is a 7'-number, and hence (DN )*
contains a Hall 7-subgroup of (DK)*. But since (DK)* = DK* and K* is
a w'-group, we have that D € Hall ((DK)*). It follows that (DN)*
contains a (DK)*-conjugate D of D. Now, D € Hall ~(DN)*) and
(DN)* /N* is a a-group. Thus (DN)* = DN*.

If x €%, then x = 607 for a unique character § €%, and by [2,
Lemma 11.35] x* = (6*)"". Theorem 2.10 in [8] now says that the w—block
()" of S* over v* corresponds to the 7-block 5 of T* over v*. By [9,
Definition 2.2], D is a defect group of ;. Therefore D, being a
T*-conjugate of D, is a defect group of . This ends the proof of the
theorem.

The next result is analogous to [9, Theorem 2.11].

(4.4) THEOREM. Let x € Z € Bl_(G| ). Then, there exist a subgroup W
of G and a character y € \rr(W) satisfying y° = x and such that a Hall
m-subgroup Q of W is contained in some defect group of %.

Proof. Let (T*, N*, u*) be a character-triple isomorphic to (7, N, w)
as in Theorem 3.1, and denote by 7, the associated isomorphism from T /N
onto T*/N*.

Let ¢ € Irr(T|w) such that ¢¢ = y. Then, the character ¢* €
Irr(T*| w*) belongs to the w-block W(.#) of T* over w*. Now, by [9,
Theorem 2.11], if (W,7%) is a nucleus for ¢*, then a Hall w-subgroup P of
W is contained in some defect group D of \I'(u@) Since N* is a #'-group
and since u* is T*-invariant, N* C W and w* is a constituent of Y, . by
Lemma 1.2 in [9]. Let W Dbe the subgroup of T containing N such that
W* =W, and let y € lrr(W| ) such that y* = y. By Lemma 11.35 in [2],
we have (y7)* = ()7 = ¢*. But then, y' = ¢, as * is a bijection of
Irr(T| w) onto Irr(T*| w*). Now, since ¢“ = x, we have v = y, and we
show below that a Hall m-subgroup of W is contained in some defect
group of &#.

Since P € Hall (W) we have PN* /N* Hall (W/N*) and therefore

7 L(PN* /N*¥) € Hall ~W/N) as 1(W/N) = W/N*. Hence, if V is the
subgroup of T such that V/N = 7 (PN* /N*), we have V = ON for
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Q € Hall (V). Now, the index [W: Q] = [W: V]V :Qlis a #'-number as
w:v] and [V: Q] are 7'-numbers. It follows that Q € Hall (W)

Next, 7(ON/N) = 7(V/N) = PN*/N* and as P cD we get
7(ON/N) c DN*/N* Now, by Theorem 4.2, we can find a defect group
D of % such that (DN)* = (D)’N* for some b € T*. Therefore,
{((DN)*}*"" = DN*. Then, if a € 7 X(b~'N*), we have

7{(DN)"/N} = {(DN)* /N*}™“Y) = {(DN)*}*" /N* = DN* /N*.

It follows that QN/N < (DN)?/N, since 7 is an isomorphism, and so
Q C ON c (DN)* = D*N. By definition of defect groups, D* is also a
defect group of % and by Lemma 4.1, D* N N € Hall (N). Hence,
ID°N|,=|D*[N:D*“ N N]_=|D%. In other words, D* € Hall_(D“N).
Consequently, O c D" for some n € N. So, we have shown that the Hall
m-subgroup Q of W is contained in the defect group D" of &, thus
finishing the proof of the theorem.

As a consequence of Theorem 4.4, we obtain the following analogue of
[9, Theorem 2.12].

(4.5) THEOREM. Let y € # € Bl (G| ) and let D be a defect group of
B. Then, for x € G such that x_ is not conjugate to any element of D, we
have y(x) = 0.

Proof. By Theorem 4.4, there exist a subgroup W of G, a character
v € Irr(W), and a Hall z-subgroup Q of W such that y = y° and Q is
contained in some G-conjugate of D.

Let x € G be such that x_ is not conjugate to any element of D. Then
x, is not conjugate to any element of Q, and it follows that x is not

conjugate to any element of W. Since y is induced from W, we conclude
that x(x) = 0, as claimed.

In the remainder of this paper, we present a version of Brauer’s
height-0-conjecture. We start by defining a (relative) height function
following [9].

(4.6) DEFINITION.  Let & < BI_(G| ) having D as a defect group. For
x €%, define

x(1) Dl
h =

w(X) Gl

The number 4 ,(x) is called the relative height of x (with respect to
(N, w). Note that our definition agrees with [9, Definition 2.13] when
p =1, the trivial character of (1).
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Now, throughout the remainder of this section, we let (T*, N*, u*) be a
character-triple isomorphic to (7, N, u) as in Theorem 3.1, and as before,
we let ¥ be the corresponding bijection of Irr(G| w) onto Irr(T*| w*). For
a character 0 in a m-block of T*, we write 4(0) to denote Slattery’s height
of 6.

Our version of Brauer’s height-O-conjecture, as well as other results
relating to relative heights, are consequences of the following key result.

(4.7) LemmA.  Let x €% € Bl (G| ). Then h,( x) = h(¥( x)).

Proof. By Theorem 4.2, we may choose a defect group D of & such
that (DN)* = DN* for some defect group D of ¥(%). Let ¢ € Irr(T| w)
such that y = ¢°. Then,

X1l [G:T1,6(1), 1Dl o(1),ID|
|Gl |Gl T,

h(x) =

Next, by [2, Lemma 11.24], (D)p*(1) = ¢*(D) (D). Therefore, (1), =
¢*(1),, as both w(1) and w*(1) are «'-numbers. Furthermore, T/N =
T*/N* and N* is a #w'-group. Hence |T|, = |T*|.|N|, and we get

e(1),Dl  ¢*(1),ID]
T~ IT* [N~

h(x) =

As (DN)* = DN*, we have DN/N = DN*/N* Now, since N* is a
a'-group, it follows that D/D N N = D. So |D| =|D N N| |D| and by
Lemma 4.1 |D| = |N|,|D|.

Finally, we have

& (1),IDl  ¢*(1),1D)
1T 7N 17 T

h(Xx) = =h(¥(x)),

as V(y) = ¢o* € V(%H).

As a consequence of this lemma and [9, Theorem 2.5], we deduce that
relative heights are positive integers, as should be expected.

To formulate the next results, we need one further definition.

(4.8) DEFINITION.  Let & € Bl_(G| p). We say that a character y of %
is of relative height 0 in %, provided h,(x) = 1.

Clearly, relative height 0 characters are height 0 in the sense of [9] when
m=1q,.
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Our next result follows from Lemma 4.7 and [9, Theorem 2.15].

(4.9) THEOREM.  Every relative m-block of G with respect to (N, u) has a
relative height 0 character.

In [9], Slattery proved half of Brauer’s height-0-conjecture for m-blocks
of m-separable groups (see [9, Corollary 2.17]). The other half was estab-
lished by Manz and Staszewski (see [7, Theorem 3.3]). We present here a
version of that conjecture for relative m-blocks of w-separable groups.

(4.10) THEOREM. Let & € Bl _(G| w) having D as a defect group. Then
D /D N N is abelian if and only if each character in % is of relative height 0.

Proof. By Theorem 4.2, we may choose a defect group D, of % such
that D,N/N = DN*/N* for some defect group D of the ’7T-b|OCk V(%)
of T*. Now, since N* is a «'-group, D,/D, N N = D, and as D is
G-conjugate to D, we have D/D N N = D as well. Hence, D/D N N is
abelian if and only if D is abelian. By [9, Theorem 2.18], D is abelian if
and only if each character in ¥(.%) is height 0. On the other hand, Lemma
4.7 implies that each character in ¥(%) is height 0 if and only if each
character in % is of relative height 0. Our result is now immediate.

5. SOME EXAMPLES

Let G be a m-separable group, N a normal subgroup of G, and u a
7r'-special character of N. A natural question one may ask is whether each
relative m-block of G with respect to (N, u) is just the intersection of
some ordinary m-block of G with the set Irr(G| w). The answer is “no” in
general, as illustrated by the following example.

(5.1) ExampPLE. Let G = 3,, the symmetric group on four symbols,
7 =1{2}, N=0,(G), and u = 1,, the trivial character of N. It is clear
that w is 2'-special.

The set Irr(G| ) consists exactly of three characters. Two of these
characters x; = 1, and y, are linear and the third y; has degree 2.

Referring to the character table of 3, (see p. 287 in [2]), we see that
x? = x2. It follows that y, is the only linear character in B,(G) N
Irr(G| ) and that y, and y, are linked by y;.

By Lemma 3.2, every character ¢ € B,(G) such that d, , # 0 must lie
in Irr(G| w). So, were y, or x, linked to y;, we would necessarily have
X3 = 2 x?. But this is impossible, as y;(g) = —1 and 2 x,(g) = 2 for any
element g € G of order 3. Hence, we conclude that y; is not linked to
either x, or x,. Therefore, &, = { x;, x,} and &, = { x,} are precisely
the relative 2-blocks of G with respect to (N, w).
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Now, since 0,(G) = (1), the group G has a single 2-block, namely, the
principal 2-block B and B N Irr(G| p) = Irr(G| w) = %, U 5,.

We next give an example, where Theorem 4.5 applies, but its ordinary
m-block analogue ([9, Theorem 2.12]) does not for the same group.

(5.2) ExamPLE. We keep the notation of Example 5.1. In that example,
we have seen that G has a relative 2-block %, with respect to (N, )
consisting of the single character y, of Irr(G| u) of degree 2. By Theorem
4.9, this character y, is of relative height 0. It follows that if D is some
defect group of %,, then |D| = 4. Now, since N € D by Lemma 4.1, we
conclude that D = N as |[N| = 4.

Let /& be an element of G of order 4. Then, clearly £ is not conjugate to
any element of D, and so y,(4) = 0 by Theorem 4.5. On the other hand,
X5 belongs to the unique 2-block of G, namely, the principal 2-block B.
Certainly, & is contained in some Sylow 2-subgroup P of G and P is a
defect group of B. In this situation, Theorem 2.12 of [9] does not apply for
X5 and h.

The last example of this section shows that Theorem 4.10 is not just a
consequence of the ordinary height-zero result ([9, Theorem 2.18]) applied
to the same group. Here again, we keep the notation of Example 5.1.

(5.3) ExamMPLE. The relative 2-block %, of G contains exactly 2 linear
characters. These characters are of relative height 0 by Theorem 4.9.
Moreover, by the definition of relative heights, %, has a Sylow 2-subgroup
P of G as a defect group. Clearly P " N = N and since [P: N] = 2, the
guotient group P/N is abelian. However, the single ordinary 2-block B of
G has the Sylow 2-subgroup P as a defect group and P is not abelian.
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