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1. INTRODUCTION

w xIn 8]10 , Slattery has developed a p-block theory for p-separable
w xXgroups, using the B -characters introduced by Isaacs in 3 . These p-blocks,p

� 4in addition to being equal to the usual p-blocks when p s p , enjoy many
of the properties of the latter. Indeed, among other things, Slattery
extended the concept of defect groups to p-blocks and defined a version of
block induction, which allowed him to prove versions of Brauer’s three
main theorems.

Now let G be a finite p-separable group, and let m be a p X-special
character of some normal subgroup N of G. The purpose of the present

Ž < .paper is to show that the set Irr G m of irreducible characters of G lying
over m decomposes into ‘‘blocks’’ which behave like Slattery p-blocks.

² : ² :Furthermore, in case N s 1 and m s 1 , the trivial character of 1 ,²1:

our blocks are just the p-blocks defined by Slattery.
Ž .The main result Theorem 3.1 of Section 3 establishes a nice correspon-

dence between our blocks and certain p-blocks of some group closely
related to G.

In Section 4, we define defect groups for these blocks and show an
w x Ž .analogue of 9, Theorem 2.11 see Theorem 4.4 , as well as a version of

Brauer’s height-0-conjecture.

2. SOME p-CHARACTER THEORY

The purpose of this section is to give a summary of some of the concepts
and facts needed, concerning the theory of characters of p-separable

Ž w x .groups developed by Isaacs. See 3, 4, 6 .
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Throughout this paper, p denotes a set of rational primes, p X denotes
the complementary set of primes, and G is a finite p-separable group.

For a class function x of G, we write x 0 to denote the restriction of x
to the set of p X-elements of G.

w x Ž .XIn 3 , Isaacs has defined a character set B G , such that, in casep

� 4 Ž .Xp s p , where p is prime, B G forms a set of canonical lifts for thep

� 0 Ž .4Xp-modular characters of a p-solvable group. The set x : x g B G isp

Ž . � 4 Ž . Ž .X Xdenoted by I G . If p s p , then I G s I Br G , the set of allp p

Ž w x .irreducible p-Brauer characters of G. See 3, Corollary 10.3 .
Ž .Let u g Irr G . Then, there are uniquely determined non-negative

integers d called ‘‘decomposition numbers’’ such that u 0 s Ý d w 0,uw w uw

Ž . Ž w x .Xwhere w runs through the set B G . See 3, Corollary 10.1 . We mayp

also use the notation d 0 for d . Each w 0 such that d 0 / 0 is called auw uw uw

p X-constituent of u .
Ž . Ž .For u g Irr G , Isaacs constructed a pair W, g , where W : G, g g

Ž . ŽIrr W is p-factorable i.e., g factors into the product of a p-special
X . Gcharacter and a p -special character , and g s u . This pair, which is

uniquely determined up to G-conjugacy by u is called a nucleus of u . By
Ž . X

Xdefinition, u g B G if g is p -special.p

Ž . X
XWe now assume that u g B G . Let L : G be a Hall p -subgroup ofp

Ž .G. Then a constituent a g Irr L of u is called a Fong characterL
Ž 0. Ž . Ž . X Ž .Xassociated with u or with u , provided a 1 s u 1 , the p -part of u 1 .p

Ž w x . w Ž .xSee 3, Definition 8.6 . By 3, Corollary 10.1 b , if h is an irreducible
w G x w xcharacter of G, then the decomposition number d s a , h s a , h .hu L

3. RELATIVE p-BLOCKS

Ž . XLet N 1 G and let m g Irr N be a p -special character. As usual, the
Ž < .set of all irreducible characters of G lying over m is denoted by Irr G m .

X Ž < . w x XLet x , x g Irr G m . As in 8, Sect. 2 , x and x are said to be linked if
Ž .X Xthere is w g B G such that d / 0 and d / 0. The transitive exten-p xw x w

Ž < .sion of this linking decomposes Irr G m into equivalence classes. Each
Ž .one of these classes is called a relatï e p-block of G with respect to N, m

Ž Ž .and the set of all the relative p-blocks of G with respect to N, m is
Ž < ..denoted by Bl G m . Note that relative p-blocks of G with respect top

Ž² : .1 , 1 are exactly Slattery p-blocks of G.²1:
The purpose of this section is to show a 1]1 correspondence between
Ž < .Bl G m and the set of certain p-blocks of some group closely related top

G. This correspondence allows us to conclude that relative p-blocks satisfy
many of the properties enjoyed by p-blocks. To state the main theorem, we

Ž .Xintroduce the following notation. If n g I K for some subgroup K of G,p
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Ž < . Ž .X Xwe write I G n to denote the set of w g I G such that n is ap p

constituent of w .K

Ž .3.1 THEOREM. Let N be a normal subgroup of a p-separable group G
X Ž .and let m be a p -special character of N with T s I m . Then, there exist aG

XU U Ucentral extension T of T s TrN by a p -subgroup N of T , a linear
U U Ž < . Ž U < U . 0character m of N and bijections C of Irr G m onto Irr T m and C

Ž < 0. Ž U < U .X Xof I G m onto I T m such that the following statements hold:p p

Ž . Ž < 0. Ž < .Xa For any u g I G m , if j is any character of Irr G m satisfyingp
0 0Ž . Ž .0j s u , we ha¨e C u s C j .

Ž . 0b Under the correspondences C and C , the decomposition numbers
Ž < . Ž < 0.Xare preser̈ ed. That is, for x g Irr G m and u g I G m , we ha¨e d sp xu

d 0 .C Ž x .C Žu .

Ž . Ž . Ž < .c The correspondence BB ¬ C BB is a bijection of Bl G m ontop

the set of p-blocks of TU o¨er mU.

Ž . U UIn c , by a p-block of T over m , we mean a p-block, whose characters
all lie over mU. This definition is justified by the fact that the characters of

U U Ž U . Ževery p-block of T lie over a single T -orbit of Irr N . See the
w x .observation preceding Theorem 2.8 in 8 .

To prove Theorem 3.1, we need the following series of preliminary
lemmas.

Ž . Ž . X3.2 LEMMA. Let N 1 G and let m g Irr N be p -special. Then, for
Ž < . Ž . Ž < .Xx g Irr G m , if w g B G is such that d / 0, we ha¨e w g Irr G m .p xw

w x 0Proof. Since x lies over m, Lemma 3.1 in 4 implies that w lies over
0 w x w xm . It follows by 6, Theorem 6.2 and 3, Corollary 10.2 that w lies over m.

Ž . X3.3 LEMMA. Let N 1 G and let m be a p -special character of N with
Ž . Ž < .T s I m . Let x g Irr G m and let c be the unique irreducible characterG

G � 4of T lying o¨er m such that c s x . If b , . . . , b is the set of distinct1 r
X � G G4 Xp -constituents of c , then b , . . . , b is the set of distinct p -constituents1 r

of x . Furthermore, the multiplicity of b as a constituent of c 0 is equal toi
that of b G as a constituent of x 0.i

Proof. Write c 0 s Ýr m b . Since c lies over m, each b lies overis1 i i i
0 0 Ž 0.m . Next, as m is uniquely determined by m , we have T s I m . ItG

w x Gfollows by 4, Lemma 3.2 that b is irreducible for each i and thati
G G 0 Ž G.0 Ž 0.G r Gb / b if j / i. Now, x s c s c s Ý m b . This showsj i is1 i i

that b G, . . . , b G are precisely the irreducible p X-constituents of x and1 r
that, for each i, the multiplicity of b G as a constituent of x 0 is equal toi
that of b as a constituent of c 0.i
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w xThe following result is analogous to 8, Theorem 2.10 .

Ž . X3.4 LEMMA. Let N 1 G and let m be a p -special character of N with
Ž . Ž < . Ž < .T s I m . Then, there is a bijection of Bl T m onto Bl G m gï en byG p p

inducing the characters. That is, a relatï e p-block BB of T with respect to0
Ž . � G 4N,m corresponds to the relatï e p-block u : u g BB of G with respect to0
Ž .N, m .

Ž < . � G 4Proof. Let BB g Bl T m and let AA s u : u g BB . Assume that0 p 0
Ž .Xthe characters u and s of BB are linked. So there exists g g B T such0 p

that d / 0 and d / 0. Since any B X-constituent of g G links u G andug sg p

s G, we conclude that AA is a subset of some single relative p-block BB of
Ž .G with respect to N, m . Next, we show that AA s BB.

Assume, on the contrary that AA / BB. So we can find x g AA and
X Ž .X Xx g BB_ AA such that d / 0 and d / 0 for some w g B G . Letxw x w p

X Ž < . G XG Xc , c g Irr T m be such that c s x and c s x . By Lemma 3.3,
Ž . Ž 0.G 0 0

Xthere exists f g B T such that f s w and f is an irreduciblep

p X-constituent of both c and c X. Thus f links c and c X. However,
c G s x g AA and so c g BB . It follows that c X g BB . Therefore, x X s0 0
Ž X.Gc g AA, contradicting our choice. Hence, we must have AA s BB, a

Ž .relative p-block of G with respect to N, m .
Ž < . Ž < .We have obtained above an injective map from Bl T m into Bl G m ,p p

X Ž < .given by inducing the characters. However, if BB g Bl G m , we choosep
X Ž < . Gz g BB . Then, there is j g Irr T m such that j s z and the relative

X Ž . Xp-block BB of T with respect to N, m containing j gets mapped to BB .0
This shows that our map is onto, thus finishing the proof of the lemma.

Ž . Ž .Let N 1 G and let m g Irr N be G-invariant. In other words, G, N, m
Ž .is a character-triple. We say that another character-triple G, M, n is

Ž .isomorphic to G, N, m if the factor groups GrN and GrM are isomor-
phic and the character theory of G ‘‘over’’ m is ‘‘similar’’ to the character

Ž wtheory of G over n via the given isomorphism of GrN onto GrM. See 2,
x .Definition 11.23 for the precise definition of character-triple isomorphism.

Ž . Ž .Assume now that t , s is a character-triple isomorphism from G, N, m
Ž .to G, M, n . So t is an isomorphism of GrN onto GrM. Let H be a

subgroup of G containing N. We write Ht to denote the subgroup
M : Ht : G such that HtrM is the image of HrN under t . For every

Ž < . Žsuch H, there exists a certain map s from Ch H m the set of possiblyH
. Ž t < .reducible characters x of H such that x is a multiple of m to Ch H n .N

w xBy Lemma 11.24 in 2 s is a bijection.H
Next, if x is any character of H, we have x g s x gX

for any g, gX g G
Xy1 tsuch that gg g N. Therefore, for t g GrN, we may write x to denote

gx , where g is any element of G such that gN s t.
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For the purpose of the next section, we need character-triple isomor-
Ž . Ž . Ž .phisms t , s : G, N, m ª G, M, n that satisfy the following property:

Ž .P For all subgroups H of G containing N and for all x g
Ž < .Ch H m , we have

Ž .t gg
gs x s s xŽ .Ž .H H

for all g s gN g GrN.

The following fact is easy to prove.

Ž . Ž .3.5 LEMMA. P is preser̈ ed under composition of character-triple iso-
Ž .morphisms, each satisfying P .

Ž . Ž .3.6 LEMMA. Let G, N, m be a character-triple and let w : G ª G be a
Ž . Ž . Ž .surjectï e homomorphism such that ker w : ker m . Let M s w N and

Ž .let n g Irr M be the character corresponding to m, ¨iewed as a character of
Ž . Ž . Ž . Ž .Nrker w . Then, there is an isomorphism t , s from G, N, m to G, M, n

Ž .that satisfies P .

Ž . w xProof. The isomorphism t , s is that provided by 2, Lemma 11.26
Ž .and the fact that this isomorphism satisfies P is easy to check.

Ž . Ž . Ž .3.7 LEMMA. Let G, N, m be a character-triple and let d g Irr G be
Ž .such that d m s n g Irr N . For e¨ery subgroup H of G containing N,N

Ž < . Ž < . Ž .define s : Ch H m ª Ch H n by s u s ud . Let I: GrN ª GrN beH H H
Ž . Ž . Ž .the identity map. Then i, s is an isomorphism from G, N, m to G, N, n

Ž .that satisfies P .

w x Ž .Proof. Lemma 11.27 in 2 says that i, s is a character-triple isomor-
Ž . Ž .phism, and the fact that i, s satisfies P is easy to verify.

Ž . w xLet G, N, m be a character-triple. By Theorem 11.28 in 2 , it is
Ž . Ž .possible to find a character-triple G, M, n isomorphic to G, N, m such

Ž .that M : Z G . The proof of that theorem shows that the associated
isomorphism is a composition of character-triple isomorphisms of the types
of Lemmas 3.6 and 3.7. It follows by Lemma 3.5 that the isomorphism of

Ž .Theorem 11.28 satisfies P . So, we obtain

Ž . Ž .3.8 LEMMA. Let G, N, m be a character-triple. Then, there exists an
Ž . Ž .isomorphic character-triple G, M, n satisfying M : Z G and such that the

Ž .associated isomorphism satisfies P .

Ž .Let G, N, m be a character-triple. The next result shows that, in case m
X Ž .is p -special, the character-triple G, M, n of Lemma 3.8 can be chosen so

X w xthat M is a p -group. The proof is inspired by that of 5, Theorem 5.2 .



A. LARADJI454

Ž . Ž . X3.9 LEMMA. Let G, N, m be a character-triple, where m is p -special.
Ž U U U . U XThen, there exists an isomorphic triple G , N , m , where N is a p -group

Ž U . Ž .contained in Z G and such that the associated isomorphisms satisfies P .

Proof. By Lemma 3.8, there exists an isomorphic character-triple
Ž . Ž .G, M, n , where M : Z G and such that the associated isomorphism

Ž . Žsatisfies P . Note that G is p-separable as GrM ( GrN is p-separable
.and M is central. Since n is linear, we may uniquely write n s ab , where

Ž . Ž .the order o a of a in the group of linear characters of M is a
X Ž .p -number and o b is a p-number. Note that in this situation, n is

p-factorable with a and b as its p X-special and p-special parts, respec-
tively.

X Ž < .Since m is G-invariant, there exists a p -special character w g Irr G m
w x w xby 1, Corollary 4.8 . It follows by 2, Lemma 11.24 that there is a

Ž < . Ž . X Ž .character c g Irr G n where c 1 is a p -number. Let W, g be a
Ž .nucleus of c . As any nucleus of c is G-conjugate to W, g and as

Ž . Ž < . w xM : Z G , we have M : W and g g Irr W n by 9, Lemma 1.2 . By
definition, the character g is p-factorable and satisfies g G s c . Thus,

Ž . X Ž . Xsince c 1 is a p -number, g 1 is a p -number and W contains a Hall
p-subgroup of G. Therefore, for every p g p , a Sylow p-subgroup S of Gp

is contained in W.
Now, factor g s sv, where s is p X-special and v is p-special, and note

Ž . X w xthat v is linear, since g 1 is a p -number. Then, by 3, Lemma 2.2 ,
g s s v , where the irreducible constituents of s are p X-specialM M M M

Ž .linear characters and v is p-special. Thus, g is a sum of linearM M

p-factorable characters, each of which has v as its p-special part.M
Since n is G-invariant and since g lies over n , it follows that those

p-factorable characters are all equal to n . Hence, v s b as b isM
uniquely determined by n . This shows that b extends to W and hence b
extends to S M for every p g p . Now, the quotient group S MrM ofp p

S M by M is a Sylow p-subgroup of GrM. Moreover, b is G-invariant asp
M is central in G. Therefore, b is extendible to some linear character d of

w xG by 2, Theorem 6.26 .
Ž < .Now, by Lemma 3.7, multiplication of all members of Irr L n by

Ž y1 .d , for all subgroups L of G containing M, defines a character-tripleL
Ž . Ž . Ž .isomorphism G, M, n ª G, M, a that satisfies P . Next, by Lemma 3.6,

Ž . Ž .factoring out ker a yields an isomorphic triple G, M, a with a faithful
Ž . Ž .and such that the associated isomorphism G, M, a ª G, M, a satisfies

Ž . Ž .P . We have thus obtained a character-triple isomorphism G, N, m ª
Ž . Ž .G, M, a . This isomorphism satisfies P by Lemma 3.5. Furthermore,

XŽ . < < Ž . Ž .M : Z G and M s o a is a p -number. Therefore, G, M, a fulfills
the desired conditions of the lemma.
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Ž . XLet G, N, m be a character-triple, where m is p -special, and let L be a
Hall p X-subgroup of G. Since L l N is a Hall p X-subgroup of N, the

Ž . w xrestriction m of m to L l N is irreducible by 1, Proposition 6.1 .Ll N
wSo, we obtain the following result as a direct consequence of 3, Corollary

x4.2 .

Ž . Ž . X3.10 LEMMA. Let G, N, m be a character-triple, where m is p -special,
and let L be a Hall p X-subgroup of G. Then, restriction defines a bijection of

Ž < . Ž < . Ž < .Irr LN m onto Irr L m . Furthermore, for any x g Irr G m , theLl N
Ž < .multiplicity of g g Irr LN m as a constituent of x is equal to that of gL N L

as a constituent of x .L

Ž . Ž U U U .Let G, N, m and G , N , m be isomorphic character-triples. So
GrN ( GUrN U , and we fix a particular isomorphism of these groups. If
N : H : G, we write HU to denote the subgroup NU : HU : GU such
that HUrN U is the image of HrN under the fixed isomorphism. We also

Ž < . Ž U < U .denote the associated bijection Ch H m ª Ch H m by ).

Ž . Ž . X3.11 LEMMA. Let G, N, m be a character-triple, where m is p -special,
Ž U U U . Uand assume that G , N , m is an isomorphic character-triple such that N

X Ž < . 0 Ž .Xis a p -group. Let j g Irr G m such that j g I G , then,p

Ž . Ž U .0 Ž U . Ž < . 0
X1 j g I G , and for any x g Irr G m , the multiplicity of jp
0 Ž U .0 Ž U .0as a constituent of x is equal to that of j as a constituent of x .

Ž . Ž < .2 the characters x , x g Irr G m are linked if and only if the1 2
U U Ž U < U .characters x , x g Irr G m are linked.1 2

Proof. Fix a Hall p X-subgroup L of G and recall from our discussion
preceding Lemma 3.10 that the restriction n of m to L l N is irreducible.

Ž < . 0 Ž . Ž U .0
XLet j g Irr G m such that j g I G . We begin by showing that jp

is irreducible.
Ž U .0 Ž U .0 0 0Suppose that j is reducible, in other words, j s z q z for1 2

characters z and z of GU. Since NU is a p X-group and since j U lies1 2
U Ž U < U .over m , we have z , z g Ch G m .1 2

Ž < . U ULet u , u g Ch G m be such that u s z and u s z . Now, let a be1 2 1 1 2 2
Ž < .any character of Irr L n and let m, m , and m be the multiplicities of a1 2

Ž . Ž .as a constituent of j , u , and u , respectively. By Lemma 3.10, thereL 1 L 2 L
Ž < .exists a unique character g g Irr LN m such that g s a and the multi-L

Ž . Ž .plicities of g as a constituent of j , u , and u are m, m , andL N 1 L N 2 L N 1
m , respectively. It follows by the definition of character-triple isomor-2
phism that m, m , and m are the respective multiplicities of g U as a1 2

Ž U . Ž . Ž . U
U U Uconstituent of the restrictions j , z , and z of j ,ŽL N . 1 ŽL N . 2 ŽL N .

Ž .Uz , and z to LN .1 2
Ž .U X U UNext, we note that LN is a Hall p -subgroup of G , as N is a

X Ž U .0 0 0p -group. Now, since j s z q z , we conclude that m s m q m .1 2 1 2
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Ž < .So, we have shown that for every a g Irr L n , the multiplicity of a as a
constituent of j is equal to the sum of the multiplicities of a as aL

Ž . Ž . Ž .constituent of u and u . As the irreducible constituents of j , u ,1 L 2 L L 1 L
Ž . Ž . Ž .and u all lie over n , we conclude that j s u q u and hence2 L L 1 L 2 L

j 0 s u 0 q u 0, contradicting the irreducibility of j 0. This shows that1 2
Ž U .0 Ž U .Xj g I G , as desired.p

Ž < . Ž .Next, let x g Irr G m . If d g Irr L is any Fong character associated
with j 0, then the multiplicity n of j 0 as a constituent of x 0 is equal to

Ž .that of d as a constituent of x see Section 2 .L
Ž < .Since d is a constituent of j , we have d g Irr L n . Therefore, byL

Ž < .Lemma 3.10, there exists a unique character h g Irr LN m such that
h s d and the multiplicity of h as a constituent of x is n. Now, againL L N
by the definition of character-triple isomorphism, n is the multiplicity of

U Ž U . Uh as a constituent of x .ŽL N .
w x U Ž . Ž . U Ž . Ž . U Ž .By 2, Lemma 11.24 , we have j 1 s j 1 m 1 rm 1 and h 1 s

Ž . U Ž . Ž . Ž . Ž . Ž . U Ž .X Xh 1 m 1 rm 1 . Since j 1 s d 1 s h 1 , we conclude that j 1 sp p
U Ž .h 1 . Moreover, as d is a constituent of j , the character h is aL

constituent of j by Lemma 3.10, and it follows that hU is a constituentL N
Ž U . U Ž U .0

Uof j . This says that h is a Fong character associated with j ,ŽL N .
Ž .U X Usince LN is a Hall p -subgroup of G . Consequently, the multiplicity of

Ž U .0 X U Ž .j as a p -constituent of x is exactly n. This proves 1 .
Ž .Next, we prove 2 . First, assume that x and x are linked by u g1 2

Ž . Ž < . Ž . Ž U .0
XB G . Then u g Irr G m by Lemma 3.2, and it follows by 1 that up

Ž U .0 Ž U .0 U Uis a constituent of both x and x . Hence x and x are linked.1 2 1 2
U U Ž U .XConversely, assume that x and x are linked by e g B G . Then1 2 p

Ž U < U . U X Ž < .e g Irr G m as N is a p -group. Let s g Irr G m be such that
U Ž . Ž < .Xs s e . Then, any character v g B G such that d / 0 lies in Irr G mp sv

Ž . Ž U .0 0by Lemma 3.2. It follows by 1 that v is a constituent of e with
0 0 Ž .Xmultiplicity d . Since e is irreducible, we conclude that s g I G .sv p

Ž . 0Now, again by 1 , the respective multiplicities of s as a constituent of
x 0 and x 0 are equal to the respective multiplicities of e 0 as a constituent1 2

Ž U .0 Ž U .0 U Uof x and x . Since e links x and x , we conclude that x and1 2 1 2 1
Ž .x are linked. This finishes the proof of 2 .2

Ž . Ž . X3.12 LEMMA. Let G, N, m be a character-triple, where m is p -special
Ž U U U . Uand assume that G , N , m is an isomorphic character-triple such that N

X U Ž � U 4.is a p -group. Then, the correspondence BB ¬ BB s x : x g BB is a
Ž < . U Ubijection of Bl G m onto the set of p-blocks of G o¨er m .p

Ž < . U UProof. Let BB g Bl G m . If a , a g BB are linked, then a , a arep 1 2 1 2
UŽ .linked by Lemma 3.11 2 . Therefore, BB is a subset of some p-block BB of

U U UG over m . We claim that BB s BB.
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U Ž < .Suppose that BB / BB. Then, we may choose a , a g Irr G m such0
U U U U Ž .that a g BB, a g BB_ BB , and a , a are linked. By Lemma 3.11 2 , it0 0

follows that a and a are linked and hence a g BB, contradicting our0 0
Uchoice. Therefore, BB s BB, as claimed.

U Ž < .So, the correspondence BB ¬ BB is a well-defined map from Bl G mp

to the set of all p-blocks of GU over mU. This map is clearly 1]1 and we
see next that it is onto.

˜ U U ˜Let BB be a p-block of G over m , and let b be any character of BB.
X Ž .Then, the relative p-block BB of G with respect to N, m , containing the

X U ˜Ž .preimage of b under ), satisfies BB s BB. This proves that our map is
onto, thus finishing the proof of the lemma.

Finally, we are ready to prove the main result of this section.

Ž U U U .Proof of Theorem 3.1. Let T , N , m be a character-triple isomor-
Ž .phic to T , N, m as in Lemma 3.9. We use throughout this proof the )

notation, introduced just before Lemma 3.11.
Ž < . Ž < .Let L be the bijection of Irr T m onto Irr G m obtained by inducing

the characters. The composition C of Ly1 with ) is clearly a bijection of
Ž < . Ž U < U . Ž < 0.XIrr G m onto Irr T m . Next, let u g I G m , and note that T sp

Ž 0. 0I m , since m uniquely determines m. Assume that j and j areG 1 2
Ž < . 0 0 y1Ž .characters of Irr G m such that j s j s u . Let z s L j and1 2 1 1

y1Ž .z s L j . We have2 2

G 0 0 G0 G 0 0 G 0z s z s j s u s j s z s z .Ž . Ž . Ž . Ž .1 1 1 2 2 2

w Ž .x 0 0 Ž < 0.XIt follows by 4, Proposition 3.2 a that z s z g I T m . Now,1 2 p
0 0 Ž . Ž U .0 Ž U .0 Ž U .Xsince z s z , Lemma 3.11 1 implies that z s z g I T . We1 2 1 2 p

0 Ž < 0. Ž U < U .X Xhave thus obtained a well-defined map C from I G m to I T mp p

Ž < 0. Ž U .0 U Ž .Xtaking an element u g I G m to the element z , where z s C jp

Ž < . 0for any character j g Irr G m satisfying j s u .
We claim that C0 is a bijection. First, note that C0 is a composition of

Ž < 0.Xtwo maps F and V. The map F sends u g I G m to the uniquep

Ž < 0. G
Xelement w g I T m satisfying w s u , and the map V sends t gp

Ž < 0. Ž U < U . Ž U .0
X XI T m to the unique element n g I T m such that n s r , forp p

Ž < . 0any character r g Irr T m satisfying r s t .
w Ž .x Ž < 0. Ž < 0.X XBy 4, Proposition 3.2 a , F is a bijection of I G m onto I T m ,p p

and to show that C0 is a bijection, it suffices to show that V is a bijection
Ž < 0. Ž U < U .X Xof I T m onto I T m .p p

Ž < 0.XLet t , t g I T m such that t / t . Since t is irreducible, it is1 2 p 1 2 1
obvious that the multiplicity of t as a constituent of t is zero. It follows2 1

Ž . Ž . Ž .by Lemma 3.11 1 that the multiplicity of V t as a constituent of V t2 1
Ž . Ž .is zero. Therefore, V t / V t and V is 1]1.1 2
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Ž U < U . Ž U . Ž U < U .X XNext, let n g I T m . Then, there exists h g B T l Irr T mp p
0 Ž < . Usuch that n s h . Let v be the element of Irr T m satisfying v s h.

Ž . 0 Ž < 0.XSince n is irreducible, Lemma 3.11 1 implies that v g I T m . Now,p

Ž 0. Ž U .0 0V v s v s h s n . This shows that V is onto. Therefore, V is a
bijection, as desired.

Ž . 0 Ž .Part a is trivially satisfied by the definition of C . To show b , let
Ž < . Ž < 0.Xx g Irr G m and let u g I G m . If w is the unique element ofp

Ž < 0. G 0
XI T m satisfying w s u , the multiplicity of u as a constituent of x isp

y1Ž .0equal to that of w as a constituent of L x by Lemma 3.3. Next, let z
Ž . Ž < . 0

Xbe the character of B T l Irr T m such that z s w. Then, by Lemmap

Ž . y1Ž .03.11 1 , the multiplicity of w as a constituent of L x is equal to that
0Ž . Ž . Ž U .0 Ž .0of C u s V w s z as a constituent of C x . Therefore, the

0 0Ž .multiplicity of u as a constituent of x is equal to that of C u as a
Ž .0 Ž .constituent of C x . This proves b .

Ž .Finally, c follows from Lemmas 3.4 and 3.12. This finishes the proof of
the theorem.

4. DEFECT GROUPS

Throughout this section, we fix a p-separable group G, a normal
X Ž .subgroup N of G, and a p -special character m of N. Let T s I m andG

Ž < . Ž < .denote by L, the bijection of Irr T m onto Irr G m obtained by inducing
the characters.

Ž < .Now, let BB g Bl G m and let BB be the relative p-block of T withp 0
Ž . Ž .respect to N, m such that BB s L BB . To define the ‘‘defect groups’’ of0

BB, we first need to define the defect groups of BB .0
Let K be the normal subgroup of T containing N such that KrN s
Ž . Ž < . w xXO TrN . If z g Irr T m , then by Lemma 2.3 in 3 , there exists ap

p X-special character d of K such that d is a constituent of z . By LemmaK
Ž . Ž < .X3.2, for v g B T such that d / 0, we have v g Irr T d . Hence, thep zv

constituents of v are precisely the constituents of z by Clifford’sK K
Žw x. Ž < .theorem 2, Theorem 6.2 . It follows that if z 9 g Irr T m is linked to z

by v, then z X also lies over the T-orbit of d . This implies that the
characters of BB all lie over the T-orbit of some p X-special character n of0 $
K and so BB is a subset of some relative p-block BB of T with respect to0 0$
Ž .K, n . Now, assume that z g BB and z g BB satisfy d / 0 and1 0 2 0 z s1

Ž .Xd / 0 for some s g B T . Then, since n lies over m, the character zz s p 22 $
lies over m, and it follows that z g BB . This shows that BB s BB . In other2 0 0
words, BB may also be viewed as a relative p-block of T with respect to0
Ž .K, n .
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Ž .Let S s I n . We inductively define the set of defect groups of BB asT 0
follows:

If S s T , the defect groups of BB are the Hall p-subgroups of T.0
If S - T , then by Lemma 3.4 and via the associated bijection, there

X Ž .exists a unique relative p-block BB of S with respect to K, n correspond-0
Ž .ing to BB , regarded as a relative p-block of T with respect to K, n .0

Define the defect groups of BB to be the T-conjugates of any defect group0
of BB

X . Note that, since BB determines n uniquely up to T-conjugacy, this0 0
definition does not depend on the choice of n .

Finally, we define the defect groups of BB to be the G-conjugates of any
defect group of BB . Since m is determined by BB up to G-conjugacy, this0
definition does not depend on the choice of m.

It is clear that the defect groups just defined form a single G-conjugacy
class. Furthermore, this definition agrees with that of defect groups of

Ž . Ž² : . Ž w x .Slattery p-blocks, when N, m s 1 , 1 . See 9, Definition 2.2 .²1:
Ž < .If BB g Bl G m , then it clearly follows from the definition of defectp

groups that any Hall p-subgroup L of N is contained in some defect
group P of BB. Thus, P l N s L. But, any defect group D of BB is equal
to P x for some x g G. Therefore,

xx xD l N s P l N s P l N s L g Hall N .Ž . Ž .p

So, we have the following fact.

Ž . Ž < .4.1 LEMMA. Let BB g Bl G m . Then, for any defect group D of BB,p

Ž .we ha¨e D l N g Hall N .p

Ž U U U . Ž .Now, let T , N , m be a character-triple isomorphic to T , N, m as in
Theorem 3.1, and recall from the proof of that theorem that the associated

Ž .isomorphism satisfies property P . Accordingly, denote by C the bijection
Ž < . Ž U < U . y1of Irr G m onto Irr T m , obtained by composing L with the map ).

Ž .The following result shows that the defect groups of BB and of C BB

are closely related.

Ž . Ž < .4.2 THEOREM. Let BB g Bl G m . Then, there exists a defect group Dp
U ˜ U ˜Ž . Ž .of BB such that DN s DN for some defect group D of C BB .

We prove this theorem by induction. To achieve that, we first need to
construct a certain character-triple isomorphism from a character-triple

Ž .isomorphism that satisfies P . It should be noted that this construction is
general.

Ž . Ž . Ž .Let t , s : A, M, g ª B, L, e be a character-triple isomorphism
Ž .that satisfies P . Let K be a normal subgroup of A containing M,

Ž < . Ž . Ž .n g Irr K g , J s I n , and h s s n .A K
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Ž . Ž . Ž a. bSince t , s satisfies P , we have that for every a g A, s n s h ,K
Ž .where b is any element of B such that bL s t aM . It follows by the

t Ž .definition of character-triple isomorphism that J s I h . Next, t re-B
stricts to an isomorphism from JrM onto JtrL. So, we may define an
isomorphism t X: JrK ª JtrKt by associating to the element xK of JrK ,

t t t Ž .the element yK of J rK , where y is any element of t xM . For
t XŽ . tK : U : J, it is clear that the inverse image in J of t UrK is U .

Ž < . Ž .Moreover, if x g Ch U n , the character s x lies over h. Thus, weU
X Ž < . Ž t < . X Ž .obtain a well-defined map s : Ch U n ª Ch U h by taking s x sU U

Ž . Ž < . X Xs x for x g Ch U n . Let s denote the union of the maps s for allU U
K : U : J. Now, the following fact can be easily verified.

Ž . Ž X X.4.3 LEMMA. The pair t , s is a character-triple isomorphism from
Ž . Ž t t . Ž .J, K, n to J , K , h which satisfies P .

Now, we are able to prove Theorem 4.2.

Proof of Theorem 4.2. Let BB be the relative p-block of T with respect0
Ž . Ž .to N, m such that BB s L BB . By definition, any defect group of BB is0 0

also a defect group of BB. So, it suffices to show that BB has a defect0
U ˜ U ˜ UŽ . Ž .group D such that DN s DN for some defect group D of BB s0

Ž .C BB .
Let K be the normal subgroup of T containing N such that KrN s
Ž . X

XO TrN , and choose a p -special character n of K that lies under everyp

Ž .character of BB . Further, denote by S the inertial group I n of n in T.0 T
U U Ž U U .XNow, since TrN ( T rN , we have KrN ( O T rN . Further-p

U X Ž U U . Ž U . U
X Xmore, as N is a p -group, we have O T rN s O T rN . Itp p

U Ž U .Xfollows that K s O T . Note that since every character of BB liesp 0
Ž .U U U Ž Ž U ..Xover n , the p-block BB of T lies over n g Irr O T .0 p

Ž .Next, recall that the character-triple isomorphism T , N, m ª
Ž U U U . Ž . U Ž U . ŽUT , N , m satisfies P . So S s I n see the discussion precedingT

. Ž .Lemma 4.3 and by Lemma 4.3, we get an isomorphism S, K, n ª
Ž U U U . Ž .S , K , n which satisfies P .

U U Ž U . U
UFirst, if S s T , then S s T and hence I n s T . By definition,T

any Hall p-subgroup P of T is a defect group of BB .0
Ž .U U Ž .We have PN rN ( PNrN and PNrN g Hall TrN . Therefore,p

Ž .U U Ž U U . Ž .UPN rN g Hall T rN , and it follows that PN contains a Hallp
˜ U U

X
U U<Ž . < < < Ž .p-subgroup P of T . Now, as PN s N , we conclude that PNp

˜ U ˜ Uw x Ž .s PN . By Definition 2.2 in 9 , P is a defect group of BB . So, we are0
done in this case.

Next, assume that S - T. We view BB as a relative p-block of T with0
Ž . Xrespect to K, n and we let BB be the relative p-block of S with respect0

Ž .to K, n corresponding to BB via Lemma 3.4. By the definition of defect0
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groups, we may choose a defect group D of BB that is also a defect group0
of BB

X .0
Ž . Ž U U U .The isomorphism S, K, n ª S , K , n takes any character j g

Ž < . U Ž U U .Irr S n to the character j g Irr S N n and so by Lemma 3.12, the
Ž X .U � U X 4 U Ucharacter-set BB s u : u g BB is a p-block of S over n . By induc-0 0

U ˆ U ˆ X UŽ . Ž .tion DK s DK for some defect group D of BB .0
w x XNow, the index DK : DN of DN in DK is a p -number. Furthermore,

wŽ .U Ž .U x w x Ž .U UDK : DN s DK : DN as DNrN ( DN rN and DKrN (
Ž .U U wŽ .U Ž .U x X Ž .UDK rN . Therefore, DK : DN is a p -number, and hence DN

U U ˆ U UŽ . Ž .contains a Hall p-subgroup of DK . But since DK s DK and K is
X ˆ U UŽŽ . . Ž .a p -group, we have that D g Hall DK . It follows that DNp

U ˜ ˆ ˜ UŽ . ŽŽ . .contains a DK -conjugate D of D. Now, D g Hall DN andp
U U U ˜ UŽ . Ž .DN rN is a p-group. Thus DN s DN .

T X wIf x g BB , then x s u for a unique character u g BB and by 2,0 0
x U Ž U .T U w xLemma 11.35 x s u . Theorem 2.10 in 8 now says that the p-block

Ž X .U U U U U U wBB of S over n corresponds to the p-block BB of T over n . By 9,0 0
ˆ U ˜xDefinition 2.2 , D is a defect group of BB . Therefore D, being a0

U ˆ UT -conjugate of D, is a defect group of BB . This ends the proof of the0
theorem.

w xThe next result is analogous to 9, Theorem 2.11 .

Ž . Ž < .4.4 THEOREM. Let x g BB g Bl G m . Then, there exist a subgroup Wp

Ž . Gof G and a character g g Irr W satisfying g s x and such that a Hall
p-subgroup Q of W is contained in some defect group of BB.

Ž U U U . Ž .Proof. Let T , N , m be a character-triple isomorphic to T , N, m
as in Theorem 3.1, and denote by t , the associated isomorphism from TrN
onto TUrN U.

Ž < . G ULet w g Irr T m such that w s x . Then, the character w g
Ž U < U . Ž . U U wIrr T m belongs to the p-block C BB of T over m . Now, by 9,

ˆ U ˆx Ž .Theorem 2.11 , if W, g is a nucleus for w , then a Hall p-subgroup P ofˆ
ˆ ˆ U XŽ .W is contained in some defect group D of C BB . Since N is a p -group

U U U ˆ U
Uand since m is T -invariant, N : W and m is a constituent of g byˆN

w xLemma 1.2 in 9 . Let W be the subgroup of T containing N such that
U ˆ UŽ < . w xW s W, and let g g Irr W m such that g s g . By Lemma 11.35 in 2 ,ˆ

Ž T .U Ž .T U U Twe have g s g s w . But then, g s w, as ) is a bijection ofˆ
Ž < . Ž U < U . G GIrr T m onto Irr T m . Now, since w s x , we have g s x , and we

show below that a Hall p-subgroup of W is contained in some defect
group of BB.

ˆ ˆ ˆ U U ˆ UŽ . Ž .Since P g Hall W , we have PN rN g Hall WrN and thereforep p
y1 ˆ U U ˆ UŽ . Ž . Ž .t PN rN g Hall WrN as t WrN s WrN . Hence, if V is thep

y1 ˆ U UŽ .subgroup of T such that VrN s t PN rN , we have V s QN for
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Ž . w x w xw x XQ g Hall V . Now, the index W : Q s W : V V : Q is a p -number asp

w x w x X Ž .W : V and V : Q are p -numbers. It follows that Q g Hall W .p
ˆ U U ˆ ˆŽ . Ž .Next, t QNrN s t VrN s PN rN and as P : D, we get

ˆ U UŽ .t QNrN : DN rN . Now, by Theorem 4.2, we can find a defect group
U ˆ b U UŽ . Ž .D of BB such that DN s D N for some b g T . Therefore,

U by1 ˆ U y1 y1 U�Ž . 4 Ž .DN s DN . Then, if a g t b N , we have

a y1U UŽ .t a N bU U U Uˆt DN rN s DN rN s DN rN s DN rN .� 4 � 4Ž . Ž . Ž .� 4

Ž .aIt follows that QNrN : DN rN, since t is an isomorphism, and so
Ž .a a aQ : QN : DN s D N. By definition of defect groups, D is also a

a Ž .defect group of BB and by Lemma 4.1, D l N g Hall N . Hence,p

< a < < a <w a x < a < a Ž a .D N s D N : D l N s D . In other words, D g Hall D N .p p p

Consequently, Q : Dan for some n g N. So, we have shown that the Hall
p-subgroup Q of W is contained in the defect group Dan of BB, thus
finishing the proof of the theorem.

As a consequence of Theorem 4.4, we obtain the following analogue of
w x9, Theorem 2.12 .

Ž . Ž < .4.5 THEOREM. Let x g BB g Bl G m and let D be a defect group ofp

BB. Then, for x g G such that x is not conjugate to any element of D, wep

Ž .ha¨e x x s 0.

Proof. By Theorem 4.4, there exist a subgroup W of G, a character
Ž . Gg g Irr W , and a Hall p-subgroup Q of W such that x s g and Q is

contained in some G-conjugate of D.
Let x g G be such that x is not conjugate to any element of D. Thenp

x is not conjugate to any element of Q, and it follows that x is notp

conjugate to any element of W. Since x is induced from W, we conclude
Ž .that x x s 0, as claimed.

In the remainder of this paper, we present a version of Brauer’s
Ž .height-0-conjecture. We start by defining a relative height function

w xfollowing 9 .

Ž . Ž < .4.6 DEFINITION. Let BB g Bl G m having D as a defect group. Forp

x g BB, define

< <x 1 DŽ .p
h x s .Ž .m < <G p

Ž . ŽThe number h x is called the relatï e height of x with respect tom

Ž .. w xN, m . Note that our definition agrees with 9, Definition 2.13 when
² :m s 1 , the trivial character of 1 .²1:
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Ž U U U .Now, throughout the remainder of this section, we let T , N , m be a
Ž .character-triple isomorphic to T , N, m as in Theorem 3.1, and as before,

Ž < . Ž U < U .we let C be the corresponding bijection of Irr G m onto Irr T m . For
U Ž .a character u in a p-block of T , we write h u to denote Slattery’s height

of u .
Our version of Brauer’s height-0-conjecture, as well as other results

relating to relative heights, are consequences of the following key result.

Ž . Ž < . Ž . Ž Ž ..4.7 LEMMA. Let x g BB g Bl G m . Then h x s h C x .p m

Proof. By Theorem 4.2, we may choose a defect group D of BB such
U ˜ U ˜Ž . Ž . Ž < .that DN s DN for some defect group D of C BB . Let w g Irr T m

such that x s w G. Then,

< < < < < <w xx 1 D G : T w 1 D w 1 DŽ . Ž . Ž .p p p p
h x s s s .Ž .m < < < < < <G G Tp p p

w x Ž . U Ž . U Ž . Ž . Ž .Next, by 2, Lemma 11.24 , w 1 m 1 s w 1 m 1 . Therefore, w 1 sp
U Ž . Ž . U Ž . Xw 1 , as both m 1 and m 1 are p -numbers. Furthermore, TrN (p
U U U X < < < U < < <T rN and N is a p -group. Hence T s T N and we getp p p

< < U < <w 1 D w 1 DŽ . Ž .p p
h x s s .Ž .m U< < < < < <T T Np p p

U ˜ U ˜ U U UŽ .As DN s DN , we have DNrN ( DN rN . Now, since N is a
X ˜ ˜< < < < < <p -group, it follows that DrD l N ( D. So D s D l N D , and by

˜< < < < < <Lemma 4.1 D s N D .p

Finally, we have

U U ˜< < < <w 1 D w 1 DŽ . Ž .p p
h x s s s h C x ,Ž . Ž .Ž .m U U< < < < < <T N Tp p p

Ž . U Ž .as C x s w g C BB .
w xAs a consequence of this lemma and 9, Theorem 2.5 , we deduce that

relative heights are positive integers, as should be expected.
To formulate the next results, we need one further definition.

Ž . Ž < .4.8 DEFINITION. Let BB g Bl G m . We say that a character x of BBp

Ž .is of relatï e height 0 in BB, provided h x s 1.m

w xClearly, relative height 0 characters are height 0 in the sense of 9 when
m s 1 .²1:
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w xOur next result follows from Lemma 4.7 and 9, Theorem 2.15 .

Ž . Ž .4.9 THEOREM. E¨ery relatï e p-block of G with respect to N, m has a
relatï e height 0 character.

w xIn 9 , Slattery proved half of Brauer’s height-0-conjecture for p-blocks
Ž w x.of p-separable groups see 9, Corollary 2.17 . The other half was estab-

Ž w x.lished by Manz and Staszewski see 7, Theorem 3.3 . We present here a
version of that conjecture for relative p-blocks of p-separable groups.

Ž . Ž < .4.10 THEOREM. Let BB g Bl G m ha¨ing D as a defect group. Thenp

DrD l N is abelian if and only if each character in BB is of relatï e height 0.

Proof. By Theorem 4.2, we may choose a defect group D of BB such0
˜ U U ˜ Ž .that D NrN ( DN rN for some defect group D of the p-block C BB0

U U X ˜of T . Now, since N is a p -group, D rD l N ( D, and as D is0 0
˜G-conjugate to D , we have DrD l N ( D as well. Hence, DrD l N is0

˜ ˜w xabelian if and only if D is abelian. By 9, Theorem 2.18 , D is abelian if
Ž .and only if each character in C BB is height 0. On the other hand, Lemma

Ž .4.7 implies that each character in C BB is height 0 if and only if each
character in BB is of relative height 0. Our result is now immediate.

5. SOME EXAMPLES

Let G be a p-separable group, N a normal subgroup of G, and m a
p X-special character of N. A natural question one may ask is whether each

Ž .relative p-block of G with respect to N, m is just the intersection of
Ž < .some ordinary p-block of G with the set Irr G m . The answer is ‘‘no’’ in

general, as illustrated by the following example.

Ž .5.1 EXAMPLE. Let G s S , the symmetric group on four symbols,4
� 4 Ž .p s 2 , N s O G , and m s 1 , the trivial character of N. It is clear2 N

that m is 2X-special.
Ž < .The set Irr G m consists exactly of three characters. Two of these

characters x s 1 and x are linear and the third x has degree 2.1 G 2 3
Ž w x.Referring to the character table of S see p. 287 in 2 , we see that4

0 0 Ž .Xx s x . It follows that x is the only linear character in B G l1 2 1 2
Ž < .Irr G m and that x and x are linked by x .1 2 1

Ž .XBy Lemma 3.2, every character w g B G such that d / 0 must lie2 x w3
Ž < .in Irr G m . So, were x or x linked to x , we would necessarily have1 2 3

0 0 Ž . Ž .x s 2 x . But this is impossible, as x g s y1 and 2 x g s 2 for any3 1 3 1
element g g G of order 3. Hence, we conclude that x is not linked to3

� 4 � 4either x or x . Therefore, BB s x , x and BB s x are precisely1 2 1 1 2 2 3
Ž .the relative 2-blocks of G with respect to N, m .
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Ž . ² :XNow, since O G s 1 , the group G has a single 2-block, namely, the2
Ž < . Ž < .principal 2-block B and B l Irr G m s Irr G m s BB j BB .1 2

We next give an example, where Theorem 4.5 applies, but its ordinary
Žw x.p-block analogue 9, Theorem 2.12 does not for the same group.

Ž .5.2 EXAMPLE. We keep the notation of Example 5.1. In that example,
Ž .we have seen that G has a relative 2-block BB with respect to N, m2

Ž < .consisting of the single character x of Irr G m of degree 2. By Theorem3
4.9, this character x is of relative height 0. It follows that if D is some3

< <defect group of BB , then D s 4. Now, since N : D by Lemma 4.1, we2
< <conclude that D s N as N s 4.

Let h be an element of G of order 4. Then, clearly h is not conjugate to
Ž .any element of D, and so x h s 0 by Theorem 4.5. On the other hand,3

x belongs to the unique 2-block of G, namely, the principal 2-block B.3
Certainly, h is contained in some Sylow 2-subgroup P of G and P is a

w xdefect group of B. In this situation, Theorem 2.12 of 9 does not apply for
x and h.3

The last example of this section shows that Theorem 4.10 is not just a
Žw x.consequence of the ordinary height-zero result 9, Theorem 2.18 applied

to the same group. Here again, we keep the notation of Example 5.1.

Ž .5.3 EXAMPLE. The relative 2-block BB of G contains exactly 2 linear1
characters. These characters are of relative height 0 by Theorem 4.9.
Moreover, by the definition of relative heights, BB has a Sylow 2-subgroup1

w xP of G as a defect group. Clearly P l N s N and since P : N s 2, the
quotient group PrN is abelian. However, the single ordinary 2-block B of
G has the Sylow 2-subgroup P as a defect group and P is not abelian.
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