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Hexagonal quasigroups arise from the decomposition of complete graphs
into 2-perfect edge-disjoint systems of 6-cycles: given distinct vertices a, b
we define the product ab to be the unique vertex such that (a, ) and
(b, ab) are adjacent edges in the same 6-cycle. With one exception, the
axioms for these decompositions can be expressed in terms of identities.
The one exception is the requirement that 6-cycles consist of 6 distinct ver-
tices; this requirement can be met by the implication ab = ba=a=5. Can
this implication be replaced by some identities? The answer is no and yes.
It is no in that the implication is not equivalent to a set of identities;
hexagonal quasigroups form a quasivariety which is not a variety and so
cannot be axiomatized by identities alone. But it is yes in the sense that the
quasivariety of hexagonal quasigroups contains a subvariety whose
spectrum (the set of cardinalities of its finite members) differs from that
of hexagonal quasigroups by only a finite set.

Let G, be the complete graph (undirected and without loops) on »
vertices. Suppose that we can decompose G, into edge-disjoint 6-cycles
(a 6-cycle consists of the 6 edges (a, b), (b, c), (c,d), (d,e), (e, /), ([, a)
where {a, b,c,d, e, f} is a set of 6 distinct vertices); call such a decom-
position a 6-cycle system. Define a binary operation (denoted by e« or
merely by juxtaposition) on the vertex set by: for distinct a, b let ab be
the unique vertex such that edges (a, ») and (b, ab) belong to the same
6-cycle. Complete the definition of the operation by setting aa=a for
every vertex a. Since we are dealing with undirected graphs and undirec-
ted 6-cycles, we must have (ab)b = a; note that this holds even when a=5
since aa = a. The 6 elements in the 6-cycle determined by (q, b) are a(ba),
ba, a, b, ab, b(ab); thus, we must have a(ba)= (ab)(b(ab)) (which again is
true when a=5).
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Unfortunately, our operation is not a quasigroup operation. The identity
(ab)b = a forces every column of the opertion’s table to be a permutation,
but nothing so far forces every row to be a permutation. Indeed, on a
9-element set it is easy to find a 6-cycle system, but it is known that no
such system yields a quasigroup. The additional condition we need to
impose on 6-cycle systems is that for distinct vertices a, b there is a unique
6-cycle in which they are distance 2 apart. That is to say, there is a unique
vertex ¢ such that (g, ¢) and (c, b) are consecutive edges on the same
6-cycle. Such 6-cycle systems will be called 2-perfect. So we define a new
operation (denoted *) so that a * b is the unique vertex such that (q, a * )
and (a=*b,b) belong to the same 6-cycle; again, we define axa=a
(notice that # is commutative). By existence, we have a(a * ) = b, while by
uniqueness, we have a * ab=»,. Thus, our new operation guarantees that
our old operation is now a quasigroup. For an extensive discussion of
2-perfect 6-cycle systems, see the paper of C. C. Lindner, K. T. Phelps and
C. A. Rodger, [1].

We have still to guarantee that a 6-cycle consists of 6 distinct vertices.
The implication ab = ba = a=b must hold if a 6-cycle consists of 6 distinct
vertices. On the other hand, it is straightforward to show that the above
identities and the implication force every 6-cycle to consist of 6 distinct ver-
tices. Thus, we define H, the class of hexagonal quasigroups, to be the class
of all algebras ¢ Q;», x> such that:

(*) xx=x, (xy)y=x, x(yx)=(xp)(y(xy)), x* x=2x, x(x* y)=y,
x*xxy=y and

(**) xy=yx=>x=y.

It is now a simple exercise to show the equivalence of hexagonal
quasigroups with 2-perfect 6-cycle systems.

While 2-perfect 6-cycle systems are of interest to combinatorialists only
on finite sets (in part because on any infinite set it is easy to construct
a 2-perfect 6-cycle system), the definition applies equally well to infinite
sets. The spectrum of a class of structures is the set of cardinalities of the
finite members of the class. It is easy to see that finite 6-cycle systems
must have cardinality n=1 or 9 mod 12: since each vertex of G, has
degree n—1 and each vertex of a 6-cycle has degree 2, » must be odd,
and as each 6-cycle contains 6 edges, n(n — 1) must be divisible by 12. It
is known that the spectrum of the class of 2-perfect 6-cycle systems is all
n=1 or 9 mod 12 except for n=9 (see [1]). Thus, in a sense now to be
made precise, 2-perfect 6-cycle systems are a “large” subclass of the class
of 6-cycle systems. Call two classes of structures cospectral if they have
the same spectra and eventually cospeciral if the symmetric difference of
their spectra is a finite set (of course, this latter condition is equivalent to
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saying that for some n their spectra coincide past n). Thus, a subclass of
a class is “large” precisely if its spectrum is eventually cospectral with that
of the larger class.

Now we can precisely formulate our two questions, the answers to
which are, respectively, no and yes. Is H axiomatizable by a set of iden-
tities (i.e., is H a variety)? If not, does H contain an eventually cospectral
subvariety?

To show that the answer to the first equation is no, we must construct
a hexagonal quasigroup with a quotient that is not a hexagonal
quasigroup. For this, note that the 3-element quasigroup ({0, 1,2};s, )
where xe y=x* y= —x —y (mod 3) satisfies (*) but not (**). The proof
is then completed by showing that the 2-generated free algebra satisfying
(*) also satisfies (**). But this follows readily from an inductive construc-
tion of the “free” 2-generated 2-perfect 6-cycle system: every cycle in it
consists of 6 distinct elements and so (**) is satisfied.

THEOREM 1. H is not a variety.

Since combinatorialists only care about the finite members of H, we
should eliminate the possibility that the finite members of H might be
contained in a proper subvariety of H. This will not be possible if we can
show that H is generated by its finite members. But this will follow if every
finite partial 2-perfect 6-cycle system can be embedded in a finite 2-perfect
6-cycle system. This, in turn, follows from a generalization by R. M. Wilson
of his block design techniques found in [7]. Unfortunately, this generaliza-
tion has not yet appeared in print.

Showing that the answer to the second question is yes is more difficult,
but interesting. Since the spectrum of H contains 13 and 21, we can choose
H,;, H;, eH with [H ;| =13 and |H,,| =21. Let V,(H,3, H, )=V be the
variety determined by the set of identities in at most 2 variables true in
both H,; and H,,. The proof is completed by showing that V is contained
in H, and that the spectrum of V is eventually cospectral with that of H.
This is done in the following two lemmas.

LEmMma 1.V is a subclass of H.

Proof. Both H,; and H,, are plain; that is, each is simple and has no
proper non-trivial subquasigroups. To see this, note that for idempotent
algebras, congruence blocks are subalgebras, so the second property
implies the first. As H is a quasivariety, it is closed under forming sub-
quasigroups, and 13 is the cardinality of the smallest non-trivial member of
H. But in any quasigroup, subquasigroups have cardinality at most 1/2
that of the quasigroup; hence, H,, and H,, are plain. Since quasigroups are
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congruence permutable and hexagonal quasigroups are idempotent, it now
follows from a lemma of R. S. Pierce (stated as problem 15a on page 91 of
[5]) that every finite quasigroup in the variety generated by H,; and H,,
is a direct product of copies of H,; and H,,. Thus, H,; and H,, are the
only finite subdirectly irreducible algebras in the variety they generate; a
compactness argument (see [6]) now shows that that they are the only
subdirectly irreducible algebras in the variety they generate. This means
that V(H,;, H,,), the variety generated by H,; and H,,, is actually the
quasivariety generated by H; and H,,, and so V(H,;, H,,) is a subclass
of H. As H is axiomatized by identities and implications in at most 2
variables, it has the property that if H is any quasigroup such that all its
2-generated subquasigroups belong to H, then so does H itself. This means
that V is a subclass of H.

LEMMA 2. The spectrum of V is eventually cospectral with that of H.

Proof. Consider the class B(13,21) of linear spaces with block sizes
from {13, 21}; that is, the class of all decompositions of complete graphs
into edge-disjoint copies of complete graphs on 13 and/or 21 vertices.
A simple argument shows that the spectrum of B(13, 21) is contained in the
set {n|n=1or9 mod 12}. R. M. Wilson’s Eventual Sufficiency Theorem
(see [7]) states that the spectrum of B(13, 21) differs from {n|n=1o0r9
mod 12} by only a finite set. Let Be B(13, 21); if on the vertices of B we
can construct a quasigroup H(B) e V, then we will have proved the lemma.
But this is easy: on each block of size 13, define a quasigroup isomorphic
to H,;, and on each block of size 21, define a quasigroup isomorphic to
H,,. Since distinct blocks intersect in at most one vertex, this defines our
quasigroup H(B); since each pair of distinct vertices of B belong to a
unique block, each 2-generated subquasigroup of H(B) belongs to V and
so H(B) belongs to V. This completes the proof of the lemma.

THEOREM 2. 'V is an eventually cospectral subvariety of H.

It is trivial that V is a finitely based variety. In fact, it is an arithmetical
variety and so is I-based by [4] (recall that a variety is arithmetical if 1t
is both congruence permutable and congruence distributive). This follows
from R. McKenzie’s analysis of paraprimal varieties in [3]. A finite algebra
A is paraprimal if it is congruence permutable and is subsimple (every
subalgebra, including A itself, is simple). Thus, both H,; and H,, are
paraprimal. A variety is paraprimal if it is congruence permutable and
generated by a finite set of paraprimal aigebras. Thus, V(H;, H,,) is
paraprimal. Since arithmeticality is determined by 2-variable identities, V
will be arithmetical provided that V(H;, H,;) is. This means that we need
to show that V(H,;, H,,) is congruence distributive. An algebra A is affine
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if there is a unitary left R-module M on the set 4 such that all operations
of A are module polynomials on M, and x — y +z is a term function of A.
The author thanks the referee for pointing out the following lemma with a
different proof (using the “term condition™).

LEMMA 3. No non-trivial hexagonal quasigroup is affine.

Proof. Let A be an affine hexagonal quasigroup derived from the
unitary left R-module M. We write xy =ax + by + ¢; the law xx = x forces
¢=0 and b=1—a:xy=ax+(1—a)y Similarly, x* y=bx+ (1 —-5b)y.
The law (xy)y=y forces a’x=x, while the law x = y= y+ x forces
2bx = x. The laws x(x * y) = y = x * xy force abx = bax = ax + bx. But then
2bx = x forces ax = —x so that xy = —x+ 2y. The law x( yx) = (xy)(y(xy))
forces 6x = 0. But then 2bx = x forces 3x =0. Finally, the implication xy =
yx=>x=y forces 3x =3y =>x=y. Since 3x =0, this means that x=y; ie,
A is trivial as required.

Thus, neither H,; nor H,, is affine. Now invoke Theorem 22 of [3]
which says that a paraprimal algebra either has a non-trivial affine sub-
algebra or is quasiprimal. Recall that A is quasiprimal if the ternary dis-
criminator #(x, y, z) (defined by #(x, x, z)=x and otherwise t(x, y, z)=1z)
is a term function on 4. Since H,; and H,, are both plain, they must then
be quasiprimal. But then V(H,;, H,;) is a quasiprimal variety and so
congruence distributive by Theorem 21 of [3]. In fact, V(H,;, H,,) is also
finitely based, and an efficient algorithm for finding an equational base is
given by R. McKenzie in [2]. The most difficult part in actually applying
this algorithm is likely to be writing f(x, y,z) as a quasigroup word.

THEOREM 3. The varieties V(H,;, Hy) and V,(H;, Hy ) are each
1-based arithmetical varieties.

In [8], D. E. Bryant has a more interesting proof of Theorem 1. He con-
structs a finite hexagonal quasigroup which has as a quotient the 3-element
quasigroup mentioned above. In an earlier version of the present paper,
I had asserted (without proof) that a quotient of a finite hexagonal
quasigroup was again a hexagonal quasigroup. I thank Dr. Bryant for
bringing this mistake to my attention.
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