Infinite-dimensional primitive linearly compact Lie superalgebras

Nicoletta Cantarini ${ }^{\text {a, }}$, Victor G. Kac ${ }^{\mathrm{b}, *, 2}$
${ }^{\text {a }}$ Dipartimento di Matematica Pura ed Applicata, Università di Padova, Padova, Italy
${ }^{\mathrm{b}}$ Department of Mathematics, MIT, Cambridge, MA 02139, USA

Received 17 November 2005; accepted 13 February 2006
Available online 18 April 2006
Communicated by Pavel Etingof

Abstract

We classify open maximal subalgebras of all infinite-dimensional linearly compact simple Lie superalgebras. This is applied to the classification of infinite-dimensional Lie superalgebras of vector fields, acting transitively and primitively in a formal neighborhood of a point of a finite-dimensional supermanifold.

 © 2006 Elsevier Inc. All rights reserved.Keywords: Linearly compact algebra; Maximal open subalgebra; Primitive Lie superalgebra; Weisfeiler filtration; Growth and size of filtered algebra; Canonical invariant

0. Introduction

A well-known theorem of E. Cartan [7] states that an infinite-dimensional Lie algebra L of vector fields in a neighborhood of a point p of an m-dimensional manifold M acting transitively and primitively in this neighborhood, is formally isomorphic to a member of one of the six series of Lie algebras of formal vector fields:

1. $W_{m}=\left\{\sum_{i=1}^{m} P_{i} \partial / \partial x_{i} \mid P_{i} \in \mathbb{C} \llbracket x_{1}, \ldots, x_{m} \rrbracket\right\}$,
2. $S_{m}=\left\{X \in W_{m} \mid \operatorname{div}(X)=0\right\}$,
[^0]2'. $C S_{m}=\left\{X \in W_{m} \mid \operatorname{div}(X)=\right.$ const $\}$,
3. $H_{m}=\left\{X \in W_{m} \mid X \omega_{s}=0\right\}(m=2 k)$, where $\omega_{s}=\sum_{i=1}^{k} d x_{i} \wedge d x_{k+i}$ is a symplectic form,
3^{\prime}. $C H_{m}=\left\{X \in W_{m} \mid X \omega_{s}=\right.$ const $\left.\omega_{s}\right\}(m=2 k)$,
4. $K_{m}=\left\{X \in W_{m} \mid X \omega_{c}=f \omega_{c}\right\}(m=2 k+1)$, where $\omega_{c}=d x_{m}+\sum_{i=1}^{k} x_{i} d x_{k+i}$ is a contact form and f is a formal power series (depending on X).

Recall that the primitivity of an action means that there are no non-trivial L-invariant fibrations in M. The Lie algebra L has a canonical filtration $L \supset L_{0} \supset L_{1} \supset \cdots$, where L_{j} consists of vector fields vanishing up to order j at p, and the formal isomorphism means the isomorphism of the completed Lie algebras with respect to this filtration. The transitivity of the action implies that L_{0} contains no non-zero ideals of L, and primitivity implies that L_{0} is a maximal subalgebra.

It is easy to see [13] that, in fact, Cartan's theorem gives a classification of infinite-dimensional linearly compact Lie algebras L, which admit a maximal open subalgebra L_{0} containing no nonzero ideals of L (recall that the linear compactness of L means that L is a topological Lie algebra whose underlying topological space is a topological product of finite-dimensional vector spaces with discrete topology). Such a Lie algebra L is called primitive, the subalgebra L_{0} is called a fundamental maximal subalgebra, and the pair $\left(L, L_{0}\right)$ is called a primitive pair. It is easy to see that all L from the six series contain a unique fundamental maximal subalgebra. Also, the Lie algebras W_{m}, S_{m}, H_{m} and K_{m} are simple, and the remaining two series $C S_{m}$ and $C H_{m}$ are the Lie algebras of derivations of S_{m} and H_{m} respectively, obtained by adding the Euler vector field $E=\sum_{i} x_{i} \partial / \partial x_{i}$.

In the present paper we solve the problem of classification of primitive pairs in the Lie superalgebra case. This problem is much more difficult than in the Lie algebra case for several reasons. First, in the Lie algebra case, a primitive L is contained between S and $\operatorname{Der} S$, where S is simple (cf. Theorem 1.5), which instantly reduces the classification of primitive Lie algebras L to simple ones, but the situation is more complicated in the super case. Second, there are many more simple linearly compact Lie superalgebras than in the Lie algebra case (see [17]). Third, in a sharp contrast to the Lie algebra case, almost all infinite-dimensional simple linearly compact Lie superalgebras contain more than one maximal open subalgebra. Most of the space of the present paper deals with the problem of their classification.

The infinite-dimensional linearly compact simple Lie superalgebras have been classified in [17]. The list consists of ten series $(m \geqslant 1): W(m, n), S(m, n)((m, n) \neq(1,1)), H(m, n)$ (m even), $K(m, n)$ (m odd), $H O(m, m)(m \geqslant 2), S H O(m, m)(m \geqslant 3), K O(m, m+1)$, $\operatorname{SKO}(m, m+1 ; \beta)(m \geqslant 2), \operatorname{SHO}^{\sim}(m, m)(m$ even $), \operatorname{SKO}^{\sim}(m, m+1)(m \geqslant 3, m$ odd $)$, and five exceptional Lie superalgebras: $E(1,6), E(3,6), E(3,8), E(4,4), E(5,10)$.

The main idea of [17] is to pick a maximal open subalgebra S_{0} of a simple linearly compact Lie superalgebra S, which is invariant with respect to all inner automorphisms of S. The existence of such an invariant subalgebra S_{0} is a non-trivial fact, the proof of which uses characteristic varieties (cf. [14]). Remarkably, an invariant subalgebra is unique in most, though not all, of the cases. After that the classification procedure is more or less routine. One constructs an irreducible Weisfeiler filtration [22] associated to the pair (S, S_{0}) and shows, using ideas from [14], that the associated graded Lie superalgebra $G r S=\bigoplus_{j} \mathfrak{g}_{j}$ has the property that $\left[\mathfrak{g}_{0}, v\right]=\mathfrak{g}_{-1}$ for any even element $v \in \mathfrak{g}_{-1}$ (which does not hold for a random choice of a maximal open subalgebra S_{0}). After that one is able to describe all possibilities for the \mathfrak{g}_{0}-module \mathfrak{g}_{-1} and the subalgebra $\bigoplus_{j \leqslant 0} \mathfrak{g}_{j}$ of $G r S$ [17], and, after some further work, all the possibilities for $G r S$ [10]. Finally, one finds all simple filtered deformations of all these $\operatorname{Gr} S$ [9].

Recall that one has the following isomorphisms (cf. [17, Remark 6.6]):

$$
W(1,1) \cong K(1,2) \cong K O(1,2), \quad S(2,1) \cong H O(2,2), \quad S H O^{\sim}(2,2) \cong H(2,1)
$$

Besides, $S(2,1) \cong S K O(2,3 ; 0)$. Hence, when discussing $S(m, n), K(m, n), K O(m, m+1)$, $H O(m, m)$ and $S H O^{\sim}(m, m)$, we shall assume that $(m, n) \neq(2,1),(m, n) \neq(1,2), m \geqslant 2, m \geqslant 3$ and $m>3$, respectively. Also we shall assume that $n \geqslant 1$ since the Lie algebra case is trivial.

In the first part of the present paper we give a description of semisimple artinian linearly compact Lie superalgebras in terms of simple ones (Theorem 1.4), which is similar to that in the finite-dimensional case [8,15]. Next, we show that if an infinite-dimensional linearly compact Lie superalgebra L is primitive, then L is artinian semisimple and, moreover, contains an open ideal isomorphic to $S \otimes \Lambda(n)$, where S is a simple linearly compact Lie superalgebra and $\Lambda(n)$ is the Grassmann algebra in n indeterminates, and is contained in $(\operatorname{Der} S) \otimes \Lambda(n)+1 \otimes \operatorname{Der} \Lambda(n)$, so that the projection of L on the second summand acts transitively on $\Lambda(n)$ (Theorem 1.5).

Next, Theorem 1.9 gives a description of fundamental maximal subalgebras in L in terms of those in S. In fact, the situation is slightly more complicated, namely in general $\operatorname{Der} S=S \rtimes \mathfrak{a}$, where either $\mathfrak{a} \cong g l_{2}$ or $\operatorname{dim} \mathfrak{a} \leqslant 3$, and we need to classify all maximal among open \mathfrak{a}_{0}-invariant subalgebras of S, for each subalgebra \mathfrak{a}_{0} of \mathfrak{a}. We, thus, arrive at a problem of classification of maximal among \mathfrak{a}_{0}-invariant open subalgebras of each infinite-dimensional simple linearly compact Lie superalgebra S.

If $S=\prod_{j \geqslant-d} \mathfrak{g}_{j}$ is an irreducible grading of S, i.e., $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$, the \mathfrak{g}_{0}-module \mathfrak{g}_{-1} is irreducible and $\mathfrak{g}_{-j}=\mathfrak{g}_{-1}^{j}$ for all $j \leqslant-2$, then $S_{0}=\prod_{j \geqslant 0} \mathfrak{g}_{j}$ is called a graded subalgebra of S. All irreducible gradings (apart for a few omissions) were described in [10,21], and in the present paper we give a detailed proof that these are all. It turns out by inspection (using Proposition $1.11(\mathrm{~b})$) that for every irreducible grading of a simple infinite-dimensional linearly compact Lie superalgebra S, the corresponding graded subalgebra $S_{0}=\prod_{j \geqslant 0} \mathfrak{g}_{j}$ is maximal.

A surprising discovery of the present paper is a large number of new open maximal subalgebras (which are not graded). The main result of the present paper is a classification of all maximal open \mathfrak{a}_{0}-invariant subalgebras of all infinite-dimensional linearly compact simple Lie superalgebras S, up to conjugation by the group G of inner automorphisms of $\operatorname{Der} S$. (The group G can be thought of as the unity component of the group of all automorphisms of S.) Unless otherwise specified, by conjugation we always mean the conjugation by G.

An important part of this classification is the classification of all regular maximal open \mathfrak{a}_{0}-invariant subalgebras of S. A subalgebra of S is called regular if it is invariant with respect to a maximal torus of $\operatorname{Der} S$. By Theorem 1.7, all maximal tori in $\operatorname{Der} S$ are conjugate, hence fixing one "standard" torus T, and classifying all T-invariant maximal open subalgebras we obtain all regular maximal open subalgebras of S, up to conjugation (by G).

The numbers a of graded and b of non-graded regular maximal open subalgebras of S, up to conjugation, are given in Table 1 (the case $\mathfrak{a}_{0}=0$). Thus we see that, with the exception of $K(m, 1)$, any simple linearly compact infinite-dimensional Lie superalgebra, which is not a Lie algebra, contains more than one maximal open subalgebra. It turned out that in all cases except for $H(m, n)$ with n positive even, all maximal open subalgebras are regular, but $H(m, n)$ with $n=2 h$ even, contains, up to conjugacy, $h(h+1) / 2$ non-regular maximal open subalgebras.

The main tool in the classification of maximal open subalgebras in non-exceptional simple linearly compact Lie superalgebras is a formal analogue of the Frobenius theorem (Theorem 1.1(a)), which implies that a maximal open subalgebra of a transitive subalgebra of $W(m, n)$ consists of vector fields, leaving invariant a conjugate, by a change of variables, of a standard ideal of

Table 1

S	a	b	c	e
$W(1,1)$	2	0	3	1
$W(m, n),(m, n) \neq(1,1)$	$n+1$	0	$n+1$	0
$S(1,2)$	2	0	4	2
$S(m, n),(m, n) \neq(1,2)$	$n+1$	0	$n+1$	0
$K(1,2 h)$	$h+1$	0	$h+2$	1
$K(m, 2 h), m>1$	$h+2$	0	$h+2$	0
$K(m, 2 h+1)$	$h+1$	0	$h+1$	0
$H O(n, n), n>2$	n	0	$n+1$	1
$\mathrm{SHO}(3,3)$	2	0	5	3
$\operatorname{SHO}(n, n), n>3$	n	0	$n+1$	1
$H(m, 2 h)$	$h+2$	$\frac{h}{2}(1+h)$	$h^{2}+2 h+2$	0
$H(m, 2 h+1)$	$h+1$	$(h+1)^{2}$	$h^{2}+3 h+2$	0
$K O(2,3)$	2	2	4	0
$K O(n, n+1), n>2$	n	n	$2 n+2$	2
$\operatorname{SKO}(2,3 ; 0)$	2	0	2	0
$\operatorname{SKO}(2,3 ; 1)$	2	1	3	0
$\operatorname{SKO}(2,3 ; \beta), \beta \neq 0,1$	3	1	5	1
$\operatorname{SKO}(3,4 ; \beta)$	3	3	$8+8 \delta_{3 \beta, 1}$	$2+8 \delta_{3 \beta, 1}$
$S K O(n, n+1 ; \beta), n>3$	n	n	$2 n+2$	2
$\operatorname{SHO}^{\sim}(n, n), n>2$	1	$n-1$	$n+1$	1
$S_{K O}^{\sim}{ }^{\sim}(n, n+1)$	0	$2 n-1$	$2 n+2$	3
$E(1,6)$	4	0	5	1
$E(3,6)$	3	0	5	2
$E(5,10)$	4	0	6	2
$E(4,4)$	1	3	5	1
$E(3,8)$	3	6	18	9

$\Lambda(m, n)$, that is, an ideal generated by a subspace of the span of all odd indeterminates. This instantly solves the problem in question for $W(m, n)$, but for other non-exceptional simple Lie superalgebras it requires more subtle arguments to show that a conjugate of a standard ideal of $\Lambda(m, n)$ can be replaced by a standard ideal.

In the case of exceptional simple linearly compact Lie superalgebras S we use the notions of growth and size of S (which remain unchanged when passing from S to $G r S$) in order to list possible $G r S$. This allows us to find all maximal open subalgebras of S by analyzing its deviation from a maximal open invariant subalgebra (which is unique in all exceptional superalgebras S).

A posteriori, it follows from the present paper that an open subalgebra of minimal codimension in a linearly compact infinite-dimensional simple Lie superalgebra S is always invariant under all inner automorphisms of S. Moreover, in all cases, but $S=W(1,1), S(1,2), \operatorname{SHO}(3,3)$, and $S K O(3,4 ; 1 / 3)$, such a subalgebra is unique (hence invariant under all automorphisms), and in $S=W(1,1), S(1,2)$, and $\operatorname{SHO}(3,3)$ such subalgebras are conjugate by (outer) automorphisms of S. We denote by S_{0} the intersection of all open subalgebras of minimal codimension in S, and call it the canonical subalgebra of S. The canonical subalgebra is, of course, invariant with respect to the group Aut S of all continuous automorphisms of S. Let S_{-1} be a minimal subspace of S, properly containing S_{0} and invariant with respect to the group Aut S, and let $S=S_{-d} \supsetneq S_{-d+1} \supset \cdots \supset S_{-1} \supset S_{0} \supset \cdots$ be the associated Weisfeiler filtration of S. All members of the Weisfeiler filtration associated to S_{0} are invariant with respect to the group Aut S, hence we have the induced filtration on the superspace $V:=S / S_{0}=V_{-d} \supset \cdots \supset V_{-1}$, and the induced action of Aut S on V preserving this filtration. Note that $G r V$ carries a canonical
\mathbb{Z}-graded Lie superalgebra structure, isomorphic to $\bigoplus_{j=-d}^{-1} \mathfrak{g}_{j}$. A subspace U of V is called abelian if $\mathrm{Gr} U$ is an abelian subalgebra of $\mathrm{Gr} V$.

Now, it is easy to see that if L_{0} is a (proper) open subalgebra of S, its image under the canonical map $S \rightarrow V$ is a purely odd abelian subspace of V, denoted by $\pi\left(L_{0}\right)$. Thus, we obtain an Aut S-equivariant map π from the set of all open subalgebras of S to the set of abelian subspaces of $V_{\overline{1}}$ (the odd part of V).

The G-orbit of $\pi\left(L_{0}\right)$ in $V_{\overline{1}}$ is called the canonical invariant of the open subalgebra L_{0} of S. A posteriori, it turns out that the canonical invariant uniquely determines an open maximal subalgebra of S, so we have an injective map Π from the set of conjugacy classes (by G) of maximal open subalgebras of S to the set of G-orbits of abelian subspaces of $V_{\overline{1}}$. The number c of elements of the latter set along with the number e of those of them which are not canonical invariants of any open maximal subalgebra are given in Table 1. Looking at this table, we see that in many cases $e=0$, i.e., the map Π is bijective, and in the remaining cases it is very close to being bijective.

The contents of the paper are as follows. In Section 1 we prove a formal analogue of the Frobenius theorem (Theorem 1.1), establish some general results on the structure of artinian semisimple and primitive infinite-dimensional linearly compact Lie superalgebras (Theorems 1.4 and 1.5), and reduce the classification of primitive pairs (L, L_{0}) to the case of simple L (Theorem 1.9). We also prove conjugacy of maximal tori in artinian semisimple linearly compact Lie superalgebras (Theorem 1.7), and discuss the notions of growth and size.

In Sections 2 through 10 we give a classification of all maximal open subalgebras (and all \mathfrak{a}_{0}-invariant maximal open subalgebras as well) of all infinite-dimensional simple linearly compact Lie superalgebras. As an immediate application of this long and tedious work, we obtain the list of all irreducible graded infinite-dimensional linearly compact Lie superalgebras which admit a non-trivial simple filtered deformation.

In Section 11 we classify all maximal open subalgebras which are invariant with respect to all inner automorphisms and we discuss the canonical invariant. An a priori proof that the canonical invariant determines a maximal open subalgebra uniquely would considerably shorten the paper, but we were unable to find such a proof.

In Appendix A we prove the solvability of the radical and establish conjugacy of the maximal tori in any linearly compact artinian Lie superalgebra. In Appendix B we give an alternative description of non-graded maximal open subalgebras of all non-exceptional infinite-dimensional simple linearly compact Lie superalgebras.

In a subsequent paper [5] we use the canonical subalgebras to describe automorphisms and forms over an arbitrary field of characteristic zero of all simple infinite-dimensional linearly compact Lie superalgebras.

Throughout the paper all vector spaces and algebras, as well as tensor products, are considered over the field of complex numbers \mathbb{C}.

1. General results on semisimple and primitive linearly compact Lie superalgebras

Recall that a linearly compact space is a topological vector space which is isomorphic to a topological product of finite-dimensional vector spaces endowed with discrete topology. The basic examples of linearly compact spaces are finite-dimensional vector spaces with the discrete topology, and the space of formal power series $V \llbracket t \rrbracket$ over a finite-dimensional vector space V, with the formal topology defined by taking as a fundamental system of neighborhoods of 0 the set $\left\{t^{j} V \llbracket t \rrbracket\right\}_{j \in \mathbb{Z}_{+}}$. We recall Chevalley's principle [13]: if $F_{1} \supset F_{2} \supset \cdots$ is a sequence of closed
subspaces of a linearly compact space such that $\bigcap_{j} F_{j}=0$ and U is an open subspace, then $F_{j} \subset U$ for $j \gg 0$.

A linearly compact superalgebra is a topological superalgebra whose underlying topological space is linearly compact. The basic example of an associative linearly compact superalgebra is $\Lambda(m, n)=\Lambda(n) \llbracket x_{1}, \ldots, x_{m} \rrbracket$, where $\Lambda(n)$ denotes the Grassmann algebra on n anticommuting indeterminates ξ_{1}, \ldots, ξ_{n}, and the superalgebra parity is defined by $p\left(x_{i}\right)=\overline{0}, p\left(\xi_{j}\right)=\overline{1}$, with the formal topology defined by the following fundamental system of neighborhoods of 0 : $\left\{\left(x_{1}, \ldots, x_{m}, \xi_{1}, \ldots, \xi_{n}\right)^{j}\right\}_{j \in \mathbb{Z}_{+}}$. The basic example of a linearly compact Lie superalgebra is $W(m, n)=\operatorname{Der} \Lambda(m, n)$, the Lie superalgebra of all continuous derivations of the superalgebra $\Lambda(m, n)$. One has:

$$
W(m, n):=\left\{\left.X=\sum_{i=1}^{m} P_{i}(x, \xi) \frac{\partial}{\partial x_{i}}+\sum_{j=1}^{n} Q_{j}(x, \xi) \frac{\partial}{\partial \xi_{j}} \right\rvert\, P_{i}, Q_{j} \in \Lambda(m, n)\right\} .
$$

Letting $\operatorname{deg} x_{i}=\operatorname{deg} \xi_{j}=1, \operatorname{deg}\left(\partial / \partial x_{i}\right)=\operatorname{deg}\left(\partial / \partial \xi_{j}\right)=-1$, we obtain the principal \mathbb{Z}-grading $W(m, n)=\prod_{j \geqslant-1} W(m, n)_{j}$. A subalgebra L of $W(m, n)$ is called transitive if the projection of L on $W(m, n)_{-1}$ is onto. Given a vector field $X \in W(m, n)$, we denote by $X(0)$ the projection of X on $W(m, n)_{-1}$.

Given a subspace U of the subspace $\sum_{i=1}^{m} \mathbb{C} x_{i}+\sum_{j=1}^{n} \mathbb{C} \xi_{j}$ of $\Lambda(m, n)$, denote by I_{U} the ideal of $\Lambda(m, n)$ generated by U. Let $W_{U}=\left\{X \in W(m, n) \mid X I_{U} \subset I_{U}\right\}$ be the corresponding subalgebra of $W(m, n)$. More generally, for any subalgebra L of $W(m, n)$, let $L_{U}=\{X \in L \mid$ $\left.X I_{U} \subset I_{U}\right\}$. We shall call I_{U} a standard ideal of $\Lambda(m, n)$ and L_{U} a standard subalgebra of L.

Theorem 1.1.

(a) Let L be a closed subalgebra of $W(m, n)$, let V be the projection of L on $W(m, n)_{-1}=$ $\sum_{i} \mathbb{C} \partial / \partial x_{i}+\sum_{j} \mathbb{C} \partial / \partial \xi_{j}$, and let $V^{\perp} \subset \sum_{i} \mathbb{C} x_{i}+\sum_{j} \mathbb{C} \xi_{j}$ be the dual of V. Then there exists a continuous automorphism of $\Lambda(m, n)$ such that the induced automorphism of $W(m, n)$ maps L to the subalgebra $W_{V^{\perp}}$ of $W(m, n)$.
(b) The algebra $\Lambda(m, n)$ has no non-trivial closed L-invariant ideals if and only if L is a transitive subalgebra.

Proof. Making a linear change of variables, we may assume that V is the span of $\partial / \partial x_{1}, \ldots$, $\partial / \partial x_{p}, \partial / \partial \xi_{1}, \ldots, \partial / \partial \xi_{q}$. Also, we may assume that L is invariant with respect to multiplication by elements of $\Lambda(m, n)$. Indeed, $\Lambda(m, n) W_{U}=W_{U}$, an ideal of $\Lambda(m, n)$ is L-invariant if and only if it is $\Lambda(m, n) L$-invariant, and L is transitive if and only if $\Lambda(m, n) L$ is transitive.

We turn now to the proof of (a). If $p \geqslant 1$, then L contains a vector field $X_{1}=\partial / \partial x_{1}+D_{1}$, where D_{1} is an even operator such that $D_{1}(0)=0$. Making change of variables (cf. [17, p. 12]), we may assume that $X_{1}=\partial / \partial x_{1}$. Consider $X_{2}=\partial / \partial x_{2}+D_{2} \in L, D_{2}(0)=0$. Subtracting $f \partial / \partial x_{1}$ from X_{2}, we may assume that X_{2}, hence D_{2}, do not involve $\partial / \partial x_{1}$. Next, we show that we may assume that all coefficients of D_{2} do not involve x_{1}. Here we use that L is a subalgebra. Let $D_{2}=\sum_{j \geqslant 0} x_{1}^{j} \bar{D}_{j}$, where the \bar{D}_{j} do not involve x_{1}. Since

$$
\left[X_{1}, X_{2}\right]=\left[X_{1}, D_{2}\right] \in L,
$$

we see that $\sum_{j \geqslant 0} j x_{1}^{j-1} \bar{D}_{j} \in L$, hence, $x_{1} \sum_{j \geqslant 0} j x_{1}^{j-1} \bar{D}_{j} \in L$, then, $D_{2}-\sum_{j \geqslant 0} j x_{1}^{j} \bar{D}_{j} \in L$, and we can assume that $\bar{D}_{1}=\underline{0}$. Repeating this procedure, since L is closed, we get in the limit: $\partial / \partial x_{2}+\bar{D}_{0} \in L$, where $\bar{D}_{0}(0)=0$ and \bar{D}_{0} does not depend on x_{1}. Making change of
variables, we may assume that $\partial / \partial x_{1}, \partial / \partial x_{2} \in L$. Continuing one gets $\partial / \partial x_{1}, \ldots, \partial / \partial x_{p} \in L$. If $q \geqslant 1$, let Y_{1} be an odd vector field in L whose projection on $W(m, n)_{-1}$ is $\partial / \partial \xi_{1}$. Up to a change of variables we may assume that $Y_{1}=\partial / \partial \xi_{1}+\xi_{1} D$, where D is an even operator. Since $\left[Y_{1}, Y_{1}\right]=2 D, D$ lies in L, hence $\xi_{1} D \in L$ and $\partial / \partial \xi_{1} \in L$. Then, arguing as above, we can assume that $\partial / \partial \xi_{1}, \ldots, \partial / \partial \xi_{q}$ lie in L. Hence L is generated, as a $\Lambda(m, n)$ module, by $\partial / \partial x_{1}, \ldots, \partial / \partial x_{p}, \partial / \partial \xi_{1}, \ldots, \partial / \partial \xi_{q}$ and by vector fields X_{k} which do not involve $\partial / \partial x_{1}, \ldots, \partial / \partial x_{p}, \partial / \partial \xi_{1}, \ldots, \partial / \partial \xi_{q}$ and such that $X_{k}(0)=0$. As above, we may assume that all coefficients of all X_{k} do not depend on $x_{1}, \ldots, x_{p}, \xi_{1} \ldots, \xi_{q}$. Therefore the ideal of $\Lambda(m, n)$ generated by $x_{p+1}, \ldots, x_{m}, \xi_{q+1}, \ldots, \xi_{n}$ is L-invariant, which proves (a).

Now we prove (b). The transitivity of L is equivalent to saying that L contains elements $a_{i}=\partial / \partial x_{i}+X$ and $b_{j}=\partial / \partial \xi_{j}+Y$ for some vector fields X and Y such that $X(0)=0$ and $Y(0)=0$, for every i and j. Let I be an L-stable non-zero ideal of $\Lambda(m, n)$. Then I contains a non-zero element $P(x, \xi) \in \Lambda(m, n)$. Since I is stable under the action of the vector fields a_{i} and b_{j}, we may assume that $P(0,0)=1$ and, since I is an ideal, multiplying I by P^{-1}, we find that I contains 1, i.e., $I=\Lambda(m, n)$. Conversely, if L is not transitive, then $V^{\perp} \neq 0$, and we arrive at a contradiction with (a).

Remark 1.2. Theorem 1.1(a) is an analogue of the Frobenius theorem for the superalgebra $\Lambda(m, n)$. Namely, if the projection V of L on $W(m, n)_{-1}$ has dimension $(p \mid q)$, then there exists a continuous automorphism φ of $\Lambda(m, n)$ such that the ideal $J_{V}=\left(\varphi\left(x_{p+1}\right), \ldots, \varphi\left(x_{m}\right)\right.$, $\left.\varphi\left(\xi_{q+1}\right), \ldots, \varphi\left(\xi_{n}\right)\right)$ is L-invariant. In the purely odd case this was proved in [12].

Note that J_{V} is maximal among L-invariant ideals. Indeed, up to automorphisms, this is equivalent to saying that, if $V=\left\langle\partial / \partial x_{1}, \ldots, \partial / \partial x_{p}, \partial / \partial \xi_{1}, \ldots, \partial / \partial \xi_{q}\right\rangle$ then $J_{V}=\left(x_{p+1}, \ldots, x_{m}\right.$, $\xi_{q+1}, \ldots, \xi_{n}$) is maximal among L-invariant ideals. Indeed, if we add a polynomial P to the ideal J_{V}, we may assume that P depends only on the variables $x_{1}, \ldots, x_{p}, \xi_{1}, \ldots, \xi_{q}$. Then, since $\partial / \partial x_{i}$ and $\partial / \partial \xi_{j}$ lie in L_{0} for every $i=1, \ldots, p$ and $j=1, \ldots, q$, adding P to the ideal adds 1 to it.

Remark 1.3. Let L be an infinite-dimensional linearly compact Lie superalgebra embedded in $W(m, n)$, and let L_{0} be a fundamental maximal subalgebra of L such that the projection of L_{0} to $W(m, n)_{-1}$ does not contain the even derivations $\partial / \partial x_{i}$ for any $i=1, \ldots, m$. Then, by Theorem 1.1(a), L_{0} stabilizes an ideal J of $\Lambda(m, n)$ which is, up to changes of variables, a standard ideal containing all even indeterminates x_{1}, \ldots, x_{m}. Besides, J is maximal among the $\Lambda(m, n) L_{0}$-invariant ideals of $\Lambda(m, n)$ by Remark 1.2. Notice that an ideal I of $\Lambda(m, n)$ is L_{0}-invariant if and only if it is $\Lambda(m, n) L_{0}$-invariant. Therefore J is also maximal among the L_{0}-invariant ideals of $\Lambda(m, n)$. It follows that L_{0} stabilizes an ideal $J=\left(x_{1}+f_{1}, \ldots, x_{m}+f_{m}\right.$, $\eta_{1}+g_{1}, \ldots, \eta_{r}+g_{r}$) for some linear functions η_{j} in odd indeterminates and even functions f_{i} and odd functions g_{j} without constant and linear terms, and that J is maximal among the L_{0}-invariant ideals of $\Lambda(m, n)$.

Recall that a linearly compact Lie superalgebra L is called simple if it is not abelian and contains no closed ideals different from 0 and $L ; L$ is called semisimple if it contains no non-zero abelian ideals; L is called artinian if any descending sequence of closed ideals in L stabilizes.

A subalgebra L_{0} of L is called fundamental if it is proper, open and contains no non-zero ideals of L. Due to Guillemin's theorem [13] a linearly compact Lie superalgebra is artinian if and only if it contains a fundamental subalgebra (the proof in [13] is given in the Lie algebra case, but it extends verbatim to the super case).

Let L_{0} be a fundamental subalgebra of a Lie superalgebra L and let L_{-1} be an $a d L_{0}$-stable subspace of L generating L as a Lie superalgebra. The Weisfeiler filtration [22] associated to the triple $L \supset L_{-1} \supset L_{0}$ is the filtration of L inductively defined as follows: for $s \geqslant 1$,

$$
L_{-(s+1)}=\left[L_{-1}, L_{-s}\right]+L_{-s}, \quad L_{s}=\left\{a \in L_{s-1} \mid\left[a, L_{-1}\right] \subset L_{s-1}\right\}
$$

If L_{-1} is a minimal ad L_{0}-stable subspace properly containing L_{0}, then the Weisfeiler filtration is called irreducible. If $L_{-1}=L$, the Weisfeiler filtration is called the canonical filtration.

A linearly compact Lie superalgebra L is called primitive if it contains a fundamental subalgebra L_{0} which is a maximal subalgebra. In this case, $\left(L, L_{0}\right)$ is called a primitive pair. Note that for a primitive pair $\left(L, L_{0}\right)$ there exists an irreducible Weisfeiler filtration whose 0th term is L_{0}.

Given a filtered Lie superalgebra $L=L_{-d} \supset \cdots \supset L_{-1} \supset L_{0} \supset L_{1} \supset \cdots$, we shall denote by $G r L$ the associated \mathbb{Z}-graded Lie superalgebra:

$$
G r L=\bigoplus_{j \geqslant-d} G r_{j} L, \quad G r_{j} L=L_{j} / L_{j+1}
$$

If $\mathfrak{g}=\bigoplus_{j \geqslant-d} \mathfrak{g}_{j}$ is a graded Lie superalgebra, we denote by $\overline{\mathfrak{g}}=\prod_{j \geqslant-d} \mathfrak{g}_{j}$ its completion. Then $\overline{\mathfrak{g}}$ has a natural filtration given by the subspaces

$$
\overline{\mathfrak{g}}_{i}=\prod_{j \geqslant i} \mathfrak{g}_{j}
$$

for $i \geqslant-d$. We shall call such a filtration a graded filtration (or, equivalently, a trivial filtered deformation of $\overline{\mathfrak{g}}$, cf. Section 7).

Let L_{0} be a fundamental subalgebra of L, let $L=L_{-d} \supset \cdots \supset L_{-1} \supset L_{0} \supset L_{1} \supset \cdots$ be a Weisfeiler filtration, and let $\operatorname{Gr} L=\bigoplus_{j \geqslant-d} \mathfrak{g}_{j}$, where $\mathfrak{g}_{j}=G r_{j} L$, be the associated graded superalgebra. Then [22]:

$$
\begin{gather*}
\mathfrak{g}_{-j}=\mathfrak{g}_{-1}^{j} \quad \text { for } j \geqslant 1 \tag{1.1}\\
\text { if } x \in \mathfrak{g}_{j}, j \geqslant 0 \text { and }\left[x, \mathfrak{g}_{-1}\right]=0, \quad \text { then } \quad x=0 \tag{1.2}
\end{gather*}
$$

If, in addition, the Weisfeiler filtration is irreducible, then

$$
\begin{equation*}
\mathfrak{g}_{-1} \text { is an irreducible } \mathfrak{g}_{0} \text {-module. } \tag{1.3}
\end{equation*}
$$

A \mathbb{Z}-graded Lie superalgebra $\mathfrak{g}=\bigoplus_{j \geqslant-d} \mathfrak{g}_{i}$ is called transitive if properties (1.1) and (1.2) hold, and it is called irreducible if, in addition (1.3) holds.

The following theorems describe the artinian semisimple and the infinite-dimensional primitive linearly compact Lie superalgebras. We denote by $\operatorname{Der} S$ (respectively Inder S) the Lie superalgebra of all (respectively all inner) continuous derivations of a linearly compact Lie superalgebra S. Recall that the completed tensor product $U \hat{\otimes} V$ of linearly compact spaces U and V is defined as $\left(U^{*} \otimes V^{*}\right)^{*}$ [13].

Theorem 1.4. Let $S_{1}, \ldots, S_{r}(r \in \mathbb{N})$ be simple linearly compact Lie superalgebras, let m_{1}, \ldots, $m_{r}, n_{1}, \ldots, n_{r}$ be non-negative integers and let $S=\bigoplus_{i=1}^{r}\left(S_{i} \hat{\otimes} \Lambda\left(m_{i}, n_{i}\right)\right)$. Then

$$
\begin{equation*}
\operatorname{Der} S=\bigoplus_{i=1}^{r}\left(\left(\operatorname{Der} S_{i}\right) \hat{\otimes} \Lambda\left(m_{i}, n_{i}\right)+1 \otimes W\left(m_{i}, n_{i}\right)\right) \tag{1.4}
\end{equation*}
$$

is a linearly compact Lie superalgebra and $S=$ Inder S canonically embeds in Der S. Let L be an open subalgebra of Der S containing S, and denote by F_{i} the projection of L on $1 \otimes W\left(m_{i}, n_{i}\right)$. Then:
(a) L is semisimple if and only if F_{i} is a transitive subalgebra of $W\left(m_{i}, n_{i}\right)$ for all $i=1, \ldots, r$.
(b) All artinian semisimple linearly compact Lie superalgebras can be obtained as in (a).
(c) If L is semisimple, then Der L is the normalizer of L in Der S (and is semisimple).

Proof. It follows traditional lines (cf. $[4,8]$). Let L be an artinian semisimple linearly compact Lie superalgebra, and let I denote the sum of all its minimal closed ideals. Since L is semisimple, for any (non-zero) minimal closed ideal J one has $[J, J]=J$. Using this, it is standard to show that I is a direct sum of all minimal closed ideals of L. Since L is artinian, it follows that it contains a finite number of (non-zero) minimal closed ideals; denote them by I_{1}, \ldots, I_{r}. We have a homomorphism $\varphi: L \rightarrow \bigoplus_{j} \operatorname{Der} I_{j}$ defined by $\varphi(a)=\left.\sum_{j}($ ad $a)\right|_{I_{j}}$. The homomorphism φ is injective since $(\operatorname{ker} \varphi) \cap I=0$, and therefore, by the artinian property, if $\operatorname{ker} \varphi$ is non-zero, it would contain a (non-zero) minimal closed ideal different from all I_{j} 's. Thus, we have the following inclusions:

$$
\begin{equation*}
\bigoplus_{j=1}^{r} I_{j} \subset L \subset \bigoplus_{j=1}^{r} \operatorname{Der} I_{j} . \tag{1.5}
\end{equation*}
$$

Next we use the super analogue of the Cartan-Guillemin theorem [3,13], established in [11], according to which $I_{j} \cong S_{j} \hat{\otimes} \Lambda\left(m_{j}, n_{j}\right)$, where S_{j} is a simple linearly compact Lie superalgebra and $m_{j}, n_{j} \in \mathbb{Z}_{+}$.

Next, the same argument as in [4] or [8] shows that

$$
\operatorname{Der} I=\left(\operatorname{Der} S_{j}\right) \hat{\otimes} \Lambda\left(m_{j}, n_{j}\right)+1 \otimes W\left(m_{j}, n_{j}\right)
$$

and that L in (1.5) is semisimple if and only if $\Lambda\left(m_{j}, n_{j}\right)$ contains no non-trivial F_{j}-invariant ideals. Now (a) and (b) follow from Theorem 1.1. The proof of (c) is the same as in [4] or [8].

Theorem 1.5. If L is an infinite-dimensional primitive Lie superalgebra, then L is artinian semisimple, and, moreover,

$$
S \otimes \Lambda(n) \subset L \subset(\operatorname{Der} S) \otimes \Lambda(n)+1 \otimes W(0, n)
$$

for some infinite-dimensional simple linearly compact Lie superalgebra S and $n \in \mathbb{Z}_{+}$, where the projection of L on $W(0, n)$ is a transitive subalgebra.

Proof. By the above mentioned Guillemin's theorem, L is artinian. By another result of Guillemin [13, Proposition 4.1], whose proof works verbatim in the super case, any non-zero closed ideal of L has finite codimension.

In order to show that L is semisimple, choose an irreducible Weisfeiler filtration of L associated with the fundamental maximal subalgebra L_{0} of L, and let $\mathfrak{g}=\bigoplus_{j \geqslant-d} \mathfrak{g}_{j}$ be the associated graded Lie superalgebra. Suppose that L contains a non-zero closed abelian ideal. Then the corresponding ideal $I=\bigoplus_{j \geqslant-d} I_{j}$ in \mathfrak{g} has finite codimension, and since $\operatorname{dim} \mathfrak{g}=\infty$, we conclude that $I_{j} \neq 0$ for some $j \geqslant 0$. By the transitivity of $\mathfrak{g}, I_{0} \neq 0$ and $I_{-1} \neq 0$, and by the irreducibility of the \mathfrak{g}_{0}-module $\mathfrak{g}_{-1}, I_{-1}=\mathfrak{g}_{-1}$. Hence $\left[I_{0}, \mathfrak{g}_{-1}\right]=0$ (since I is an abelian ideal), which contradicts the transitivity of \mathfrak{g}.

Thus, by Theorem 1.4, L contains the ideals $S_{i} \hat{\otimes} \Lambda\left(m_{i}, n_{i}\right), i=1, \ldots, r$. Since $\operatorname{dim} L=\infty$ and all non-zero ideals of L have finite codimension, we conclude that $r=1$ and

$$
S \hat{\otimes} \Lambda(m, n) \subset L \subset(\operatorname{Der} S) \hat{\otimes} \Lambda(m, n)+1 \otimes W(m, n)
$$

where S is a simple linearly compact Lie superalgebra and the projection F of L on $W(m, n)$ is a transitive subalgebra. It remains to show that $m=0$.

Since L_{0} is a maximal subalgebra of L, and $S \hat{\otimes} \Lambda(m, n)$ is an ideal, we conclude that

$$
\begin{equation*}
L=L_{0}+(S \hat{\otimes} \Lambda(m, n)) \tag{1.6}
\end{equation*}
$$

Suppose that $m \geqslant 1$. Since L_{0} is an open subalgebra, by Chevalley's principle,

$$
\begin{equation*}
S \hat{\otimes}\left(x_{1}, \ldots, x_{m}\right)^{j} \Lambda(m, n) \subset L_{0} \quad \text { for } j \gg 0 \tag{1.7}
\end{equation*}
$$

By transitivity of F and (1.6), the projection of L_{0} on $1 \otimes W(m, n)_{-1}$ is surjective. Hence it follows from (1.7) that $S \hat{\otimes} \Lambda(m, n) \subset L_{0}$, a contradiction since L_{0} contains no non-zero ideals of L.

An $a d$-diagonalizable subalgebra T of a linearly compact Lie superalgebra L is called a torus of L. The following proposition allows one to construct maximal tori.

Proposition 1.6. Let L be a linearly compact Lie superalgebra with trivial center and let $L=$ $L_{-d} \supset \cdots \supset L_{0} \supset L_{1} \supset \cdots$ be a filtration of L such that L_{0} contains all ad-exponentiable elements of L. Then any torus T of L lies in L_{0} and T is a maximal torus in L if and only if its image in L_{0} / L_{1} is a maximal torus. Any maximal torus of L_{0} / L_{1} can be lifted to that of L.

Proof. Since all elements of T are exponentiable, $T \subset L_{0}$. Since, obviously, $T \cap L_{1}=0, T$ is a maximal torus of L_{0} (and hence of L) if and only if its image is a maximal torus of L_{0} / L_{1}.

We do not know examples for which the maximal tori are not conjugate, but we can prove their conjugacy only for the artinian semisimple L (which we shall apply to primitive L). In Appendix A we extend this to the case of an arbitrary artinian L.

Theorem 1.7. If L is an artinian semisimple linearly compact Lie superalgebra, then all maximal tori of L are conjugate by inner automorphisms of L.

Proof. We may assume that $\operatorname{dim} L=\infty$. The socle $\bigoplus_{i=1}^{r} S_{i} \otimes \Lambda\left(n_{i}\right)$ of L (see Theorem 1.4) is invariant with respect to all automorphisms of L. But due to [17], each Der S_{i} contains a fundamental subalgebra S_{i}^{0}, which is proper if $\operatorname{dim} S_{i}=\infty$, and which contains all exponentiable elements of Der S_{i}.

Consider the Lie superalgebra

$$
\tilde{L}=\bigoplus_{i=1}^{r}\left(\left(\operatorname{Der} S_{i}\right) \hat{\otimes} \Lambda\left(m_{i}, n_{i}\right)\right) \oplus\left(1 \otimes W\left(m_{i}, n_{i}\right)\right)
$$

containing L. Take the canonical filtration of $\operatorname{Der} S_{i}$ defined by S_{i}^{0} and tensor it with the filtration of $\Lambda\left(m_{i}, n_{i}\right)$ whose j th member is $\left(x_{1}, \ldots, x_{m}, \xi_{1}, \ldots, \xi_{n}\right)^{j}$; this defines a filtration of $\left(\operatorname{Der} S_{i}\right) \hat{\otimes}$ $\Lambda\left(m_{i}, n_{i}\right)$ all of whose exponentiable elements lie in the 0th member of the filtration. These and the principal filtration of $W\left(m_{i}, n_{i}\right)$ for each i add up to produce a filtration of \tilde{L}. Intersecting the members of this filtration with L, we get a filtration of L by open subspaces $L \supset L_{0} \supset L_{1} \supset \cdots$, such that L_{0} contains all exponentiable elements of L. In particular, L_{0} contains any two maximal tori T and T^{\prime} of L. But T and T^{\prime} are conjugate in $L_{0} \bmod L_{N}$ for each $N \geqslant 1$ by the conjugacy of maximal tori in any finite-dimensional Lie superalgebra. Taking the limit as $N \rightarrow \infty$, we obtain that T and T^{\prime} are conjugate in L_{0}.

We shall use the following (corrected) explicit description of the Lie superalgebras Der S for all simple linearly compact Lie superalgebras S, given in [17].

Proposition 1.8. [17, Proposition 6.1] Let S be a simple infinite-dimensional linearly compact Lie superalgebra. Then Der $S=S \rtimes \mathfrak{a}$, where \mathfrak{a} is a finite-dimensional subalgebra, described below:
(a) If S is one of the Lie superalgebras $W(m, n), S H O^{\sim}(m, m), K(m, n), K O(m, m+1)$, $S K O^{\sim}(m, m+1), E(4,4), E(1,6), E(3,6), E(3,8)$, then $\mathfrak{a}=0$.
(b) If S is one of the Lie superalgebras $S(m, n)$ with $m \geqslant 2,(m, n) \neq(2,1), H(m, n), H O(m, m)$ with $m \geqslant 3, S K O(m, m+1 ; \beta)$ with $m \geqslant 2$ and $\beta \neq 1,(m-2) / m, E(5,10)$, then \mathfrak{a} is a onedimensional torus of Der S.
(c) If S is one of the Lie superalgebras $S(1, n)$ with $n \geqslant 3$, $\operatorname{SKO}(m, m+1 ;(m-2) / m)$ with $m \geqslant 2, \operatorname{SKO}(m, m+1 ; 1)$ with $m>2$, then $\mathfrak{a}=\mathfrak{n} \rtimes \mathfrak{t}_{1}$, where \mathfrak{t}_{1} is a one-dimensional torus of Der S and \mathfrak{n} is a one-dimensional subalgebra such that $\left[\mathfrak{t}_{1}, \mathfrak{n}\right]=\mathfrak{n}$.
(d) If $S=\operatorname{SHO}(m, m)$ with $m \geqslant 4$, then $\mathfrak{a}=\mathfrak{n} \rtimes \mathfrak{t}_{2}$, where \mathfrak{t}_{2} is a two-dimensional torus of Der S and \mathfrak{n} is a one-dimensional subalgebra such that $\left[\mathfrak{t}_{2}, \mathfrak{n}\right]=\mathfrak{n}$.
(e) If $S=S(1,2)$ or $S=\operatorname{SKO}(2,3 ; 1)$, then $\mathfrak{a} \cong s l_{2}$.
(f) If $S=\operatorname{SHO}(3,3)$, then $\mathfrak{a} \cong g l_{2}$.

The subalgebra \mathfrak{a} of Der S is called the subalgebra of outer derivations of S.
The following theorem describes all primitive pairs in terms of simple ones.

Theorem 1.9.

(a) Let $L=(S \otimes \Lambda(n)) \rtimes F$, where S is a linearly compact Lie superalgebra and F is a transitive subalgebra of $W(0, n)$. Then any fundamental maximal subalgebra L_{0} of L is of the form $\left(S_{0} \otimes \Lambda(n)\right) \rtimes F$, where S_{0} is a fundamental maximal subalgebra of S.
(b) Let S be a simple infinite-dimensional linearly compact Lie superalgebra. Let \mathfrak{a}_{0} be a subalgebra of the subalgebra \mathfrak{a} of outer derivations of S and let L_{0} be a fundamental maximal subalgebra of $S \rtimes \mathfrak{a}_{0}$. Then $L_{0}=S_{0} \rtimes \mathfrak{a}_{0}$, where S_{0} is a maximal among open \mathfrak{a}_{0}-invariant subalgebras of S. Thus, all fundamental maximal subalgebras of $S \rtimes \mathfrak{a}_{0}$ are $S_{0} \rtimes \mathfrak{a}_{0}$, where S_{0} is a maximal among open \mathfrak{a}_{0}-invariant subalgebras of S.
(c) Let S be a simple infinite-dimensional linearly compact Lie superalgebra. Let F be a subalgebra of $(\mathfrak{a} \otimes \Lambda(n)) \rtimes W(0, n)$ containing elements f_{i}, for $i=1, \ldots, n$, such that $f_{i}(0)=\partial / \partial \xi_{i}$. Let $L=(S \otimes \Lambda(n)) \rtimes F$. Then these Lexhaust, up to automorphisms, all that occur in a primitive pair. All possible fundamental maximal subalgebras L_{0} in L can be obtained as follows. Let $\mathfrak{a}_{0}=\{a(0) \mid a(\xi)$ lies in the projection of F on $\mathfrak{a} \otimes \Lambda(n)\} \subset \mathfrak{a}$. Let S_{0} be a maximal among \mathfrak{a}_{0}-invariant subalgebras of S. Then $L_{0}=\left(S_{0} \otimes \Lambda(n)\right) \rtimes F$.

Proof. (a) First, we show that $F \subset L_{0}$. In the contrary case, consider an irreducible Weisfeiler filtration of L associated to L_{0}. Then we have: $G r L=G r(S \otimes \Lambda(n)) \rtimes G r F$. Since $G r_{-1} L$ is irreducible with respect to $G r_{0} L$ and $G r_{-1}(S \otimes \Lambda(n))$ is a submodule of $G r_{-1} L$, we conclude that $G r_{-1}(S \otimes \Lambda(n))=0$, i.e., $G r_{-1} L=G r_{-1} F$, hence $G r_{<0} L=G r_{<0} F$. It follows that $S \otimes$ $\Lambda(n) \subset L_{0}$, which is impossible since $S \otimes \Lambda(n)$ is an ideal of L.

We write elements of $S \otimes \Lambda(n)$ in the form $s(\xi)=\sum_{I} s_{I} \xi^{I}$, where $I=\left\{i_{1}, \ldots, i_{r}\right\} \subset$ $\{1, \ldots, n\}, s_{I} \in S, \xi^{I}=\xi_{i_{1}} \ldots \xi_{i_{r}}$. Let $S_{I}=\left\{s_{I} \mid s(\xi) \in L_{0}\right\}$; then $S_{0}:=S_{\emptyset}$ is a subalgebra of S. Due to the transitivity of F, we conclude that $S_{I} \subset S_{0}$ for all I, hence $S_{0} \otimes \Lambda(n) \supset$ $L_{0} \cap(S \otimes \Lambda(n))$. Since $F \subset L_{0}$, we deduce that $\left(S_{0} \otimes \Lambda(n)\right)+F \supset L_{0}$. Hence these two subalgebras coincide due to the maximality of L_{0}. Since L_{0} is a fundamental maximal subalgebra of L, S_{0} is a fundamental maximal subalgebra of S.
(b) The same argument as in (a) shows that $\mathfrak{a}_{0} \subset L_{0}$. Therefore $L_{0}=\left(L_{0} \cap S\right) \rtimes \mathfrak{a}_{0}$, and $L_{0} \cap S$ is an \mathfrak{a}_{0}-invariant subalgebra of S. By the maximality of L_{0} it follows that $L_{0} \cap S$ is maximal among the \mathfrak{a}_{0}-invariant subalgebras of S.
(c) Let $\left(L, L_{0}\right)$ be a primitive pair. Then, by Theorem $1.5, L=(S \otimes \Lambda(n)) \rtimes F$, where S is a simple Lie superalgebra, \mathfrak{a} is the subalgebra of outer derivations of S, and F is a subalgebra of $(\mathfrak{a} \otimes \Lambda(n)) \rtimes W(0, n)$ with transitive projection on $W(0, n)$. Since the projection of F on $W(0, n)$ is transitive, we may assume, up to automorphisms, that F contains some elements f_{i}, for every $i=1, \ldots, n$, such that $f_{i}(0)=\partial / \partial \xi_{i}$. Indeed, if g_{i} are elements in F, such that $g_{i}(0)=\partial / \partial \xi_{i}+a_{i}$ for some $a_{i} \in \mathfrak{a}$, the automorphism $\prod_{i}\left(1+\operatorname{ad}\left(a_{i} \xi_{i}\right)\right)$ brings g_{i} to f_{i} such that $f_{i}(0)=\partial / \partial \xi_{i}, i=1, \ldots, n$.

The same argument as in (a) shows that $F \subset L_{0}$, hence $L_{0}=L_{0} \cap(S \otimes \Lambda(n)) \rtimes F$. Let us write the elements of $S \otimes \Lambda(n)$ in the form $s(\xi)$ as in (a), let S_{I} be defined as in (a), and let $S_{0}=\left\{s(0) \mid s(\xi) \in L_{0}\right\}$. Then S_{0} is a subalgebra of S and, since $f_{i} \in L_{0}$ for every $i=1, \ldots, n$, $S_{I} \subset S_{0}$ for all I. It follows that $L_{0} \subset\left(S_{0} \otimes \Lambda(n)\right) \rtimes F$, hence, by the maximality of L_{0}, equality holds.

Likewise, let us write the elements of $\mathfrak{a} \otimes \Lambda(n)$ in the form $a(\xi)=\sum a_{I} \xi^{I}$, let \mathfrak{a}_{0} be as in the statement and let $\mathfrak{a}_{I}=\left\{a_{I} \mid a(\xi) \in\right.$ projection of F on $\left.\mathfrak{a} \otimes \Lambda(n)\right\}$. Then \mathfrak{a}_{0} is a subalgebra of \mathfrak{a} and, since L_{0} contains the elements $f_{i}, \mathfrak{a}_{I} \subset \mathfrak{a}_{0}$ for all I. It follows that $L_{0} \subset S_{0} \otimes \Lambda(n)+\mathfrak{a}_{0} \otimes$ $\Lambda(n)+F^{\prime}$, where F^{\prime} is the projection of F on $W(0, n)$. Since S_{0} is \mathfrak{a}_{0}-invariant, the maximality of S_{0} among the \mathfrak{a}_{0}-invariant subalgebras of S follows from the maximality of L_{0}.

Recall that the growth of an artinian linearly compact Lie superalgebra L is defined as follows. Choose a fundamental subalgebra L_{0} of L and construct a Weisfeiler filtration $L=L_{-d} \supset \cdots \supset$ $L_{0} \supset L_{1} \supset \cdots$, containing L_{0} as its 0th member, for some choice of L_{-1} containing L_{0} and

Table 2

L	s	L	s	L	s
$W(m, n)$	$(m+n) 2^{n}$	$S H O(n, n)$	2^{n-1}	$\mathrm{E}(1,6)$	32
$S(m, n)$	$(m+n-1) 2^{n}$	$K O(n, n+1)$	2^{n+1}	$E(3,6)$	12
$H(m, n)$	2^{n}	$S K O(n, n+1 ; \beta)$	2^{n}	$E(3,8)$	16
$K(m, n)$	2^{n}	$\operatorname{SHO}^{\sim}(n, n)$	2^{n-1}	$E(4,4)$	8
$H O(n, n)$	2^{n}	$S K O^{\sim}{ }_{(n, n+1)}$	2^{n}	$E(5,10)$	8

generating L. Consider the function $F(j)=\operatorname{dim} L / L_{j}$. It depends on the choice of L_{0} and on the Weisfeiler filtration, but it is easy to show (see [2,11]), that the leading term of $F(j)$ is independent of these choices. Namely, there exist unique positive real numbers a and g such that $\varlimsup_{j \rightarrow \infty}\left\{F(j) / j^{g}\right\}=a$. The number g is called the growth of L, and is denoted by $g(L)$.

It is easy to see from the classification, that, if L is simple, then $g(L)$ is a positive integer and, moreover, $s(L):=a g(L)!$ is a positive integer. The number $s(L)$ is called the size of L. One can think of the growth (respectively size) of L as the minimal number of even variables (respectively minimal number of functions in these variables) involved in vector fields from L. It is also easy to see from the classification that if L is simple and is not a Lie algebra, then $s(L)$ is an even integer, and, moreover, the sizes of the even and the odd parts of L are $\frac{1}{2} s(L)$ (of course, their growths are both equal to $g(L)$). Due to Theorem 1.5, any primitive L contains $S \otimes \Lambda(n)$ as an open ideal, hence $g(L)=g(S)$ and $s(L)=2^{n} s(S)$.

If a simple L is of type $X(m, n)$, then $g(L)=m$. The sizes are given in Table 2 .

Remark 1.10. If (L, L_{0}) is a primitive pair, and $G r L$ is its associated graded superalgebra for a Weisfeiler filtration, then $g(L)=g(\overline{G r L})$ and $s(L)=s(\overline{G r L})$. This puts stringent restrictions on the possibilities for $G r L$ for the given primitive pair $\left(L, L_{0}\right)$.

The following proposition allows one to construct graded maximal subalgebras.
Proposition 1.11. Let $\mathfrak{g}=\bigoplus_{j \geqslant-d} \mathfrak{g}_{j}$ be a \mathbb{Z}-graded Lie superalgebra and let $\mathfrak{g}_{\geqslant 0}=\bigoplus_{j \geqslant 0} \mathfrak{g}_{j}$, $\mathfrak{g}_{ \pm}=\bigoplus_{j>0} \mathfrak{g}_{ \pm j}$.
(a) If $\mathfrak{g} \geqslant 0$ is a maximal subalgebra of \mathfrak{g}, then:
(i) \mathfrak{g}_{-1} is an irreducible \mathfrak{g}_{0}-module;
(ii) \mathfrak{g}_{-}is generated by \mathfrak{g}_{-1};
(iii) \mathfrak{g}_{-}contains no ideals of \mathfrak{g} different from \mathfrak{g}_{-}or zero.
(b) If (i) and (ii) hold and, in addition,
(iii)' $\left[a, \mathfrak{g}_{1}\right] \neq 0$ for any non-zero $a \in \mathfrak{g}_{j}, j<-1$,
then $\mathfrak{g} \geqslant 0$ is a maximal subalgebra of \mathfrak{g}.
Proof. (a)(i) If V is a \mathfrak{g}_{0}-submodule of \mathfrak{g}_{-1} and V_{-}is the subalgebra of \mathfrak{g} generated by V then $V_{-}+\mathfrak{g} \geqslant 0$ is a subalgebra of \mathfrak{g}.
(ii) If $\mathfrak{g}_{-}^{\prime}$ is the subalgebra of \mathfrak{g} generated by \mathfrak{g}_{-1}, then $\mathfrak{g}_{-}^{\prime}+\mathfrak{g}_{\geqslant 0}$ is a subalgebra of \mathfrak{g}.
(iii) If I is such an ideal, then $I+\mathfrak{g} \geqslant 0$ is a subalgebra of \mathfrak{g}.
(b) Suppose that $\mathfrak{g} \geqslant 0$ is properly contained in a subalgebra \mathfrak{g}^{\prime} of \mathfrak{g}. It follows that there exists a non-zero element $a \in \mathfrak{g}_{-} \cap \mathfrak{g}^{\prime}$. Now (iii)' implies that $\left[a, \mathfrak{g}_{1}\right] \neq 0$. It follows that $\mathfrak{g}_{-1} \cap \mathfrak{g}^{\prime} \neq\{0\}$, therefore, due to (i), $\mathfrak{g}_{-1} \subset \mathfrak{g}^{\prime}$ and, due to (ii), $\mathfrak{g}^{\prime}=\mathfrak{g}$.

Corollary 1.12. If L is a filtered Lie superalgebra such that Gr L has properties (i), (ii), (iii)' of Proposition 1.11, then L_{0} is a maximal subalgebra of L.

Remark 1.13. If $\mathfrak{g}=\bigoplus_{i \geqslant-d} \mathfrak{g}_{i}$ is simple then \mathfrak{g}_{-d} is irreducible. Indeed if V is a \mathfrak{g}_{0}-stable subspace of \mathfrak{g}_{-d} then $V+\left(\bigoplus_{i>-d} \mathfrak{g}_{i}\right)$ is an ideal of \mathfrak{g}. In particular any \mathbb{Z}-grading of depth 1 of a simple Lie superalgebra is irreducible.

Definition 1.14. Let T be a maximal torus in $\operatorname{Der} L$. We call an open subalgebra of L regular if it is T-invariant.

Remark 1.15. Let L be a subalgebra of $W(m, n)$ and let I_{U} be a standard ideal of $\Lambda(m, n)$. If I_{U} is stabilized by a maximal torus T of $\operatorname{Der} L$ then the standard subalgebra L_{U} is regular.

2. Maximal open subalgebras of $W(m, n), S(m, n), K(m, n), H O(n, n)$ and $S H O(n, n)$

2.1. The Lie superalgebras $W(m, n)$ and $S(m, n), m \geqslant 1$

In Section 1 we introduced the Lie superalgebra $W(m, n)$ of continuous derivations of the Lie superalgebra $\Lambda(m, n)$. We shall assume $m \geqslant 1$ (note that $\operatorname{dim} W(0, n)<\infty)$. Let us fix the standard maximal torus $T=\left\langle x_{i} \partial / \partial x_{i}, \xi_{j} \partial / \partial \xi_{j} \mid i=1, \ldots, m ; j=1, \ldots, n\right\rangle$ of $W(m, n)$.

The simple Lie superalgebras L considered in this section and in the following three, are subalgebras of $W(m, n)$ such that $\operatorname{Der} L \subset W(m, n)$ and $T \cap \operatorname{Der} L$ is a maximal torus of $\operatorname{Der} L$. Such a maximal torus of $\operatorname{Der} L$ will be called standard.

Remark 2.1. By Theorem 1.7 each regular subalgebra of L is conjugate by G to a subalgebra which is invariant with respect to the standard torus of L. Thus, in order to classify regular subalgebras up to conjugation by G, it suffices to consider the ones that contain T. In what follows, conjugation will always mean conjugation by G, unless otherwise specified. We will often use automorphisms of L defined by changes of variables; each time it will not be difficult to check that they are inner, hence lie in G. Note that when the linear part of a change of variables is the identity then this is always an inner automorphism (cf. [20]).

Remark 2.2. A \mathbb{Z}-grading, called the grading of type ($a_{1}, \ldots, a_{m} \mid b_{1}, \ldots, b_{n}$), can be defined on $W(m, n)$ by setting $a_{i}=\operatorname{deg} x_{i}=-\operatorname{deg}\left(\partial / \partial x_{i}\right) \in \mathbb{N}$ and $b_{i}=\operatorname{deg} \xi_{i}=-\operatorname{deg}\left(\partial / \partial \xi_{i}\right) \in \mathbb{Z}$ (cf. [17, Example 4.1]). The \mathbb{Z}-grading of type $(1, \ldots, 1 \mid 1, \ldots, 1)$ is the principal grading of $W(m, n)$. In this grading $W(m, n)$ has depth 1 with 0th graded component isomorphic to the Lie superalgebra $g l(m, n)$ and -1 st graded component isomorphic to the standard $g l(m, n)$ module $\mathbb{C}^{m \mid n}$. Since $W(m, n)$ is simple for every $(m, n) \neq(0,1)$, under our hypotheses the principal grading of $W(m, n)$ is irreducible by Remark 1.13. More generally, the gradings of type $(1, \ldots, 1 \mid 1, \ldots, 1,0, \ldots, 0)$ with k zeros, are irreducible for every $k=0, \ldots, n$ and satisfy the hypotheses of Proposition 1.11(b). It follows, by Proposition 1.11(b), that the corresponding subalgebras $\prod_{j \geqslant 0} W(m, n)_{j}$ of $W(m, n)$ are maximal. The \mathbb{Z}-grading of $W(m, n)$ of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ is called subprincipal.

Theorem 2.3. Let $W=W(m, n)$ with $m \geqslant 1$. Then all maximal open subalgebras of W are, up to conjugation, the graded subalgebras of type $(1, \ldots, 1 \mid 1, \ldots, 1,0, \ldots, 0)$ with k zeros, for $k=0, \ldots, n$.

Proof. Let L_{0} be a maximal open subalgebra of W. Since the vector fields $\partial / \partial x_{i}$ are not exponentiable, L_{0} does not contain any vector field of the form $\sum \alpha_{i} \partial / \partial x_{i}+X+Y$ for any non-zero linear combination $\sum \alpha_{i} \partial / \partial x_{i}$, any $X \in W$ such that $X(0)=0$ and any $Y \in W(0, n)$. By Theorem 1.1(a), L_{0} is conjugate to the subalgebra W_{U} for some subspace $U=\left\langle x_{1}, \ldots, x_{m}, \xi_{1}, \ldots, \xi_{k}\right\rangle$ of $\Lambda(m, n)$, with $0 \leqslant k \leqslant n$. The subalgebra W_{U} is in fact the graded subalgebra of type $(1, \ldots, 1 \mid 1, \ldots, 1,0, \ldots, 0)$ with $n-k$ zeros.

Definition 2.4. Let L be a subalgebra of $W(m, n)$. A linear map Div: $L \rightarrow \Lambda(m, n)$ is called a divergence if the action of L on the space $\Lambda(m, n) v$ given by:

$$
\begin{equation*}
X(f v)=(X f) v+(-1)^{p(X) p(f)} f \operatorname{Div}(X) v \tag{2.1}
\end{equation*}
$$

is a representation of L. The symbol v is called the volume form attached to the divergence Div. Note that $S^{\prime} L:=\{X \in L \mid \operatorname{Div}(X)=0\}$ is a subalgebra of L and Div is a homomorphism of $S^{\prime} L$-modules.

Definition 2.5. If we have a representation of $L \subset W(m, n)$ on a vector space V, which is also a left module over $\Lambda(m, n)$, compatible with the action of L, and v is a volume form for L, then, for any complex number λ, L acts on the space $V^{\lambda}:=v^{\lambda} V$, by the twisted action defined as follows:

$$
X\left(v^{\lambda} u\right)=\lambda v^{\lambda} \operatorname{Div}(X) u+v^{\lambda} X u
$$

Remark 2.6. The subalgebra $S^{\prime} L$ consists of vector fields X in L such that $X v=0$. Likewise, $C S^{\prime} L:=\{X \in L \mid \operatorname{Div}(X) \in \mathbb{C}\}$ is the subalgebra of L consisting of vector fields X in L such that $X v=c v$ with $c \in \mathbb{C}$.

Remark 2.7. If $D i v$ is a divergence and F is an even invertible function in $\Lambda(m, n)$, then the map $\operatorname{Div}_{F}: L \rightarrow \Lambda(m, n)$ defined by:

$$
\operatorname{Div}_{F}(X)=X(F) F^{-1}+\operatorname{Div}(X),
$$

is also a divergence. If v is the volume form attached to $D i v$, then $F v$ is the volume form attached to Div_{F}.

Example 2.8. The function $\operatorname{div}: W(m, n) \rightarrow \Lambda(m, n)$ defined by

$$
\operatorname{div}\left(\sum_{i=1}^{m} P_{i} \frac{\partial}{\partial x_{i}}+\sum_{j=1}^{n} Q_{j} \frac{\partial}{\partial \xi_{j}}\right)=\sum_{i=1}^{m} \frac{\partial P_{i}}{\partial x_{i}}+\sum_{j=1}^{n}(-1)^{p\left(Q_{j}\right)} \frac{\partial Q_{j}}{\partial \xi_{j}}
$$

is a divergence. We will refer to it as the usual divergence. It follows, according to Definition 2.4, that the set $S^{\prime}(m, n):=S^{\prime} W(m, n)=\{X \in W(m, n) \mid \operatorname{div}(X)=0\}$ is a subalgebra of $W(m, n)$ (cf. [17, Example 4.2]). Moreover, $C S^{\prime}(m, n)=S^{\prime}(m, n)+\mathbb{C} \sum_{i=1}^{m} x_{i} \partial / \partial x_{i}$.

Remark 2.9. Let $d i v$ be the usual divergence (see Example 2.8). Then, for every $X \in W(m, n)$ and any even invertible function $F \in \Lambda(m, n), \operatorname{div}(F X)=X(F)+F \operatorname{div}(X)$. Therefore $\operatorname{div}_{F}(X)=0$ if and only if $\operatorname{div}(F X)=0$.

Let $S(m, n)=\left[S^{\prime}(m, n), S^{\prime}(m, n)\right]$. We recall that if $m>1$ then $S(m, n)=S^{\prime}(m, n)$ is simple. Besides, $S^{\prime}(1, n)=S(1, n)+\mathbb{C} \xi_{1} \ldots \xi_{n} \partial / \partial x_{1}$ and $S(1, n)$ is simple if and only if $n \geqslant 2$ (cf. [17, Example 4.2]). Since $S(2,1) \cong S K O(2,3 ; 0)$, when talking about $S(m, n)$ we shall always assume $(m, n) \neq(2,1)$.

Remark 2.10. Every \mathbb{Z}-grading of $W(m, n)$ induces a grading on $S(m, n)$. In particular the \mathbb{Z}-gradings of type $(1, \ldots, 1 \mid 1, \ldots, 1,0, \ldots, 0)$, with k zeros, induce on $S(m, n)$, by Remark 1.13, irreducible gradings for $m>1$ or $m=1$ and $n \geqslant 2$. As in Remark 2.2, the corresponding subalgebras $\prod_{j \geqslant 0} S(m, n)_{j}$ of $S(m, n)$ are maximal. The \mathbb{Z}-grading of $S(m, n)$ of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ is called subprincipal.

Theorem 2.11. Let $S=S(m, n)$ or $S=S^{\prime}(m, n)$ or $S=C S^{\prime}(m, n)$ with $m>1$ or $m=1$ and $n \geqslant 2$. Then every maximal open subalgebra of S is regular.

Proof. Let L_{0} be a maximal open subalgebra of $S=S^{\prime}(m, n)$ and let $U=\left\langle x_{1}, \ldots, x_{m}, \xi_{1}, \ldots, \xi_{k}\right\rangle$ with $0 \leqslant k \leqslant n$. Then, by Theorem 1.1, there exists a continuous automorphism φ of $\Lambda(m, n)$ such that $L_{0}=S \cap \varphi W_{U} \varphi^{-1}$.

Let ω be the volume form attached to the divergence $d i v$. Then:

$$
\begin{aligned}
\varphi^{-1} S \varphi & =\left\{\varphi^{-1} X \varphi \mid X \omega=0\right\}=\left\{Y \mid \varphi Y \varphi^{-1}(\omega)=0\right\} \\
& =\{Y \mid Y(f \omega)=0, \text { for some invertible } f \in \Lambda(m, n)\}=\left\{Y \mid f^{-1} Y f \omega=0\right\}=f S f^{-1}
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
\varphi^{-1} S \varphi \cap W_{U} & =f S f^{-1} \cap W_{U}=\left\{f X f^{-1} \mid X \in S, f X f^{-1}\left(I_{U}\right) \subset I_{U}\right\} \\
& =\left\{f X f^{-1} \mid X \in S, X\left(I_{U}\right) \subset I_{U}\right\}=f\left(S \cap W_{U}\right) f^{-1}
\end{aligned}
$$

Therefore $L_{0}=S \cap \varphi W_{U} \varphi^{-1}=\varphi f\left(S \cap W_{U}\right) f^{-1} \varphi^{-1}$. Since $S \cap W_{U}$ is a regular subalgebra of $W(m, n)$, its image under an automorphism of $W(m, n)$ is again a regular subalgebra of $W(m, n)$.

The same argument holds if we replace $S^{\prime}(m, n)$ by $S(m, n)$ or by $C S^{\prime}(m, n)$.

Remark 2.12. We recall that $\operatorname{Der} S(1,2)=S(1,2)+\mathfrak{a}$ with $\mathfrak{a} \cong s l_{2}$ (cf. Proposition 1.8). Let us denote by e, f, h the standard basis of $\mathfrak{a} \cong s l_{2}$ defined in [11, Lemma 5.9]. Let $S=\prod_{j \geqslant-2} S_{j}$ denote the Lie superalgebra $S(1,2)$ with respect to the grading of type $(2 \mid 1,1)$. Then $S_{0} \cong g l_{2}$ and S_{-1} is isomorphic, as an S_{0}-module, to the direct sum of two copies of the standard $g l_{2}$-module. It follows that, for every irreducible $g l_{2}$-submodule U of $S_{-1}, S_{U}:=U+\prod_{j \geqslant 0} S_{j}$ is a maximal open subalgebra of S. In particular, if $U=\left\langle\xi_{i} \partial / \partial x \mid i=1,2\right\rangle$ or $U=\left\langle\partial / \partial \xi_{i} \mid i=1,2\right\rangle$, then S_{U} is the maximal graded subalgebra of type $(1 \mid 1,1)$ or $(1 \mid 0,0)$, respectively. The subalgebras S_{U} are not conjugate by inner automorphisms of S, but they are conjugate by inner automorphisms of $\operatorname{Der} S$, since the subalgebra \mathfrak{a} of outer derivations of S permutes the subspaces U. In particular the graded subalgebras of principal and subprincipal type are conjugate by the (outer) automorphism $\exp (e) \exp (-f) \exp (e) \in G$.

Theorem 2.13.

(a) Let $S=S(m, n)$ with $m>1$ or $m=1$ and $n \geqslant 3$. Then all maximal open subalgebras of S are, up to conjugation, the graded subalgebras of type $(1, \ldots, 1 \mid 1, \ldots, 1,0, \ldots, 0)$ with k zeros, for $k=0, \ldots, n$.
(b) All maximal open subalgebras of $S(1,2)$ are, up to conjugation, the graded subalgebras of type $(1 \mid 1,1)$ and $(1 \mid 1,0)$.

Proof. Let L_{0} be a maximal open subalgebra of S. Then, by Theorem 2.11, L_{0} is regular and we can assume, by Remark 2.1, that it is invariant with respect to the standard torus T of $W(m, n)$. In particular L_{0} decomposes into the direct product of weight spaces with respect to T. Note that $\mathbb{C} \partial / \partial x_{i}, \mathbb{C} \partial / \partial \xi_{i}, \mathbb{C} \xi_{j_{1}} \ldots \xi_{j_{h}} \partial / \partial x_{i}, \mathbb{C} \xi_{j_{1}} \ldots \xi_{j_{h}} \partial / \partial \xi_{k}$ with $k \neq j_{1}, \ldots, j_{h}$, are one-dimensional weight spaces. Besides, the vector fields $\partial / \partial x_{i}$ cannot lie in L_{0} since they are not exponentiable (cf. [17, Lemma 1.2]). We may thus assume that one of the following situations occurs:
(1) no element $\partial / \partial \xi_{i}$ lies in L_{0}. It follows that the T-invariant complement of L_{0} contains the T-invariant complement of the subalgebra of type $(1, \ldots, 1 \mid 1, \ldots, 1)$, thus L_{0} coincides with the subalgebra of type $(1, \ldots, 1 \mid 1, \ldots, 1)$, since it is maximal;
(2) the elements $\partial / \partial \xi_{k+1}, \ldots, \partial / \partial \xi_{n}$ lie in L_{0} for some $k=0, \ldots, n-1$, and $\partial / \partial \xi_{1}, \ldots, \partial / \partial \xi_{k}$ do not. Then the elements $\xi_{i} \partial / \partial x_{j}$ and $\xi_{i} \partial / \partial \xi_{h}$ cannot lie in L_{0} for any $j=1, \ldots, m$, any $i=k+1, \ldots, n$ and any $h=1, \ldots, k$, since $\left[\partial / \partial \xi_{i}, \xi_{i} \partial / \partial x_{j}\right]=\partial / \partial x_{j}$ and $\left[\partial / \partial \xi_{i}\right.$, $\left.\xi_{i} \partial / \partial \xi_{h}\right]=\partial / \partial \xi_{h}$. Similarly, the elements $P \partial / \partial x_{j}$ and $P \partial / \partial \xi_{h}$, with $P \in \Lambda\left(\xi_{k+1}, \ldots, \xi_{n}\right)$, cannot lie in L_{0} for any $j=1, \ldots, m$ and any $h=1, \ldots, k$. It follows that L_{0} is contained in the graded subalgebra of S of type $(1, \ldots, 1 \mid 1, \ldots, 1,0, \ldots, 0)$ with $n-k$ zeros and thus coincides with it since L_{0} is maximal.

By Remark 2.12, when $m=1$ and $n=2$, the subalgebras of principal and subprincipal type are conjugate by an element of G.

Corollary 2.14.

(a) All irreducible \mathbb{Z}-gradings of $W(m, n)$ with $m \geqslant 1$, and of $S(m, n)$ with $m>1$ or $m=1$ and $n \geqslant 3$, are, up to conjugation, the gradings of type $(1, \ldots, 1 \mid 1, \ldots, 1,0, \ldots, 0)$ with k zeros, for $k=0, \ldots, n$.
(b) All irreducible \mathbb{Z}-gradings of $S(1,2)$ are, up to conjugation, the gradings of type $(1 \mid 1,1)$ and $(1 \mid 1,0)$.

Theorem 2.15. Let $S=S(m, n)$ with $m>1$, so that $S(m, n)=S^{\prime}(m, n)$ and $\operatorname{Der} S=$ $C S^{\prime}(m, n)=S(m, n)+\mathbb{C} \sum_{i=1}^{m} x_{i} \partial / \partial x_{i}$. Then all maximal among open $\sum_{i=1}^{m} x_{i} \partial / \partial x_{i}$-invariant subalgebras of S are, up to conjugation, the subalgebras of S listed in Theorem 2.13(a).

Proof. Let L_{0} be a maximal among open $\sum_{i=1}^{m} x_{i} \partial / \partial x_{i}$-invariant subalgebras of S. Then $L_{0}+$ $\mathbb{C} \sum_{i=1}^{m} x_{i} \partial / \partial x_{i}$ is a maximal open subalgebra of $C S^{\prime}(m, n)$, hence it is regular by Theorem 2.11. Then one uses the same arguments as in the proof of Theorem 2.13.

We recall that if $L=S(1, n)$, with $n \geqslant 3$, then $\operatorname{Der} L=C S^{\prime}(1, n)=\mathbb{C} E+S^{\prime}(1, n)$ where $E=x \partial / \partial x+\sum_{i=1}^{n} \xi_{i} \partial / \partial \xi_{i}$ is the Euler operator and $S^{\prime}(1, n)=S(1, n)+\mathbb{C} \xi_{1} \ldots \xi_{n} \partial / \partial x$ (cf.

Proposition 1.8). We are now interested in the subalgebras of $S(1, n)$ which are maximal among the \mathfrak{a}_{0}-invariant subalgebras of $S(1, n)$, for every subalgebra \mathfrak{a}_{0} of the subalgebra \mathfrak{a} of outer derivations of $S(1, n)$ (cf. Theorem 1.9(b)).

Remark 2.16. By Theorem 2.11 every maximal open subalgebra of $S^{\prime}(1, n)$ or $C S^{\prime}(1, n)$, for every $n \geqslant 2$, is regular. Therefore the same argument as in the proof of Theorem 2.13 shows that all fundamental maximal subalgebras of $S^{\prime}(1, n)$ or $C S^{\prime}(1, n)$ (i.e., fundamental among maximal subalgebras) are, up to conjugation, the graded subalgebras of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ with k zeros, for $k=0, \ldots, n-1$. Indeed, the graded subalgebra of $S^{\prime}(1, n)$ (respectively $C S^{\prime}(1, n)$) of type $(1 \mid 0, \ldots, 0)$ is not maximal, since it is contained in $S(1, n)$ (respectively $S(1, n)+\mathbb{C} E)$. Notice that the graded subalgebras of principal and subprincipal type of $S^{\prime}(1,2)$ (respectively $C S^{\prime}(1,2)$) are not conjugate. By the same arguments, all maximal fundamental subalgebras of $S^{\prime}(1, n)$ and $C S^{\prime}(1, n)$ (i.e., maximal among fundamental subalgebras) are, up to conjugation, the graded subalgebras of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ with k zeros, for $k=0, \ldots, n$.

In order to distinguish, when needed, a subalgebra of type $\left(a \mid b_{1}, \ldots, b_{n}\right)$ of $S(1, n)$ from the graded subalgebra of $S^{\prime}(1, n)$ or $C S^{\prime}(1, n)$ of the same type, we shall use subscripts. For example $(1 \mid 1, \ldots, 1)_{S^{\prime}(1, n)}$ will denote the graded subalgebra of $S^{\prime}(1, n)$ of principal type, so that $(1 \mid 1, \ldots, 1)_{S^{\prime}(1, n)}=(1 \mid 1, \ldots, 1)_{S(1, n)}+\mathbb{C} \xi_{1} \ldots \xi_{n} \partial / \partial x$.

Theorem 2.17. Let $L=S(1, n)$ with $n \geqslant 3$.
(i) All maximal among open E-invariant subalgebras of L are, up to conjugation, the graded subalgebras of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ with k zeros, for some $k=0, \ldots, n$.
(ii) If $\mathfrak{a}_{0}=\mathbb{C} \xi_{1} \ldots \xi_{n} \partial / \partial x$ or $\mathfrak{a}_{0}=\mathfrak{a}$, then all maximal among open \mathfrak{a}_{0}-invariant subalgebras of L are, up to conjugation, the graded subalgebras of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ with k zeros, for some $k=0, \ldots, n-1$.

Proof. Let L_{0} be a maximal among open E-invariant subalgebras of $S(1, n)$. Then $L_{0}+\mathbb{C} E$ is a fundamental subalgebra of $C S^{\prime}(1, n)$, hence it is contained in a maximal fundamental subalgebra of $C S^{\prime}(1, n)$, i.e., by Remark 2.16, in a conjugate of the graded subalgebra of $C S^{\prime}(1, n)$ of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ with k zeros, for some $k=0, \ldots, n$. Suppose $L_{0}+\mathbb{C} E \subset$ $\varphi\left((1 \mid 1, \ldots, 1)_{C S^{\prime}(1, n)}\right)=\varphi\left((1 \mid 1, \ldots, 1)_{S(1, n)}\right)+\mathbb{C} \varphi(E)+\mathbb{C} \varphi\left(\xi_{1} \ldots \xi_{n} \partial / \partial x\right)$ for some inner automorphism φ of $C S^{\prime}(1, n)$. Since E is contained in $\varphi\left((1 \mid 1, \ldots, 1)_{C S^{\prime}(1, n)}\right), \varphi\left((1 \mid 1, \ldots, 1)_{S(1, n)}\right)$ is an E-invariant subalgebra of $S(1, n)$, hence $L_{0}=\varphi\left((1 \mid 1, \ldots, 1)_{S(1, n)}\right)$ by maximality. If $L_{0}+\mathbb{C} E$ is contained in a conjugate of the subalgebra of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ with k zeros, for some $k=1, \ldots, n$, the argument is similar.

Now let S_{0} be a maximal among open $\xi_{1} \ldots \xi_{n} \partial / \partial x$-invariant subalgebras of $S(1, n)$. Then $S_{0}+\mathbb{C} \xi_{1} \ldots \xi_{n} \partial / \partial x$ is a fundamental maximal subalgebra of $S^{\prime}(1, n)$ containing $\xi_{1} \ldots \xi_{n} \partial / \partial x$. Likewise, if S_{0} is a maximal among open \mathfrak{a}-invariant subalgebras of $S(1, n)$, then $S_{0}+$ $\mathbb{C} E+\mathbb{C} \xi_{1} \ldots \xi_{n} \partial / \partial x$ is a fundamental maximal subalgebra of $C S^{\prime}(1, n)$ containing E and $\xi_{1} \ldots \xi_{n} \partial / \partial x$. Then statements (ii) and (iii) follow from Remark 2.16.

Theorem 2.18. Let $S=S(1,2)$ and let \mathfrak{b} be the 2-dimensional subalgebra of \mathfrak{a} spanned by e and h.
(i) If \mathfrak{a}_{0} is a one-dimensional subalgebra of \mathfrak{a}, then all maximal among open \mathfrak{a}_{0}-invariant subalgebras of $S(1,2)$ are, up to conjugation, the subalgebras of type $(1 \mid 1,1)$ and $(1 \mid 1,0)$.
(ii) The graded subalgebra of type $(1 \mid 1,1)$ is, up to conjugation, the only maximal among open \mathfrak{b}-invariant subalgebras of $S(1,2)$, which is not invariant with respect to \mathfrak{a}.
(iii) All maximal open among \mathfrak{a}-invariant subalgebras of $S(1,2)$ are, up to conjugation, the subalgebras of type $(2 \mid 1,1)$ and $(1 \mid 1,0)$.

Proof. By Remark 2.16, the proof of (i) is the same as the proof of (i) and (ii) in Theorem 2.17. Recall that the graded subalgebras of principal and subprincipal type of $S(1,2)$ are conjugate.

Now, using [11, Lemma 5.9] one can check that the graded subalgebras of $S(1,2)$ of type $(1 \mid 1,0)$ and $(2 \mid 1,1)$ are invariant with respect to \mathfrak{a}. On the other hand, the graded subalgebra L_{0} of type $(1 \mid 1,1)$ is invariant with respect to \mathfrak{b} but it is not \mathfrak{a}-invariant. Indeed, one has: $\xi_{i} \partial / \partial x \in L_{0}, \partial / \partial \xi_{j} \notin L_{0}$ and $f\left(\xi_{i} \partial / \partial x\right)= \pm \partial / \partial \xi_{j}$ with $j \neq i$. Let S_{0} be a maximal among \mathfrak{b}-invariant subalgebras of $S(1,2)$. Then $S_{0}+\mathbb{C} \sum_{i=1}^{2} \xi_{i} \partial / \partial \xi_{i}+\mathbb{C} \xi_{1} \xi_{2} \partial / \partial x$ is a fundamental maximal subalgebra of $C S^{\prime}(1,2)$ containing $\sum_{i=1}^{2} \xi_{i} \partial / \partial \xi_{i}$ and $\xi_{1} \xi_{2} \partial / \partial x$, hence, by Remark $2.16, S_{0}$ is conjugate either to the graded subalgebra of $S(1,2)$ of type $(1 \mid 1,1)$ or to the graded subalgebra of type $(1 \mid 1,0)$.

Now suppose that \tilde{S} is a maximal among open \mathfrak{a}-invariant subalgebras of $S(1,2)$. Then \tilde{S} is invariant with respect to \mathfrak{b}, hence $\tilde{S}+\mathfrak{b}$ is contained in a maximal fundamental subalgebra of $C S^{\prime}(1,2)$ containing \mathfrak{b}. It follows that either \tilde{S} is contained in a conjugate of the subalgebra of $S(1,2)$ of type $(1 \mid 1,0)$, thus coincides with it by maximality, or it is contained in a conjugate S_{U} of the subalgebra of principal type. As we noticed in Remark $2.12, S_{U}$ is conjugate to the subalgebra of principal type by an automorphism $\varphi=\exp (a d a)$ for some $a \in \mathfrak{a}$. Since \tilde{S} is \mathfrak{a}-invariant, $\varphi(\tilde{S})=\tilde{S}$, therefore \tilde{S} is contained in the intersection of S_{U} with the subalgebra of principal type, i.e., in the graded subalgebra of type (2|1, 1). Since the subalgebra of type (2|1, 1) is \mathfrak{a}-invariant, \tilde{S} coincides with it by maximality.

2.2. The Lie superalgebra $K(2 k+1, n)$

Let $k \in \mathbb{Z}_{+}$and let $t, p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}$, be $2 k+1$ even indeterminates and ξ_{1}, \ldots, ξ_{n} be n odd indeterminates. Consider the differential form $\tau=d t+\sum_{i=1}^{k}\left(p_{i} d q_{i}-q_{i} d p_{i}\right)+$ $\sum_{j=1}^{n} \xi_{j} d \xi_{n-j+1}$. The contact Lie superalgebra is defined as follows [17, Example 4.4]:

$$
K(2 k+1, n):=\{X \in W(2 k+1, n) \mid X \tau=f \tau \text { for some } f \in \Lambda(2 k+1, n)\} .
$$

The algebra $K(2 k+1, n)$ is simple for every k, n. Recall that we assumed $(k, n) \neq(0,2)$.
Consider the Lie superalgebra $\Lambda(2 k+1, n)$ with the following bracket:

$$
\begin{align*}
{[f, g]=} & (2-E) f \frac{\partial g}{\partial t}-\frac{\partial f}{\partial t}(2-E) g+\sum_{i=1}^{k}\left(\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}-\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}\right) \\
& +(-1)^{p(f)} \sum_{i=1}^{n} \frac{\partial f}{\partial \xi_{i}} \frac{\partial g}{\partial \xi_{n-i+1}}, \tag{2.2}
\end{align*}
$$

where $E=\sum_{i=1}^{k}\left(p_{i} \partial / \partial p_{i}+q_{i} \partial / \partial q_{i}\right)+\sum_{i=1}^{n} \xi_{i} \partial / \partial \xi_{i}$ is the Euler operator. Then the map $\varphi: \Lambda(2 k+1, n) \rightarrow K(2 k+1, n)$ given by:

$$
f \mapsto X_{f}=(2-E) f \frac{\partial}{\partial t}+\frac{\partial f}{\partial t} E+\sum_{i=1}^{k}\left(\frac{\partial f}{\partial p_{i}} \frac{\partial}{\partial q_{i}}-\frac{\partial f}{\partial q_{i}} \frac{\partial}{\partial p_{i}}\right)+(-1)^{p(f)} \sum_{i=1}^{n} \frac{\partial f}{\partial \xi_{i}} \frac{\partial}{\partial \xi_{n-i+1}},
$$

is an isomorphism of Lie superalgebras (cf. [10, §1.2], [6]). We will therefore identify $K(2 k+1, n)$ with $\Lambda(2 k+1, n)$. The standard maximal torus is $T=\left\langle t, p_{i} q_{i}, \xi_{j} \xi_{n-j+1}\right| i=$ $1, \ldots, k ; j=1, \ldots,[n / 2]\rangle$.

Remark 2.19. Bracket (2.2) satisfies the following rule:

$$
[f, g h]=[f, g] h+(-1)^{p(f) p(g)} g[f, h]+2 \frac{\partial f}{\partial t} g h
$$

Besides we have:

$$
X_{f}(g)=[f, g]+2 \frac{\partial f}{\partial t} g
$$

It follows, in particular, that an ideal $I=\left(f_{1}, \ldots, f_{r}\right)$ of $\Lambda(2 k+1, n)$ is stabilized by a function f in $K(2 k+1, n)$ if and only if $\left[f, f_{i}\right]$ lies in I for every $i=1, \ldots, r$.

Notice that, if f is an even function independent of t, then $\varphi=\exp \operatorname{ad}(f)$ is an automorphism of $\Lambda(2 k+1, n)$ with respect to both the Lie bracket and the usual product of polynomials. It follows that a subalgebra L_{0} of $K(2 k+1, n)$ stabilizes an ideal $I=\left(f_{1}, \ldots, f_{r}\right)$ of $\Lambda(2 k+1, n)$ if and only if the subalgebra $\varphi\left(L_{0}\right)$ stabilizes the ideal $J=\left(\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{r}\right)\right)$.

Remark 2.20. A \mathbb{Z}-grading of $W(2 k+1, n)$ induces a \mathbb{Z}-grading on $K(2 k+1, n)$ if and only if the differential form τ is homogeneous. It follows that, for every $s=0, \ldots,[n / 2]$, the \mathbb{Z}-grading of $W(2 k+1, n)$ of type $(2,1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$, with $s+12$'s and s zeros, induces on $K(2 k+1, n)$ a \mathbb{Z}-grading of depth 2 , where $\mathfrak{g}_{0} \cong \operatorname{cspo}(2 k, n-2 s) \otimes \Lambda(s)+W(0, s)$, $\mathfrak{g}_{-1} \cong \mathbb{C}^{2 k \mid n-2 s} \otimes \Lambda(s)$ and $\mathfrak{g}_{-2}=\left[\mathfrak{g}_{-1}, \mathfrak{g}_{-1}\right] \cong \mathbb{C} \otimes \Lambda(s)$. This grading is thus irreducible for every $s=0, \ldots,[n / 2]$ when $k=0$ and n is odd, or $k>0$, and it is irreducible for every $0 \leqslant s<(n-2) / 2$ when $k=0$ and n is even. Besides, when $k=0$ and n is even the grading of type ($1 \mid 1, \ldots, 1,0, \ldots, 0$) with $n / 2$ zeros, is also irreducible by Remark 1.13. One can verify that these irreducible gradings satisfy the hypotheses of Proposition 1.11(b), therefore the corresponding graded subalgebras of $K(2 k+1, n)$ are maximal.

The grading of $K(2 k+1, n)$ of type $(2,1, \ldots, 1 \mid 1, \ldots, 1)$ is called principal. The grading of $K(2 k+1,2 h)$ of type $(2,1, \ldots, 1 \mid 2, \ldots, 2,0, \ldots, 0)$, with h zeros, is called subprincipal.

Remark 2.21. Notice that when $k=0, n$ is even and $s=(n-2) / 2$, then the grading of $W(1, n)$ of type ($2 \mid 2, \ldots, 2,1,1,0, \ldots, 0$), with $s+12$'s and s zeros, induces on $K(1, n)$ a grading which is not irreducible. In particular, the subalgebra $\prod_{j \geqslant 0} K(1, n)_{j}$ of $K(1, n)$ corresponding to this grading is contained in the maximal subalgebra of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ with $n / 2$ zeros.

Remark 2.22. The group of inner automorphisms that preserve the principal grading of $L=$ $K(2 k+1, n)$ is isomorphic to $\mathbb{C}^{\times}(S p(2 k) \times S O(n))$. It follows that when $k=0$ and n is even
the graded subalgebras of L of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ and $(1 \mid 1, \ldots, 1,0,1,0 \ldots, 0)$ with $n / 2$ zeros, are not conjugate by an inner automorphism of L. Likewise, when $k>0$ and n is even the subalgebra of L of subprincipal type is not conjugate by an inner automorphism to the subalgebra of type $(2,1, \ldots, 1 \mid 2, \ldots, 2,0,2,0, \ldots, 0)$ with $n / 2$ zeros.

Remark 2.23. One can define a valuation v on $\Lambda(m, n)$ (and the induced valuation on $\Lambda(m, n) / \mathbb{C} 1)$ with values in \mathbb{Z}, by assigning the values of v on the generators $\left\{x_{i}, \xi_{j} \mid i=\right.$ $1, \ldots, m ; j=1, \ldots, n\}$ of $\Lambda(m, n)$ as an associative algebra, and by extending v to $\Lambda(m, n)$ through the usual two rules:
(a) $v(f \cdot g)=v(f)+v(g)$;
(b) $v\left(\sum_{i} c_{i} f_{i}\right)=\min v\left(f_{i}\right)$, if $c_{i} \in \mathbb{C}^{\times}$and f_{i} are linearly independent monomials.

Example 2.24. Consider the symmetric bilinear form $\left(\xi_{i}, \xi_{j}\right)=\delta_{i, n-j+1}$ on the vector space $V=\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle$. Given a subspace U of V we shall denote by U^{0} the kernel of the restriction of the bilinear form (\cdot, \cdot) to U. Then $U=U^{0} \oplus U^{1}$ where U^{1} is a maximal subspace of U with non-degenerate metric. Let $\left(U^{1}\right)^{\perp}$ be the orthogonal complement of U^{1} in V. Then $\left(U^{1}\right)^{\perp}$ contains U^{0} and a subspace $\left(U^{0}\right)^{\prime}$ non-degenerately paired with U^{0}. Let us denote by $\left(U^{1}\right)^{\prime}$ the orthogonal complement of $U^{0}+\left(U^{0}\right)^{\prime}$ in $\left(U^{1}\right)^{\perp}$.

Now suppose that U is a coisotropic subspace of V and consider the ideal $I_{\mathcal{U}}=\left(t, p_{1}, \ldots, p_{k}\right.$, $\left.q_{1}, \ldots, q_{k}, U\right)$ of $\Lambda(2 k+1, n)$. We define a valuation v on $\Lambda(2 k+1, n)$ as follows:

$$
\begin{gathered}
v(t)=2, \quad v\left(p_{i}\right)=v\left(q_{i}\right)=1, \\
v(x)=1 \quad \text { for } x \in U^{1}, \\
v(x)=2 \quad \text { for } x \in U^{0}, \quad v(x)=0 \quad \text { for } x \in\left(U^{0}\right)^{\prime} .
\end{gathered}
$$

Then the subspaces

$$
L_{j}(U)=\{x \in \Lambda(2 k, n) \mid v(x) \geqslant j+2\}
$$

define a filtration of $K(2 k+1, n)$ where $L_{-1}=I_{\mathcal{U}}$ and $L_{0}=\operatorname{Stab}\left(I_{\mathcal{U}}\right)$. If n is not even or n is even and $\operatorname{dim} U^{0}<n / 2$, this is in fact the graded filtration of $K(2 k+1, n)$ associated, up to conjugation, to the grading of type $(2,1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ with $s+12$'s and $s 0$'s, s being the dimension of U^{0}. If n is even, $k=0$ (respectively $k>0$), and $U=U^{0}$ is a maximal isotropic subspace of V, then L_{0} is conjugate either to the graded subalgebra of L of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ (respectively $(2,1, \ldots, 1 \mid 2, \ldots, 2,0, \ldots, 0)$) or to the graded subalgebra of type $(1 \mid 1, \ldots, 1,0,1,0, \ldots, 0)$ (respectively $(2,1, \ldots, 1 \mid 2, \ldots, 2,0,2,0 \ldots, 0)$) with $n / 2$ zeros.

Remark 2.25. If $k=0$ and $n=2 h$ then the maximal graded subalgebra of $K(1, n)$ of type $(2 \mid 2, \ldots, 2,0, \ldots, 0)$ is not irreducible since its component of degree -1 does not generate its negative part. Notice that the non-negative part of the irreducible grading of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ with h zeros coincides with the non-negative part of the grading of type $(2 \mid 2, \ldots, 2,0, \ldots, 0)$. In particular, it stabilizes the ideal $I_{\mathcal{U}}=\left(t, p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, U^{0}\right)$ where $U^{0}=\left\langle\xi_{1}, \ldots, \xi_{h}\right\rangle$.

Lemma 2.26. In the associative superalgebra $\Lambda(2 k+1, n)$, let us consider an ideal $J=$ $\left(t, p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, h_{1}, \ldots, h_{r}\right)$ where $h_{1}, \ldots, h_{r} \in \Lambda(0, n)$. Suppose that $h_{1}=\eta_{1}+F$ and $h_{2}=\eta_{1}^{\prime}+G$ where $\eta_{1}, \eta_{1}^{\prime}$ are non-degenerately paired, distinct elements of $V=\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle$ and F, G contain no constant and linear terms. Then J is conjugate to the ideal $K=(t+T$, $\left.p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, \eta_{1}, \eta_{1}^{\prime}, f_{1}, \ldots, f_{r-2}\right)$ for some functions $T, f_{i} \in \Lambda(U)$ where U is the orthogonal complement of $\left\langle\eta_{1}, \eta_{1}^{\prime}\right\rangle$ in V.

Proof. Multiplying h_{1} by some invertible function we can assume that F does not depend on η_{1}, i.e., $\eta_{1}+F=\eta_{1}+f_{1} \eta_{1}^{\prime}+f_{2}$ where f_{1}, f_{2} lie in $\Lambda(U)$. Also, we can assume that G lies in $\Lambda\left(U_{1}\right)$ where $U_{1}=\left\langle U, \eta_{1}\right\rangle$. Notice that $f_{1} \eta_{1}^{\prime}+f_{1} G$ lies in J, therefore $J=\left(t, p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, \eta_{1}+f_{2}-f_{1} G, \eta_{1}^{\prime}+G, h_{3}, \ldots, h_{r}\right)$ where $f_{2}-f_{1} G \in$ $\Lambda\left(U_{1}\right)$. Therefore, multiplying $\eta_{1}+f_{2}-f_{1} G$ by an invertible function, we can write $J=$ $\left(t, p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, \eta_{1}+F^{\prime}, \eta_{1}^{\prime}+G, h_{3}, \ldots, h_{r}\right)$ where $F^{\prime} \in \Lambda(U)$.

Now (see Remark 2.19) the automorphism $\exp \left(a d\left(\eta_{1}^{\prime} F^{\prime}\right)\right)$ maps J to the ideal $J^{\prime}=\left(t+T_{1}\right.$, $\left.p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, \eta_{1}, \eta_{1}^{\prime}+H, h_{3}^{\prime}, \ldots, h_{r}^{\prime}\right)$ where T_{1} and the functions h_{i}^{\prime} 's lie in $\Lambda(0, n)$, and $H \in \Lambda(U)$. Then, similarly as above, the automorphism $\exp \left(\operatorname{ad}\left(\eta_{1} H\right)\right)$, maps J^{\prime} to the ideal $K=\left(t+T_{2}, p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, \eta_{1}, \eta_{1}^{\prime}, f_{1}, \ldots, f_{r-2}\right)$, for some $T_{2}, f_{1}, \ldots, f_{r-2} \in \Lambda(0, n)$. Since $\eta_{1}, \eta_{1}^{\prime}$ lie in K, it is immediate to see that we can assume $T_{2}, f_{1}, \ldots, f_{r-2} \in \Lambda(U)$.

Lemma 2.27. In the associative superalgebra $\Lambda(2 k+1, n)$, let us consider an ideal $J=$ $\left(t, p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, h_{1}, \ldots, h_{r}\right)$ where $h_{1}, \ldots, h_{r} \in \Lambda(0, n)$. Suppose that $h_{1}=\eta_{1}+F$ where η_{1} is an element of V non-degenerately paired with itself, and F contains no constant and linear terms. Then J is conjugate to the ideal $K=\left(t+T, p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, \eta_{1}\right.$, $\left.f_{1}, \ldots, f_{r-1}\right)$ for some functions $T, f_{i} \in \Lambda(U)$ where U is the orthogonal complement of $\left\langle\eta_{1}\right\rangle$ in V.

Proof. One uses the same argument as in the first part of the proof of Lemma 2.26.
Lemma 2.28. Let L_{0} be a maximal open subalgebra of $L=K(m, n) \cong \Lambda(m, n)$ and let I be an ideal of $\Lambda(m, n)$ stabilized by L_{0}. Suppose that I is maximal among the L_{0}-invariant ideals. Then $L_{0} \subset I$.

Proof. Let $\left(L_{0}\right)$ be the ideal generated by L_{0}. Every invertible element of $\Lambda(m, n)$ is not exponentiable therefore (L_{0}) contains no invertible element of $\Lambda(m, n)$. It follows that $\left(L_{0}\right)+I$ is a proper ideal of $\Lambda(m, n)$ containing I, and it is L_{0}-invariant. By the maximality of I it follows $L_{0} \subset I$.

Lemma 2.29. Let $J=\left(t+f_{0}, p_{1}+f_{1}, q_{1}+h_{1}, \ldots, p_{k}+f_{k}, q_{k}+h_{k}\right)$ be an ideal of $\Lambda(2 k+1, n)$, for some even functions f_{i}, h_{j} containing no linear and constant terms. Then $J=\left(t+f_{0}^{\prime}\right.$, $\left.p_{1}+f_{1}^{\prime}, q_{1}+h_{1}^{\prime}, \ldots, p_{k}+f_{k}^{\prime}, q_{k}+h_{k}^{\prime}\right)$ with $f_{i}^{\prime}, h_{j}^{\prime}$ in $\Lambda(0, n)$.

Proof. Suppose $f_{0}=t+t \phi_{1}+\phi_{2}$ with ϕ_{2} independent of t and $n_{2}=\operatorname{deg} \phi_{2}>1$. Then $f_{0}-$ $f_{0} \phi_{1}=t-t \phi_{1}^{2}-\phi_{2} \phi_{1}+\phi_{2}$. Then the coefficients of t in the second and in the third term have degree $2 n_{1}$ and $n_{1}+n_{2}-1>n_{1}$, respectively, where $n_{1}=\operatorname{deg} \phi_{1}$. Hence in the limit we get $t+\psi$ for some function ψ independent of t. Similarly we can make f_{0}, and f_{j}, h_{j} independent of all even variables for every $j=1, \ldots, k$.

Theorem 2.30. Let L_{0} be a maximal open subalgebra of $L=K(2 k+1, n)$. Then L_{0} is conjugate to the standard subalgebra $L_{\mathcal{U}}$ of L stabilizing the ideal $I_{\mathcal{U}}=\left(t, p_{1}, q_{1}, \ldots, p_{k}, q_{k}, U\right)$ of $\Lambda(2 k+1, n)$, for some coisotropic subspace U of $V=\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle$.

Proof. By Remark 1.3 L_{0} stabilizes an ideal of the form

$$
J=\left(t+f_{0}, p_{1}+f_{1}, q_{1}+h_{1}, \ldots, p_{k}+f_{k}, q_{k}+h_{k}, v_{1}+g_{1}, v_{2}+g_{2}, \ldots, v_{s}+g_{s}\right)
$$

for some linear functions v_{j} in odd indeterminates, and even functions f_{i}, h_{i} and odd functions g_{j} without constant and linear terms, and J is maximal among the L_{0}-invariant ideals of $\Lambda(2 k+1, n)$.

By Lemma 2.29 we can assume f_{0} and, similarly, f_{i}, h_{i} in $\Lambda(0, n)$ for every i. Therefore the automorphism $\exp \left(\operatorname{ad}\left(f_{1} q_{1}\right)\right)$ maps J to

$$
J_{1}=\left(t+f_{0}^{\prime}, p_{1}, q_{1}+h_{1}^{\prime}, p_{2}+f_{2}^{\prime}, q_{2}+h_{2}^{\prime}, \ldots, p_{k}+f_{k}^{\prime}, q_{k}+h_{k}^{\prime}, v_{1}+g_{1}^{\prime}, v_{2}+g_{2}^{\prime}, \ldots, v_{s}+g_{s}^{\prime}\right)
$$

As above we can make h_{1}^{\prime} independent of even variables. It follows that the automorphism $\exp \left(a d\left(-h_{1}^{\prime} p_{1}\right)\right)$ maps J_{1} to $J_{2}=\left(t+f_{0}^{\prime \prime}, p_{1}, q_{1}, p_{2}+f_{2}^{\prime \prime}, q_{2}+h_{2}^{\prime \prime}, \ldots, p_{k}+f_{k}^{\prime \prime}, q_{k}+h_{k}^{\prime \prime}\right.$, $\left.\nu_{1}+g_{1}^{\prime \prime}, \nu_{2}+g_{2}^{\prime \prime}, \ldots, v_{s}+g_{s}^{\prime \prime}\right)$. The same procedure applied to all generators $p_{i}+f_{i}^{\prime \prime}$ and $q_{j}+h_{j}^{\prime \prime}$ shows that J is in fact conjugate to the ideal

$$
I=\left(t+T_{0}, p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, v_{1}+\ell_{1}, v_{2}+\ell_{2}, \ldots, v_{s}+\ell_{s}\right)
$$

where v_{1}, \ldots, v_{s} are linearly independent vectors in V and $T_{0}, \ell_{1}, \ldots, \ell_{s}$ are functions in $\Lambda(0, n)$ without constant and linear terms.

Let $U=\left\langle v_{1}, \ldots, v_{s}\right\rangle$. Then, using the notation introduced in Example 2.24, by Lemmas 2.26 and 2.27,

$$
I=\left(t+T_{1}, p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, U^{1}, \eta_{1}+\ell_{1}, \ldots, \eta_{r}+\ell_{r}\right)
$$

where $U^{0}=\left\langle\eta_{1}, \ldots, \eta_{r}\right\rangle$ and $T_{1}, \ell_{1}, \ldots, \ell_{r} \in \Lambda\left(\left(U^{1}\right)^{\perp}\right)$. Let $\left(U^{0}\right)^{\prime}=\left\langle\eta_{1}^{\prime}, \ldots, \eta_{r}^{\prime}\right\rangle$ with $\left(\eta_{i}, \eta_{j}^{\prime}\right)=\delta_{i, j}$.

Denote by I^{\prime} the ideal $I^{\prime}=\left(t+T_{1}, \eta_{1}+\ell_{1}, \ldots, \eta_{r}+\ell_{r}\right) \subset I$. Then, each function f in L_{0} (thus stabilizing I) stabilizes the ideal $K=\left(I,\left[I^{\prime}, I^{\prime}\right]\right)$. Indeed, for every $g, h \in I^{\prime}$ we have:

$$
[f,[g, h]]=[[f, g], h] \pm[g,[f, h]] \in\left[I, I^{\prime}\right]
$$

and $\left[I, I^{\prime}\right] \subset K$ since T_{1} and all odd generators of I^{\prime} are orthogonal to U^{1}. Notice that K is generated by the generators of I and by the commutators between every pair of generators of I^{\prime}. Therefore K is a proper ideal of $\Lambda(2 k+1, n)$ since among its generators there is no invertible element. By the maximality of I among the ideals stabilized by L_{0} we have $I=K$.

Let us rewrite the ideal I as follows:

$$
I=\left(t+T_{1}, p_{1}, q_{1}, \ldots, p_{k}, q_{k}, U^{1}, \eta_{1}, \ldots, \eta_{h-1}, \eta_{h}+\ell_{h}, \ldots, \eta_{r}+\ell_{r}\right)
$$

where $h=\min \left\{i=1, \ldots, r \mid \ell_{i} \neq 0\right\}$.
We first show that the functions ℓ_{h} can be made independent of $\eta_{1}^{\prime}, \ldots, \eta_{h-1}^{\prime}$. Indeed, let $\eta_{h}+\ell_{h}=\eta_{h}+\eta_{1}^{\prime} \phi_{1}+\phi_{2}$ where ϕ_{1}, ϕ_{2} do not depend on η_{1}^{\prime}. Then $\phi_{1}=\left[\eta_{1}, \eta_{h}+\ell_{h}\right] \in$
$\left[I^{\prime}, I^{\prime}\right] \subset K=I$, thus $I=\left(t+T_{1}, p_{1}, q_{1}, \ldots, p_{k}, q_{k}, U^{1}, \eta_{1}, \ldots, \eta_{h-1}, \eta_{h}+\phi_{2}, \eta_{h+1}+\ell_{h+1}^{\prime}\right.$, $\left.\ldots, \eta_{r}+\ell_{r}^{\prime}\right)$, where $\phi_{2} \in \Lambda\left(\left(U^{1}\right)^{\perp}\right)$ does not depend on η_{1}^{\prime}. Arguing in the same way for the variables $\eta_{2}^{\prime}, \ldots, \eta_{h-1}^{\prime}$, we get

$$
I=\left(t+T_{1}, p_{1}, q_{1}, \ldots, p_{k}, q_{k}, U^{1}, \eta_{1}, \ldots, \eta_{h-1}, \eta_{h}+\phi, \eta_{h+1}+\ell_{h+1}, \ldots, \eta_{r}+\ell_{r}\right)
$$

where ϕ does not depend on $\eta_{1}^{\prime}, \ldots, \eta_{h-1}^{\prime}$. Besides, multiplying $\eta_{h}+\phi$ by an invertible function, we can assume that ϕ does not depend on η_{h}. Now we can write $\phi=\eta_{h}^{\prime} \psi_{1}+\psi_{2}$ with ψ_{1}, ψ_{2} independent of $\eta_{1}^{\prime}, \ldots, \eta_{h}^{\prime}$. Therefore, applying the automorphism $\exp \left(\operatorname{ad}\left(\psi_{2} \eta_{h}^{\prime}\right)\right)$ we can write

$$
I=\left(t+T_{2}, p_{1}, q_{1}, \ldots, p_{k}, q_{k}, U^{1}, \eta_{1}, \ldots, \eta_{h-1}, \eta_{h}+\eta_{h}^{\prime} \psi_{1}, \eta_{h+1}+\ell_{h+1}^{\prime}, \ldots, \eta_{r}+\ell_{r}^{\prime}\right)
$$

for some $T_{2}, \ell_{j}^{\prime} \in \Lambda(0, n)$. Then $\psi_{1}=\frac{1}{2}\left[\eta_{h}+\eta_{h}^{\prime} \psi_{1}, \eta_{h}+\eta_{h}^{\prime} \psi_{1}\right] \in\left[I^{\prime}, I^{\prime}\right] \subset K=I$. Therefore, up to conjugation,

$$
I=\left(t+T_{2}, p_{1}, q_{1}, \ldots, p_{k}, q_{k}, U^{1}, \eta_{1}, \ldots, \eta_{h-1}, \eta_{h}, \eta_{h+1}+\ell_{h+1}^{\prime}, \ldots, \eta_{r}+\ell_{r}^{\prime}\right)
$$

Arguing as above for $\ell_{h+1}^{\prime}, \ldots, \ell_{s}^{\prime}$, we can assume, up to conjugation, that I has the following form:

$$
I=\left(t+f, p_{1}, q_{1}, \ldots, p_{k}, q_{k}, U^{1}, \eta_{1}, \ldots, \eta_{r}\right)=\left(t+T, p_{1}, q_{1}, \ldots, p_{k}, q_{k}, U\right)
$$

for some function f in $\Lambda(0, n)$. Notice that, in fact, we can assume $f \in \Lambda\left(\left(U^{0}\right)^{\prime} \oplus\left(U^{1}\right)^{\prime}\right)$, since $U=U^{0} \oplus U^{1} \subset I$. Now suppose $f=\eta_{1}^{\prime} \varphi_{1}+\varphi_{2}$ with φ_{1}, φ_{2} independent of η_{1}^{\prime}. Then $\left[t+f, \eta_{1}\right]=-\eta_{1}+\varphi_{1} \in\left[I^{\prime}, I^{\prime}\right] \subset K=I$, thus we can replace $t+f$ with $t+\varphi_{2}$ (here $I^{\prime}=$ $\left(t+f, U^{0}\right)$). Similarly, we can make f independent of $\eta_{2}^{\prime}, \ldots, \eta_{r}^{\prime}$, i.e., $f \in \Lambda\left(\left(U^{1}\right)^{\prime}\right)$ with no linear and constant terms. In particular, if U is coisotropic then $f=0$ and I is a standard ideal.

Suppose that U is not coisotropic and consider the ideal $Y=\left(t, p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}\right.$, $\left.U+\left(U^{1}\right)^{\prime}\right)$. Note that if U is not coisotropic then the subspace $U+\left(U^{1}\right)^{\prime}$ is coisotropic. Let $L_{-2}^{\prime} \supset L_{-1}^{\prime} \supset \cdots$ be the filtration of $K(2 k+1, n)$ associated to the ideal Y as in Example 2.24, where $L_{0}^{\prime}=\operatorname{Stab}(Y)$. Then the completion of the graded superalgebra $\operatorname{Gr} L$ associated to this filtration is isomorphic to $K(2 k+1, n)$ with respect to the grading of type $(2 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ with $s+12$'s and $s 0$'s, where $s=\operatorname{dim} U^{0}$. In particular we have:

$$
G r_{-2} L=\Lambda\left(\left(U^{0}\right)^{\prime}\right), \quad G r_{-1} L=\left(\left\langle p_{i}, q_{i}\right\rangle \oplus U^{1} \oplus\left(U^{1}\right)^{\prime}\right) \otimes \Lambda\left(\left(U^{0}\right)^{\prime}\right)
$$

We want to show that L_{0} is contained in L_{0}^{\prime}. Suppose that $X \in K(2 k+1, n)$ stabilizes I. Then we can write

$$
X=X_{-2}+X_{-1}+X_{0}
$$

with $X_{-2} \in G r_{-2} L, X_{-1} \in G r_{-1} L$ and $X_{0} \in \prod_{j \geqslant 0} G r_{j} L$. In fact, since L_{0} is open, $X_{-2} \in$ $\Lambda\left(\left(U^{0}\right)^{\prime}\right) / \mathbb{C}$.

Note that $t \in G r_{0} L, f \in \prod_{j \geqslant 0} G r_{j} L, U^{0} \subset G r_{0} L, U^{1} \subset G r_{-1} L$ and $p_{i}, q_{i} \in G r_{-1} L$. It follows that $I \subset G r_{\geqslant-1}=L_{-1}^{\prime}$.

Now, since $X \in \operatorname{Stab}(I)$, we have:

$$
\left[X, U^{0}\right] \subset I \subset L_{-1}^{\prime} \quad \Rightarrow \quad\left[X_{-2}, U^{0}\right]=0
$$

and, since $X_{-2} \in \Lambda\left(\left(U^{0}\right)^{\prime}\right) / \mathbb{C}$, it follows $X_{-2}=0$.
Similarly,

$$
\left[X, U^{1}\right] \subset I \quad \Rightarrow \quad\left[X_{-1}, U^{1}\right]=0
$$

and

$$
\left[X, p_{i}\right] \subset I \Rightarrow\left[X_{-1}, p_{i}\right]=0, \quad\left[X, q_{i}\right] \subset I \Rightarrow\left[X_{-1}, q_{i}\right]=0, \quad \forall i=1, \ldots, k
$$

hence $X_{-1} \in\left(U^{1}\right)^{\prime} \otimes \Lambda\left(\left(U^{0}\right)^{\prime}\right)$. Therefore $X=X_{-1}+X_{0} \in L_{0}$ with $X_{-1} \in\left(U^{1}\right)^{\prime} \otimes \Lambda\left(\left(U^{0}\right)^{\prime}\right) \subset$ $G r_{-1} L$ and $X_{0} \in \prod_{j \geqslant 0} G r_{j} L$. By Lemma 2.28, $L_{0} \subset I$, hence $X \in I$. It follows $X_{-1}=0$, i.e., $L_{0} \subset \prod_{j \geqslant 0} G r_{j} L$. Indeed if $X_{-1} \neq 0$ then $\nu(X)=1$ but

$$
I \cap\{x \mid v(x)=1\}=\left(\left\langle p_{i}, q_{i}\right\rangle+U^{1}\right) \otimes \Lambda\left(\left(U^{0}\right)^{\prime}\right)+\prod_{j \geqslant 0} G r_{j} L
$$

By the maximality of L_{0} the statement follows.

Theorem 2.31.

(i) All maximal open subalgebras of $K(1,2 h)(h>1)$ are, up to conjugation, the graded subalgebras of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ and $(1 \mid 1, \ldots, 1,0,1,0, \ldots, 0)$ with h zeros, and the graded subalgebras of type $(2 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ with $s+12$'s and s zeros, for $s=0, \ldots, h-2$.
(ii) If $k>0$ and n is even, all maximal open subalgebras of $K(2 k+1, n)$ are, up to conjugation, the graded subalgebras of type $(2,1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ with $s+12$'s and s zeros, for $s=0, \ldots, n / 2$ and the graded subalgebra of type $(2,1, \ldots, 1 \mid 2, \ldots, 2,0,2$, $0, \ldots, 0)$ with $n / 2$ zeros.
(iii) If n is odd, all maximal open subalgebras of $K(2 k+1, n)$ are, up to conjugation, the graded subalgebras of type $(2,1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ with $s+12$'s and s zeros, for $s=0, \ldots,[n / 2]$.

Proof. By Theorem 2.30 every maximal open subalgebra of $K(2 k+1, n)$ is conjugate to the standard subalgebra associated to the ideal $I_{\mathcal{U}}=\left(t, p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, U\right)$ of $\Lambda(2 k+1, n)$, for some coisotropic subspace U of $V=\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle$. Now the statement follows from Example 2.24 and Remarks 2.20, 2.21, 2.22 and 2.25.

Corollary 2.32.

(i) All irreducible \mathbb{Z}-gradings of $K(1,2 h)$ are, up to conjugation, the grading of type $(2 \mid 2, \ldots$, $2,1, \ldots, 1,0, \ldots, 0)$, with $s+12$'s and s zeros, for $s=0, \ldots, h-2$ and the gradings of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ and $(1 \mid 1, \ldots, 1,0,1,0, \ldots, 0)$ with h zeros.
(ii) All irreducible \mathbb{Z}-gradings of $K(2 k+1, n)$ where $k>0$ and n is even are, up to conjugation, the gradings of type $(2,1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ with $s+12$'s and s zeros, for $s=0, \ldots, n / 2$ and the grading of type $(2,1, \ldots, 1 \mid 2, \ldots, 2,0,2,0, \ldots, 0)$ with $n / 2$ zeros.
(iii) All irreducible \mathbb{Z}-gradings of $K(2 k+1, n)$ where n is odd are, up to conjugation, the gradings of type $(2,1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ with $s+12$'s and s zeros, for $s=0, \ldots,[n / 2]$.

We take the opportunity here to describe the embedding of the Lie superalgebra $S(1,2)$ in $K(1,4)$ and to correct Proposition 4.1.2 in [10].

Remark 2.33. Consider the Lie superalgebra $K(1,4)$ with its principal grading. Then $\mathfrak{g}_{0}=c s o_{4}$ and we want to study \mathfrak{g}_{1} as a \mathfrak{g}_{0}-module. \mathfrak{g}_{1} is spanned by the elements $t \xi_{i}$, for $i=1, \ldots, 4$, and $\xi_{i} \xi_{j} \xi_{k}$ for $i, j, k=1, \ldots, 4, i \neq j \neq k$, thus it is the direct sum of two isomorphic irreducible representations of $s_{4}: V=\left\langle t \xi_{i}\right\rangle$ and $W=\left\langle\xi_{i} \xi_{j} \xi_{k}\right\rangle$, each of which is isomorphic to the standard so 0_{4}-module. Note that $[W, W]=\left\langle\xi_{1} \xi_{2} \xi_{3} \xi_{4}\right\rangle$ and $\left[\mathfrak{g}_{-2}, W\right]=0$. It follows that $\mathfrak{g}_{-2}+\mathfrak{g}_{-1}+\mathfrak{g}_{0}+$ $W+[W, W]$ is isomorphic to $\hat{H}(0,4)+\mathbb{C} t$ where t is the grading operator (see $[10, \S 1.2]$). As it was noticed in [10, Proposition 4.1.2], for every $\lambda \in \mathbb{C}$, the subspace $V_{\lambda}=\left\langle\xi_{1} t+\lambda \xi_{1} \xi_{2} \xi_{3}, \xi_{2} t+\right.$ $\left.\lambda \xi_{2} \xi_{1} \xi_{4}, \xi_{3} t+\lambda \xi_{4} \xi_{1} \xi_{3}, \xi_{4} t-\lambda \xi_{4} \xi_{2} \xi_{3}\right\rangle$ is an irreducible \mathfrak{g}_{0}-submodule of \mathfrak{g}_{1}, but, differently from what is claimed in [10, Proposition 4.1.2], $\operatorname{dim}\left(\left[V_{\lambda}, V_{\lambda}\right]\right)=1$ for every $\lambda \in \mathbb{C}$. Besides, for every $\lambda \neq \pm 1,\left[\mathfrak{g}_{-1}, V_{\lambda}\right]=\operatorname{cso}{ }_{4}=\mathfrak{g}_{0}$, while, if $\lambda=1$ or $\lambda=-1$, then $\left[\mathfrak{g}_{-1}, V_{\lambda}\right]=g l_{2}$. Therefore, for every $\lambda \neq \pm 1, \mathfrak{g}_{-2}+\mathfrak{g}_{-1}+\mathfrak{g}_{0}+V_{\lambda}+\left[V_{\lambda}, V_{\lambda}\right]$ is a simple, 17 -dimensional Lie superalgebra, isomorphic to the Lie superalgebra $D(2,1 ; \alpha)$ for some α (cf. [15, Remark 2.5.7]). If $\lambda=1$ or $\lambda=-1$, the Lie superalgebra $L:=\mathfrak{g}_{-2}+\mathfrak{g}_{-1}+g l_{2}+V_{\lambda}+V_{\lambda}^{2}$ has dimension 14 and it is isomorphic to $s l(2,2) / \mathbb{C} 1$, and the copy of $s l_{2}$, lying in \mathfrak{g}_{0} and outside of L, acts on L by outer derivations.

Now consider the Lie superalgebra $S(1,2)=\sum_{j \geqslant-2} \mathfrak{h}_{j}$ with respect to the grading of type $(2 \mid 1,1)$. Then the positive part of this grading is not generated by \mathfrak{h}_{1}. On the contrary, $\left(\mathfrak{h}_{1}\right)^{2}$ has dimension 1 and $\mathfrak{h}_{-2}+\mathfrak{h}_{-1}+\mathfrak{h}_{0}+\mathfrak{h}_{1}+\left(\mathfrak{h}_{1}\right)^{2} \cong s l(2,2) / \mathbb{C} 1$. We have the following embedding of $S(1,2)$ in $K(1,4)$:

$$
S(1,2) \cong \mathbb{C}\left[t+\xi_{1} \xi_{4}+\xi_{2} \xi_{3}\right] \Lambda\left(\xi_{1}, \xi_{2}\right)+\mathbb{C}\left[t-\xi_{1} \xi_{4}-\xi_{2} \xi_{3}\right] \Lambda\left(\xi_{3}, \xi_{4}\right)
$$

Another description of this important embedding is given in [5, Remark 5.12].

2.3. The Lie superalgebras $\mathrm{HO}(n, n)$ and $\operatorname{SHO}(n, n)$

Let x_{1}, \ldots, x_{n} be n even indeterminates and ξ_{1}, \ldots, ξ_{n} be n odd indeterminates, and let us consider the differential form $\sigma=\sum_{i=1}^{n} d x_{i} d \xi_{i}$. The odd Hamiltonian superalgebra is defined as follows (cf. [1]):

$$
H O(n, n):=\{X \in W(n, n) \mid X \sigma=0\} .
$$

It is a simple Lie superalgebra if and only if $n \geqslant 2$. The Lie superalgebra $H O(n, n)$ contains the subalgebra

$$
S H O^{\prime}(n, n):=S^{\prime} H O(n, n)=\{X \in H O(n, n) \mid \operatorname{div}(X)=0\}
$$

(see Definition 2.4 and Example 2.8).
Its derived algebra $\operatorname{SHO}(n, n)=\left[S H O^{\prime}(n, n), S H O^{\prime}(n, n)\right]$ is simple if and only if $n \geqslant 3$.
The Lie superalgebra $H O(n, n)$ can be realized as follows (cf. [10, §1.3]): in $\Lambda(n, n)$ one can consider the Lie superalgebra structure defined by the Buttin bracket:

$$
[f, g]:=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial \xi_{i}}+(-1)^{p(f)} \frac{\partial f}{\partial \xi_{i}} \frac{\partial g}{\partial x_{i}}\right)
$$

Then the map $\Lambda(n, n) \rightarrow H O(n, n)$ given by:

$$
f \mapsto \sum_{i=1}^{n}\left(\frac{\partial f}{\partial x_{i}} \frac{\partial}{\partial \xi_{i}}+(-1)^{p(f)} \frac{\partial f}{\partial \xi_{i}} \frac{\partial}{\partial x_{i}}\right)
$$

defines a surjective homomorphism of Lie superalgebras whose kernel consists of constant functions. Hence we will identify $\operatorname{HO}(n, n)$ with $\Lambda(n, n) / \mathbb{C} 1$ with the Buttin bracket, with reversed parity. Under this identification

$$
S H O^{\prime}(n, n)=\{f \in \Lambda(n, n) \mid \Delta(f)=0\} / \mathbb{C} 1=: \Lambda^{\Delta}(n, n) / \mathbb{C} 1,
$$

where $\Delta=\sum_{i=1}^{n} \partial^{2} /\left(\partial x_{i} \partial \xi_{i}\right)$ is the odd Laplace operator, and $\operatorname{SHO}(n, n)$ is the span of all monomials in $\mathrm{SHO}^{\prime}(n, n)$ except for $\xi_{1} \ldots \xi_{n}$.

Since $H O(2,2) \cong S(2,1)$ and since $S H O(n, n)$ is simple if and only if $n \geqslant 3$, when talking about $H O(n, n)$ and $\operatorname{SHO}(n, n)$ we shall assume $n \geqslant 3$. Consider the maximal torus $T=\left\langle x_{i} \xi_{i} \mid i=1, \ldots, n\right\rangle$ of $H O(n, n)$. Recall that $\operatorname{Der} H O(n, n)=H O(n, n)+\mathbb{C} E$ where $E=\sum_{i=1}^{n}\left(x_{i} \partial / \partial x_{i}+\xi_{i} \partial / \partial \xi_{i}\right)$ is the Euler operator. Besides, if $n \geqslant 4$ then $\operatorname{DerSHO}(n, n)=$ $S H O^{\prime}(n, n)+\mathbb{C} E+\mathbb{C} \Phi$ where $\Phi=\sum_{i=1}^{n} x_{i} \xi_{i}$ (with $\sum_{i=1}^{n}\left(-x_{i} \partial / \partial x_{i}+\xi_{i} \partial / \partial \xi_{i}\right)$ the corresponding vector field) (cf. Proposition 1.8). Finally, $\operatorname{Der} \operatorname{SHO}(3,3)=\operatorname{SHO}(3,3)+\mathfrak{a}$ where $\mathfrak{a} \cong g l_{2}$ and a maximal torus of \mathfrak{a} is spanned by E and Φ (cf. [10, Remark 4.4.1]).

Remark 2.34. The \mathbb{Z}-grading of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ of $W(n, n)$ induces on $H O(n, n)$ (respectively $\operatorname{SHO}(n, n)$) a grading of depth 1 (called the subprincipal grading) which is irreducible by Remark 1.13.

Consider the gradings induced on $\mathrm{HO}(n, n)$ (respectively $\operatorname{SHO}(n, n)$) by the \mathbb{Z}-gradings of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ of $W(n, n)$, with $k 2$'s and k zeros. For any fixed k, $0 \leqslant k \leqslant n-2$, the 0 th graded component of $H O(n, n)$ (respectively $S H O(n, n)$) with respect to this grading is isomorphic to the Lie superalgebra $\tilde{P}(n-k) \otimes \Lambda(k)+W(0, k)$ (respectively $P(n-k) \otimes \Lambda(k)+W(0, k))$ and the -1 st graded component is isomorphic to $\mathbb{C}^{n-k \mid n-k} \otimes \Lambda(k)$ where $\mathbb{C}^{n-k \mid n-k}$ is the standard $P(n-k)$-module (cf. [15]). Therefore for every $k=0, \ldots, n-2$ these are irreducible gradings of $\operatorname{HO}(n, n)$ (respectively $\operatorname{SHO}(n, n)$). If $k>0$ then the grading of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with $k 2$'s and k zeros, has depth 2 , its -1 st graded component generates its negative part and property (iii)' of Proposition 1.11(b) is satisfied. It follows that the subalgebras of $\operatorname{HO}(n, n)$ (respectively $\operatorname{SHO}(n, n)$) of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ and $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with $k 2$'s and k zeros, for $k=0, \ldots, n-2$, are maximal. (All claims hold also for the Lie superalgebra $H O(2,2)$.)

The \mathbb{Z}-grading induced on $H O(n, n)$ (respectively $\operatorname{SHO}(n, n)$) by the principal grading of $W(n, n)$ is also called principal.

Remark 2.35. The \mathbb{Z}-grading of type $(1,2, \ldots, 2 \mid 1,0, \ldots, 0)$ of $H O(n, n)$ is not irreducible. Indeed the 0 th graded component of $H O(n, n)$ with respect to this grading is the subspace $\left\langle x_{1}^{2}, x_{1} \xi_{1}, x_{i} \mid i=2, \ldots, n\right\rangle \otimes \Lambda\left(\xi_{2}, \ldots, \xi_{n}\right)$ and its -1 st graded component is $\left\langle x_{1}, \xi_{1}\right\rangle \otimes$ $\Lambda\left(\xi_{2}, \ldots, \xi_{n}\right)$. It follows that the subspace $\left\langle x_{1}\right\rangle \otimes \Lambda\left(\xi_{2}, \ldots, \xi_{n}\right)$ of $H O(n, n)_{-1}$ is $H O(n, n)_{0}$ stable.

Likewise, the \mathbb{Z}-grading of type $(1,2, \ldots, 2 \mid 1,0, \ldots, 0)$ of $S H O(n, n)$ fails to be irreducible. Indeed, with respect to this grading, $\mathrm{HO}(n, n)_{-1}=\operatorname{SHO}(n, n)_{-1}$.

The subalgebra of type $(1,2, \ldots, 2 \mid 1,0, \ldots, 0)$ of $H O(n, n)$ (respectively $S H O(n, n)$) is contained in the maximal subalgebra of type $(1, \ldots, 1 \mid 0, \ldots, 0)$.

Remark 2.36. Let $L=H O(n, n)$ or $L=S H O(n, n)$. Then the graded subalgebra L_{k} of L of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with $n-k 2$'s and $n-k$ zeros, is, for every $k=1, \ldots, n$, the standard subalgebra L_{U} of L stabilizing the ideal $I_{U}=\left(x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{k}\right)$. Indeed, for every $k, L_{k} \subset L_{U}$ since L_{k} is contained in the graded subalgebra of $W(n, n)$ of type $(1, \ldots, 1 \mid 1, \ldots, 1,0, \ldots, 0)$ with $n-k$ zeros, which stabilizes I_{U} (cf. the proof of Theorem 2.3). If $k \neq 1$, then, by Remark $2.34, L_{k}$ is a maximal subalgebra of L, thus $L_{k}=L_{U}$ for every $k \neq 1$.

Now suppose $k=1$. By Remark 1.15, L_{U} is regular and, up to conjugation, we can assume that it is invariant with respect to the standard torus $T+\mathbb{C} E$ of $\operatorname{DerHO}(n, n)$. Therefore L_{U} decomposes into the direct product of weight spaces with respect to $T+\mathbb{C} E$. Consider the \mathbb{Z} grading of L of type $(1,2, \ldots, 2 \mid 1,0, \ldots, 0)$. Then the negative part of this grading is $\mathfrak{g}_{-}=$ $\left(\left\langle 1, x_{1}, \xi_{1}\right\rangle \otimes \Lambda\left(\xi_{2}, \ldots, \xi_{n}\right)\right) / \mathbb{C} 1$. Notice that $\mathbb{C} \xi_{i_{1}} \ldots \xi_{i_{h}}$, with $i_{1} \neq \cdots \neq i_{h}$, and $\mathbb{C} x_{1} \xi_{j_{1}} \ldots \xi_{j_{h}}$, with $1 \neq j_{1} \neq \cdots \neq j_{h}$, are one-dimensional weight spaces with respect to $T+\mathbb{C} E$. Therefore, in order to prove that L_{U} is contained in L_{1} (hence $L_{U}=L_{1}$) it is sufficient to show that, for every $f \in \mathfrak{g}_{-}, f$ does not lie in L_{U}. Notice that L_{U} contains the elements x_{2}, \ldots, x_{n} but it does not contain neither the elements ξ_{i} for any $i=1, \ldots, n$, nor the element x_{1}, since these elements do not stabilize the ideal I_{U}. It follows that the elements $\xi_{i} \xi_{j}$ cannot lie in L_{U} for any $i \neq j$. Indeed, $\left[x_{j}, \xi_{i} \xi_{j}\right]=-\xi_{i}$. Likewise, by induction on $k=1, \ldots, n$, the elements $\xi_{i_{1}} \ldots \xi_{i_{k}}$ cannot lie in L_{U} for any $k=1, \ldots, n$. Now, suppose that $x_{1} \xi_{j}$ lies in L_{U} for some $j \neq 1$. Then L_{U} contains the element $\left[x_{j}, x_{1} \xi_{j}\right]=x_{1}$ and this contradicts our assumptions. It follows that L_{U} cannot contain the elements $x_{1} \xi_{j}$ and, similarly, the elements $x_{1} \xi_{j_{1}} \ldots \xi_{j_{k}}$ for any $j_{1} \neq \cdots \neq j_{k} \neq 1 . L_{U}$ is therefore contained in L_{1}, hence $L_{U}=L_{1}$.

Finally, the graded subalgebra of L of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ is the standard subalgebra of L stabilizing the ideal $\left(x_{1}, \ldots, x_{n}\right)$.

Remark 2.37. We recall that $\operatorname{Der} \operatorname{SHO}(3,3)=\operatorname{SHO}(3,3)+\mathfrak{a}$ with $\mathfrak{a} \cong g l_{2}$ (cf. Proposition 1.8, [10, Remark 4.4.1]). The subalgebra \mathfrak{a} of outer derivations is generated by the Euler operator E and by a copy of $s l_{2}$ with Chevalley basis $\{e, h, f\}$ where

$$
e=a d\left(\xi_{1} \xi_{3} \frac{\partial}{\partial x_{2}}-\xi_{2} \xi_{3} \frac{\partial}{\partial x_{1}}-\xi_{1} \xi_{2} \frac{\partial}{\partial x_{3}}\right) \quad \text { and } \quad h=a d\left(\frac{2}{3} \sum_{i=1}^{3}\left(\xi_{i} \frac{\partial}{\partial \xi_{i}}-x_{i} \frac{\partial}{\partial x_{i}}\right)\right) .
$$

In order to describe the action of the derivation f one can proceed as in [11, Lemma 5.9]. Here it is convenient, as before, to identify $\operatorname{SHO}^{\prime}(3,3)$ with the set of elements g in $\Lambda(3,3) / \mathbb{C} 1$ such that $\Delta(g)=0$, and $\operatorname{SHO}(3,3)$ with the subspace consisting of elements not containing the monomial $\xi_{1} \xi_{2} \xi_{3}$. Under this identification $e=a d\left(\xi_{1} \xi_{2} \xi_{3}\right)$ and $h=a d\left(\frac{2}{3} \sum_{i=1}^{3} x_{i} \xi_{i}\right)$. Let us consider $\operatorname{SHO}(3,3)$ with its principal grading. With respect to this grading, $\operatorname{SHO}(3,3)_{j}=$ ($\left.\operatorname{SHO}(3,3)_{1}\right)^{j}$, for $j>1$, therefore it is sufficient to define the derivation f on the local part $\operatorname{SHO}(3,3)_{-1} \oplus \operatorname{SHO}(3,3)_{0} \oplus \operatorname{SHO}(3,3)_{1}$ of $\operatorname{SHO}(3,3)$. One has:

$$
\begin{gathered}
f\left(\xi_{1} \xi_{2}\right)=-\frac{4}{3} x_{3}, \quad f\left(\xi_{1} \xi_{3}\right)=\frac{4}{3} x_{2}, \quad f\left(\xi_{2} \xi_{3}\right)=-\frac{4}{3} x_{1}, \quad f\left(x_{1} \xi_{2} \xi_{3}\right)=-\frac{1}{3} x_{1}^{2} \\
f\left(x_{2} \xi_{1} \xi_{3}\right)=\frac{1}{3} x_{2}^{2}, \quad f\left(x_{3} \xi_{1} \xi_{2}\right)=-\frac{1}{3} x_{3}^{2}, \quad f\left(x_{1} \xi_{1} \xi_{2}-x_{3} \xi_{3} \xi_{2}\right)=-\frac{2}{3} x_{1} x_{3}
\end{gathered}
$$

$$
f\left(x_{2} \xi_{2} \xi_{1}-x_{3} \xi_{3} \xi_{1}\right)=\frac{2}{3} x_{2} x_{3}, \quad f\left(x_{1} \xi_{1} \xi_{3}-x_{2} \xi_{2} \xi_{3}\right)=\frac{2}{3} x_{1} x_{2}
$$

and $f=0$ elsewhere on $\operatorname{SHO}(3,3)_{-1} \oplus \operatorname{SHO}(3,3)_{0} \oplus \operatorname{SHO}(3,3)_{1}$.
Remark 2.38. Let $S=\prod_{j \geqslant-2} S_{j}$ denote the Lie superalgebra $\operatorname{SHO}(3,3)$ with respect to the grading of type $(2,2,2 \mid 1,1,1)$. Then $S_{0} \cong s l_{3}$ and S_{-1} is isomorphic, as an S_{0}-module, to the direct sum of two copies of the standard $s l_{3}$-module. It follows that, for every irreducible $s l_{3}$-submodule U of $S_{-1}, S_{U}:=U+\prod_{j \geqslant 0} S_{j}$ is a maximal open subalgebra of S. In particular, if $U=$ $\left\langle\xi_{i} \xi_{j} \mid i, j=1,2,3\right\rangle$ or $U=\left\langle x_{i} \mid i=1,2,3\right\rangle$, then S_{U} is the maximal graded subalgebra of type $(1,1,1 \mid 1,1,1)$ or $(1,1,1 \mid 0,0,0)$, respectively. The subalgebras S_{U} are not conjugate by inner automorphisms of S, but they are conjugate by inner automorphisms of $\operatorname{Der} S$, since the copy of $s l_{2}$ of outer derivations of S described in Remark 2.37, permutes the subspaces U. In particular the graded subalgebras of principal and subprincipal type are conjugate by the automorphism $\exp (e) \exp \left(\frac{-3}{4} f\right) \exp (e) \in G$.

Remark 2.39. Let $1 \leqslant i<j \leqslant n$. Then the change of indeterminates that exchanges x_{i} with x_{j} and ξ_{i} with ξ_{j} preserves the form σ.

Remark 2.40. Let $\eta=\alpha_{i_{1}} \xi_{i_{1}}+\cdots+\alpha_{i_{k}} \xi_{i_{k}}$ for some $k \leqslant n$, with $\alpha_{i_{j}} \in \mathbb{C}$, $\alpha_{i_{j}} \neq 0$. According to Remark 2.39 we can assume $\eta=\alpha_{1} \xi_{1}+\cdots+\alpha_{k} \xi_{k}$ with $\alpha_{i} \neq 0$ for $i=1, \ldots, k$. Then the following change of indeterminates preserves the form σ :

$$
\begin{aligned}
x_{1}^{\prime}=\frac{1}{\alpha_{1}} x_{1}, & \xi_{1}^{\prime}=\eta, \\
x_{2}^{\prime}=x_{2}-\frac{\alpha_{2}}{\alpha_{1}} x_{1}, & \xi_{2}^{\prime}=\xi_{2}, \\
\quad \vdots & \vdots \\
x_{k}^{\prime}=x_{k}-\frac{\alpha_{k}}{\alpha_{1}} x_{1}, & \xi_{k}^{\prime}=\xi_{k}, \\
x_{i}^{\prime}=x_{i}, & \xi_{i}^{\prime}=\xi_{i} \quad \forall i>k .
\end{aligned}
$$

Theorem 2.41. Let $L=H O(n, n)$ and let L_{0} be a maximal open subalgebra of L. Then L_{0} is conjugate to a standard subalgebra of L.

Proof. Let $L=H O(n, n)$. By Remark $1.3 L_{0}$ stabilizes an ideal of the form

$$
J=\left(x_{1}+f_{1}, \ldots, x_{n}+f_{n}, \eta_{1}+g_{1}, \ldots, \eta_{s}+g_{s}\right)
$$

for some linear functions η_{j} in odd indeterminates, and even functions f_{i} and odd functions g_{j} without constant and linear terms, and J is maximal among the L_{0}-invariant ideals of $\Lambda(n, n)$. By Remark 2.40, up to changes of indeterminates, we can write

$$
J=\left(x_{1}+F_{1}, \ldots, x_{n}+F_{n}, \xi_{1}+G_{1}, \ldots, \xi_{s}+G_{s}\right)
$$

for some even functions F_{i} and odd functions G_{j} without constant and linear terms, where we can assume G_{j} independent of ξ_{1}, \ldots, ξ_{s} for every $j=1, \ldots, s$.

Suppose that $x_{1}+F_{1}=x_{1}+\xi_{1} F_{1}^{\prime}+F_{1}^{\prime \prime}$ with F_{1}^{\prime} and $F_{1}^{\prime \prime}$ independent of ξ_{1}. Then we can replace $x_{1}+F_{1}$ by $x_{1}+F_{1}-\left(\xi_{1}+G_{1}\right) F_{1}^{\prime}=x_{1}+H_{1}$ with H_{1} independent of ξ_{1}. Similarly we
can make every function F_{i} independent of ξ_{j} for every $j=1, \ldots, s$. Besides, as in Lemma 2.29, since the ideal J is closed, we can make the functions F_{i} and G_{i} independent of all even variables, i.e., $F_{i}, G_{i} \in \Lambda(0, n)$. It follows that the automorphism $\exp \left(a d\left(\xi_{1} F_{1}\right)\right)$ maps J to the ideal

$$
I=\left(x_{1}, x_{2}+F_{2}^{\prime}, \ldots, x_{n}+F_{n}^{\prime}, \xi_{1}+G_{1}, \xi_{2}+G_{2}, \ldots, \xi_{s}+G_{s}\right)
$$

Arguing in the same way for every function F_{j}^{\prime} with $1 \leqslant j \leqslant s$, we have, up to automorphisms,

$$
I=\left(x_{1}, \ldots, x_{s}, x_{s+1}+h_{s+1}, \ldots, x_{n}+h_{n}, \xi_{1}+G_{1}, \ldots, \xi_{s}+G_{s}\right)
$$

for some functions $h_{i} \in \Lambda\left(\xi_{s+1}, \ldots, \xi_{n}\right)$ with no constant and linear terms. Now the automorphism $\exp \left(\operatorname{ad}\left(-x_{1} G_{1}\right)\right)$ sends I to the ideal

$$
I_{1}=\left(x_{1}, \ldots, x_{s}, x_{s+1}+h_{s+1}, \ldots, x_{n}+h_{n}, \xi_{1}, \xi_{2}+G_{2}, \ldots, \xi_{s}+G_{s}\right)
$$

Analogous automorphisms for $G_{i}, i=1, \ldots, s$, yield to the ideal

$$
Y=\left(x_{1}, \ldots, x_{s}, x_{s+1}+h_{s+1}, \ldots, x_{n}+h_{n}, \xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) .
$$

Consider the ideal $Y^{\prime}=\left(x_{s+1}+h_{s+1}, \ldots, x_{n}+h_{n}\right) \subset Y$. Then, each function f in L_{0} (thus stabilizing Y) stabilizes the ideal $K=\left(Y,\left[Y^{\prime}, Y^{\prime}\right]\right)$, i.e., the ideal generated by the generators of Y and by the commutators between every pair of generators of Y^{\prime}. Indeed, for every $g, h \in Y^{\prime}$ we have:

$$
[f,[g, h]]=[[f, g], h] \pm[g,[f, h]] \in\left[Y, Y^{\prime}\right]
$$

and $\left[Y, Y^{\prime}\right] \subset K$ since all generators of Y outside Y^{\prime} commute with the generators of Y^{\prime}. Notice that K is a proper ideal of $\Lambda(2 k+1, n)$ since among its generators there is no invertible element. By the maximality of J among the ideals stabilized by L_{0} we have $Y=K$.

Suppose that $h_{s+1}=\xi_{s+1} \psi_{1}+\psi_{2}$ with ψ_{1} and ψ_{2} independent of ξ_{s+1}. Then, applying the automorphism $\exp \left(a d\left(\xi_{s+1} \psi_{2}\right)\right)$, we can assume

$$
Y=\left(x_{1}, \ldots, x_{s}, x_{s+1}+\xi_{s+1} \psi_{1}, \ldots, x_{n}+h_{n}^{\prime}, \xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)
$$

Now $\psi_{1}=\frac{1}{2}\left[x_{s+1}+\xi_{s+1} \psi_{1}, x_{s+1}+\xi_{s+1} \psi_{1}\right] \in\left[Y^{\prime}, Y^{\prime}\right] \subset K=Y$, therefore

$$
Y=\left(x_{1}, \ldots, x_{s}, x_{s+1}, x_{s+2}+h_{s+2}^{\prime}, \ldots, x_{n}+h_{n}^{\prime}, \xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) .
$$

Arguing in the same way for every function h_{j}^{\prime} we end up with a standard ideal.

Theorem 2.42.

(a) Let $L=H O(n, n)$, or $\operatorname{SHO}(n, n)$ with $n>3$. Then all maximal open subalgebras of L are, up to conjugation, the graded subalgebras of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with $k 2$'s and k zeros, for $k=0, \ldots, n-2$ and the graded subalgebra of type $(1, \ldots, 1 \mid 0, \ldots, 0)$.
(b) All maximal open subalgebras of $\operatorname{SHO}(3,3)$ are, up to conjugation, the graded subalgebras of type $(1,1,1 \mid 1,1,1)$ and $(1,1,2 \mid 1,1,0)$.

Proof. Let $L=H O(n, n)$ and let L_{0} be a maximal open subalgebra of L. By Theorem 2.41, L_{0} is, up to conjugation, the standard subalgebra of L stabilizing the ideal $I_{\mathcal{U}}=\left(x_{1}, \ldots, x_{n}\right.$, ξ_{1}, \ldots, ξ_{s}) for some $s=0, \ldots, n$. The statement then follows using Remarks 2.34-2.36.

Let now $L=\operatorname{SHO}(n, n)$ and let L_{0} be a maximal open subalgebra of L. The same argument as in Theorem 2.11 shows that L_{0} is regular and we can assume, by Remark 2.1, that it is invariant with respect to the standard torus $T+\mathbb{C} E$ of $\operatorname{Der} H O(n, n)$. It follows that L_{0} decomposes into the direct product of weight spaces with respect to $T+\mathbb{C} E$. As we noticed in Remark 2.36, $\mathbb{C} \xi_{i_{1}} \ldots \xi_{i_{h}}$, with $i_{1} \neq \cdots \neq i_{h}$, and $\mathbb{C} x_{1} \xi_{j_{1}} \ldots \xi_{j_{h}}$, with $1 \neq j_{1} \neq \cdots \neq j_{h}$, are one-dimensional weight spaces with respect to $T+\mathbb{C} E$. Besides, note that the elements ξ_{i} cannot lie in L_{0} since they are not exponentiable.

We may assume that one of the following two cases holds:
(1) x_{1}, \ldots, x_{n} lie in L_{0}. Since $\left[x_{i}, \xi_{i} \xi_{h}\right]=\xi_{h}$, it follows that the $(T+\mathbb{C} E)$-invariant complement of L_{0} contains the elements $\xi_{i} \xi_{h}$ for every $i, h=1, \ldots, n$. Arguing inductively, since $\left[x_{i_{1}}, \xi_{i_{1}} \ldots \xi_{i_{h}}\right]=\xi_{i_{2}} \ldots \xi_{i_{h}}$, one shows that L_{0} cannot contain any element lying in the negative part of the grading of type $(1, \ldots, 1 \mid 0, \ldots, 0)$, therefore L_{0} is contained in the maximal graded subalgebra of L of type $(1, \ldots, 1 \mid 0, \ldots, 0)$, thus L_{0} coincides with this graded subalgebra, by maximality;
(2) x_{1}, \ldots, x_{k} do not lie in L_{0} for some $k=2, \ldots, n$, and x_{k+1}, \ldots, x_{n} lie in L_{0}. Then the ($T+\mathbb{C} E$)-invariant complement of L_{0} contains the elements $\xi_{h} P$ for $h=1, \ldots, n$ and $P \in$ $\Lambda\left(\xi_{k+1}, \ldots, \xi_{n}\right)$. Likewise, since $\left[x_{i_{1}}, x_{j} \xi_{i_{1}} \ldots \xi_{i_{h}}\right]=x_{j} \xi_{i_{2}} \ldots \xi_{i_{h}}$, the $(T+\mathbb{C} E)$-invariant complement of L_{0} contains the elements $x_{j} P$, for $j=1, \ldots, k$ and $P \in \Lambda\left(\xi_{k+1}, \ldots, \xi_{n}\right)$. Therefore the $(T+\mathbb{C} E)$-invariant complement of L_{0} contains the $(T+\mathbb{C} E)$-invariant complement of the graded subalgebra of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with $n-k$ 2 's and $n-k$ zeros. Hence L_{0} coincides with this graded subalgebra of L.

Note that any open regular subalgebra of L containing x_{2}, \ldots, x_{n} and not containing x_{1}, is not a maximal subalgebra of L. Indeed any such a subalgebra is contained in the graded subalgebra of type $(1,2, \ldots, 2 \mid 1,0, \ldots, 0)$ which is not maximal by Remark 2.35 .

By Remark 2.38, the subalgebras of principal and subprincipal type of $\operatorname{SHO}(3,3)$ are conjugate by an element of G.

Corollary 2.43.

(a) All irreducible \mathbb{Z}-gradings of $\operatorname{HO}(n, n)$ and of $\operatorname{SHO}(n, n)$ with $n>3$, are, up to conjugation, the gradings of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with $k 2$'s and k zeros, for $k=$ $0, \ldots, n-2$ and the grading of type $(1, \ldots, 1 \mid 0, \ldots, 0)$.
(b) All irreducible \mathbb{Z}-gradings of $\operatorname{SHO}(3,3)$ are, up to conjugation, the gradings of type $(1,1,1 \mid 1,1,1)$ and $(1,1,2 \mid 1,1,0)$.

Remark 2.44. By Remark 1.3, the proof of Theorem 2.41 works verbatim if we replace $L=$ $H O(n, n)$ with $\operatorname{Der} L$ and L_{0} with a fundamental maximal subalgebra of $\operatorname{Der} L$. Therefore every fundamental maximal subalgebra of $\operatorname{Der} L$ is conjugate to the standard subalgebra of $\operatorname{Der} L$ stabilizing the ideal $I_{\mathcal{U}}=\left(x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{s}\right)$ of $\Lambda(n, n)$, for some $s=0, \ldots, n$.

Theorem 2.45. Let $L=H O(n, n)$. Then all maximal among E-invariant subalgebras of L are, up to conjugation, the subalgebras of L listed in Theorem 2.42(a).

Proof. By Remark 2.44 every fundamental maximal subalgebra of $\operatorname{Der} L$ is conjugate to the standard subalgebra of $\operatorname{Der} L$ stabilizing the ideal $I_{\mathcal{U}}=\left(x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{s}\right)$ of $\Lambda(n, n)$, for some $s=0, \ldots, n$. Therefore, by Remarks 2.34-2.36, all fundamental maximal subalgebras of $\operatorname{Der} L$ are, up to conjugation, the subalgebras $L_{0}+\mathbb{C} E$ where L_{0} is one of the maximal open subalgebras of L listed in Theorem 2.42(a). If S_{0} is a maximal among open E-invariant subalgebras of L, then $S_{0}+\mathbb{C} E$ is a fundamental maximal subalgebra of $\operatorname{Der} L$ and the thesis follows.

As in the case of the Lie superalgebra $S(1, n)$, we are now interested in the subalgebras of $\operatorname{SHO}(n, n)$ which are maximal among its \mathfrak{a}_{0}-invariant subalgebras, for any subalgebra \mathfrak{a}_{0} of the subalgebra \mathfrak{a} of outer derivations of $\operatorname{SHO}(n, n)$.

Remark 2.46. The same arguments as in Theorem 2.11 show that every maximal open subalgebra of $S H O^{\prime}(n, n)$ and $C S H O^{\prime}(n, n)$ is regular. Therefore the same arguments as for $\operatorname{SHO}(n, n)$ in Theorem 2.42, show that all fundamental among maximal subalgebras of $\operatorname{SHO}^{\prime}(n, n)$ or $\operatorname{CSHO}^{\prime}(n, n)$ with $n \geqslant 3$, are, up to conjugation, the graded subalgebras of type $(1, \ldots, 1$, $2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0$) with $k 0$'s and $k 2$'s, for some $k=0, \ldots, n-2$. Indeed the graded subalgebra of $S H O^{\prime}(n, n)$ (respectively $\operatorname{CSHO}^{\prime}(n, n)$) of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ is not maximal, since it is contained in $\operatorname{SHO}(n, n)$ (respectively $S H O(n, n)+\mathbb{C} \Phi+\mathbb{C} E)$. Notice that the graded subalgebras of principal and subprincipal type of $\operatorname{SHO}^{\prime}(3,3)$ (respectively $\operatorname{CSHO}^{\prime}(3,3)$) are not conjugate. By the same arguments, all maximal among fundamental subalgebras of $\mathrm{SHO}^{\prime}(n, n)$ and $\operatorname{CSHO}^{\prime}(n, n)$ are, up to conjugation, the graded subalgebra of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ and the graded subalgebras of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with $k 0$'s and $k 2$'s, for some $k=0, \ldots, n-2$.

Theorem 2.47. Let $L=\operatorname{SHO}(n, n)$ with $n \geqslant 4$.
(i) If \mathfrak{a}_{0} is a torus of \mathfrak{a}, then all maximal among open \mathfrak{a}_{0}-invariant subalgebras of L are, up to conjugation, the graded subalgebra of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ and the graded subalgebras of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with $k 0$'s and $k 2$'s, for some $k=0, \ldots, n-2$.
(ii) If $\mathfrak{a}_{0}=\mathbb{C} \xi_{1} \ldots \xi_{n} \rtimes \mathfrak{t}$, where \mathfrak{t} is a torus of \mathfrak{a}, then all maximal among open \mathfrak{a}_{0}-invariant subalgebras of L are, up to conjugation, the graded subalgebras of type $(1, \ldots, 1$, $2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$, with $k 2$'s and k zeros, for $k=0, \ldots, n-2$.

Proof. One uses Remark 2.46 and the same arguments as in the proof of Theorem 2.17.
Theorem 2.48. Let $L=\operatorname{SHO}(3,3)$ and let $\mathfrak{b}=\mathbb{C} e+\mathbb{C} h \subset \mathfrak{a} \cong g l_{2}$.
(i) If \mathfrak{a}_{0} is a one-dimensional subalgebra of \mathfrak{a} or a two-dimensional torus of \mathfrak{a}, then all maximal among open \mathfrak{a}_{0}-invariant subalgebras of $\operatorname{SHO}(3,3)$ are, up to conjugation, the subalgebras of type $(1,1,1 \mid 1,1,1)$ and $(1,1,2 \mid 1,1,0)$.
(ii) If $\mathfrak{a}_{0}=\mathbb{C} e \rtimes \mathfrak{t}$, where \mathfrak{t} is a torus of \mathfrak{a}, then the graded subalgebra of type $(1,1,1 \mid 1,1,1)$ is, up to conjugation, the only maximal among open \mathfrak{a}_{0}-invariant subalgebras of $\operatorname{SHO}(3,3)$, which is not invariant with respect to \mathfrak{a}.
(iii) If $\mathfrak{a}_{0}=\operatorname{sl}_{2}$ or $\mathfrak{a}_{0}=\mathfrak{a}$, then all maximal among open \mathfrak{a}_{0}-invariant subalgebras of $\operatorname{SHO}(3,3)$ are, up to conjugation, the subalgebras of type $(1,1,2 \mid 1,1,0)$ and $(2,2,2 \mid 1,1,1)$.

Proof. By Remark 2.46, the proof of (i) is the same as the proof of (i) and (ii) in Theorem 2.17. Recall that the graded subalgebras of principal and subprincipal type of $\operatorname{SHO}(3,3)$ are conjugate.

Now, using Remark 2.37, one verifies that the graded subalgebras of $\operatorname{SHO}(3,3)$ of type $(1,1,2 \mid 1,1,0)$ and $(2,2,2 \mid 1,1,1)$ are invariant with respect to \mathfrak{a} (see also [17, Example 5.5], [10, Remark 4.4.1]). On the other hand the maximal graded subalgebra L_{0} of $\operatorname{SHO}(3,3)$ of type $(1,1,1 \mid 1,1,1)$ is invariant with respect to the action of h, e and E, but it is not \mathfrak{a}-invariant, indeed: $\xi_{i} \xi_{j} \in L_{0}, x_{k} \notin L_{0}$ and $f\left(\xi_{i} \xi_{j}\right)= \pm \frac{4}{3} x_{k}$ with $k \neq i, j$.

Let S_{0} be a maximal among open \mathfrak{b}-invariant subalgebras of $\operatorname{SHO}(3,3)$, then $S_{0}+\mathbb{C} \xi_{1} \xi_{2} \xi_{3}+$ $\mathbb{C} \sum_{i=1}^{3} x_{i} \xi_{i}$ is a fundamental subalgebra of $\operatorname{CSHO}^{\prime}(3,3)$, hence it is contained in a maximal among fundamental subalgebras of $\operatorname{CSHO}{ }^{\prime}(3,3)$ containing $\xi_{1} \xi_{2} \xi_{3}$ and $\sum_{i=1}^{3} x_{i} \xi_{i}$. It follows, by Remark 2.46, that S_{0} is conjugate either to the graded subalgebra of type $(1,1,1 \mid 1,1,1)$ or to the subalgebra of type $(1,1,2 \mid 1,1,0)$. A similar argument holds if S_{0} is maximal among open \mathfrak{a}_{0}-invariant subalgebras, with $\mathfrak{a}_{0}=\mathbb{C} e+\mathfrak{t}$ where \mathfrak{t} is a one-dimensional torus of \mathfrak{a}. Likewise, if S_{0} is a maximal among open $\mathfrak{b}+\mathbb{C} E$-invariant subalgebras of $\operatorname{SHO}(3,3)$, then $S_{0}+\mathbb{C} \xi_{1} \xi_{2} \xi_{3}+$ $\mathbb{C} \sum_{i=1}^{3} x_{i} \xi_{i}+\mathbb{C} E$ is a fundamental maximal subalgebra of $\operatorname{CSHO}^{\prime}(3,3)$, hence, by Remark 2.46, it is conjugate either to the graded subalgebra of type $(1,1,1 \mid 1,1,1)$ or to the subalgebra of type (1, 1, 2|1, 1, 0).

Finally, let $\mathfrak{a}_{0}=s l_{2}$ or $\mathfrak{a}_{0}=\mathfrak{a}$, and let S^{\prime} be a maximal among open \mathfrak{a}_{0}-invariant subalgebras of $S H O(3,3)$. Then S^{\prime} is \mathfrak{b}-invariant, hence $S^{\prime}+\mathfrak{b}$ is contained in a maximal among fundamental subalgebras of $\operatorname{CSHO}^{\prime}(3,3)$ containing \mathfrak{b}. It follows that S^{\prime} is contained either in a conjugate of the subalgebra of type $(1,1,2 \mid 1,1,0)$, thus coincides with it by maximality, or in a conjugate S_{U} of the subalgebra of type $(1,1,1 \mid 1,1,1)$. As we noticed in Remark $2.38, S_{U}$ is conjugate to the subalgebra of principal type by an automorphism $\varphi=\exp (a d a)$ for some $a \in \mathfrak{a}$. Since S^{\prime} is \mathfrak{a}-invariant, $\varphi\left(S^{\prime}\right)=S^{\prime}$, therefore S^{\prime} is contained in the intersection of S_{U} with the graded subalgebra of principal type, i.e., it is contained in the graded subalgebra of $\operatorname{SHO}(3,3)$ of type $(2,2,2 \mid 1,1,1)$, thus coincides with it by maximality.

3. Maximal open subalgebras of $\boldsymbol{H}(\mathbf{2 k}, \boldsymbol{n})$

Let $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}$ be $2 k>0$ even indeterminates and ξ_{1}, \ldots, ξ_{n} be n odd indeterminates. Consider the differential form $\omega=2 \sum_{i=1}^{k} d p_{i} \wedge d q_{i}+\sum_{i=1}^{n} d \xi_{i} d \xi_{n-i+1}$. The Hamiltonian superalgebra $H(2 k, n)$ is the Lie superalgebra defined as follows [15]:

$$
H(2 k, n)=\{X \in W(2 k, n) \mid X \omega=0\} .
$$

Let us consider the Lie superalgebra $\Lambda(2 k, n)$ with the following bracket:

$$
\begin{equation*}
[f, g]=\sum_{i=1}^{k}\left(\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}-\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}\right)-(-1)^{p(f)} \sum_{i=1}^{n} \frac{\partial f}{\partial \xi_{i}} \frac{\partial g}{\partial \xi_{n-i+1}} . \tag{3.1}
\end{equation*}
$$

Then the map

$$
\begin{aligned}
& \Lambda(2 k, n) \rightarrow H(2 k, n) \\
& f \mapsto \sum_{i=1}^{k}\left(\frac{\partial f}{\partial p_{i}} \frac{\partial}{\partial q_{i}}-\frac{\partial f}{\partial q_{i}} \frac{\partial}{\partial p_{i}}\right)-(-1)^{p(f)} \sum_{i=1}^{n} \frac{\partial f}{\partial \xi_{i}} \frac{\partial}{\partial \xi_{n-i+1}}
\end{aligned}
$$

defines a surjective homomorphism whose kernel consists of constant functions (cf. [10, §1.2]). We will therefore identify $H(2 k, n)$ with $\Lambda(2 k, n) / \mathbb{C} 1$ with bracket (3.1). Consider the maximal torus $T=\left\langle p_{i} q_{i}, \xi_{j} \xi_{n-j+1} \mid i=1, \ldots, k ; j=1, \ldots,[n / 2]\right\rangle$ of $H(2 k, n)$.

Remark 3.1. The \mathbb{Z}-grading of type $\left(a_{1}, \ldots, a_{2 k} \mid b_{1}, \ldots, b_{n}\right)$ of $W(2 k, n)$ induces a grading of $H(2 k, n)$ if and only if the differential form ω is homogeneous in this grading (cf. [16]).

The \mathbb{Z}-grading of type $(1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ of $W(2 k, n)$, with $t 2$'s and t zeros, induces an irreducible grading on $H(2 k, n)$ for every t such that $0 \leqslant t \leqslant[n / 2]$, where $\mathfrak{g}_{0} \cong \operatorname{spo}(2 k, n-2 t) \otimes \Lambda(t)+W(0, t)$ and $\mathfrak{g}_{-1} \cong \mathbb{C}^{2 k \mid n-2 t} \otimes \Lambda(t)$. One can check that when $t>0,\left[\mathfrak{g}_{-1}, \mathfrak{g}_{-1}\right] \neq 0$ thus it coincides with \mathfrak{g}_{-2} by Remark 1.13. Besides, property (iii) of Proposition 1.11(b) is satisfied. Therefore the subalgebras $\prod_{j \geqslant 0} H(2 k, n)_{j}$ of $H(2 k, n)$ corresponding to the gradings of type $(1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$, with $t 2$'s and t zeros, for $0 \leqslant t \leqslant[n / 2]$, are maximal open subalgebras of $H(2 k, n)$.

The \mathbb{Z}-grading of $H(2 k, n)$ induced by the principal grading of $W(2 k, n)$ is also called principal. The \mathbb{Z}-grading induced on $H(2 k, 2 h)$ by the \mathbb{Z}-grading of type $(1, \ldots, 1 \mid 2, \ldots, 2,0, \ldots, 0)$, with h zeros, is called subprincipal.

Remark 3.2. The \mathbb{Z}-gradings of $H(2 k, 2 h)$ of type $(1, \ldots, 1 \mid 2, \ldots, 2,0, \ldots, 0)$ and $(1, \ldots, 1 \mid$ $2, \ldots, 2,0,2,0, \ldots, 0$), with h zeros, are not conjugate by an element of G, but are conjugate by an outer automorphism.

Example 3.3. Let us identify $L=H(2 k, n)$ with $\Lambda(2 k, n) / \mathbb{C} 1$. Let V be the n-dimensional odd vector space spanned by ξ_{1}, \ldots, ξ_{n}, with the bilinear form $\left(\xi_{i}, \xi_{j}\right)=\delta_{i, n-j+1}$. Let us fix a subspace U of V and let us repeat the same construction as in Example 2.24.

We define a valuation on $\Lambda(2 k, n) / \mathbb{C} 1$ with values in \mathbb{Z}_{+}by letting

$$
\begin{aligned}
& \nu\left(p_{i}\right)=v\left(q_{i}\right)=1, \\
& \nu(x)=2 \quad \text { for } x \in U^{0}, \quad \nu(x)=0 \quad \text { for } x \in\left(U^{0}\right)^{\prime}, \\
& \nu(x)=1 \quad \text { for } x \in U^{1}, \quad \nu(x)=0 \quad \text { for } x \in\left(U^{1}\right)^{\prime} .
\end{aligned}
$$

Consider the following subspaces of L :

$$
\begin{gathered}
L_{j}(U)=\{x \in \Lambda(2 k, n) / \mathbb{C} 1 \mid v(x) \geqslant j+2\}+\Lambda\left(\left(U^{1}\right)^{\prime}\right) / \mathbb{C} 1 \quad \text { for } j \leqslant 0, \\
L_{j}(U)=\{x \in \Lambda(2 k, n) / \mathbb{C} 1 \mid v(x) \geqslant j+2\} \quad \text { for } j>0
\end{gathered}
$$

These subsets define, in fact, a filtration of $H(2 k, n)$ for every subspace U of V, as one can verify using the definition of bracket (3.1). Notice that this filtration has depth 1 if and only if U is non-degenerate, including $U=0$.

Let us denote by s the dimension of U and by s_{i} the dimension of U^{i} for $i=0,1$. Then $\overline{\operatorname{Gr} L} \cong$ $H\left(2 k, n-r_{1}\right) \otimes \Lambda\left(r_{1}\right)+H\left(0, r_{1}\right)$ with respect to the grading of type $(1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1$, $0, \ldots, 0)$ of $H\left(2 k, n-r_{1}\right)$, with $s_{0} 2$'s and s_{0} zeros, where $r_{1}=n-2 s_{0}-s_{1}=\operatorname{dim}\left(U^{1}\right)^{\prime}$, and $\operatorname{deg}(\tau)=0$ for every $\tau \in \Lambda\left(r_{1}\right)$. This is an irreducible grading of $H\left(2 k, n-r_{1}\right)$ for every choice of U (cf. Remark 3.1), and, by Corollary 1.12, $L_{0}(U)$ is a maximal open subalgebra of L.

Let us consider the standard ideal $I_{\mathcal{U}}=\left(p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, U\right)$ of $\Lambda(2 k, n)$. Notice that $I_{\mathcal{U}}=\{x \in \Lambda(2 k, n) / \mathbb{C} 1 \mid v(x) \geqslant 1\}$. It follows that $L_{0}(U)$ stabilizes $I_{\mathcal{U}}$ hence, due to its maximality, $L_{0}(U)$ is the standard subalgebra of $H(2 k, n)$ corresponding to the ideal $I_{\mathcal{U}}$.

Remark 3.4. $L_{0}(U)$ is a maximal graded subalgebra of L if and only if U is a coisotropic subspace of V.

Remark 3.5. If U is conjugate to a subspace of V spanned by $\xi_{i_{1}}, \ldots, \xi_{i_{t}}$ for some i_{1}, \ldots, i_{t}, then U is stable under the action of the maximal torus T. It follows that in this case $L_{0}(U)$ is regular. If n is odd, then any subspace of V is conjugate to $\left\langle\xi_{i_{1}}, \ldots, \xi_{i_{t}}\right\rangle$ for some i_{1}, \ldots, i_{t}, and the same holds when n is even for any subspace of V whose non-degenerate part has even dimension.

Remark 3.6. If n is even and s_{1} is odd then any maximal torus of L has dimension $k+n / 2$ and any maximal torus of $\overline{G r L}$ has dimension $k+n / 2-1$. It follows that, under these hypotheses, $L_{0}(U)$ is not a regular subalgebra of L. For example any one-dimensional non-degenerate subspace U of V gives rise to a maximal open subalgebra $L_{0}(U)$ of $H(2 k, 2 t)$ which is not regular.

Lemma 3.7. Let us consider an ideal $J=\left(h_{1}, \ldots, h_{r}\right)$ of $\Lambda(0, n)$. Suppose that $h_{1}=\eta_{1}+F$ and $h_{2}=\eta_{1}^{\prime}+G$ where $\eta_{1}, \eta_{1}^{\prime}$ are non-degenerately paired elements of V and F, G contain no constant and linear terms. Then J is conjugate to an ideal $K=\left(\eta_{1}, \eta_{1}^{\prime}, f_{1}, \ldots, f_{r-2}\right)$ for some functions $f_{i} \in \Lambda(U)$ where U is the orthogonal complement of $\left\langle\eta_{1}, \eta_{1}^{\prime}\right\rangle$ in V.

Proof. Up to multiplying h_{1} by some invertible function we can assume that F does not depend on η_{1}, i.e., $\eta_{1}+F=\eta_{1}+f_{1} \eta_{1}^{\prime}+f_{2}$ where f_{1}, f_{2} lie in $\Lambda(U)$. Also, we can assume that G lies in $\Lambda\left(U_{1}\right)$ where $U_{1}=\left\langle U, \eta_{1}\right\rangle$. Notice that $f_{1} \eta_{1}^{\prime}+f_{1} G$ lies in J, therefore $J=\left(\eta_{1}+\right.$ $f_{2}-f_{1} G, \eta_{1}^{\prime}+G, h_{3}, \ldots, h_{r}$) where $f_{2}-f_{1} G \in \Lambda\left(U_{1}\right)$. Therefore, up to multiplying $\eta_{1}+$ $f_{2}-f_{1} G$ by an invertible function, we can write $J=\left(\eta_{1}+F^{\prime}, \eta_{1}^{\prime}+G, h_{3}, \ldots, h_{r}\right)$ where $F^{\prime} \in$ $\Lambda(U)$.

Now the automorphism $\exp \left(\operatorname{ad}\left(\eta_{1}^{\prime} F^{\prime}\right)\right)$ maps J to the ideal $J^{\prime}=\left(\eta_{1}, \eta_{1}^{\prime}+H, h_{3}^{\prime}, \ldots, h_{r}^{\prime}\right)$ where the h_{i}^{\prime} 's lie in $\Lambda\left(U_{1}\right)$ and H lies in $\Lambda(U)$. Then, similarly as above, the automorphism $\exp \left(a d\left(\eta_{1} H\right)\right)$, maps J^{\prime} to the ideal $K=\left(\eta_{1}, \eta_{1}^{\prime}, f_{1}, \ldots, f_{r-2}\right)$, since $H \in \Lambda(U)$. Since $\eta_{1}, \eta_{1}^{\prime}$ lie in K, we can assume $f_{1}, \ldots, f_{r-2} \in \Lambda(U)$.

Remark 3.8. Notice that if $\eta_{1} \in V$ is non-degenerately paired with itself, one can prove, arguing as in the proof of Lemma 3.7, that if the ideal J contains an element of the form $\eta_{1}+F$, then, up to automorphisms, $J=\left(\eta_{1}, f_{1}, \ldots, f_{r-1}\right)$ where the f_{i} 's lie in $\Lambda(U), U$ being the orthogonal complement of $\left\langle\eta_{1}\right\rangle$ in V.

Theorem 3.9. Let L_{0} be a maximal open subalgebra of $L=H(2 k, n)$. Then L_{0} is conjugate to a standard subalgebra of L.

Proof. By Remark 1.3 L_{0} stabilizes an ideal of the form

$$
J=\left(p_{1}+f_{1}, q_{1}+h_{1}, \ldots, p_{k}+f_{k}, q_{k}+h_{k}, \eta_{1}+g_{1}, \eta_{2}+g_{2}, \ldots, \eta_{r}+g_{r}\right)
$$

for some linear functions η_{j} in odd indeterminates and even functions f_{i}, h_{i} and odd functions g_{j} without constant and linear terms, and this ideal is maximal among the L_{0}-invariant ideals of $\Lambda(2 k, n)$. As in Lemma 2.29 we can assume f_{i}, h_{i} and g_{j} in $\Lambda(0, n)$.

Note that the automorphism $\exp \left(a d\left(q_{1} f_{1}\right)\right)$ maps J to $J_{1}=\left(p_{1}, q_{1}+h_{1}^{\prime}, p_{2}+f_{2}^{\prime}, q_{2}+h_{2}^{\prime}\right.$, $\left.\ldots, p_{k}+f_{k}^{\prime}, q_{k}+h_{k}^{\prime}, \eta_{1}+g_{1}^{\prime}, \eta_{2}+g_{2}^{\prime}, \ldots, \eta_{r}+g_{r}^{\prime}\right)$. As above we can assume h_{1}^{\prime} independent of all even variables. It follows that the automorphism $\exp \left(\operatorname{ad}\left(-p_{1} h_{1}^{\prime}\right)\right)$ maps J_{1} to $J_{2}=\left(p_{1}, q_{1}, p_{2}+f_{2}^{\prime \prime}, q_{2}+h_{2}^{\prime \prime}, \ldots, p_{k}+f_{k}^{\prime \prime}, q_{k}+h_{k}^{\prime \prime}, \eta_{1}+g_{1}^{\prime \prime}, \eta_{2}+g_{2}^{\prime \prime}, \ldots, \eta_{r}+g_{r}^{\prime \prime}\right)$. The same arguments applied to all generators $p_{i}+f_{i}^{\prime \prime}$ and $q_{j}+h_{j}^{\prime \prime}$ show that J is in fact conjugate to the ideal

$$
I=\left(p_{1}, p_{2}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, \eta_{1}+\ell_{1}, \eta_{2}+\ell_{2}, \ldots, \eta_{r}+\ell_{r}\right)
$$

where $\eta_{1}, \ldots, \eta_{r}$ are linearly independent vectors in V and $\ell_{1}, \ldots, \ell_{r}$ are functions in $\Lambda(0, n)$ without constant and linear terms. Since from now on we shall work only with odd indeterminates, with an abuse of notation we shall simply write

$$
I=\left(\eta_{1}+\ell_{1}, \eta_{2}+\ell_{2}, \ldots, \eta_{r}+\ell_{r}\right)
$$

Let $U=\left\langle\eta_{1}, \ldots, \eta_{r}\right\rangle \subset V$. Let $U^{0}=\left\langle\nu_{1}, \ldots, v_{s}\right\rangle$ be the kernel of the restriction of the bilinear form (\cdot, \cdot) to U. Then, as in Example 3.3, $U=U^{0} \oplus U^{1}$ where U^{1} is a maximal subspace of U with non-degenerate metric. Then, by Lemma 3.7 and Remark 3.8, $I=\left(U^{1}, \nu_{1}+\ell_{1}, \ldots\right.$, $\left.v_{s}+\ell_{s}\right)$ where $\ell_{1}, \ldots, \ell_{s} \in \Lambda\left(\left(U^{1}\right)^{\perp}\right)$. In particular, $\left(U^{1}\right)^{\perp}$ contains U^{0} and a subspace $\left(U^{0}\right)^{\prime}$ non-degenerately paired with U^{0}. Let $\left(U^{0}\right)^{\prime}=\left\langle v_{1}^{\prime}, \ldots, v_{s}^{\prime}\right\rangle$ with $\left(v_{i}, v_{j}^{\prime}\right)=\delta_{i, j}$.

Now, if $\ell_{i}=0$ for every $i=1, \ldots, s$, then I is standard. Suppose that at least one of the ℓ_{j} 's is not zero, i.e.,

$$
I=\left(U^{1}, v_{1}, \ldots, v_{k-1}, v_{k}+\ell_{k}, \ldots, v_{s}+\ell_{s}\right)
$$

with $k=\min \left\{i=1, \ldots, s \mid \ell_{i} \neq 0\right\}$.
Denote by I^{\prime} the ideal $I^{\prime}=\left(v_{1}, \ldots, v_{k-1}, \nu_{k}+\ell_{k}, \ldots, v_{s}+\ell_{s}\right) \subset I$. Then, each function f in L_{0} (thus stabilizing I) stabilizes the ideal $K=\left(I,\left[I^{\prime}, I^{\prime}\right]\right)$. Indeed, for every $g, h \in I^{\prime}$ we have:

$$
[f,[g, h]]=[[f, g], h] \pm[g,[f, h]] \in\left[I, I^{\prime}\right]
$$

and $\left[I, I^{\prime}\right] \subset K$ since every generator of I^{\prime} is orthogonal to U^{1}. Notice that K is generated by the generators of I and by the brackets between every pair of generators of I^{\prime}. Therefore K is a proper ideal of $\Lambda(0, n)$ since among its generators there is no invertible element. By the maximality of I among the ideals stabilized by L_{0} we have $I=K$.

We first show that the function ℓ_{k} can be made independent of $v_{1}^{\prime}, \ldots, v_{k-1}^{\prime}$. Indeed, let $v_{k}+$ $\ell_{k}=v_{k}+v_{1}^{\prime} \phi_{1}+\phi_{2}$ where ϕ_{1}, ϕ_{2} do not depend on v_{1}^{\prime}. Then $\phi_{1}=\left[v_{1}, v_{k}+\ell_{k}\right] \in\left[I^{\prime}, I^{\prime}\right] \subset$ $K=I$, thus $I=\left(U^{1}, v_{1}, \ldots, v_{k-1}, v_{k}+\phi_{2}, v_{k+1}+\ell_{k+1}, \ldots, v_{s}+\ell_{s}\right)$, where $\phi_{2} \in \Lambda\left(\left(U^{1}\right)^{\perp}\right)$ does not depend on v_{1}^{\prime}. Arguing in the same way with the variables $v_{2}^{\prime}, \ldots, v_{k-1}^{\prime}$ we get

$$
I=\left(U^{1}, v_{1}, \ldots, v_{k-1}, v_{k}+\phi, v_{k+1}+\ell_{k+1}, \ldots, v_{s}+\ell_{s}\right)
$$

where ϕ does not depend on $v_{1}^{\prime}, \ldots, v_{k-1}^{\prime}$.
Besides, multiplying $v_{k}+\phi$ by an invertible function, we can assume that ϕ does not depend on v_{k}. Now we can write $\phi=v_{k}^{\prime} \psi_{1}+\psi_{2}$ with ψ_{1}, ψ_{2} not depending on $v_{1}^{\prime}, \ldots, v_{k}^{\prime}$. Therefore,
applying the automorphism $\exp \left(\operatorname{ad}\left(v_{k}^{\prime} \psi_{2}\right)\right)$ to I, we can assume $\psi_{2}=0$. Then $\psi_{1}=\frac{1}{2}\left[v_{k}+\phi\right.$, $\left.v_{k}+\phi\right] \in\left[I^{\prime}, I^{\prime}\right] \subset K=I$. Therefore

$$
I=\left(U^{1}, v_{1}, \ldots, v_{k-1}, v_{k}, v_{k+1}+\ell_{k+1}, \ldots, v_{r}+\ell_{r}\right)
$$

Arguing as above for $\ell_{k+1}, \ldots, \ell_{r}$, we end up with a standard ideal.
Theorem 3.10. All maximal open subalgebras of $L=H(2 k, n)$ are, up to conjugation, the following:
(a) if $n=2 h+1$:
(i) the \mathbb{Z}-graded subalgebras of type $(1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ with $t 2$'s and t zeros for $0 \leqslant t \leqslant h$;
(ii) the regular (non-graded) subalgebras $L_{0}(U)$ constructed in Example 3.3 where U is not coisotropic;
(b) if $n=2 h$:
(i) the \mathbb{Z}-graded subalgebras of type $(1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ with $t 2$'s and t zeros for $0 \leqslant t \leqslant h$, and the \mathbb{Z}-graded subalgebra of type $(1, \ldots, 1 \mid 2, \ldots, 2$, $0,2,0, \ldots, 0$) with h zeros;
(ii) the regular (non-graded) subalgebras $L_{0}(U)$ constructed in Example 3.3 where U is not coisotropic and $\operatorname{dim} U^{1}$ is even;
(iii) the non-regular subalgebras $L_{0}(U)$ constructed in Example 3.3, where $\operatorname{dim} U^{1}$ is odd.

Proof. By Theorem 3.9, every maximal open subalgebra of L is conjugate to the standard subalgebra of L stabilizing the ideal $I_{\mathcal{U}}$ of $\Lambda(2 k, n)$, for some subspace $\mathcal{U}=\left\langle p_{1}, \ldots, p_{k}, q_{1}\right.$, $\left.\ldots, q_{k}, U\right\rangle$ of $\sum_{i=1}^{k}\left(\mathbb{C} p_{i}+\mathbb{C} q_{i}\right)+\sum_{j=1}^{n} \mathbb{C} \xi_{j}$, where U is a subspace of V. Then the statement follows from Example 3.3 and Remarks 3.1, 3.4, 3.5 and 3.6.

Corollary 3.11. All irreducible \mathbb{Z}-gradings of $H(2 k, n)$ are, up to conjugation, the \mathbb{Z}-gradings of type $(1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ with $t 2$'s and t zeros, for $t=0, \ldots,[n / 2]$, and the \mathbb{Z}-grading of type $(1, \ldots, 1 \mid 2, \ldots, 2,0,2,0, \ldots, 0)$ with $n / 2$ zeros if n is even.

We recall that $\operatorname{Der} H(2 k, n)=H(2 k, n)+\mathbb{C} E$ where $E=\sum_{i=1}^{k}\left(p_{i} \partial / \partial p_{i}+q_{i} \partial / \partial q_{i}\right)+$ $\sum_{j=1}^{n} \xi_{j} \partial / \partial \xi_{j}$ is the Euler operator (cf. Proposition 1.8). We now aim to classify all fundamental maximal subalgebras of $\operatorname{Der} H(2 k, n)$.

Remark 3.12. All members of the filtration

$$
H(2 k, n)=L_{-d}(U) \supset \cdots \supset L_{0}(U) \supset \cdots
$$

of $H(2 k, n)$, constructed in Example 3.3, are invariant with respect to the Euler operator, for every choice of the subspace U. It follows that we can construct a filtration

$$
\operatorname{Der} L=L_{-d}^{\prime}(U) \supset \cdots \supset L_{0}^{\prime}(U) \supset \cdots
$$

of $\operatorname{Der} L$ by setting $L_{k}^{\prime}(U)=L_{k}(U)$ for every $k \neq 0$, and $L_{0}^{\prime}(U)=L_{0}(U)+\mathbb{C} E$. Then the completion of the graded Lie superalgebra associated to this filtration is isomorphic
to $H\left(2 k, n-r_{1}\right) \otimes \Lambda\left(r_{1}\right)+H\left(0, r_{1}\right)+\mathbb{C}\left(E_{1}+E_{2}\right)$, with respect to the grading of type $(1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ of $H\left(2 k, n-r_{1}\right)$, with $s_{0} 2$'s and s_{0} zeros, where s_{0} and r_{1} are defined as in Example 3.3, and where E_{1} and E_{2} are the Euler operators of $H\left(2 k, n-r_{1}\right)$ and $H\left(0, r_{1}\right)$, respectively. It follows that $L_{0}^{\prime}(U)$ is a fundamental maximal subalgebra of $\operatorname{Der} L$. By Remark 3.3, this is, in fact, the standard subalgebra of $\operatorname{Der} L$ stabilizing the ideal $I_{\mathcal{U}}=\left(p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, U\right)$.

Remark 3.13. The proof of Theorem 3.9 works verbatim if we replace $L=H(2 k, n)$ with $\operatorname{Der} L=H(2 k, n)+\mathbb{C} E$. Therefore, every fundamental maximal subalgebra of $\operatorname{Der} L$ is conjugate to a standard subalgebra.

Theorem 3.14. Let $L=H(2 k, n)$. Then all maximal among E-invariant subalgebras of L are, up to conjugation, the maximal open subalgebras of L listed in Theorem 3.10.

Proof. By Remark 3.13 every fundamental maximal subalgebra of $\operatorname{Der} L$ is conjugate to a standard subalgebra. Therefore, by Remark 3.12, all maximal fundamental subalgebras of $\operatorname{Der} L$ are, up to conjugation, the subalgebras $L_{0}+\mathbb{C} E$, where L_{0} is one of the maximal open subalgebras of L listed in Theorem 3.10. Let S_{0} be a maximal among open E-invariant subalgebras of L. Then $S_{0}+\mathbb{C} E$ is a fundamental maximal subalgebra of $\operatorname{Der} L$. Hence the thesis.

4. Maximal open subalgebras of $\operatorname{KO}(n, n+1)$ and $\operatorname{SKO}(n, n+1 ; \beta)$

Let x_{1}, \ldots, x_{n} be n even indeterminates and $\xi_{1}, \ldots, \xi_{n}, \xi_{n+1}=\tau$ be $n+1$ odd indeterminates. Consider the differential form $\Omega=d \tau+\sum_{i=1}^{n}\left(\xi_{i} d x_{i}+x_{i} d \xi_{i}\right)$. The odd contact superalgebra is defined as follows [1]:

$$
K O(n, n+1)=\{X \in W(n, n+1) \mid X \Omega=f \Omega, f \in \Lambda(n, n+1)\}
$$

It is a simple Lie superalgebra for every $n \geqslant 1$.
Define the following bracket on $\Lambda(n, n+1)$ (cf. [10, §1.4]):

$$
\begin{equation*}
[f, g]=(2-E) f \frac{\partial g}{\partial \tau}+(-1)^{p(f)} \frac{\partial f}{\partial \tau}(2-E) g-\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial \xi_{i}}+(-1)^{p(f)} \frac{\partial f}{\partial \xi_{i}} \frac{\partial g}{\partial x_{i}}\right) \tag{4.1}
\end{equation*}
$$

where $E=\sum_{i=1}^{n}\left(x_{i} \partial / \partial x_{i}+\xi_{i} \partial / \partial \xi_{i}\right)$ is the Euler operator. Then the map $\rho: \Lambda(n, n+1) \rightarrow$ $K O(n, n+1)$,

$$
\rho(f)=X_{f}:=(2-E) f \frac{\partial}{\partial \tau}-(-1)^{p(f)} \frac{\partial f}{\partial \tau} E-\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x_{i}} \frac{\partial}{\partial \xi_{i}}+(-1)^{p(f)} \frac{\partial f}{\partial \xi_{i}} \frac{\partial}{\partial x_{i}}\right)
$$

is an isomorphism between $K O(n, n+1)$ and $\Lambda(n, n+1)$ with reversed parity. We will therefore identify $K O(n, n+1)$ with $\Lambda(n, n+1)$ with reversed parity. Then the standard maximal torus is $T=\left\langle\tau, x_{i} \xi_{i} \mid i=1, \ldots, n\right\rangle$.

Remark 4.1. Bracket (4.1) satisfies the following rule:

$$
[f, g h]=[f, g] h+(-1)^{p\left(X_{f}\right) p(g)} g[f, h]-2(-1)^{p(f)} \frac{\partial f}{\partial \tau} g h .
$$

It follows, in particular, that an ideal $I=\left(f_{1}, \ldots, f_{r}\right)$ of $\Lambda(n, n+1)$ is stabilized by a function f in $K O(n, n+1)$ if and only if $\left[f, f_{i}\right]$ lies in I for every $i=1, \ldots, r$.

Besides, if f is an odd function independent of τ, then $\varphi=\exp (\operatorname{ad}(f))$ is an automorphism of $\Lambda(n, n+1)$ with respect to both the Lie bracket and the usual product of polynomials. It follows that a subalgebra L_{0} of $K O(n, n+1)$ stabilizes an ideal $I=\left(f_{1}, \ldots, f_{r}\right)$ of $\Lambda(n, n+1)$ if and only if the subalgebra $\varphi\left(L_{0}\right)$ stabilizes the ideal $J=\left(\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{r}\right)\right)$.

For $\beta \in \mathbb{C}$ let $\operatorname{div}_{\beta}:=\Delta+(E-n \beta) \partial / \partial \tau$, where $\Delta=\sum_{i=1}^{n} \partial^{2} /\left(\partial x_{i} \partial \xi_{i}\right)$ is the odd Laplace operator, and let

$$
S K O^{\prime}(n, n+1 ; \beta)=\left\{f \in \Lambda(n, n+1) \mid \operatorname{div}_{\beta}(f)=0\right\}=: \Lambda^{\beta}(n, n+1)
$$

(cf. [19], [17, Example 4.9], [10, §1.4]).
Remark 4.2. If $f, g \in \Lambda(n, n+1)$, then:

$$
\operatorname{div}_{\beta}([f, g])=X_{f}\left(\operatorname{div}_{\beta}(g)\right)-(-1)^{p\left(X_{f}\right) p\left(X_{g}\right)} X_{g}\left(\operatorname{div}_{\beta}(f)\right)
$$

It follows that the function $\operatorname{div}_{\beta}: K O(n, n+1) \rightarrow \Lambda(n, n+1)$ is a divergence (see Definition 2.4). Therefore $S K O^{\prime}(n, n+1 ; \beta)$ is a subalgebra of the Lie superalgebra $\Lambda(n, n+1)$ with bracket (4.1). According to Remark 2.6,

$$
S K O^{\prime}(n, n+1 ; \beta)=S^{\prime} K O(n, n+1)=\left\{X \in K O(n, n+1) \mid X \omega_{\beta}=0\right\}
$$

where ω_{β} is the volume form attached to the divergence $d i v_{\beta}$.
Let $S K O(n, n+1 ; \beta)$ denote the derived algebra of $S K O^{\prime}(n, n+1 ; \beta)$. Then $S K O(n, n+1 ; \beta)$ is simple for $n \geqslant 2$ and coincides with $S K O^{\prime}(n, n+1 ; \beta)$ unless $\beta=1$ or $\beta=(n-2) / n$. The Lie superalgebra $S K O(n, n+1 ; 1)$ (respectively $S K O(n, n+1 ;(n-2) / n)$) consists of the elements of $S K O^{\prime}(n, n+1 ; 1)$ (respectively $S K O^{\prime}(n, n+1 ;(n-2) / n)$) not containing the monomial $\tau \xi_{1} \ldots \xi_{n}$ (respectively $\xi_{1} \ldots \xi_{n}$).

Since the Lie superalgebra $K O(1,2)$ is isomorphic to the Lie superalgebra $W(1,1)$ (cf. [17, Remark 6.6]), and since $S K O(n, n+1 ; \beta)$ is simple for $n \geqslant 2$, when talking about $K O(n, n+1)$ and $S K O(n, n+1 ; \beta)$ we shall assume $n \geqslant 2$.

Remark 4.3. The \mathbb{Z}-grading of type $(1, \ldots, 1 \mid 0, \ldots, 0,1)$ of $W(n, n+1)$ induces on $K O(n, n+1)$ (respectively $\operatorname{SKO}(n, n+1 ; \beta)$) a grading of depth 1 which is irreducible by Remark 1.13. This grading is called the subprincipal grading of $K O(n, n+1)$ (respectively $S K O(n, n+1 ; \beta)$).

The \mathbb{Z}-grading of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$ of $W(n, n+1)$, with $t+12$'s and t zeros, induces, for every $t=0, \ldots, n-2$, an irreducible grading on $\mathfrak{g}=K O(n, n+1)$ (respectively $\operatorname{SKO}(n, n+1 ; \beta)$ for $(t, \beta) \neq(n-2,(n-2) / n)$) where \mathfrak{g}_{0} is isomorphic to the Lie superalgebra $c \tilde{P}(n-t) \otimes \Lambda(t)+W(0, t)$ (respectively $\tilde{P}(n-t) \otimes \Lambda(t)+W(0, t)), \mathfrak{g}_{-1}$ is isomorphic to $\mathbb{C}^{n-t \mid n-t} \otimes \Lambda(t)$ and \mathfrak{g}_{-2} is isomorphic to $\mathbb{C} \otimes \Lambda(t)$. When $\mathfrak{g}=S K O(n, n+1$; $(n-2) / n)$ and $t=n-2, \mathfrak{g}_{0}$ does not contain the element $\xi_{1} \ldots \xi_{n}$, and the grading is irreducible if and only if $n>2$. These gradings satisfy the hypotheses of Proposition 1.11(b), therefore the corresponding graded subalgebras of $K O(n, n+1)$ and $S K O(n, n+1 ; \beta)$ are maximal.

The grading of type $(1, \ldots, 1 \mid 1, \ldots, 1,2)$ is called the principal grading of $K O(n, n+1)$ (respectively $\operatorname{SKO}(n, n+1 ; \beta)$).

Remark 4.4. The \mathbb{Z}-grading of type $(1,2, \ldots, 2 \mid 1,0, \ldots, 0,2)$ of $W(n, n+1)$ induces on $K O(n, n+1)$ (respectively $S K O(n, n+1 ; \beta))$ a grading which is not irreducible. In fact the corresponding subalgebra $\prod_{j \geqslant 0} \mathfrak{g}_{j}$ of $K O(n, n+1)$ (respectively $S K O(n, n+1 ; \beta)$) is contained in the subalgebra of type $(1, \ldots, 1 \mid 0, \ldots, 0,1)$.

Remark 4.5. The subspaces $\mathbb{C} 1, \mathbb{C} x_{i}, \mathbb{C} \xi_{i_{1}} \ldots \xi_{i_{h}}, \mathbb{C} x_{k} \xi_{j_{1}} \ldots \xi_{j_{h}}$, with $k \neq j_{1}, \ldots, j_{h}$, $\mathbb{C} \xi_{i_{1}} \ldots \xi_{i_{h}} \otimes T$, and $\mathbb{C} x_{k} \xi_{j_{1}} \ldots \xi_{j_{h}} \otimes T$ with $k \neq j_{1}, \ldots, j_{h}$, are T-weight spaces of $K O(n, n+1)$.

Remark 4.6. Let $L=K O(n, n+1)$. Then the graded subalgebra L_{k} of L of type $(1, \ldots, 1$, $2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2$) with $n-k+12$'s and $n-k$ zeros, is, for every $k=1, \ldots, n$, the standard subalgebra L_{U} of L stabilizing the ideal $I_{U}=\left(x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{k}, \tau\right)$. Indeed, for every $k, L_{k} \subset L_{U}$ since L_{k} is contained in the graded subalgebra of $W(n, n+1)$ of type $(1, \ldots, 1 \mid 1, \ldots, 1,0, \ldots, 0,1)$ with $n-k$ zeros, which stabilizes I_{U} (cf. the proof of Theorem 2.3). Since, for every $k \neq 1, L_{k}$ is a maximal subalgebra of L (cf. Remark 4.3), $L_{k}=L_{U}$.

Now suppose $k=1$. Notice that L_{U} contains the standard torus T of $K O(n, n+1)$, hence it is regular and decomposes into the direct product of T-weight spaces. The subspace $S=$ $\left\langle 1, x_{1}, \xi_{1}\right\rangle \otimes \Lambda\left(\xi_{2}, \ldots, \xi_{n}\right)$ is a T-invariant complementary subspace of the subalgebra L_{1} and, according to Remark 4.5 , the subspaces $\mathbb{C} 1, \mathbb{C} \xi_{j_{1}} \ldots \xi_{j_{h}}, \mathbb{C} x_{1} \xi_{i_{1}} \ldots \xi_{i_{h}}$, with $1 \neq i_{1} \neq \cdots \neq i_{h}$, are one-dimensional T-weight spaces. Therefore, in order to prove that $L_{U} \subset L_{1}$, it is sufficient to show that no element of S lies in L_{U}. Notice that L_{U} contains the elements x_{2}, \ldots, x_{n} but it does not contain the elements $1, x_{1}, \xi_{i}$ for any $i=1, \ldots, n$. Since $\left[x_{i_{1}}, \xi_{i_{1}} \ldots \xi_{i_{h}}\right]=-\xi_{i_{2}} \ldots \xi_{i_{h}}$ and $\left[x_{i_{1}}, x_{j} \xi_{i_{1}} \ldots \xi_{i_{h}}\right]=-x_{j} \xi_{i_{2}} \ldots \xi_{i_{h}}$, it follows that S is contained in the T-invariant complementary subspace of L_{U}, therefore $L_{U} \subset L_{1}$, hence $L_{U}=L_{1}$.

Likewise, the graded subalgebra of L of type $(1, \ldots, 1 \mid 0, \ldots, 0,1)$ is the standard subalgebra of L stabilizing the ideal $\left(x_{1}, \ldots, x_{n}, \tau\right)$.

Example 4.7. Throughout this example we shall identify $K O(n, n+1)$ with $\Lambda(n, n+1)$ as described at the beginning of this paragraph. On $\Lambda(n, n+1)$ we define a valuation with values in \mathbb{Z}_{+}by setting:

$$
\nu\left(x_{i}\right)=1, \quad \nu\left(\xi_{i}\right)=0, \quad i=1, \ldots, n, \quad \nu(\tau)=0
$$

(see Remark 2.23). Consider the following subspaces of $K O(n, n+1)$:

$$
\begin{gathered}
L_{i}=\{f \in \Lambda(n, n+1) \mid v(f) \geqslant i+1\}+\Lambda(\tau) \quad \text { for } i=-1,0, \\
L_{i}=\{f \in \Lambda(n, n+1) \mid v(f) \geqslant i+1\} \quad \text { for } i>0 .
\end{gathered}
$$

Using commutation rules (4.1) one can check that the subspaces L_{i} define in fact a filtration of $K O(n, n+1)$ of depth 1 whose associated graded superalgebra $G r L$ has the following structure:

$$
\begin{gathered}
G r_{-1} L=\Lambda\left(\xi_{1}, \ldots, \xi_{n}, \tau\right) / \Lambda(\tau), \\
G r_{0} L=\left\langle x_{i}\right\rangle \otimes \Lambda\left(\xi_{1}, \ldots, \xi_{n}, \tau\right)+\Lambda(\tau), \\
G r_{j} L=\left\langle f \in \mathbb{C} \llbracket x_{1}, \ldots, x_{n} \rrbracket \mid \operatorname{deg}(f)=j+1\right\rangle \otimes \Lambda\left(\xi_{1}, \ldots, \xi_{n}, \tau\right) \quad \text { for } j \geqslant 1 .
\end{gathered}
$$

It follows that $\overline{G r L} \cong H O(n, n) \otimes \Lambda(\eta)+\mathbb{C} \partial / \partial \eta+\mathbb{C}(E-2+2 \eta \partial / \partial \eta)$ with respect to the grading of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ of $H O(n, n)$, where $E=\sum_{i=1}^{n}\left(x_{i} \partial / \partial x_{i}+\xi_{i} \partial / \partial \xi_{i}\right)$, and $\operatorname{deg}(\eta)=0$. Since this grading is irreducible (cf. Remark 2.34) and satisfies property (iii)' of Proposition 1.11(b), L_{0} is a maximal subalgebra of $K O(n, n+1)$ by Corollary 1.12.

Note that the subalgebra L_{0} stabilizes the ideal $I_{U}=\left(x_{1}, \ldots, x_{n}\right)$ of $\Lambda(n, n)$, hence, due to its maximality, L_{0} is the standard subalgebra of $K O(n, n+1)$ corresponding to the ideal I_{U}.

Example 4.8. Throughout this example we shall identify $K O(n, n+1)$ with $\Lambda(n, n+1)$ as above. Let us fix an integer t such that $1 \leqslant t \leqslant n$ and let us define a valuation on $\Lambda(n, n+1)$ by setting:

$$
\begin{gathered}
v\left(x_{i}\right)=1, \quad \nu\left(\xi_{i}\right)=1, \quad \text { for } i=1, \ldots, t \\
v(\tau)=0, \quad v\left(x_{i}\right)=2, \quad \nu\left(\xi_{i}\right)=0, \quad \text { for } i=t+1, \ldots, n .
\end{gathered}
$$

Consider the following subspaces of $K O(n, n+1)$:

$$
\begin{gathered}
L_{i}(t)=\{f \in \Lambda(n, n+1) \mid v(f) \geqslant i+2\}+\Lambda(\tau) \quad \text { for } i \leqslant 0, \\
L_{i}(t)=\{f \in \Lambda(n, n+1) \mid v(f) \geqslant i+2\} \quad \text { for } i>0 .
\end{gathered}
$$

Using commutation rules (4.1) one verifies that the subspaces $L_{i}(t)$ define in fact a filtration of $K O(n, n+1)$. This filtration has depth 1 if $t=n$, otherwise it has depth 2 . We have: $\overline{G r L} \cong H O(n, n) \otimes \Lambda(\eta)+\mathbb{C} \partial / \partial \eta+\mathbb{C}(E-2+2 \eta \partial / \partial \eta)$ with respect to the grading of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ of $H O(n, n)$, with $n-t 2$'s and $n-t$ zeros, and $\operatorname{deg}(\eta)=0$. Since this grading is irreducible for every $t=2, \ldots, n$ (cf. Remark 2.34) and satisfies property (iii)' of Proposition $1.11(\mathrm{~b})$, by Corollary $1.12 L_{0}(t)$ is a maximal (regular) subalgebra of $K O(n, n+1)$ for every $t=2, \ldots, n$. On the contrary, the subalgebra $L_{0}(1)$ is contained in the subalgebra L_{0} of $K O(n, n+1)$ constructed in Example 4.7, hence it is not maximal.

Note that $L_{0}(t)$ is contained in the graded subalgebra of $W(n, n+1)$ of type $(1, \ldots, 1 \mid 1, \ldots, 1$, $0, \ldots, 0$) with $n+t 1$'s, therefore it stabilizes the ideal $I_{\mathcal{U}}=\left(x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{t}\right)$ of $\Lambda(n, n+1)$. It follows that, for every $t=2, \ldots, n, L_{0}(t)$ is the standard subalgebra of $K O(n, n+1)$ corresponding to the ideal $I_{\mathcal{U}}$, due to its maximality.

Likewise, $L_{0}(1)$ is the standard subalgebra $L_{\mathcal{U}_{1}}$ of $K O(n, n+1)$ stabilizing the ideal $I_{\mathcal{U}_{1}}=$ $\left(x_{1}, \ldots, x_{n}, \xi_{1}\right)$. Indeed, $L_{\mathcal{U}_{1}}$ contains the standard torus T of $K O(n, n+1)$, hence it is regular and decomposes into the direct product of T-weight spaces. By definition $L_{\mathcal{U}_{1}}$ contains the elements $1, x_{2}, \ldots, x_{n}$ and does not contain the elements x_{1} and ξ_{j} for any $j=1, \ldots, n$. Notice that $G r_{<0} L:=L_{-2}(1) / L_{0}(1)=\left(\left\langle 1, x_{1}, \xi_{1}\right\rangle \otimes \Lambda\left(\xi_{2}, \ldots, \xi_{n}, \tau\right)\right) / \Lambda(\tau)$. Then the same arguments as in Remark 4.6 show that no element in $\left(\left\langle 1, x_{1}, \xi_{1}\right\rangle \otimes \Lambda\left(\xi_{2}, \ldots, \xi_{n}\right)\right) / \mathbb{C} 1$ lies in $L \mathcal{U}_{1}$. Now suppose that an element of the form $\xi_{i_{1}} \ldots \xi_{i_{k}} \tau+\varphi$ lies in $L_{\mathcal{U}_{1}}$ for some $\varphi \in \Lambda(n, n)$, where by $\Lambda(n, n)$ we mean the subalgebra of $\Lambda(n, n+1)$ generated by all even indeterminates and by the odd indeterminates except τ. Then $L_{\mathcal{U}_{1}}$ contains the element $\left[1, \xi_{i_{1}} \ldots \xi_{i_{k}} \tau+\varphi\right]= \pm 2 \xi_{i_{1}} \ldots \xi_{i_{k}}$ and this is a contradiction. Therefore $L_{\mathcal{U}_{1}}$ cannot contain any element of the form $\xi_{i_{1}} \ldots \xi_{i_{k}} \tau+\varphi$ for any function $\varphi \in \Lambda(n, n)$ and, similarly, it cannot contain any element of the form $x_{1} \xi_{i_{1}} \ldots \xi_{i_{k}} \tau+\varphi$ for any $i_{1} \neq \cdots \neq i_{k} \neq 1$ and any function $\varphi \in \Lambda(n, n)$. By Remark 4.5 it follows that $L_{\mathcal{U}_{1}}$ is contained in $L_{0}(1)$, hence $L_{\mathcal{U}_{1}}=$ $L_{0}(1)$.

Remark 4.9. Let $1 \leqslant i<j \leqslant n$. Then the change of indeterminates that leaves τ invariant and exchanges x_{i} with x_{j} and ξ_{i} with ξ_{j}, preserves the form Ω.

Remark 4.10. Let $\eta=\alpha_{i_{1}} \xi_{i_{1}}+\cdots+\alpha_{i_{k}} \xi_{i_{k}}$ for some $k \leqslant n$, with $\alpha_{i_{j}} \in \mathbb{C}, \alpha_{i_{j}} \neq 0$. According to Remark 4.9, up to changes of variables, we can assume $\eta=\alpha_{1} \xi_{1}+\cdots+\alpha_{k} \xi_{k}$ with $\alpha_{i} \neq 0$ for $i=1, \ldots, k$. Then the following change of indeterminates preserves the form Ω :

$$
\begin{aligned}
\tau^{\prime}=\tau, & \\
x_{1}^{\prime}=\frac{1}{\alpha_{1}} x_{1}, & \xi_{1}^{\prime}=\eta, \\
x_{2}^{\prime}=x_{2}-\frac{\alpha_{2}}{\alpha_{1}} x_{1}, & \xi_{2}^{\prime}=\xi_{2}, \\
\quad \vdots & \vdots \\
x_{k}^{\prime}=x_{k}-\frac{\alpha_{k}}{\alpha_{1}} x_{1}, & \xi_{k}^{\prime}=\xi_{k}, \\
x_{i}^{\prime}=x_{i}, & \xi_{i}^{\prime}=\xi_{i} \quad \forall i>k
\end{aligned}
$$

Theorem 4.11. Let L_{0} be a maximal open subalgebra of $L=K O(n, n+1)$. Then L_{0} is conjugate to a standard subalgebra of L.

Proof. By Remark 1.3 L_{0} stabilizes an ideal of the form

$$
J=\left(x_{1}+f_{1}, \ldots, x_{n}+f_{n}, \eta_{1}+g_{1}, \ldots, \eta_{s}+g_{s}\right)
$$

for some linear functions η_{j} in odd indeterminates, and even functions f_{i} and odd functions g_{j} without constant and linear terms, and J is maximal among the L_{0}-invariant ideals of $\Lambda(n, n+1)$.

We distinguish the following two cases:
Case 1. η_{i} lies in $\Lambda\left(\xi_{1}, \ldots, \xi_{n}\right)$ for every $i=1, \ldots, s$. By Remark 4.10, up to changes of indeterminates, we have:

$$
J=\left(x_{1}+F_{1}, \ldots, x_{n}+F_{n}, \xi_{1}+G_{1}, \ldots, \xi_{s}+G_{s}\right)
$$

for some even functions F_{i} and odd functions G_{j} without constant and linear terms, where the functions G_{j} 's are independent of ξ_{1}, \ldots, ξ_{s}, for every $j=1, \ldots, s$ and where, since the ideal J is closed, we can assume the functions F_{i} and G_{i} independent of all even indeterminates, i.e., $F_{i}, G_{i} \in \Lambda(0, n+1)$ (cf. Lemma 2.29).

Suppose that $x_{1}+F_{1}=x_{1}+\xi_{1} F_{1}^{\prime}+F_{1}^{\prime \prime}$ with F_{1}^{\prime} and $F_{1}^{\prime \prime}$ independent of ξ_{1}. Then we can replace $x_{1}+F_{1}$ by $x_{1}+F_{1}-\left(\xi_{1}+G_{1}\right) F_{1}^{\prime}=x_{1}+H_{1}$ with H_{1} independent of ξ_{1}. Similarly we can make every function F_{i} independent of ξ_{j} for every $j=1, \ldots, s$.

Now suppose $x_{1}+F_{1}=x_{1}+\tau \varphi_{0}+\varphi_{1}$ with φ_{0} and φ_{1} independent of τ. Notice that, although the map $\operatorname{ad}\left(\tau \xi_{1} \varphi_{0}\right)$ is not a derivation of $\Lambda(n, n+1)$ with respect to the usual product, the map $\psi:=a d\left(\tau \xi_{1} \varphi_{0}\right)+2 \xi_{1} \varphi_{0} i d$ is a derivation, as one can verify using Remark 4.1. Thus $\exp (\psi)$ is an automorphism of $\Lambda(n, n+1)$ with respect both to bracket (4.1) and to the usual product. Notice that $\exp (\psi)\left(x_{1}+F_{1}\right)=x_{1}+\Phi_{1}$ for some function Φ_{1} independent of τ. Thus, up to automorphisms, we can assume F_{1} and, similarly, every function F_{i}, for every $i=1, \ldots, s$, independent of τ. As a consequence, the map $\exp \left(\operatorname{ad}\left(-\xi_{1} F_{1}\right)\right)$ is an automorphism of $\Lambda(n, n+1)$, mapping
J to the ideal

$$
I=\left(x_{1}, x_{2}+F_{2}^{\prime}, \ldots, x_{n}+F_{n}^{\prime}, \xi_{1}+G_{1}, \ldots, \xi_{s}+G_{s}\right)
$$

Arguing in the same way for every function F_{j}^{\prime} with $1 \leqslant j \leqslant s$, we have, up to automorphisms,

$$
I=\left(x_{1}, \ldots, x_{s}, x_{s+1}+h_{s+1}, \ldots, x_{n}+h_{n}, \xi_{1}+G_{1}, \ldots, \xi_{s}+G_{s}\right)
$$

for some functions $h_{s+1}, \ldots, h_{n} \in \Lambda\left(\xi_{s+1}, \ldots, \xi_{n}, \tau\right)$.
Suppose $G_{1}=\tau \rho_{0}+\rho_{1}$ with ρ_{0}, ρ_{1} independent of τ. Then $\exp \left(\operatorname{ad}\left(x_{1} \tau \rho_{0}\right)+2 x_{1} \rho_{0} i d\right)$ is an automorphism of $\Lambda(n, n+1)$ mapping the ideal I to

$$
I^{\prime}=\left(x_{1}, \ldots, x_{s}, x_{s+1}+h_{s+1}, \ldots, x_{n}+h_{n}, \xi_{1}+\rho_{1}, \xi_{2}+G_{2}^{\prime}, \ldots, \xi_{s}+G_{s}^{\prime}\right)
$$

where ρ_{1} is independent of τ. Arguing in the same way for every function G_{j} we can assume, up to automorphisms, that

$$
I=\left(x_{1}, \ldots, x_{s}, x_{s+1}+h_{s+1}, \ldots, x_{n}+h_{n}, \xi_{1}+\rho_{1}, \ldots, \xi_{s}+\rho_{s}\right)
$$

where ρ_{j} lies in $\Lambda\left(\xi_{s+1}, \ldots, \xi_{n}\right)$ for every j. It follows that the map $\exp \left(\operatorname{ad}\left(-x_{1} \rho_{1}\right)\right)$ is an automorphism of L sending the ideal I to the ideal

$$
Y=\left(x_{1}, \ldots, x_{s}, x_{s+1}+h_{s+1}^{\prime}, \ldots, x_{n}+h_{n}^{\prime}, \xi_{1}, \xi_{2}+\rho_{2}^{\prime}, \ldots, \xi_{s}+\rho_{s}^{\prime}\right)
$$

for some functions $h_{i}^{\prime} \in \Lambda\left(\xi_{s+1}, \ldots, \xi_{n}, \tau\right), \rho_{j}^{\prime} \in \Lambda\left(\xi_{s+1}, \ldots, \xi_{n}\right)$. Analogous automorphisms yield to the ideal

$$
Y^{\prime}=\left(x_{1}, \ldots, x_{s}, x_{s+1}+h_{s+1}^{\prime \prime}, \ldots, x_{n}+h_{n}^{\prime \prime}, \xi_{1}, \ldots, \xi_{s}\right),
$$

for some functions $h_{i}^{\prime \prime} \in \Lambda\left(\xi_{s+1}, \ldots, \xi_{n}, \tau\right)$.
Let $h_{s+1}^{\prime \prime}=\xi_{s+1} \psi_{1}+\psi_{2}$ for some ψ_{1}, ψ_{2} independent of ξ_{s+1}. By the same argument as above we can assume ψ_{2} independent of τ and, applying the automorphism $\exp \left(\operatorname{ad}\left(\xi_{s+1} \psi_{2}\right)\right)$, we can assume $\psi_{2}=0$. Now the proof can be concluded as in the case of the Lie superalgebra $H O(n, n)$ (cf. Theorem 2.41). Namely, let $Y^{\prime \prime}=\left(x_{s+1}+h_{s+1}, \ldots, x_{n}+h_{n}\right) \subset Y^{\prime}$. Then, each function f in L_{0} (thus stabilizing Y) stabilizes the ideal $K=\left(Y^{\prime},\left[Y^{\prime \prime}, Y^{\prime \prime}\right]\right)$, i.e., the ideal generated by the generators of Y^{\prime} and by the commutators between every pair of generators of $Y^{\prime \prime}$. Indeed, for every $g, h \in Y^{\prime \prime}$ we have:

$$
[f,[g, h]]=[[f, g], h] \pm[g,[f, h]] \in\left[Y^{\prime}, Y^{\prime \prime}\right]
$$

and $\left[Y^{\prime}, Y^{\prime \prime}\right] \subset K$. Notice that K is a proper ideal of $\Lambda(2 k+1, n)$ since among its generators there is no invertible element. By the maximality of J among the ideals stabilized by L_{0} we have $Y^{\prime}=K$.

Now $\frac{1}{2}\left[x_{s+1}+\xi_{s+1} \psi_{1}, x_{s+1}+\xi_{s+1} \psi_{1}\right]=-\psi_{1}+\xi_{s+1} \tilde{\varphi} \in\left[Y^{\prime \prime}, Y^{\prime \prime}\right] \subset K=Y^{\prime}$, therefore $\left(\psi_{1}-\right.$ $\left.\xi_{s+1} \tilde{\varphi}\right) \xi_{s+1}=\psi_{1} \xi_{s+1}$ lies in Y^{\prime}. It follows that

$$
Y^{\prime}=\left(x_{1}, \ldots, x_{s}, x_{s+1}, x_{s+2}+h_{s+2}^{\prime}, \ldots, x_{n}+h_{n}^{\prime}, \xi_{1}, \xi_{2}, \ldots, \xi_{s}\right)
$$

Arguing in the same way for every function h_{j}^{\prime}, we end up with a standard ideal.

Case 2. There exists one i such that $\eta_{i}=\tau+\eta$ with $\eta \in \Lambda\left(\xi_{1}, \ldots, \xi_{n}\right)$, i.e., up to changes of indeterminates,

$$
J=\left(x_{1}+f_{1}, \ldots, x_{n}+f_{n}, \xi_{1}+g_{1}, \ldots, \xi_{s-1}+g_{s-1}, \tau+\eta_{s}+g_{s}\right)
$$

for some linear function η_{s} in $\Lambda\left(\xi_{1}, \ldots, \xi_{n}\right)$, and even functions f_{i} and odd functions g_{j} without constant and linear terms. We can assume f_{i}, g_{j} and η_{s} in $\Lambda\left(\xi_{s}, \ldots, \xi_{n}\right)$.

Besides, arguing similarly as above and as in the proof of Theorem 2.41, one shows that, up to automorphisms,

$$
J=\left(x_{1}, \ldots, x_{s-1}, x_{s}+h_{s}, \ldots, x_{n}+h_{n}, \xi_{1}, \ldots, \xi_{s-1}, \tau+\eta_{s}+H\right)
$$

for some functions $h_{i}, \eta_{s}, H \in \Lambda\left(\xi_{s}, \ldots, \xi_{n}\right)$.
(i) Suppose $\eta_{s}=0$. Denote by J^{\prime} the ideal $J^{\prime}=\left(x_{s}+h_{s}, \ldots, x_{n}+h_{n}, \tau+H\right) \subset J$. Then, each function f in L_{0} (thus stabilizing J) stabilizes the ideal $K=\left(J,\left[J^{\prime}, J^{\prime}\right]\right)$, i.e., the ideal generated by the generators of J and by the commutators between every pair of generators of J^{\prime}. Indeed, for every $g, h \in J^{\prime}$ we have:

$$
[f,[g, h]]=[[f, g], h] \pm[g,[f, h]] \in\left[J, J^{\prime}\right]
$$

and $\left[J, J^{\prime}\right] \subset K$. Notice that K is a proper ideal of $\Lambda(n, n+1)$ since among its generators there is no invertible element. By the maximality of J among the ideals stabilized by L_{0} we have $J=K$.

Suppose that $h_{s}=\xi_{s} \psi_{1}+\psi_{2}$ with ψ_{1} and ψ_{2} independent of ξ_{s}. Then applying the automorphism $\exp \left(a d\left(-\xi_{s} \psi_{2}\right)\right)$ we can assume

$$
J=\left(x_{1}, \ldots, x_{s-1}, x_{s}+\xi_{s} \psi_{1}, x_{s+1}+h_{s+1}^{\prime}, \ldots, x_{n}+h_{n}^{\prime}, \xi_{1}, \xi_{2}, \ldots, \xi_{s-1}, \tau+H^{\prime}\right)
$$

Now $\psi_{1}=-\frac{1}{2}\left[x_{s+1}+\xi_{s+1} \psi_{1}, x_{s+1}+\xi_{s+1} \psi_{1}\right] \in\left[J^{\prime}, J^{\prime}\right] \subset K=J$, therefore

$$
J=\left(x_{1}, \ldots, x_{s-1}, x_{s}, x_{s+1}+h_{s+1}^{\prime}, \ldots, x_{n}+h_{n}^{\prime}, \xi_{1}, \xi_{2}, \ldots, \xi_{s-1}, \tau+H^{\prime}\right)
$$

Repeating a similar argument for every function h_{j}^{\prime} and, finally, for the function H^{\prime}, we end up with the standard ideal $J=\left(x_{1}, \ldots, x_{n}, \xi_{1}, \xi_{2}, \ldots, \xi_{s-1}, \tau\right)$.
(ii) If $\eta_{s} \neq 0$, by Remark 4.10, we can assume:

$$
J=\left(x_{1}, \ldots, x_{s-1}, x_{s}+h_{s}, \ldots, x_{n}+h_{n}, \xi_{1}, \ldots, \xi_{s-1}, \tau+\xi_{s}+H\right) .
$$

Thus the automorphism $\exp \left(a d\left(x_{s} \tau\right)+2 x_{s} i d\right)$ maps J to the ideal

$$
J^{\prime}=\left(x_{1}, \ldots, x_{s-1}, x_{s}+h_{s}^{\prime}, \ldots, x_{n}+h_{n}^{\prime}, \xi_{1}, \ldots, \xi_{s-1}, \xi_{s}+\tau \rho+H^{\prime}\right)
$$

where H^{\prime} is independent of τ and $\operatorname{deg}(\rho) \geqslant 1$. In the limit, since J^{\prime} is closed, we get the ideal

$$
J^{\prime \prime}=\left(x_{1}, \ldots, x_{s-1}, x_{s}+h_{s}, \ldots, x_{n}+h_{n}, \xi_{1}, \ldots, \xi_{s-1}, \xi_{s}+M\right)
$$

where M is independent of τ. We thus proceed as in Case 1 .

Theorem 4.12. All maximal open subalgebras of $L=K O(n, n+1)$ are, up to conjugation, the following:
(i) the graded subalgebra of type $(1, \ldots, 1 \mid 0, \ldots, 0,1)$;
(ii) the graded subalgebras of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$ with $n-t+12$'s and $n-t$ zeros, for $t=2, \ldots, n$;
(iii) the non-graded subalgebra L_{0} described in Example 4.7 and the non-graded subalgebras $L_{0}(t)$ described in Example 4.8 for $t=2, \ldots, n$.

Proof. Let L_{0} be a maximal open subalgebra of L. By Theorem 4.11, L_{0} is, up to conjugation, the standard subalgebra of L stabilizing either the ideal $I_{\mathcal{U}}=\left(x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{s}\right)$ for some $s=0, \ldots, n$, or the ideal $I_{\mathcal{U}^{\prime}}=\left(x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{t}, \tau\right)$ for some $t=0, \ldots, n$. The statement then follows using Remarks 4.6, 4.3, 4.4, and Examples 4.7, 4.8.

Corollary 4.13. All irreducible \mathbb{Z}-gradings of $K O(n, n+1)$ are, up to conjugation, the grading of type $(1, \ldots, 1 \mid 0, \ldots, 0,1)$ and the gradings of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$ with $t+12$'s and t zeros, for $t=0, \ldots, n-2$.

We shall now focus on the Lie superalgebra $\operatorname{SKO}(n, n+1 ; \beta)$ introduced at the beginning of this section.

Remark 4.14. The \mathbb{Z}-grading of type $(1, \ldots, 1 \mid-1, \ldots,-1,0)$ of $W(n, n+1)$ induces on $\mathfrak{g}=$ $\operatorname{SKO}(n, n+1 ; \beta)$ a \mathbb{Z}-grading $\mathfrak{g}=\prod_{j} \mathfrak{g}_{j}$, where

$$
\mathfrak{g}_{-1}=\left\{f \in \bigoplus_{h=0}^{n-2}\left\langle x_{i_{1}} \ldots x_{i_{h}} \xi_{j_{1}} \ldots \xi_{j_{h+1}}\right\rangle \otimes\langle 1, \tau, \Phi\rangle \mid \operatorname{div}_{\beta}(f)=0\right\}
$$

and

$$
\mathfrak{g}_{0}=\left\{f \in \bigoplus_{h=0}^{n-1}\left\langle x_{i_{1}} \ldots x_{i_{h}} \xi_{j_{1}} \ldots \xi_{j_{h}}\right\rangle \otimes\langle 1, \tau, \Phi\rangle \mid \operatorname{div}_{\beta}(f)=0\right\}+\langle 1, \tau+\beta \Phi\rangle
$$

where $\Phi=\sum_{i=1}^{n} x_{i} \xi_{i}$. One can check that $S=\left\{f \in \bigoplus_{h=1}^{n-2}\left\langle x_{i_{1}} \ldots x_{i_{h}} \xi_{j_{1}} \ldots \xi_{j_{h+1}}\right\rangle \otimes\langle 1, \tau, \Phi\rangle \mid\right.$ $\left.\operatorname{div}_{\beta}(f)=0\right\}$, is a \mathfrak{g}_{0} stable subspace of \mathfrak{g}_{-1}. Notice that $S=0$ if and only if $n=2$. It follows that for $n>2$ the grading of type $(1, \ldots, 1 \mid-1, \ldots,-1,0)$ induces on $S K O(n, n+1, \beta)$ a grading which is not irreducible.

Now suppose $n=2$ and $\beta \neq 0$. Then the \mathbb{Z}-grading of type $(1,1 \mid-1,-1,0)$ has depth 2 . One has: $\mathfrak{g}_{0} \cong s l_{2} \otimes \Lambda(1)+W(0,1), \mathfrak{g}_{-1} \cong \mathbb{C}^{2} \otimes \Lambda(1)$, where \mathbb{C}^{2} is the standard $s l_{2}$-module, and $\mathfrak{g}_{-2}=\mathbb{C} \xi_{1} \xi_{2}=\left[\mathfrak{g}_{-1}, \mathfrak{g}_{-1}\right]$. It follows that the grading of type $(1,1 \mid-1,-1,0)$ of $\mathfrak{g}=$ $S K O(2,3 ; \beta)$ is irreducible. The \mathfrak{g}_{0}-module \mathfrak{g}_{1} consists of the elements $f \in\left\langle x_{i}, x_{i} x_{j} \xi_{k}\right\rangle \otimes$ $\langle 1, \tau, \Phi\rangle$ such that $\operatorname{div}_{\beta}(f)=0$. Notice that \mathfrak{g}_{1} is not irreducible: it has an irreducible \mathfrak{g}_{0}-submodule $S \cong S^{3}\left(\mathbb{C}^{2}\right) \otimes \Lambda(1)$ and $\mathfrak{g}_{1} / S \cong \mathbb{C}^{2} \otimes \Lambda(1)$. Besides, for every $j>1, \mathfrak{g}_{j}=\mathfrak{g}_{1}^{j}$. One can check that property (iii)' of Proposition $1.11(\mathrm{~b})$ is satisfied, hence $\prod_{j \geqslant 0} \mathfrak{g}_{j}$ is a maximal subalgebra of \mathfrak{g}.

Finally, if $n=2$ and $\beta=0$ the grading of type $(1,1 \mid-1,-1,0)$ has depth 1 , hence it is irreducible by Remark 1.13.

Remark 4.15. When $\beta \neq 0,-1$ the even part of the Lie superalgebra $\operatorname{SKO}(2,3 ; \beta)$ is isomorphic to $W(2,0)$ and its odd part is isomorphic to $\Omega^{0}(2)^{-1 /(\beta+1)} \oplus \Omega^{0}(2)^{-\beta /(\beta+1)}$ (cf. Definition 2.5). It follows that, when $\beta=1, \operatorname{SKO}(2,3 ; \beta)_{\overline{1}}$ is the direct sum of two irreducible $\operatorname{SKO}(2,3 ; \beta)_{\overline{0}}{ }^{-}$ submodules each of which is isomorphic to $\Omega^{0}(2)^{-1 / 2}$ (cf. [10, Proposition 5.3.4]). Therefore if $S=\operatorname{SKO}(2,3 ; 1)$, then $\operatorname{Der} S=S+\mathfrak{a}$ with $\mathfrak{a} \cong s l_{2}$ (cf. [17, Proposition 6.1], Proposition 1.8). Let e, h, f be the standard basis of \mathfrak{a} where $e=a d\left(\xi_{1} \xi_{2} \tau\right)$ and $h=a d\left(-\tau+\sum_{i=1}^{2} x_{i} \xi_{i}\right)$. We will denote by \mathfrak{b} the subalgebra of \mathfrak{a} spanned by e and h.

Remark 4.16. Let $S=S K O(2,3 ; 1)$. Let us denote by S_{0} the intersection between the graded subalgebras of S of type $(1,1 \mid 1,1,2)$ and $(1,1 \mid-1,-1,0)$, and let $S=S_{-2} \supset S_{-1} \supset S_{0} \supset \cdots$ be the Weisfeiler filtration associated to S_{0}, where $S_{-1}=\left\langle 1, x_{i}, \xi_{1} \xi_{2}, \xi_{i}(\tau+\Phi) \mid i=1,2\right\rangle+S_{0}$. Then $G r S$ is a graded Lie superalgebra of depth 2 where $G r_{0} S \cong S(0,2)+\mathbb{C} E$ and $G r_{-1} S$ is isomorphic, as a $G r_{0} S$-module, to the direct sum of two copies of $\Lambda(2) / \mathbb{C} 1$. Let V be the subspace of $G r_{-1} S$ spanned by the elements $\xi_{1} \xi_{2}$ and $\xi_{i}(\tau+\Phi)$ for $i=1,2$. Then V is a $G r_{0} S$-submodule of $G r_{-1} S$ and $\prod_{j \geqslant 0} G r_{j} S+V$ is the graded subalgebra of S of type (1, 1|1, 1, 2). Likewise, for every $\gamma \in \mathbb{C}$, the subspace $V_{\gamma}=\left\langle 1+\gamma \xi_{1} \xi_{2},-2 x_{1}+\gamma \xi_{2}(\tau+\Phi), 2 x_{2}+\gamma \xi_{1}(\tau+\Phi)\right\rangle$ is a $G r_{0} S$-submodule of $G r_{-1} S$ and $\prod_{j \geqslant 0} G r_{j} S+V_{0}$ is the graded subalgebra of S of type $(1,1 \mid-1,-1,0)$. Notice that, for every $\gamma \neq 0$, the automorphism $\exp \left(\frac{\gamma}{2} e\right)$ maps V_{γ} to V_{0}. It follows that every subalgebra $S_{\gamma}:=\prod_{j \geqslant 0} G r_{j} S+V_{\gamma}$, with $\gamma \in \mathbb{C}$, is conjugate to the maximal subalgebra of type $(1,1 \mid-1,-1,0)$. On the other hand, the grading of type $(1,1 \mid-1,-1,0)$ is conjugate to the grading of type $(1,1 \mid 1,1,2)$ by the automorphism $\exp (e) \exp (-f) \exp (e)$. Therefore the maximal subalgebras of S of type $(1,1 \mid-1,-1,0)$ and $(1,1 \mid 1,1,2)$ lie in the same G-orbit. This orbit consists of the subalgebras S_{γ}, with $\gamma \in \mathbb{C}$, and of the subalgebra of principal type, and the intersection of any pair of subalgebras in this orbit is the subalgebra $\prod_{j \geqslant 0} G r_{j} S$. Notice that $\prod_{j \geqslant 0} G r_{j} S$ is contained also in the (maximal) subalgebra of type ($1,1 \mid 0,0,1$).

Remark 4.17. If $\beta \neq-1$, then the subalgebra of $S K O^{\prime}(n, n+1 ; \beta)$ consisting of the elements $f \in\left\langle P \xi_{k}, Q \tau \mid P, Q \in \mathbb{C} \llbracket x_{1}, \ldots, x_{n} \rrbracket\right\rangle$ such that $\operatorname{div}_{\beta}(f)=0$ is isomorphic to W_{n}.

Remark 4.18. The even part of the Lie superalgebra $\operatorname{SKO}(2,3 ; 0)$ is isomorphic to $W(2,0)$ and its odd part is isomorphic to $\Omega^{0}(2)^{-1} \oplus \Omega^{0}(2) / \mathbb{C} 1$. The outer derivation $D=a d\left(\xi_{1} \xi_{2}\right)$ of $\operatorname{SKO}(2,3 ; 0)$ can then be described as follows. Let $p: \Omega^{0}(2) \rightarrow \Omega^{0}(2) / \mathbb{C} 1$ be the natural projection. Then:

$$
\begin{gathered}
D(X)=p(\operatorname{div}(X)) \quad \text { if } X \in W(2,0) \\
D(f)=d f \quad \text { if } f \in \Omega^{0}(2)^{-1} \\
D(f)=0 \quad \text { if } f \in \Omega^{0}(2) / \mathbb{C} 1 .
\end{gathered}
$$

The image of D is thus given by $\left(\Omega^{1}(2)_{\text {closed }}\right)^{-1}+\Omega^{0}(2) / \mathbb{C} 1$ where $\left(\Omega^{1}(2)_{\text {closed }}\right)^{-1}$ can be identified with $S(2,0)$ via contraction with the volume form $d x_{1} \wedge d x_{2}$.

Remark 4.19. Let us describe the structure of the Lie superalgebra $\operatorname{SKO}(2,3 ;-1)$. Its even part is not simple: it has a commutative ideal consisting of elements in $\Omega^{0}(2)(\tau-\Phi)$. We have:

$$
S K O(2,3 ;-1)_{\overline{0}} \cong \Omega^{0}(2) \rtimes S(2,0), \quad S K O(2,3 ;-1)_{\overline{1}} \cong \Omega^{0}(2)+\Omega^{0}(2)
$$

Here $S(2,0)$ acts on each odd copy of $\Omega^{0}(2)$ in the natural way, and the even functions in $\Omega^{0}(2)$ act by multiplication on one copy and by -multiplication on the other.

Example 4.20. Throughout this example we shall consider the Lie superalgebra $S^{\prime}=$ $S K O^{\prime}(n, n+1 ; \beta)$ for $n>2$, and we shall identify it with $\Lambda^{\beta}(n, n+1)$ as explained at the beginning of this section.

Notice that $\Lambda^{\beta}(n, n+1) \subset \Lambda^{\Delta}(n, n) \otimes\langle 1, \tau, \Phi\rangle$, where $\Lambda^{\Delta}(n, n)=\{f \in \Lambda(n, n) \mid \Delta(f)=0\}$ and $\Phi=\sum_{i=1}^{n} x_{i} \xi_{i}$. We define a valuation ν on $\Lambda^{\Delta}(n, n) \otimes\langle 1, \tau, \Phi\rangle$ (hence on $\Lambda^{\beta}(n, n+1)$) by setting:

$$
\begin{gathered}
v(1)=v(\tau)=v(\Phi)=0, \\
\nu\left(x_{i}\right)=1 \quad \forall i=1, \ldots, n, \quad v\left(\xi_{i_{1}} \ldots \xi_{i_{k}}\right)=0 \quad \forall k<n, \quad v\left(\xi_{1} \ldots \xi_{n}\right)=-1
\end{gathered}
$$

and we extend it on $\Lambda(0, n)$ by property (b) in Remark 2.23 , on $\mathbb{C} \llbracket x_{1}, \ldots, x_{n} \rrbracket$ by properties (a) and (b) in Remark 2.23, and finally on $\Lambda^{\Delta}(n, n) \otimes\langle 1, \tau, \Phi\rangle$ by setting $\nu\left(\sum_{i} P_{i}(x) Q_{i}(\xi) \eta_{i}\right)=$ $\min _{i}\left(v\left(P_{i}(x)\right)+v\left(Q_{i}(\xi)\right)\right)$ where $P_{i}(x) \in \mathbb{C} \llbracket x_{1}, \ldots, x_{n} \rrbracket, Q_{i}(\xi) \in \Lambda(0, n)$ and $\eta_{i} \in\langle 1, \tau, \Phi\rangle$.

Then the following subspaces define a filtration of $\operatorname{SKO}^{\prime}(n, n+1 ; \beta)$:

$$
\begin{gathered}
S_{j}^{\prime}=\left\{f \in \Lambda^{\beta}(n, n+1) \mid \nu(f) \geqslant j+1\right\}+\langle 1, \tau+\beta \Phi\rangle \quad \text { if } j \leqslant 0, \\
S_{j}^{\prime}=\left\{f \in \Lambda^{\beta}(n, n+1) \mid \nu(f) \geqslant j+1\right\} \quad \text { if } j>0 .
\end{gathered}
$$

This filtration has depth 2, with $G r_{-2} S^{\prime}=\left\langle\xi_{1} \ldots \xi_{n}\right\rangle$ if $\beta \neq 1$ and $G r_{-2} S^{\prime}=\left\langle\xi_{1} \ldots \xi_{n}\right.$, $\left.\xi_{1} \ldots \xi_{n} \tau\right\rangle$ if $\beta=1$. In fact $G r_{-2} S^{\prime}$ is an ideal of $G r S^{\prime}$, since for any $g \in G r_{j} S^{\prime}, j \geqslant 1$, and any $f \in G r_{-2} S^{\prime}, v([f, g])=v(g)-1$, hence $[f, g]$ lies in S_{j-1}^{\prime}, i.e., $[f, g]=0$ in $G r S^{\prime}$. We have:

$$
\overline{G r S^{\prime}} / G r_{-2} S^{\prime} \cong S H O(n, n) \otimes \Lambda(\eta)+\mathbb{C} \frac{\partial}{\partial \eta}+\mathbb{C}\left(E-2-\beta a d(\Phi)+2 \eta \frac{\partial}{\partial \eta}\right)
$$

with respect to the grading of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ on $\operatorname{SHO}(n, n)$ and $\operatorname{deg}(\eta)=0 . \prod_{j \geqslant 0} G r_{j} S^{\prime}$ is thus not a maximal subalgebra of $\overline{G r S^{\prime}}$ since it is contained in $\prod_{j \geqslant 0} G r_{j} S^{\prime}+G r_{-2} S^{\prime}$. Nevertheless, note that, for every β, S_{0}^{\prime} is contained in $S=S K O(n, n+1 ; \beta)$, and $S_{0}^{\prime}+\mathbb{C} \xi_{1} \ldots \xi_{n}$ generates the whole S. It follows that, for every $\beta \neq 1,(n-2) / n$, since $S=S^{\prime}, S_{0}^{\prime}$ is a maximal open subalgebra of S. If $\beta=1$ or $\beta=(n-2) / n, S_{0}^{\prime}$ is not a maximal subalgebra of S^{\prime} but it is a maximal subalgebra of S.

Finally, for every $\beta, S_{0}^{\prime}=\operatorname{SKO}(n, n+1 ; \beta) \cap L_{0}$ where L_{0} is the standard subalgebra of $K O(n, n+1)$ constructed in Example 4.7. It follows that S_{0}^{\prime} is the standard subalgebra of $S K O(n, n+1 ; \beta)$ stabilizing the ideal $I_{U}=\left(x_{1}, \ldots, x_{n}\right)$.

Example 4.21. Let t be an integer such that $1 \leqslant t \leqslant n$ and let us consider the valuation v on $\Lambda(n, n+1)$ defined in Example 4.8. Consider the following subspaces of $S^{\prime}=S K O^{\prime}(n, n+1 ; \beta)$:

$$
\begin{aligned}
S_{i}^{\prime}(t)= & \left\{f \in \Lambda^{\beta}(n, n+1) \mid v(f) \geqslant i+2\right\}+\langle 1, \tau+\beta \Phi\rangle \quad \text { if } i \leqslant 0, \\
& S_{i}^{\prime}(t)=\left\{f \in \Lambda^{\beta}(n, n+1) \mid v(f) \geqslant i+2\right\} \quad \text { if } i>0 .
\end{aligned}
$$

By commutation rules (4.1), these subspaces define in fact a filtration of $S K O^{\prime}(n, n+1 ; \beta)$, having depth 2 if $t \neq n$ and depth 1 if $t=n$. Then, if $\beta \neq 1$,

$$
\overline{G r S^{\prime}} \cong S H O(n, n) \otimes \Lambda(\eta)+\mathbb{C} \xi_{1} \ldots \xi_{n}+\mathbb{C} \frac{\partial}{\partial \eta}+\mathbb{C}\left(E-2-\beta a d(\Phi)+2 \eta \frac{\partial}{\partial \eta}\right)
$$

and, if $\beta=1$,

$$
\overline{G r S^{\prime}} \cong S H O^{\prime}(n, n) \otimes \Lambda(\eta)+\mathbb{C} \frac{\partial}{\partial \eta}+\mathbb{C}\left(E-2-\beta a d(\Phi)+2 \eta \frac{\partial}{\partial \eta}\right)
$$

with respect to the grading of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ of $\operatorname{SHO}^{\prime}(n, n)$, with $n-t 2$'s and $n-t$ zeros, and $\operatorname{deg}(\eta)=0$. When $n>2$ these gradings are irreducible for every $t=2, \ldots, n$ (cf. Remark 2.46) and satisfy property (iii)' of Proposition 1.11(b). Therefore, by Corollary 1.12, when $n>2, S_{0}^{\prime}(t)$ is a maximal subalgebra of $S K O^{\prime}(n, n+1 ; \beta)$ for every $t=2, \ldots, n$.

Let $S=S K O(n, n+1 ; \beta)$ and let $S_{j}(t):=S_{j}^{\prime}(t) \cap S$. If $\beta \neq 1,(n-2) / n$, then $S=S^{\prime}$, hence $S_{0}(t)$ is, for every $t=2, \ldots, n$, a maximal open subalgebra of S. If $\beta=(n-2) / n$ or $\beta=1$, then the subspaces $S_{j}(t)$ define a filtration of S such that:

$$
\overline{G r S} \cong S H O(n, n) \otimes \Lambda(\eta)+\mathbb{C} \frac{\partial}{\partial \eta}+\mathbb{C}\left(E-2-\beta a d(\Phi)+2 \eta \frac{\partial}{\partial \eta}\right)
$$

or

$$
\overline{G r S} \cong S H O(n, n) \otimes \Lambda(\eta)+\mathbb{C} \xi_{1} \ldots \xi_{n}+\mathbb{C} \frac{\partial}{\partial \eta}+\mathbb{C}\left(E-2-\beta a d(\Phi)+2 \eta \frac{\partial}{\partial \eta}\right)
$$

respectively, with respect to the grading of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ of $S H O(n, n)$, with $n-t 2$'s and $n-t$ zeros, and $\operatorname{deg}(\eta)=0$. It follows that, if $n>2$, then $S_{0}(t)$ is a maximal open subalgebra of S, for every $t=2, \ldots, n$ (cf. Remark 2.34).

Notice that the grading of principal type of $W(n, n)$ induces an irreducible grading on $\operatorname{SHO}^{\prime}(n, n)$ also for $n=2$, but it induces on $\operatorname{SHO}(2,2)$ a grading which is not irreducible. It follows that $S_{0}^{\prime}(2)$ is a fundamental maximal subalgebra of $S K O^{\prime}(2,3 ; \beta)$ for every β, but $S_{0}(2)$ is a maximal subalgebra of $\operatorname{SKO}(2,3 ; \beta)$ if and only if $\beta \neq 0$. When $\beta=0$ the subalgebra $S_{0}(2)$ of $\operatorname{SKO}(2,3 ; 0)$ is indeed contained in the graded subalgebra of type $(1,1 \mid-1,-1,0)$.

Finally, note that $S_{0}(t)=L_{0}(t) \cap S K O(n, n+1 ; \beta)$ where $L_{0}(t)$ is the subalgebra of $K O(n, n+1)$ constructed in Example 4.8. It follows that $S_{0}(t)$ stabilizes the ideal $I_{\mathcal{U}}=$ $\left(x_{1}, \ldots, x_{n}, \xi_{1}, \ldots, \xi_{t}\right)$ of $\Lambda(n, n+1)$.

Remark 4.22. Let $S=\operatorname{SKO}(n, n+1 ; \beta)$ and consider its grading of principal type: $S=$ $\prod_{j \geqslant-2} S_{j}$. Then τ acts on S_{j} by multiplication by j. By Remark $4.5,\left(\mathbb{C} \xi_{i_{1}} \ldots \xi_{i_{h}} \otimes T\right) \cap S_{h}$, and $\left(\mathbb{C} x_{k} \xi_{j_{1}} \ldots \xi_{j_{h}} \otimes T\right) \cap S_{h+1}$ with $k \neq j_{1}, \ldots, j_{h}$, are T-weight spaces of $S K O(n, n+1 ; \beta)$.

Remark 4.23. The same arguments as in the proof of Theorem 2.11 show, by Remark 4.2, that every maximal open subalgebra of $\operatorname{SKO}(n, n+1 ; \beta), S K O^{\prime}(n, n+1 ; \beta)$ and $\operatorname{CSKO}^{\prime}(n, n+1 ; \beta)=$ $S K O^{\prime}(n, n+1 ; \beta)+\mathbb{C} \Phi$ is regular.

Theorem 4.24. Let $S=S K O(n, n+1 ; \beta)$. Then all maximal open subalgebras of S are, up to conjugation, the following:
(a) if $n=2$ and $\beta \neq 0,1$:
(i) the graded subalgebras of type $(1,1 \mid 0,0,1),(1,1 \mid 1,1,2)$ and $(1,1 \mid-1,-1,0)$;
(ii) the non-graded subalgebra $S_{0}(2)$ constructed in Example 4.21;
(b) if $n=2$ and $\beta=1$:
(i) the graded subalgebras of type $(1,1 \mid 0,0,1),(1,1 \mid 1,1,2)$;
(ii) the non-graded subalgebra $S_{0}(2)$ constructed in Example 4.21;
(c) if $n=2$ and $\beta=0$:
(i) the graded subalgebras of type $(1,1 \mid 0,0,1)$ and $(1,1 \mid-1,-1,0)$;
(d) if $n>2$:
(i) the graded subalgebra of type $(1, \ldots, 1 \mid 0, \ldots, 0,1)$ and the graded subalgebras of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$ with $n-t+12$'s and $n-t$ zeros, for $t=2, \ldots, n$;
(ii) the non-graded subalgebra S_{0}^{\prime} described in Example 4.20 and the non-graded subalgebras $S_{0}(t)$ described in Example 4.21 for $t=2, \ldots, n$.

Proof. Let L_{0} be a maximal open subalgebra of S. By Remark 4.23, L_{0} is regular. Therefore, by Remark 2.1 and Proposition 1.8, we can assume that L_{0} is invariant with respect to the standard torus T of $K O(n, n+1)$. It follows that L_{0} decomposes into the direct product of weight spaces with respect to T. Notice that $\mathbb{C} 1, \mathbb{C} x_{i}, \mathbb{C} \xi_{i_{1}} \ldots \xi_{i_{h}}, \mathbb{C} x_{j} \xi_{i_{1}} \ldots \xi_{i_{h}}$, with $j \neq i_{1} \neq \cdots \neq i_{h}$, are one-dimensional T-weight spaces (see Remark 4.5). Besides, note that the elements ξ_{i} cannot lie in L_{0} since the corresponding vector fields $\rho\left(\xi_{i}\right)=\xi_{i} \partial / \partial \tau+\partial / \partial x_{i}$ are not exponentiable.

Let us first assume $n=2$. We distinguish two cases:
Case I. 1 does not lie in L_{0}. We may assume that one of the following possibilities occurs:
(1) No x_{i} lies in L_{0}. Then the T-invariant complement of L_{0} contains the T-invariant complement of the maximal graded subalgebra of S of type $(1,1 \mid 1,1,2)$, hence L_{0} is contained in the graded subalgebra of principal type. If $\beta=0$ then the subalgebra of principal type is not maximal therefore this contradicts the maximality of L_{0}. If $\beta \neq 0$ then L_{0} coincides with the graded subalgebra of type $(1,1 \mid 1,1,2)$ by maximality.
(2) The elements x_{1}, x_{2} lie in L_{0}. Then the T-invariant complement of L_{0} contains the T-invariant complement of the maximal graded subalgebra of L of type $(1,1 \mid 0,0,1)$. Since L_{0} is maximal it coincides with this graded subalgebra.

Notice that if L_{0} contains x_{2} (respectively x_{1}) then, due to its maximality, it contains also x_{1} (respectively x_{2}). Indeed, any open regular subalgebra of S containing x_{2} and not containing 1 and x_{1} (respectively containing x_{1} and not containing 1 and x_{2}) is contained in the subalgebra of type $(1,2 \mid 1,0,2)$ (respectively $(2,1 \mid 0,1,2)$) which is not maximal by Remark 4.4.

Case II. 1 lies in L_{0}. Since the elements ξ_{i} 's do not lie in L_{0}, the elements $\xi_{i} \tau+\varphi$ cannot lie in L_{0} for any $\varphi \in \Lambda(2,2)$, where by $\Lambda(n, n)$ we mean the subalgebra of $\Lambda(n, n+1)$ generated by all even indeterminates and all odd indeterminates except τ. Indeed, by commutation rules (4.1), we have: $\left[1, \xi_{i} \tau+\varphi\right]=-2 \xi_{i}$. Note that if $\beta=0$ then the grading of type $(1,1 \mid-1,-1,0)$ has depth 1 with -1 st graded component spanned by the elements ξ_{i} and $\xi_{i}(\tau-\Phi)$ for $i=1,2$.

It follows that if $\beta=0$, then L_{0} is contained in the graded subalgebra of $\operatorname{SKO}(2,3 ; 0)$ of type $(1,1 \mid-1,-1,0)$, thus coincides with it, due to its maximality.

Now suppose $\beta \neq 0$. Since, for every $i, \mathbb{C} x_{i}$ is a one-dimensional weight space of $\operatorname{SKO}(n, n+1 ; \beta)$, we may assume that one of the following situations holds:
(1) No x_{i} lies in L_{0}. Then the same arguments as in Example 4.8 show that L_{0} coincides with the subalgebra $S_{0}(2)$ constructed in Example 4.21;
(2) x_{1}, x_{2} lie in L_{0}. Then L_{0} is contained in the graded subalgebra of S of type $(1,1 \mid-1,-1,0)$. Since L_{0} is maximal the two subalgebras coincide.

Notice that if $1, x_{2}$ lie in L_{0}, by the maximality of L_{0}, also $x_{1} \in L_{0}$. Indeed, any open regular subalgebra of S containing the elements $1, x_{2}$ and not containing x_{1} is contained in the maximal subalgebra of type $(1,1 \mid-1,-1,0)$.

Finally, as we pointed out in Remark 4.15, when $\beta=1$, the subalgebras of type $(1,1 \mid$ $-1,-1,0)$ and $(1,1 \mid 1,1,2)$ are conjugate by an element of G.

Let us now suppose $n>2$. We distinguish two cases:
Case I. 1 does not lie in L_{0}. We may assume that one of the following possibilities occurs:
(1) No x_{i} lies in L_{0}. Then the T-invariant complement of L_{0} contains the T-invariant complement of the maximal graded subalgebra of S of type $(1, \ldots, 1 \mid 1, \ldots, 1,2)$. By the maximality of L_{0} it follows that L_{0} coincides with the graded subalgebra of type $(1, \ldots, 1 \mid 1, \ldots, 1,2)$;
(2) the elements x_{t+1}, \ldots, x_{n} lie in L_{0} for some $t=2, \ldots, n-1$, and the elements x_{1}, \ldots, x_{t} do not. It follows, using commutation rules (4.1), that the T-invariant complement of L_{0} contains the T-invariant complement of the maximal graded subalgebra of L of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$ with $n-t+12$'s and $n-t$ zeros. Since L_{0} is maximal it coincides with this graded subalgebra;
(3) the elements x_{i} lie in L_{0} for every i. Then the T-invariant complement of L_{0} contains the T-invariant complement of the maximal graded subalgebra of S of type $(1, \ldots, 1 \mid 0, \ldots, 0,1)$. It follows that L_{0} coincides with this subalgebra.

Notice that if L_{0} contains the elements x_{2}, \ldots, x_{n} then, due to its maximality, it contains also x_{1}. Indeed, any regular subalgebra of S containing x_{2}, \ldots, x_{n} and not containing 1 and x_{1} is contained in the subalgebra of type $(1,2, \ldots, 2 \mid 1,0, \ldots, 0,2)$ which is not maximal by Remark 4.4.

Case II. 1 lies in L_{0}. We may assume that one of the following situations holds:
(1) For some $t=2, \ldots, n$ the elements x_{1}, \ldots, x_{t} do not lie in L_{0} and x_{t+1}, \ldots, x_{n} do. Then the same arguments as in Example 4.8 show that L_{0} coincides with the subalgebra $S_{0}(t)$ constructed in Example 4.21;
(2) x_{1}, \ldots, x_{n} lie in L_{0}. Then the same arguments as in Example 4.7 show that L_{0} is contained in the subalgebra S_{0}^{\prime} of S constructed in Example 4.20. Since L_{0} is maximal the two subalgebras coincide.

Notice that if $1, x_{2}, \ldots, x_{n}$ lie in L_{0}, by the maximality of L_{0}, also $x_{1} \in L_{0}$. Indeed any open regular subalgebra of S containing the elements $1, x_{2}, \ldots, x_{n}$ and not containing x_{1} is contained in the maximal subalgebra constructed in Example 4.20.

Corollary 4.25. All irreducible \mathbb{Z}-gradings of $\operatorname{SKO}(n, n+1 ; \beta)$ are, up to conjugation, the following:
(i) the gradings of type $(1,1 \mid 0,0,1),(1,1 \mid 1,1,2)$ and $(1,1 \mid-1,-1,0)$, if $n=2, \beta \neq 0,1$;
(ii) the gradings of type $(1,1 \mid 0,0,1)$ and $(1,1 \mid 1,1,2)$ if $n=2, \beta=1$;
(iii) the gradings of type $(1,1 \mid 0,0,1),(1,1 \mid-1,-1,0)$ if $n=2, \beta=0$;
(iv) the gradings of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$ with $t+12$'s and t zeros, for $t=0, \ldots, n-2$ and $(1, \ldots, 1 \mid 0, \ldots, 0,1)$, if $n>2$.

We recall that if $S=S K O(n, n+1 ; \beta)$ with $n \geqslant 2$ and $\beta \neq 1,(n-2) / n$, then $\operatorname{Der} S=S+\mathbb{C} \Phi$ with $\Phi=\sum_{i=1}^{n} x_{i} \xi_{i}$; if $S=\operatorname{SKO}(n, n+1 ;(n-2) / n)$ with $n \geqslant 2$, then $\operatorname{Der} S=S+\mathbb{C} \Phi+$ $\mathbb{C} \xi_{1} \ldots \xi_{n}$; if $S=\operatorname{SKO}(n, n+1 ; 1)$ with $n>2$, then $\operatorname{Der} S=S+\mathbb{C} \Phi+\mathbb{C} \xi_{1} \ldots \xi_{n} \tau$; finally, if $S=S K O(2,3 ; 1)$ then $\operatorname{Der} S=S+s l_{2}$ (cf. Proposition 1.8, Remark 4.15).

Theorem 4.26. Let $S=\operatorname{SKO}(n, n+1 ; \beta)$ with $n \geqslant 2$ and $\beta \neq 1$, $(n-2) / n$, so that $\operatorname{SKO}(n, n+1 ; \beta)=\operatorname{SKO}^{\prime}(n, n+1 ; \beta)$ and $\operatorname{Der} S=\operatorname{CSKO}^{\prime}(n, n+1 ; \beta)$. Then all maximal among open Φ-invariant subalgebras of S are, up to conjugation, the subalgebras of S listed in Theorem 4.24(a) and (d).

Proof. Let L_{0} be a maximal among open Φ-invariant subalgebras of S. Then $L_{0}+\mathbb{C} \Phi$ is a maximal open subalgebra of $\operatorname{CSKO}^{\prime}(n, n+1 ; \beta)$, hence it is regular by Remark 4.23. Then one uses the same arguments as in the proof of Theorem 4.24.

We shall now classify the open subalgebras of $S=S K O(n, n+1 ;(n-2) / n)$ and $S=$ $S K O(n, n+1 ; 1)$, which are maximal among the \mathfrak{a}_{0}-invariant subalgebras of S, for every subalgebra \mathfrak{a}_{0} of \mathfrak{a}.

Remark 4.27. By Remark 4.23 every maximal open subalgebra of $\operatorname{SKO}^{\prime}(n, n+1 ; \beta)$ or $\operatorname{CSKO}^{\prime}(n, n+1 ; \beta)$ is regular. Therefore the same arguments as in the proof of Theorem 4.24 show that all fundamental among maximal subalgebras of $S K O^{\prime}(n, n+1 ;(n-2) / n)$ (respectively $\operatorname{CSKO}^{\prime}(n, n+1 ;(n-2) / n)$), with $n>2$, are, up to conjugation, the graded subalgebras of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$, with $n-t+12$'s and $n-t$ zeros, and the non-graded subalgebras $S_{0}^{\prime}(t)$ (respectively $\left.S_{0}^{\prime}(t)+\mathbb{C} \Phi\right)$ constructed in Example 4.21, for $t=2, \ldots, n$. Indeed, the graded subalgebra of $S K O^{\prime}(n, n+1 ;(n-2) / n)$ (respectively $\left.\operatorname{CSKO}^{\prime}(n, n+1 ;(n-2) / n)\right)$ of type $(1, \ldots, 1 \mid 0, \ldots, 0,1)$ and the subalgebra S_{0}^{\prime} constructed in Example 4.20, are not maximal, since they are contained in $S K O(n, n+1 ;(n-2) / n)$ (respectively $S K O(n, n+1 ;(n-2) / n)+\mathbb{C} \Phi)$. By the same arguments, all maximal among fundamental subalgebras of $\operatorname{SKO}^{\prime}(n, n+1 ;(n-2) / n)$ and $\operatorname{CSKO}^{\prime}(n, n+1 ;(n-2) / n)$, for $n>2$, are, up to conjugation, the graded subalgebra of subprincipal type, the graded subalgebras of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$, with $n-t+12$'s and $n-t$ zeros, the non-graded subalgebras $S_{0}^{\prime}(t)$ constructed in Example 4.21, for $t=2, \ldots, n$, and, the subalgebra S_{0}^{\prime} constructed in Example 4.20.

Likewise, all fundamental among maximal subalgebras of $\operatorname{SKO}^{\prime}(2,3 ; 0)$ (respectively $\operatorname{CSKO}^{\prime}(2,3 ; 0)$) are, up to conjugation, the graded subalgebra of type $(1,1 \mid 1,1,2)$ and the subalgebra $S_{0}^{\prime}(2)$ (respectively $\left.S_{0}^{\prime}(2)+\mathbb{C} \Phi\right)$. All maximal among fundamental subalgebras of $S K O^{\prime}(2,3 ; 0)$ (respectively $\operatorname{CSKO}^{\prime}(2,3 ; 0)$) are the graded subalgebras of type $(1,1 \mid 1,1,2)$, $(1,1 \mid 0,0,1),(1,1 \mid-1,-1,0)$ and the non-graded subalgebra $S_{0}^{\prime}(2)$ (respectively $\left.S_{0}^{\prime}(2)+\mathbb{C} \Phi\right)$.

Theorem 4.28. Let $S=\operatorname{SKO}(n, n+1 ;(n-2) / n)$ with $n \geqslant 2$.
(i) All maximal among open Φ-invariant subalgebras of S are, up to conjugation, the maximal open subalgebras listed in Theorem 4.24(c) and (d).
(ii) If $\mathfrak{a}_{0}=\mathbb{C} \xi_{1} \ldots \xi_{n}$ or $\mathfrak{a}_{0}=\mathfrak{a}$, then all maximal among \mathfrak{a}_{0}-invariant open subalgebras of S are, up to conjugation, the graded subalgebras of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$, with $n-t+12$'s and $n-t$ zeros, and the non-graded subalgebras $S_{0}(t)$ constructed in Example 4.21, for $t=2, \ldots, n$.

Proof. One uses Remark 4.27 and the same arguments as in the proof of Theorem 2.17.

Remark 4.29. By Remark 4.23 every maximal open subalgebra of $S K O^{\prime}(n, n+1 ; \beta)$ or $\operatorname{CSKO}^{\prime}(n, n+1 ; \beta)$, for every $n \geqslant 2$, is regular. Therefore the same arguments as in the proof of Theorem 4.24 show that all fundamental among maximal subalgebras of $\operatorname{SKO}^{\prime}(n, n+1 ; 1)$ (respectively $\operatorname{CSKO}^{\prime}(n, n+1 ; 1)$) are, up to conjugation, the graded subalgebras of type $(1, \ldots, 1 \mid 0, \ldots, 0,1)$ and $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$ with $n-t+12$'s and $n-t$ zeros, and the non-graded subalgebras $S_{0}^{\prime}(t)$ (respectively $\left.S_{0}^{\prime}(t)+\mathbb{C} \Phi\right)$ constructed in Example 4.21 , for $t=2, \ldots, n$. By the same arguments, all maximal among fundamental subalgebras of $S K O^{\prime}(n, n+1 ; 1)$ (respectively $\operatorname{CSKO}^{\prime}(n, n+1 ; 1)$) are, up to conjugation, all the subalgebras listed above and the subalgebra S_{0}^{\prime} constructed in Example 4.20, if $n>2$, or the graded subalgebra of type $(1,1 \mid-1,-1,0)$ if $n=2$. Note that the subalgebras of $\operatorname{SKO}^{\prime}(2,3 ; 1)$ or $\operatorname{CSKO}^{\prime}(2,3 ; 1)$ of type $(1,1 \mid 1,1,2)$ and $(1,1 \mid-1,-1,0)$ are not conjugate.

Theorem 4.30. Let $S=S K O(n, n+1 ; 1)$ with $n>2$.
(i) All maximal among open Φ-invariant subalgebras of S are, up to conjugation, the maximal open subalgebras listed in Theorem 4.24(d).
(ii) If $\mathfrak{a}_{0}=\mathbb{C} \xi_{1} \ldots \xi_{n} \tau$ or $\mathfrak{a}_{0}=\mathfrak{a}$, then all maximal among \mathfrak{a}_{0}-invariant open subalgebras of S are, up to conjugation, the graded subalgebras of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ and $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$, with $n-t+12$'s and $n-t$ zeros, and the nongraded subalgebras $S_{0}(t)$ constructed in Example 4.21, for $t=2, \ldots, n$.

Proof. One uses Remark 4.29 and the same arguments as in the proof of Theorem 2.17.

Theorem 4.31. Let $S=\operatorname{SKO}(2,3 ; 1)$ and let $\mathfrak{b}=\mathbb{C} e+\mathbb{C} h \subset \mathfrak{a} \cong s l_{2}$.
(i) If \mathfrak{a}_{0} is a one-dimensional subalgebra of \mathfrak{a}, then all maximal among open \mathfrak{a}_{0}-invariant subalgebras of S are, up to conjugation, the maximal subalgebras listed in Theorem 4.24(b).
(ii) The graded subalgebra of type $(1,1 \mid 1,1,2)$ is, up to conjugation, the only maximal among open \mathfrak{b}-invariant subalgebras of S, which is not invariant with respect to \mathfrak{a}.
(iii) All maximal among open \mathfrak{a}-invariant subalgebras of S are, up to conjugation, the graded subalgebra of type $(1,1 \mid 0,0,1)$ and the non-graded subalgebra $S_{0}(2)$ constructed in Example 4.21.

Proof. By Remark 4.29, the proof of (i) is the same as the proof of (i) and (ii) in Theorem 2.17. Recall that the graded subalgebras of type $(1,1 \mid 1,1,2)$ and $(1,1 \mid-1,-1,0)$ are conjugate.

Now, using [10, Proposition 5.3.4] one can check that the maximal graded subalgebra of $S K O(2,3 ; 1)$ of type $(1,1 \mid 0,0,1)$ and the subalgebra $S_{0}(2)$ constructed in Example 4.21 are invariant with respect to \mathfrak{a}. On the other hand, the maximal subalgebra L_{0} of S of type (1, 1|1, 1, 2) is invariant with respect to \mathfrak{b} but it is not \mathfrak{a}-invariant. Indeed L_{0} contains $\xi_{1} \xi_{2}$, it does not contain 1, but $f\left(\xi_{1} \xi_{2}\right)=1$. Let M_{0} be a maximal among open \mathfrak{b}-invariant subalgebras of $\operatorname{SKO}(2,3 ; 1)$, then $M_{0}+\mathbb{C} \xi_{1} \xi_{2} \tau+\mathbb{C} \Phi$ is a fundamental maximal subalgebra of $\operatorname{CSKO}(2,3 ; 1)$ containing $\xi_{1} \xi_{2} \tau$ and Φ, hence, by Remark $4.29, M_{0}$ is conjugate to the graded subalgebra of type $(1,1 \mid 1,1,2)$, or to the subalgebra of type $(1,1 \mid 0,0,1)$, or to the subalgebra $S_{0}(2)$.

Now suppose that \tilde{S} is a maximal among open \mathfrak{a}-invariant subalgebras of $\operatorname{SKO}(2,3 ; 1)$. Then \tilde{S} is \mathfrak{b}-invariant, hence it is conjugate either to the graded subalgebra of type $(1,1 \mid 0,0,1)$, or to the subalgebra $S_{0}(2)$ constructed in Example 4.21. Indeed, otherwise, \tilde{S} is contained either in the subalgebra of type $(1,1 \mid 1,1,2)$ or in a conjugate S_{γ} of it (see Remark 4.16). Since \tilde{S} is \mathfrak{a}-invariant, it is invariant with respect to all outer automorphisms of S, hence it is contained in the intersection of all the subalgebras in the orbit of the subalgebra of principal type. It follows, by Remark 4.16, that \tilde{S} is contained in the subalgebra of type $(1,1 \mid 0,0,1)$. This contradicts the maximality of \tilde{S} among \mathfrak{a}-invariant subalgebras.

5. Maximal open subalgebras of $S H O^{\sim}(n, n)$ and $S K O^{\sim}(n, n+1)$

5.1. The Lie superalgebra $\mathrm{SHO}^{\sim}(n, n)$

Let n be even. The Lie superalgebra $S H O^{\sim}(n, n)$ is the subalgebra of $H O(n, n)$ defined as follows:

$$
S H O^{\sim}(n, n)=\{X \in H O(n, n) \mid X(F \omega)=0\}
$$

where ω is the volume form associated to the usual divergence and $F=1-2 \xi_{1} \ldots \xi_{n}$. By Remark 2.7, $\operatorname{SHO}^{\sim}(n, n)$ consists of vector fields X in $H O(n, n)$ such that $\operatorname{div}_{F}(X)=0$ or, equivalently, by Remark 2.9 , such that $\operatorname{div}(F X)=0$.

Using the isomorphism between $H O(n, n)$ and $\Lambda(n, n) / \mathbb{C} 1$ with the Buttin bracket, it is possible to realize $S H O^{\sim}(n, n)$ as follows (cf. [18, §2]):

$$
\operatorname{SHO}^{\sim}(n, n)=\left(\left(1+\xi_{1} \ldots \xi_{n}\right) \Lambda^{\Delta}(n, n)\right) / \mathbb{C} 1
$$

where $\Lambda^{\Delta}(n, n)=\{f \in \Lambda(n, n) \mid \Delta(f)=0\}$ and Δ is the odd Laplacian. Equivalently, $S H O^{\sim}(n, n)$ can be identified with the space $\Lambda(n, n)^{\Delta} / \mathbb{C} 1$ with the following deformed bracket [9, §5]:

$$
\begin{align*}
{[f, g] } & =\left[\xi_{1} \ldots \xi_{n}, f g\right]_{h o} \quad \text { if } f, g \in \mathbb{C} \llbracket x_{1}, \ldots, x_{n} \rrbracket, \\
{\left[x_{i}, \xi_{j}\right] } & =\delta_{i j} \xi_{1} \ldots \xi_{n}, \\
{[f, g] } & =[f, g]_{h o} \quad \text { otherwise }, \tag{5.1}
\end{align*}
$$

where $[\cdot, \cdot]_{h o}$ denotes the bracket in $H O(n, n)$.
The superalgebra SHO $^{\sim}(n, n)$ is simple for $n \geqslant 2$ (n even) [17, Example 6.2]. Since, as we recalled in the introduction, $\operatorname{SHO}^{\sim}(2,2) \cong H(2,1)$, when dealing with $S H O^{\sim}(n, n)$ we will assume $n>2$.

Remark 5.1. A \mathbb{Z}-grading of $W(n, n)$ induces a \mathbb{Z}-grading on $\operatorname{SHO}^{\sim}(n, n)$ if and only if deg $x_{i}+$ $\operatorname{deg} \xi_{i}=$ const and $\sum_{i=1}^{n} \operatorname{deg} \xi_{i}=0$. In particular the \mathbb{Z}-grading of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ induces on $\mathrm{SHO}^{\sim}(n, n)$ a grading of depth 1 which is irreducible by Remark 1.13.

In what follows we will identify $\operatorname{SHO}^{\sim}(n, n)$ with $\Lambda(n, n)^{\Delta} / \mathbb{C} 1$ with bracket (5.1). Then its standard maximal torus is $T=\left\langle x_{i} \xi_{i}-x_{i+1} \xi_{i+1} \mid i=1, \ldots, n-1\right\rangle$.

Example 5.2. On $\Lambda(n, n)$, for any fixed integer t such that $1 \leqslant t \leqslant n$, let us define the following valuation ν :

$$
\begin{gathered}
v\left(x_{i}\right)=1, \quad v\left(\xi_{i}\right)=1 \quad \text { for } i=1, \ldots, t \\
v\left(x_{i}\right)=2, \quad v\left(\xi_{i}\right)=0 \quad \text { for } i=t+1, \ldots, n
\end{gathered}
$$

Let us define the following filtration of $L=\operatorname{SHO}^{\sim}(n, n)$:

$$
L_{j}(t)=\left\{x \in \Lambda^{\Delta}(n, n) / \mathbb{C} 1 \mid v(x) \geqslant j+2\right\} .
$$

Then $\overline{G r L} \cong S H O^{\prime}(n, n)$ with respect to the \mathbb{Z}-grading of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1$, $0, \ldots, 0$) with $n-t 2$'s and $n-t$ zeros. Since this grading is irreducible for every $t=2, \ldots, n$ (cf. Remarks 2.34, 2.46), it follows, using Corollary 1.12, that $L_{0}(t)$ is a maximal regular subalgebra of L for every $t=2, \ldots, n$.

Remark 5.3. Let $\Sigma_{0}:=\left\langle x_{i_{1}} \ldots x_{i_{k}} \xi_{i_{1}} \ldots \xi_{i_{k}} \mid k=1, \ldots, n\right\rangle$. All elements of $\operatorname{SHO}^{\sim}(n, n)$ lying in Σ_{0} have T-weights equal to zero.

Let $i_{1} \neq \cdots \neq i_{h}$ and $\left\{i_{1}, \ldots, i_{h}, j_{1}, \ldots, j_{n-h}\right\}=\{1, \ldots, n\}$. Then $\left\{f \in\left\langle\xi_{i_{1}} \ldots \xi_{i_{h}}\right.\right.$, $\left.\left.x_{j_{1}} \ldots x_{j_{n-h}}\right\rangle \otimes \Sigma_{0} \mid \Delta(f)=0\right\}$ is a weight space with respect to T. Likewise, if $i_{1} \neq \cdots \neq i_{h} \neq j$, then $\left\{f \in\left\langle x_{j} \xi_{i_{1}} \ldots \xi_{i_{h}}, x_{j} x_{j_{1}} \ldots x_{j_{n-h}}\right\rangle \otimes \Sigma_{0} \mid \Delta(f)=0\right\}$ is a weight space with respect to T.

Theorem 5.4. Let $L=\operatorname{SHO}^{\sim}(n, n)$ with $n>2$ even. All maximal open subalgebras of L are, up to conjugation, the following:
(i) the graded subalgebra of type $(1, \ldots, 1 \mid 0, \ldots, 0)$;
(ii) the non-graded subalgebras $L_{0}(t)$ constructed in Example 5.2, for $t=2, \ldots, n$.

Proof. Let L_{0} be a maximal open subalgebra of L. The same argument as in the proof of Theorem 2.11 shows that L_{0} is regular hence we can assume, by Remark 2.1, that it is invariant with respect to the torus T. It follows that L_{0} decomposes into the direct product of T-weight spaces. Note that the elements $\sum_{j} \alpha_{j} \xi_{j}+f$ cannot lie in L_{0} for any non-zero linear combination $\sum_{j} \alpha_{j} \xi_{j}$ and any odd function $f \in \Lambda^{\Delta}(n, n) / \mathbb{C} 1$ with no linear terms, since the elements ξ_{j} are not exponentiable. We may therefore assume that one of the following situations occurs:
(1) the elements $x_{i}+\varphi_{i}$ lie in L_{0} for some elements φ_{i} with no linear terms, for every $i=1, \ldots, n$. Then the elements $\xi_{i} \xi_{j}+\psi$ do not lie in L_{0} for any ψ in the T-weight space of $\xi_{i} \xi_{j}, \psi \notin \mathbb{C} \xi_{i} \xi_{j}$, since, for such a ψ, by Remark 5.3, $\left[x_{i}+\varphi_{i}, \xi_{i} \xi_{j}+\psi\right]=\xi_{j}+\eta$ for some function $\eta \in \Lambda^{\Delta}(n, n) / \mathbb{C} 1$ without linear terms. It follows that L_{0} does not contain any element $\xi_{i} \xi_{j}+\psi$ for any $\psi \notin \mathbb{C} \xi_{i} \xi_{j}$. The same argument shows, by induction on $k=1, \ldots, n$,
that L_{0} does not contain the elements $\xi_{i_{1}} \ldots \xi_{i_{k}}+\psi_{k}$ for any function $\psi_{k} \notin \mathbb{C} \xi_{i_{1}} \ldots \xi_{i_{k}}$, for any $k=1, \ldots, n . L_{0}$ is therefore contained in the maximal graded subalgebra of L of type $(1, \ldots, 1 \mid 0, \ldots, 0)$, hence coincides with it since it is maximal;
(2) there exists some $t=2, \ldots, n$ such that the elements $x_{1}+\varphi_{1}, \ldots, x_{t}+\varphi_{t}$ do not lie in L_{0} for any functions $\varphi_{1}, \ldots, \varphi_{t}$ without linear terms, and $x_{t+1}+\varphi_{t+1}, \ldots, x_{n}+\varphi_{n}$ lie in L_{0} for some functions $\varphi_{t+1}, \ldots, \varphi_{n}$ with no linear terms. Then arguing as in (1) and using Remark 5.3, one shows that L_{0} is contained in the subalgebra $L_{0}(t)$ constructed in Example 5.2. Thus $L_{0}=L_{0}(t)$ due to the maximality of L_{0}.

Notice that if $x_{2}+\varphi_{2}, \ldots, x_{n}+\varphi_{n}$ lie in L_{0} for some functions $\varphi_{2}, \ldots, \varphi_{n}$ with no linear terms, then also $x_{1}+\varphi_{1}$ lies in L_{0} for some $\varphi_{1} \in \Lambda^{\Delta}(n, n) / \mathbb{C} 1$ with no linear terms. Indeed, any open T-invariant subalgebra of L containing $x_{2}+\varphi_{2}, \ldots, x_{n}+\varphi_{n}$ and not containing $x_{1}+\varphi$ for any function $\varphi \in \Lambda^{\Delta}(n, n) / \mathbb{C} 1$ with no linear terms, is properly contained in the maximal graded subalgebra of type $(1, \ldots, 1 \mid 0, \ldots, 0)$, hence it is not maximal.

Corollary 5.5. The Lie superalgebra $\mathrm{SHO}^{\sim}(n, n)$ has, up to conjugation, only one irreducible \mathbb{Z}-grading: the grading of type $(1, \ldots, 1 \mid 0, \ldots, 0)$.

5.2. The Lie superalgebra $\operatorname{SKO}^{\sim}(n, n+1)$

Let n be odd. The Lie superalgebra $S K O^{\sim}(n, n+1)$ is the subalgebra of $K O(n, n+1)$ defined as follows:

$$
S K O^{\sim}(n, n+1)=\left\{X \in K O(n, n+1) \mid X\left(F \omega_{\beta}\right)=0\right\}
$$

where ω_{β} is the volume form attached to the divergence $\operatorname{div}_{\beta}$ for $\beta=(n+2) / n$ and $F=1+$ $\xi_{1} \ldots \xi_{n} \tau$. By Remark 2.7, $\operatorname{SKO}^{\sim}(n, n+1)$ consists of vector fields X in $K O(n, n+1)$ such that $X(F) F^{-1}+\operatorname{div}_{\beta}(X)=0$, where $\beta=(n+2) / n$.

Using the isomorphism between $K O(n, n+1)$ and $\Lambda(n, n+1)$ with bracket (4.1), it is possible to realize $S K O^{\sim}(n, n+1)$ as follows (cf. [18, §2]):

$$
S K O^{\sim}(n, n+1)=\left(1+\xi_{1} \ldots \xi_{n} \tau\right) \Lambda^{\Delta^{\prime}}(n, n+1)
$$

where $\Lambda^{\Delta^{\prime}}(n, n+1)=\left\{f \in \Lambda(n, n+1) \mid \Delta^{\prime}(f)=0\right\}$ and $\Delta^{\prime}:=\operatorname{div}_{(n+2) / n}=\Delta+(E-$ $(n+2)) \partial / \partial \tau$. Equivalently, $\operatorname{SKO}^{\sim}(n, n+1)$ can be identified with the space $\Lambda(n, n+1)^{\Delta^{\prime}}$ with the following deformed bracket:

$$
\begin{equation*}
[f, g]=[f, g]_{k o}+\alpha(f g) \tag{5.2}
\end{equation*}
$$

where $[\cdot, \cdot]_{k o}$ denotes the bracket in the Lie superalgebra $K O(n, n+1)$ and $\alpha(b)=\left[\xi_{1} \ldots \xi_{n} \tau, b\right]_{k o}$ $-2 b \xi_{1} \ldots \xi_{n}$ if b is a monomial in the x_{i}, and $\alpha(b)=0$ for all other monomials ([9], [17, Example 6.3]). The superalgebra $\operatorname{SKO}^{\sim}(n, n+1)$ is simple for $n \geqslant 3$ (n odd).

Remark 5.6. If $F=1+\xi_{1} \ldots \xi_{n} \tau$ and $\beta \neq(n+2) / n$, then $\left\{X \in K O(n, n+1) \mid X\left(F \omega_{\beta}\right)=0\right\}=$ $\{X \in S K O(n, n+1) \mid X(F)=0\}$. In particular this is a proper subalgebra of $K O(n, n+1)$ which is not transitive.

In what follows we will identify $\operatorname{SKO}^{\sim}(n, n+1)$ with $\Lambda(n, n+1)^{\Delta^{\prime}}$ with bracket (5.2). Then the standard maximal torus is $T=\left\langle\tau+\frac{n+2}{n} \Phi, x_{i} \xi_{i}-x_{i+1} \xi_{i+1} \mid i=1, \ldots, n-1\right\rangle$, where $\Phi=$ $\sum_{i=1}^{n} x_{i} \xi_{i}$.

Example 5.7. Let us define the following valuation v on $\Lambda(n, n+1)$:

$$
v\left(x_{i}\right)=1, \quad \nu\left(\xi_{i}\right)=0, \quad \nu(\tau)=1
$$

and let us consider the following filtration of $L=S K O^{\sim}(n, n+1)$:

$$
L_{j}=\left\{x \in \Lambda^{\Delta^{\prime}}(n, n+1) \mid v(x) \geqslant j+1\right\} .
$$

Then $\overline{\operatorname{GrL}} \cong S K O^{\prime}(n, n+1 ;(n+2) / n)$ with respect to the \mathbb{Z}-grading of type $(1, \ldots, 1 \mid$ $0, \ldots, 0,1)$. It follows, using Corollaries 1.12 and 4.25 , that L_{0} is a maximal open subalgebra of L.

Example 5.8. On $\Lambda(n, n+1)$, for any fixed integer $t, 1 \leqslant t \leqslant n$, let us define the following valuation ν :

$$
\begin{gathered}
v\left(x_{i}\right)=1, \quad v\left(\xi_{i}\right)=1 \quad \text { for } i=1, \ldots, t, \\
v\left(x_{i}\right)=2, \quad v\left(\xi_{i}\right)=0 \quad \text { for } i=t+1, \ldots, n, \quad v(\tau)=2,
\end{gathered}
$$

where by τ we denoted the $(n+1)$ th odd indeterminate of $\Lambda(n, n+1)$. Let us define the following filtration of $L=S K O^{\sim}(n, n+1)$:

$$
L_{j}(t)=\left\{x \in \Lambda^{\Delta^{\prime}}(n, n+1) \mid v(x) \geqslant j+2\right\} .
$$

Then $\overline{G r L} \cong S K O^{\prime}(n, n+1 ;(n+2) / n)$ with respect to the \mathbb{Z}-grading of type $(1, \ldots, 1,2, \ldots, 2 \mid$ $1, \ldots, 1,0, \ldots, 0,2)$ with $n-t+12$'s and $n-t$ zeros. It follows, using Corollaries 1.12 and 4.25 , that $L_{0}(t)$ is a maximal regular subalgebra of L for every $t=2, \ldots, n$.

Example 5.9. Let us fix an integer t such that $2 \leqslant t \leqslant n$. Let us consider on $\Lambda^{\Delta^{\prime}}(n, n+1)$ the same valuation as the one defined in Example 4.21 and let us consider the subspaces $S_{i}(t)$ of $L=S K O^{\sim}(n, n+1)$ defined as follows:

$$
\begin{gathered}
S_{i}(t)=\left\{f \in \Lambda^{\Delta^{\prime}}(n, n+1) \mid v(f) \geqslant i+2\right\}+\left\langle 1, \tau+\frac{n+2}{n} \Phi\right\rangle \quad \text { if } i \leqslant 0, \\
S_{i}(t)=\left\{f \in \Lambda^{\Delta^{\prime}}(n, n+1) \mid v(f) \geqslant i+2\right\} \quad \text { if } i>0 .
\end{gathered}
$$

The subspaces $S_{i}(t)$ define a filtration of L having depth 1 if $t=n$ and having depth 2 if $t<n$. One has:

$$
\overline{G r L} \cong S H O(n, n) \otimes \Lambda(\eta)+\mathfrak{a}
$$

with respect to the grading of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ of $\operatorname{SHO}(n, n)$, with $n-t$ 2 's and $n-t$ zeros, and $\operatorname{deg}(a)=0$ for every $a \in \mathfrak{a}$, where

$$
\mathfrak{a}=\mathbb{C}\left(\frac{\partial}{\partial \eta}-\xi_{1} \ldots \xi_{n} \otimes \eta\right)+\mathbb{C} \xi_{1} \ldots \xi_{n}+\mathbb{C}\left(E-2+\frac{n+2}{n} \Phi+2 \eta \frac{\partial}{\partial \eta}\right)
$$

Since the grading of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$, with $n-t 2$'s and $n-t$ zeros, is an irreducible grading of $\operatorname{SHO}(n, n)$ for $t=2, \ldots, n, S_{0}(t)$ is a maximal subalgebra of L for every $t=2, \ldots, n$, by Corollary 1.12.

Remark 5.10. The subspaces $\mathbb{C} 1, \mathbb{C} x_{i}, \mathbb{C} \xi_{i_{1}} \ldots \xi_{i_{h}}$ and $\mathbb{C} x_{j} \xi_{i_{1}} \ldots \xi_{i_{h}}$ with $j \neq i_{1} \neq \cdots \neq i_{h}$, are one-dimensional T-weight spaces of $\operatorname{SKO}^{\sim}(n, n+1)$. Besides, the subspaces $\left\{f \in\left\langle\xi_{i_{1}} \ldots \xi_{i_{h}} \tau\right.\right.$, $\left.\left.x_{j} \xi_{j} \xi_{i_{1}} \ldots \xi_{i_{h}}\right\rangle \mid \Delta^{\prime}(f)=0\right\}$ and $\left\{f \in\left\langle x_{k} \xi_{i_{1}} \ldots \xi_{i_{h}} \tau, x_{k} x_{j} \xi_{j} \xi_{i_{1}} \ldots \xi_{i_{h}}, k \neq i_{1}, \ldots, i_{h}\right\rangle \mid \Delta^{\prime}(f)=0\right\}$ are T-weight spaces.

Theorem 5.11. Let $L=\operatorname{SKO}^{\sim}(n, n+1)$ with n odd, $n \geqslant 3$. All maximal open subalgebras of L are, up to conjugation, the (non-graded) subalgebras $L_{0}, L_{0}(t)$, and $S_{0}(t)$, with $t=2, \ldots, n$, constructed in Examples 5.7, 5.8, and 5.9, respectively.

Proof. Let L_{0} be a maximal open subalgebra of L. The same argument as in the proof of Theorem 2.11 shows that L_{0} is regular. Therefore, by Remark 2.1, we can assume that L_{0} is invariant with respect to the torus T of $S K O^{\sim}(n, n+1)$. It follows that L_{0} decomposes into the direct product of T-weight spaces.

Note that the elements ξ_{i} cannot lie in L_{0} since they are not exponentiable.
We distinguish two cases:
Case I. 1 does not lie in L_{0}. We may assume that one of the following cases occurs:
(1) the elements x_{1}, \ldots, x_{n} lie in L_{0}. It follows that the T-invariant complement of L_{0} contains the subalgebra $\Lambda\left(\xi_{1}, \ldots, \xi_{n}\right)$, i.e., the T-invariant complement of the maximal subalgebra constructed in Example 5.7. Since L_{0} is maximal, it coincides with the subalgebra constructed in Example 5.7;
(2) there exists some $t=2, \ldots, n$ such that the elements x_{1}, \ldots, x_{t} do not lie in L_{0} and the elements x_{t+1}, \ldots, x_{n} do. It follows that the T-invariant complement of L_{0} contains the subspace $\left\langle 1, \xi_{j}, x_{j} \mid j=1, \ldots, t\right\rangle \otimes \Lambda\left(\xi_{t+1}, \ldots, \xi_{n}\right)$, i.e., the T-invariant complement of the subalgebra $L_{0}(t)$ of L constructed in Example 5.8. By the maximality of L_{0} we conclude that L_{0} coincides with $L_{0}(t)$.

Notice that if the elements x_{2}, \ldots, x_{n} lie in L_{0}, then also x_{1} does. Indeed any open regular subalgebra of L containing x_{2}, \ldots, x_{n} and not containing x_{1} and 1 is contained in the maximal subalgebra constructed in Example 5.7.

Case II. 1 lies in L_{0}. Using the definition of the deformed bracket defined in $\operatorname{SKO}^{\sim}(n, n+1)$, one has:

$$
\left[1,\left[1, x_{i}\right]\right]= \pm 2 \xi_{1} \ldots \hat{\xi_{i}} \ldots \xi_{n}
$$

where by $\xi_{1} \ldots \hat{\xi_{i}} \ldots \xi_{n}$ we mean the product of all ξ_{j} 's except ξ_{i}. It follows that, if L_{0} contains 1 , then it cannot contain the elements $x_{i_{1}}, \ldots, x_{i_{n-1}}$ for $i_{1} \neq \cdots \neq i_{n-1}$, because the subalgebra generated by $1, x_{i_{1}}, \ldots, x_{i_{n}}$ contains the elements ξ_{j} 's which are not exponentiable. We may therefore assume that L_{0} contains the elements x_{t+1}, \ldots, x_{n} for some $t=2, \ldots, n$ and does not contain x_{1}, \ldots, x_{t}. Using Remark 5.10 and the same arguments as in the proof of Theorem 5.4, one then shows that L_{0} is contained in the subalgebra $S_{0}(t)$ constructed in Example 5.9. By the maximality of $L_{0}, L_{0}=S_{0}(t)$.

Corollary 5.12. The Lie superalgebra $\operatorname{SKO}^{\sim}(n, n+1)$ has no irreducible \mathbb{Z}-gradings.

6. Maximal regular subalgebras of $E(1,6)$ and $E(3,6)$

6.1. The Lie superalgebra $E(1,6)$

Let us consider the contact Lie superalgebra $K(1,6)$ and let us identify it with the polynomial superalgebra $\Lambda(1,6)$ with the contact bracket via the isomorphism $\varphi: \Lambda(1,6) \rightarrow K(1,6)$, as described in Section 2. In this case, since the number of odd indeterminates is 6 , let us denote them by ξ_{i} and η_{i} for $i=1,2,3$, and choose the contact form $\tau^{\prime}=d t+\sum_{i=1}^{3}\left(\xi_{i} d \eta_{i}+\eta_{i} d \xi_{i}\right)$.

The \mathbb{Z}-grading of type $(2 \mid 1,1,1,1,1,1)$ of $W(1,6)$ induces on $K(1,6)$ the irreducible grading $K(1,6)=\prod_{j \geqslant-2} \mathfrak{g}_{j}$ where $\mathfrak{g}_{0}=\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right] \oplus \mathbb{C} c,\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right] \cong s l_{4}$ and $\mathfrak{g}_{-1} \cong \Lambda^{2} \mathbb{C}^{4}$, where \mathbb{C}^{4} denotes the standard slu -module, $\mathfrak{g}_{1} \cong \mathfrak{g}_{-1}^{*} \oplus \mathfrak{g}_{1}^{+} \oplus \mathfrak{g}_{1}^{-}$, as [$\left.\mathfrak{g}_{0}, \mathfrak{g}_{0}\right]$-modules, with $\mathfrak{g}_{1}^{+} \cong S^{2} \mathbb{C}^{4}$ and $\mathfrak{g}_{1}^{-} \cong S^{2}\left(\mathbb{C}^{4}\right)^{*}$.

The Lie superalgebra $E(1,6)$ is the graded subalgebra of $K(1,6)$ generated by $\mathfrak{g}_{-1}+\mathfrak{g}_{0}+$ $\left(\mathfrak{g}_{-1}^{*}+\mathfrak{g}_{1}^{+}\right)$(cf. [17, Example 5.2], [10, §4.2], [21, §3]). It follows that the \mathbb{Z}-grading of type ($2 \mid 1,1,1,1,1,1$) induces on $E(1,6)$ an irreducible grading, called the principal grading, where ξ_{3} is the highest weight vector of $\mathfrak{g}_{-1}=\left\langle\xi_{i}, \eta_{i}\right\rangle$ and $t \eta_{3}, \xi_{1} \eta_{2} \eta_{3}$ are the lowest weight vectors of $\mathfrak{g}_{-1}^{*}=\left\langle t \xi_{i}, t \eta_{i}\right\rangle$ and \mathfrak{g}_{1}^{+}, respectively. Notice that

$$
\begin{aligned}
\mathfrak{g}_{1}^{+}= & \left\langle\xi_{1} \xi_{2} \xi_{3}, \xi_{1} \eta_{2} \eta_{3}, \xi_{2} \eta_{1} \eta_{3}, \xi_{3} \eta_{1} \eta_{2}, \xi_{1}\left(\xi_{2} \eta_{2}+\xi_{3} \eta_{3}\right), \xi_{2}\left(\xi_{1} \eta_{1}+\xi_{3} \eta_{3}\right), \eta_{3}\left(\xi_{1} \eta_{1}-\xi_{2} \eta_{2}\right)\right. \\
& \left.\xi_{3}\left(\xi_{1} \eta_{1}+\xi_{2} \eta_{2}\right), \eta_{2}\left(\xi_{1} \eta_{1}-\xi_{3} \eta_{3}\right), \eta_{1}\left(\xi_{2} \eta_{2}-\xi_{3} \eta_{3}\right)\right\rangle
\end{aligned}
$$

and \mathfrak{g}_{1}^{-}is obtained from \mathfrak{g}_{1}^{+}exchanging ξ_{i} with η_{i} for every $i=1,2,3$. The standard maximal torus is $T=\left\langle t, \xi_{i} \eta_{i} \mid i=1,2,3\right\rangle$.

Remark 6.1. The \mathbb{Z}-gradings of $E(1,6)$ are parametrized, up to conjugation, by elements $\left(a \mid b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right)$ such that $a=\operatorname{deg} t=-\operatorname{deg}(\partial / \partial t) \in \mathbb{N}, b_{i}=\operatorname{deg} \xi_{i}=-\operatorname{deg}\left(\partial / \partial \xi_{i}\right) \in \mathbb{Z}$ for $i=1,2,3, b_{i+3}=\operatorname{deg} \eta_{i}=-\operatorname{deg}\left(\partial / \partial \eta_{i}\right) \in \mathbb{Z}$ and $b_{i}+b_{3+i}=a$ (cf. [10, §5.4]). The \mathbb{Z}-gradings of type $(1 \mid 1,1,1,0,0,0)$ and $(1 \mid 1,1,0,0,0,1)$ of $K(1,6)$ induce on $E(1,6)$ irreducible gradings by Remark 1.13 , since $E(1,6)$ is a simple Lie superalgebra. These two gradings are not conjugate since the negative part of $(1 \mid 1,1,1,0,0,0)$ is generated by the elements $1, \eta_{i}, \eta_{i} \eta_{j}$ for $i, j=1,2,3$, and has therefore dimension (4|3), while the negative part of $(1 \mid 1,1,0,0,0,1)$ is generated by the elements $1, \eta_{1}, \eta_{2}, \xi_{3}, \xi_{3} \eta_{2}, \xi_{3} \eta_{1}, \eta_{1} \eta_{2}, \xi_{3} \eta_{1} \eta_{2}$, and has therefore dimension (4|4).

Remark 6.2. Let us consider the \mathbb{Z}-grading induced on $E(1,6)$ by the grading of type $(2 \mid 2,1,1,0,1,1)$ of $K(1,6)$. With respect to this grading $E(1,6)_{0} \cong g l_{2} \otimes \Lambda(1) \oplus W(0,1) \oplus s l_{2}$
and $E(1,6)_{-1}$ is isomorphic, as an $E(1,6)_{0}$-module, to $\mathbb{C}^{4} \otimes \Lambda(1)$ where \mathbb{C}^{4} is the standard so $_{4}$-module. In particular, $E(1,6)_{-1}$ is an irreducible $E(1,6)_{0}$-module. Besides, $E(1,6)_{-2}=$ $\left[E(1,6)_{-1}, E(1,6)_{-1}\right]=\Lambda(1)$.

Theorem 6.3. All maximal open regular subalgebras of $L=E(1,6)$ are, up to conjugation, the graded subalgebras of type $(2 \mid 1,1,1,1,1,1),(2 \mid 2,1,1,0,1,1),(1 \mid 1,1,1,0,0,0)$, ($1 \mid 1,1,0,0,0,1$).

Proof. Let L_{0} be a maximal open regular subalgebra of L. By Remark 2.1, we can assume that L_{0} is invariant with respect to the standard torus T of $E(1,6)$. Therefore L_{0} decomposes into the direct product of T-weight spaces. Notice that $\mathbb{C} 1, \mathbb{C} \xi_{i}, \mathbb{C} \eta_{i}$, for $i=1,2,3, \mathbb{C} \xi_{i} \eta_{j}, \mathbb{C} \xi_{i} \xi_{j}$, $\mathbb{C} \eta_{i} \eta_{j}$, for $i \neq j, \mathbb{C} \xi_{i} \eta_{j} \eta_{k}$, for $i \neq j \neq k$, and $\mathbb{C} \xi_{1} \xi_{2} \xi_{3}$, are one-dimensional T-weight spaces. Note also that the vector field $\partial / \partial t$ cannot lie in L_{0} since it is not exponentiable. It follows that, the elements ξ_{i} and η_{i} cannot lie both in L_{0} for any fixed i, since $\left[\xi_{i}, \eta_{i}\right]=-1$ and $\varphi(1)=2 \partial / \partial t$. We may therefore assume, up to conjugation, that one of the following cases occurs:
(1) L_{0} contains no ξ_{i} and no η_{i}. Then the T-invariant complement of L_{0} contains the T-invariant complement of the maximal subalgebra $\overline{\mathfrak{g}}_{\geqslant 0}$ of L of type ($2 \mid 1,1,1,1,1,1$), hence $L_{0}=\overline{\mathfrak{g}} \geqslant 0$;
(2) ξ_{1} lies in $L_{0}, \xi_{i} \notin L_{0}$ for any $i \neq 1, \eta_{j} \notin L_{0}$ for any j. It follows that the T-invariant complement of L_{0} contains the T-invariant complement of the maximal subalgebra $\overline{\mathfrak{g}}_{\geqslant 0}^{\prime}$ of L of type ($2 \mid 2,1,1,0,1,1$), hence $L_{0}=\overline{\mathfrak{g}}_{\geqslant 0}^{\prime}$;
(3) the elements ξ_{i} lie in L_{0} for every $i=1,2,3$. It follows that the T-invariant complement of L_{0} contains the T-invariant complement of the maximal subalgebra $\overline{\mathfrak{g}}_{\geqslant 0}^{\prime \prime}$ of L of type ($1 \mid 1,1,1,0,0,0$), hence $L_{0}=\overline{\mathfrak{g}}_{\geqslant 2}^{\prime \prime}$;
(4) $\xi_{1}, \xi_{2}, \eta_{3} \in L_{0}$ and the elements $\xi_{3}, \eta_{1}, \eta_{2} \notin L_{0}$. Then L_{0} is the maximal graded subalgebra of L of type ($1 \mid 1,1,0,0,0,1$).

Notice that if ξ_{1}, ξ_{2} lie in L_{0} and $\eta_{1}, \eta_{2}, \eta_{3}, \xi_{3}$ do not, then the T-invariant complement of L_{0} contains the T-invariant complement of both the graded subalgebras of type ($1 \mid 1,1,1,0,0,0$) and $(1 \mid 1,1,0,0,0,1)$, and this is impossible since it contradicts the maximality of L_{0}.

Corollary 6.4. All irreducible \mathbb{Z}-gradings of $E(1,6)$ are, up to conjugation, the gradings of type $(2 \mid 1,1,1,1,1,1),(2 \mid 2,1,1,0,1,1),(1 \mid 1,1,1,0,0,0)$ and $(1 \mid 1,1,0,0,0,1)$.

6.2. The Lie superalgebra $E(3,6)$

The Lie superalgebra $E(3,6)$ has the following structure: $E(3,6)_{\overline{0}}=W_{3} \oplus \Omega^{0}(3) \otimes s l_{2}$ and $E(3,6)_{\overline{1}} \cong \Omega^{1}(3)^{-1 / 2} \otimes \mathbb{C}^{2}$ as an $E(3,6)_{\overline{0}}$-module (cf. Definition 2.5 and $[10, \S 4.4]$). The bracket between two odd elements is defined as follows: we identify $\Omega^{2}(3)^{-1}$ with W_{3} (via contraction of vector fields with the volume form) and $\Omega^{3}(3)^{-1}$ with $\Omega^{0}(3)$. Then, for $\omega_{1}, \omega_{2} \in \Omega^{1}(3)^{-1 / 2}, u_{1}, u_{2} \in \mathbb{C}^{2}$, we have:

$$
\left[\omega_{1} \otimes u_{1}, \omega_{2} \otimes u_{2}\right]=\left(\omega_{1} \wedge \omega_{2}\right) \otimes\left(u_{1} \wedge u_{2}\right)+\frac{1}{2}\left(d \omega_{1} \wedge \omega_{2}+\omega_{1} \wedge d \omega_{2}\right) \otimes u_{1} \cdot u_{2}
$$

where $u_{1} \cdot u_{2}$ denotes an element in the symmetric square of \mathbb{C}^{2}, i.e., an element in $s l_{2}$, and $u_{1} \wedge u_{2}$ an element in the skew-symmetric square of \mathbb{C}^{2}, i.e., a complex number. In order to simplify notation we will write the elements of $E(3,6)$ omitting the \otimes sign. Let us denote by H, E, F
the standard basis of $s l_{2}$ and by $\left\{v_{1}, v_{2}\right\}$ the standard basis of \mathbb{C}^{2}. Then $E=v_{1}^{2} / 2, F=-v_{2}^{2} / 2$, $H=-v_{1} \cdot v_{2}$ and $v_{1} \wedge v_{2}=1$. Let us fix the maximal torus $T=\left\langle H, x_{i} \partial / \partial x_{i}, i=1,2,3\right\rangle$.

Remark 6.5. The \mathbb{Z}-gradings of $E(3,6)$ are parametrized by quadruples $\left(a_{1}, a_{2}, a_{3}, \varepsilon\right)$ where $a_{i}=\operatorname{deg} x_{i}=-\operatorname{deg}\left(\partial / \partial x_{i}\right) \in \mathbb{N}, \varepsilon=\operatorname{deg} v_{1}=-\operatorname{deg} v_{2} \in \frac{1}{2} \mathbb{Z}$ and the following relations hold [10, §5.4]:

$$
\varepsilon+\frac{1}{2} \sum_{i=1}^{3} a_{i} \in \mathbb{Z}, \quad \operatorname{deg} d=-\frac{1}{2} \sum_{i=1}^{3} a_{i}, \quad \operatorname{deg} E=-\operatorname{deg} F=2 \varepsilon, \quad \operatorname{deg} H=0
$$

The grading of type $(2,2,2,0)$ is called the principal grading of $E(3,6)$: it has depth 2 and its 0 th graded component is isomorphic to $s l_{3} \oplus s l_{2} \oplus \mathbb{C}$ (cf. [17, Example 5.4]). $E(3,6)_{-1}$ and $E(3,6)_{1}$ are isomorphic, as $\left[E(3,6)_{0}, E(3,6)_{0}\right]$-modules, to $\mathbb{C}^{3} \boxtimes \mathbb{C}^{2}$ and $S^{2} \mathbb{C}^{3} \boxtimes \mathbb{C}^{2} \oplus\left(\mathbb{C}^{3}\right)^{*} \boxtimes \mathbb{C}^{2}$, respectively, where \mathbb{C}^{3} and \mathbb{C}^{2} denote the standard $s l_{3}$ and $s l_{2}$-modules, respectively. In particular $E(3,6)_{-1}=\left\langle d x_{i} v_{j} \mid i=1,2,3 ; j=1,2\right\rangle$ has highest weight vector $d x_{1} v_{1} ; E(3,6)_{1}=$ $\left\langle x_{i} d x_{j} v_{k} \mid i, j=1,2,3, k=1,2\right\rangle$ has lowest weight vectors $x_{3} d x_{3} v_{2}$ and $\left(x_{2} d x_{3}-x_{3} d x_{2}\right) v_{2}$. Notice that the elements $d x_{i} v_{1}$ and $d x_{i} v_{2}$ lie in $E(3,6)_{-1}$ for every $i=1,2,3$. It follows that $\left[E(3,6)_{-1}, E(3,6)_{-1}\right] \neq 0$ since, $\left[d x_{i} v_{1}, d x_{j} v_{2}\right]=\partial / \partial x_{k}$ for $i \neq j \neq k$. By Remark 1.13, $\left[E(3,6)_{-1}, E(3,6)_{-1}\right]=E(3,6)_{-2}$.

Let us now consider the \mathbb{Z}-grading of type ($2,1,1,0$): this is an irreducible grading of depth 2 whose 0th graded component is spanned by the elements: $E, F, H, x_{1} \partial / \partial x_{1}, x_{i} \partial / \partial x_{j}$, $x_{i} x_{j} \partial / \partial x_{1}, d x_{1} v_{h}, x_{i} d x_{j} v_{h}$ for $i, j=2,3$ and $h=1,2$. One can check that $E(3,6)_{0}=$ $\left[E(3,6)_{0}, E(3,6)_{0}\right]+\mathbb{C} c$, where $c=2 x_{1} \partial / \partial x_{1}+x_{2} \partial / \partial x_{2}+x_{3} \partial / \partial x_{3}$, and $\left[E(3,6)_{0}, E(3,6)_{0}\right]$ is isomorphic to $s l_{2} \otimes \Lambda(2)+W(0,2)$. Besides, $E(3,6)_{-1}=\left\langle x_{i} \partial / \partial x_{1}, \partial / \partial x_{i}, d x_{i} v_{1}, d x_{i} v_{2}\right.$, $i=2,3\rangle$ is isomorphic, as a $E(3,6)_{0}$-module, to $\mathbb{C}^{2} \otimes \Lambda(2)$ where \mathbb{C}^{2} is the standard $s l_{2}$-module. Note that $\left[E(3,6)_{-1}, E(3,6)_{-1}\right] \neq 0$ thus $\left[E(3,6)_{-1}, E(3,6)_{-1}\right]=E(3,6)_{-2}$ by Remark 1.13.

Finally, the grading of type $(1,1,1,1 / 2)$ is irreducible by Remark 1.13 , since it has depth 1 .
The \mathbb{Z}-gradings of type $(2,2,2,0),(2,1,1,0)$ and $(1,1,1,1 / 2)$ satisfy the hypotheses of Proposition 1.11(b), therefore the corresponding graded subalgebras $\prod_{j \geqslant 0} E(3,6)_{j}$ of $E(3,6)$ are maximal.

Theorem 6.6. All maximal open regular subalgebras of $L=E(3,6)$ are, up to conjugation, the graded subalgebras of type $(2,2,2,0),(2,1,1,0),(1,1,1,1 / 2)$.

Proof. Let L_{0} be a maximal open regular subalgebra of L. By Remark 2.1, we can assume that L_{0} is invariant with respect to the maximal torus T of $E(3,6)$. Therefore L_{0} decomposes into the direct product of T-weight spaces. Note that $\mathbb{C} \partial / \partial x_{j}, \mathbb{C} x_{i} \partial / \partial x_{j}$ for $i \neq j, \mathbb{C} d x_{i} v_{k}$ and $\mathbb{C} F$ are one-dimensional weight spaces. The vector fields $\partial / \partial x_{i}$ cannot lie in L_{0} since they are not exponentiable. It follows that if $d x_{i} v_{1}$ lies in L_{0} for some i then $d x_{j} v_{2}$ cannot lie in L_{0} for any $j \neq i$, since, for $i \neq j,\left[d x_{i} v_{1}, d x_{j} v_{2}\right]=\epsilon(i j k) \partial / \partial x_{k}$, where $k \neq i, j$ and $\epsilon(i j k)$ is the sign of the permutation $i j k$. One can check that if $d x_{1} v_{1}$ lies in L_{0} then, due to the maximality of L_{0}, either $d x_{i} v_{1}$ lies in L_{0} for every $i=1,2,3$, or $d x_{1} v_{2}$ does. We may therefore assume that one of the following cases occurs:
(1) L_{0} contains the elements $d x_{1} v_{1}$ and $d x_{1} v_{2}$. It follows that the T-invariant complement of L_{0} contains the T-invariant complement of the maximal graded subalgebra $\overline{\mathfrak{g}}_{\geqslant 0}$ of L of type (2, 1, 1, 0). Thus $L_{0}=\overline{\mathfrak{g}} \geqslant 0$.
(2) L_{0} contains the elements $d x_{i} v_{1}$ for every $i=1,2,3$. As a consequence the elements $d x_{i} v_{2}$, $i=1,2,3$, and F lie in the T-invariant complement of L_{0}. It follows that L_{0} is the maximal graded subalgebra of type $(1,1,1,1 / 2)$.
(3) L_{0} does not contain the elements $d x_{i} v_{k}$ for any i, k. It follows that L_{0} is the maximal graded subalgebra of L of type ($2,2,2,0$).

Corollary 6.7. All irreducible gradings of $E(3,6)$ are, up to conjugation, the gradings of type (2, 2, 2, 0), (2, 1, 1, 0) and (1, 1, 1, 1/2).

7. On primitive pairs and filtered deformations

Proposition 7.1. Let L be an artinian semisimple linearly compact Lie superalgebra. If L has a completed irreducible grading then:

$$
\begin{equation*}
L=S \otimes \Lambda(n)+F \tag{7.1}
\end{equation*}
$$

where S is a simple linearly compact Lie superalgebra, F is a subalgebra of $\mathfrak{a} \otimes \Lambda(n)+W(0, n)$ whose projection on $W(0, n)$ is transitive, and \mathfrak{a} is the subalgebra of outer derivations of S. Let $\mathfrak{a}_{0}=\{a(0) \mid a(\xi) \in$ projection of F on $\mathfrak{a} \otimes \Lambda(n)\} \subset \mathfrak{a}$. Then the irreducible grading of L is obtained by extending to L an irreducible grading of $S+\mathfrak{a}_{0}$ through the condition $\operatorname{deg}(\tau)=0$ for every $\tau \in \Lambda(n)$.

Proof. By Theorem 1.4 we have:

$$
\bigoplus_{i=1}^{r}\left(S_{i} \hat{\otimes} \Lambda\left(m_{i}, n_{i}\right)\right) \subset L \subset \bigoplus_{i=1}^{r}\left(\left(\operatorname{Der} S_{i}\right) \hat{\otimes} \Lambda\left(m_{i}, n_{i}\right)+1 \otimes W\left(m_{i}, n_{i}\right)\right)
$$

Suppose that L has a completed irreducible grading $L=\prod_{j} \mathfrak{g}_{j}$. Since $S_{i} \hat{\otimes} \Lambda\left(m_{i}, n_{i}\right)$ is an ideal of $L,\left(S_{i} \hat{\otimes} \Lambda\left(m_{i}, n_{i}\right)\right) \cap \mathfrak{g}_{-1}$ is either 0 or the whole \mathfrak{g}_{-1} for each i. Hence $r=1$ and $L=S \otimes \Lambda(m, n)+F$ where F is a subalgebra of $\mathfrak{a} \otimes \Lambda(m, n)+W(m, n)$ whose projection on $W(m, n)$ is transitive by Theorem 1.4.

We recall that a \mathbb{Z}-grading of the Lie superalgebra L is defined by an ad-diagonalisable element D of $\operatorname{Der} L$, i.e, by a one-dimensional torus (cf. [10, §5.4]). The subalgebra $\tilde{L}=$ $S \hat{\otimes} \Lambda(m, n)$ of L is D-invariant. But all maximal tori of $\operatorname{Der} L$ are conjugate by Theorem 1.7, hence we may assume that D lies in the standard torus of $\operatorname{Der} L$, which is the sum of a maximal torus of Der S and the standard maximal torus of $W(m, n)$. This means that the grading of L is obtained by taking a grading of S (thus of $S+\mathfrak{a}_{0}$) and extending it to L by letting $\operatorname{deg} x_{i}=s_{i}$, $\operatorname{deg} \xi_{j}=t_{j}$. Let $L_{0}=\prod_{j \geqslant 0} \mathfrak{g}_{j}$. Then the same argument as in the proof of Theorem 1.9(a) shows that F is contained in L_{0}, since L_{0} is fundamental. In particular all even elements of L_{0} are exponentiable, hence the transitivity of the projection of F on $W(m, n)$ implies $m=0$. Finally, by the irreducibility of the grading, $t_{j}=0$ for every j and the grading of $S+\mathfrak{a}_{0}$ is irreducible.

Corollary 7.2. Let $\left(L, L_{0}\right)$ be a primitive pair and consider its irreducible Weisfeiler filtration. Then the completion of the associated graded superalgebra, divided by the maximal ideal in its negative part, is a semisimple Lie superalgebra of the form (7.1).

A linearly compact Lie superalgebra L whose associated graded is \mathfrak{g} is called a filtered deformation of the completion $\overline{\mathfrak{g}}$ of \mathfrak{g}. Of course, $\overline{\mathfrak{g}}$ is a filtered deformation of $\overline{\mathfrak{g}}$, called the trivial filtered deformation; note that $\overline{\mathfrak{g}}$ is simple if and only if \mathfrak{g} is. If L is simple, it is called a simple filtered deformation of $\overline{\mathfrak{g}}$. If $\overline{\mathfrak{g}}$ is the only simple filtered deformation of $\overline{\mathfrak{g}}$, we shall say that $\overline{\mathfrak{g}}$ has no simple filtered deformations.

Remark 7.3. We recall that if $\mathfrak{g}=\bigoplus_{j=-d}^{\infty} \mathfrak{g}_{j}$ is a graded Lie superalgebra and \mathfrak{g}_{0} contains an element z such that $\left.\operatorname{ad}(z)\right|_{\mathfrak{g}_{j}}=j I d$, then $\overline{\mathfrak{g}}$ has no non-trivial filtered deformations (cf. [9, Corollary 2.2]). It follows that the Lie superalgebras $\overline{\mathfrak{g}}$ of the form (7.1) listed below have no non-trivial filtered deformations, since they contain the grading operator:
(a) $\overline{\mathfrak{g}}=S \otimes \Lambda(t)+F$ with $S=W(m, n), K(2 k+1, n), K O(n, n+1), E(1,6), E(4,4), E(3,6)$ or $E(3,8)$ and $t \geqslant 0$;
(b) $\overline{\mathfrak{g}}=S(1,2) \otimes \Lambda(t)+F$ with respect to the \mathbb{Z}-grading of $S(1,2)$ of type $(1 \mid 1,0)$, where $t \geqslant 0$. Here the grading operator is $z=x \partial / \partial x+\xi_{1} \partial / \partial \xi_{1}$;
(c) $\overline{\mathfrak{g}}=\operatorname{Der} S(1,2) \otimes \Lambda(t)+F^{\prime}$ with respect to the \mathbb{Z}-grading of $\operatorname{Der} S(1,2)$ of type (2|1, 1), where $t \geqslant 0$ and $F^{\prime} \subset W(0, t)$. Here the grading operator is $z=2 x \partial / \partial x+\xi_{1} \partial / \partial \xi_{1}+$ $\xi_{2} \partial / \partial \xi_{2}$.

Proposition 7.4. Let $L=\prod_{j} L_{j}$ be a completed irreducible grading of the Lie superalgebra L of the form (7.1) with $n>0$ and $S=S(m, h)$, for some $m>2$. Then L has no simple filtered deformations.

Proof. Suppose that $L=\overline{G r M}$ for some Lie superalgebra M. We want to show that $M \neq$ [M, M] is not simple. Let $S=\prod_{j \geqslant-1} S_{j}$ be the corresponding completed irreducible grading of S and let \tilde{S} be a maximal reductive subalgebra of S_{0}. Notice that, since $m>2, \mathfrak{a}$ is a onedimensional torus, therefore the subspaces $S_{j} \tau$ are \tilde{S}-submodules of L for every j and every element $\tau \in \Lambda(n)$, and F is a trivial \tilde{S}-module. We claim that $\mathfrak{a}_{\overline{1}}$ is not contained in $[M, M]$. Indeed, \mathfrak{a}_{1}^{-}can be obtained only from $\left[S_{-1}, \Lambda(n) S_{-1}\right]$, [$\left.S_{-1}, \Lambda(n) S_{0}\right]$, $\left[S_{0}, \Lambda(n) S_{-1}\right]$, but under our hypotheses $S_{-1} \otimes S_{-1}$ and $S_{-1} \otimes S_{0}$ do not contain any one-dimensional \tilde{S}-submodule. Thus the thesis follows.

Theorem 7.5. All maximal open subalgebras of $L=E(1,6)$ are, up to conjugation, the graded subalgebras listed in Theorem 6.3.

Proof. Suppose that L_{0} is a maximal open subalgebra of L which is not graded. Consider the Weisfeiler filtration associated to L_{0} and its associated graded Lie superalgebra $\operatorname{Gr} L$. Then, by Proposition 7.1, $\overline{G r L}$ is of the form (7.1) and its growth and size are the same as those of L.

From Table 2 we see that the growth of $L=E(1,6)$ is 1 and its size is 32 . Hence for $\overline{\operatorname{Gr} L}$ of the form (7.1) the growth of S is 1 and $\operatorname{size}(S) 2^{n}=32$. So it follows from Table 2 that $S=W(1, h), K(1, h), S(1, h)$ or $E(1,6)$ and $n=0$ in the last case. If $S=W(1, h)$ or $K(1, h)$, then, by Remark 7.3(a), $E(1,6)=L=\overline{G r L}=S \otimes \Lambda(n)+F$ for some $n \geqslant 0$ and some finitedimensional subalgebra F of $W(0, n)$, which is impossible. If $S=S(1, h)$, then $\operatorname{size}(\overline{G r L})=$ $h 2^{h} 2^{n}=32$ if and only if $h=2$ and $n=2$. Then, by Remark 7.3(b) and (c), $S=S(1,2)$ with respect to the \mathbb{Z}-grading of principal type. Since a maximal torus of $\operatorname{Der} S(1,2)$ has dimension 3, $\overline{G r \geqslant 0 L}$ contains a torus \hat{T} of dimension less than or equal to 3 containing the standard torus of $S(1,2)$. It follows that L_{0} contains a torus \tilde{T}, which is the lift of \hat{T}, of dimension 2 or 3 . The
weights of \tilde{T} on L / L_{0} coincide with the weights of \hat{T} on $G r L / G r \geqslant 0 L$. Since the dimension of a maximal torus of L is $4, G r_{<0} L$ contains a \tilde{T}-weight space of weight 0 of dimension greater than or equal to 1 . But $S(1,2)_{-1}$ does not contain any weight vector of weight zero with respect to the standard torus of $S(1,2)$. Hence we get a contradiction. It follows that $S=E(1,6)$ and $\overline{G r L}=E(1,6)$. Hence L_{0} is a regular subalgebra of $E(1,6)$ and the theorem follows from Theorem 6.3.

Theorem 7.6. All maximal open subalgebras of $L=E(3,6)$ are, up to conjugation, the graded subalgebras listed in Theorem 6.6.

Proof. Suppose that L_{0} is a maximal open subalgebra of L which is not graded. Consider the Weisfeiler filtration associated to L_{0} and its associated graded Lie superalgebra $G r L$. Then, by Proposition 7.1, $\overline{G r L}$ is of the form (7.1) and its growth and size are the same as those of L.

From Table 2 we see that the growth of L is 3 and its size is 12 . Hence for $\overline{\operatorname{Gr} L}$ of the form (7.1) the growth of S is 1 and $\operatorname{size}(S) 2^{n}=12$. So it follows from Table 2 that $S=W(3, h)$, $K(3, h), S(3, h)$ or $E(3,6)$ and $n=0$ in the last case. If $S=W(1, h)$ or $K(1, h)$, then, by Remark 7.3(a), $E(3,6)=L=\overline{G r L}=S \otimes \Lambda(n)+F$ for some $n \geqslant 0$ and some finite-dimensional subalgebra F of $W(0, n)$, which is impossible. If $S=S(3, h)$, then $n=0$ by Proposition 7.4, and $\operatorname{size}(S)=(2+h) 2^{h} \neq 12$. Thus $S=E(3,6)$ and $\overline{G r L}=E(3,6)$. Hence L_{0} is a regular subalgebra of $E(3,6)$ and the theorem follows from Theorem 6.6.

8. Maximal open subalgebras of $E(5,10)$

The Lie superalgebra $E(5,10)$ has the following structure (cf. [10, §4.3, 5.3]): $E(5,10)_{\overline{0}} \cong$ $S_{5}=S(5,0)$ and $E(5,10)_{\overline{1}}=d \Omega^{1}(5) . E(5,10)_{\overline{0}}$ acts on $E(5,10)_{\overline{1}}$ in the natural way and if $\omega_{1}, \omega_{2} \in d \Omega^{1}(5)$ then $\left[\omega_{1}, \omega_{2}\right]=\omega_{1} \wedge \omega_{2}$ where the identification between $\Omega^{4}(5)$ and W_{5} is used. Let us fix the maximal torus $T=\left\langle x_{i} \partial / \partial x_{i}-x_{i+1} \partial / \partial x_{i+1} \mid i=1,2,3,4\right\rangle$.

As in Section 1, for every vector field $X=\sum_{i=1}^{5} P_{i} \partial / \partial x_{i}$ in S_{5}, we shall set $X(0)=$ $\sum_{i=1}^{5} P_{i}(0) \partial / \partial x_{i}$. Likewise, for every 2-form $\omega=\sum P_{i j} d x_{i} \wedge d x_{j}$ in $d \Omega^{1}(5)$, we shall set $\omega(0)=\sum P_{i j}(0) d x_{i} \wedge d x_{j}$.

Remark 8.1. The \mathbb{Z}-gradings of $E(5,10)$ are parametrized by quintuples of positive integers $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ such that $\sum_{i=1}^{5} a_{i} \in 2 \mathbb{N}$ where $a_{i}=\operatorname{deg} x_{i}=-\operatorname{deg}\left(\partial / \partial x_{i}\right)$ and $\operatorname{deg} d=$ $-\frac{1}{4} \sum_{i=1}^{5} a_{i}[10, \S 5.4]$.

If we define $\operatorname{deg} x_{i}=-\operatorname{deg}\left(\partial / \partial x_{i}\right)=2$ and $\operatorname{deg}\left(d x_{i}\right)=-1 / 2$ we get a consistent irreducible grading of $E(5,10)$, called the principal grading of $E(5,10)$, with respect to which $E(5,10)_{0}=s l_{5}$. One can check that $E(5,10)_{-1} \cong \Lambda^{2} \mathbb{C}^{5}$, where \mathbb{C}^{5} is the standard $s l_{5^{-}}$ module, it is spanned by the 2 -forms $d x_{i} \wedge d x_{j}$ and it has highest weight vector $d x_{1} \wedge d x_{2}$; $E(5,10)_{1}$ is isomorphic to the highest component of $\mathbb{C}^{5} \otimes \Lambda^{2} \mathbb{C}^{5}$, i.e., to the irreducible slymodule of highest weight $\pi_{1}+\pi_{2}$, and has lowest weight vector $x_{5} d x_{4} \wedge d x_{5}$. Notice that the 2-forms $d x_{i} \wedge d x_{j}$ lie in $E(5,10)_{-1}$ for every i, j, thus $\left[E(5,10)_{-1}, E(5,10)_{-1}\right] \neq 0$ since [$\left.d x_{i} \wedge d x_{j}, d x_{h} \wedge d x_{k}\right]=\partial / \partial x_{t}$ for $i \neq j \neq h \neq k \neq t$. It follows from Remark 1.13 that $\left[E(5,10)_{-1}, E(5,10)_{-1}\right]=E(5,10)_{-2}$.

Let us consider the \mathbb{Z}-grading of type $(2,1,1,1,1)$: this is an irreducible grading of $E(5,10)$ of depth 2 whose 0 th graded component is spanned by the elements $x_{i} \partial / \partial x_{i}-x_{i+1} \partial / \partial x_{i+1}$ for $i=1,2,3,4, x_{i} \partial / \partial x_{j}$ for $i \neq j \neq 1, x_{i} x_{j} \partial / \partial x_{1}$ for $i, j \neq 1, d x_{1} \wedge d x_{i}$ for $i \neq 1$, and by closed 1-forms in $\left\langle x_{i} d x_{j} \wedge d x_{k} \mid i, j, k \neq 1\right\rangle . E(5,10)_{0}$ is isomorphic to $S(0,4)+\mathbb{C} Z$, where
Z is the grading operator on $S(0,4)$ with respect to its principal grading, and $E(5,10)_{-1}=$ $\left\langle x_{i} \partial / \partial x_{1}, \partial / \partial x_{i}, d x_{i} \wedge d x_{j} \mid i, j \neq 1\right\rangle$ is an irreducible $E(5,10)_{0}$-module with highest weight vector $x_{2} \partial / \partial x_{1}$. Finally, $E(5,10)_{-2}=\left[E(5,10)_{-1}, E(5,10)_{-1}\right]=\left\langle\partial / \partial x_{1}\right\rangle$.

Let us now consider the \mathbb{Z}-grading of type ($3,3,2,2,2$): this is an irreducible grading of depth 3 whose 0 th graded component is spanned by the following elements: $x_{i} \partial / \partial x_{i}-x_{i+1} \partial / \partial x_{i+1}$ for $i=1, \ldots, 4, x_{i} \partial / \partial x_{j}$ for $i, j=1,2$ and $i, j=3,4,5, i \neq j, d x_{1} \wedge d x_{2}$ and the closed 2-forms in $\left\langle x_{i} d x_{k} \wedge d x_{t} \mid i, k, t=3,4,5\right\rangle . E(5,10)_{0}$ is isomorphic to $\left(s l_{3} \otimes \Lambda(1)+W(0,1)\right) \oplus s l_{2}$ and $E(5,10)_{-1}=\left\langle x_{i} \partial / \partial x_{1}, x_{i} \partial / \partial x_{2}, d x_{1} \wedge d x_{i}, d x_{2} \wedge d x_{i} \mid i=3,4,5\right\rangle$ is isomorphic to $\mathbb{C}^{3} \otimes$ $\Lambda(1) \boxtimes \mathbb{C}^{2}$ where \mathbb{C}^{3} and \mathbb{C}^{2} denote the standard $s l_{3}$ and $s l_{2}$-modules, respectively. Finally, we note that $E(5,10)_{-2}=\left\langle\partial / \partial x_{i}, d x_{i} \wedge d x_{j} \mid i, j=3,4,5\right\rangle$ and $E(5,10)_{-3}=\left\langle\partial / \partial x_{i} \mid i=1,2\right\rangle$. Therefore $\left[E(5,10)_{-1}, E(5,10)_{-1}\right]=E(5,10)_{-2}$ since $\left[d x_{1} \wedge d x_{i}, d x_{2} \wedge d x_{j}\right]=\partial / \partial x_{k}$ for $i \neq j \neq k$ and $\left[x_{i} \partial / \partial x_{1}, d x_{1} \wedge d x_{j}\right]=d x_{i} \wedge d x_{j}$ for $i \neq j$. Besides, $\left[E(5,10)_{-2}, E(5,10)_{-1}\right]=$ $E(5,10)_{-3}$ since $\left[E(5,10)_{-2}, E(5,10)_{-1}\right] \neq 0$.

Let us finally consider the \mathbb{Z}-grading of type $(2,2,2,1,1)$: this is an irreducible grading of depth 2 whose 0 th graded component is isomorphic to $s l_{2} \otimes \Lambda\left(\xi_{1}, \xi_{2}, \xi_{3}\right)+\left\langle\xi_{i} \partial / \partial \xi_{j}, \partial / \partial \xi_{j}\right.$, $\xi_{j}\left(\sum_{k=1}^{3} \xi_{k} \partial / \partial \xi_{k}\right)|i, j=1,2,3\rangle$. Besides, the -1 st graded component of $E(5,10)$ with respect to this grading is isomorphic, as an $E(5,10)_{0}$-module, to $\mathbb{C}^{2} \otimes \Lambda(3)$ where \mathbb{C}^{2} is the standard $s l_{2}$-module. Since $\left[E(5,10)_{-1}, E(5,10)_{-1}\right] \neq 0,\left[E(5,10)_{-1}, E(5,10)_{-1}\right]=E(5,10)_{-2}$ by Remark 1.13.

The gradings of type $(2,1,1,1,1),(3,3,2,2,2),(2,2,2,1,1),(2,2,2,2,2)$ satisfy the hypotheses of Proposition 1.11. It follows that the corresponding subalgebras $\prod_{j \geqslant 0} E(5,10)_{j}$ are maximal subalgebras of $E(5,10)$.

Remark 8.2. Let us consider the even elements $x_{i} \partial / \partial x_{j}$ for $i \neq j$, and the odd elements $d x_{i} \wedge$ $d x_{j}$. Then the weight of $x_{i} \partial / \partial x_{j}$ with respect to T is different from the weight of $x_{h} \partial / \partial x_{k}$ for every $(h, k) \neq(i, j)$. Likewise, the weight of $d x_{i} \wedge d x_{j}$ with respect to T is different from the weight of $d x_{h} \wedge d x_{k}$ for every $(h, k) \neq(i, j)$.

Theorem 8.3. Let L_{0} be a maximal open T-invariant subalgebra of $L=E(5,10)$. Then L_{0} is conjugate to one of the graded subalgebras of type $(2,1,1,1,1),(3,3,2,2,2),(2,2,2,1,1)$, (2, 2, 2, 2, 2).

Proof. Since L_{0} is T-invariant, it decomposes into the direct product of weight spaces with respect to T. We analyze what T-weight vectors outside the maximal graded subalgebra of $E(5,10)$ of principal type may lie in L_{0}.

The elements $\partial / \partial x_{i}+Y$ cannot lie in L_{0} for any vector field Y such that $Y(0)=0$, since they are not exponentiable. It follows that if $i \neq j \neq k \neq h$, then the elements $x_{\omega}=d x_{i} \wedge d x_{j}+\omega$ and $x_{\sigma}=d x_{k} \wedge d x_{h}+\sigma$ cannot lie both in L_{0} for any ω and σ in $E(5,10)_{\overline{1}}$ such that $\omega(0)=$ $\sigma(0)=0$. Indeed, if x_{ω} and x_{σ} lie in L_{0} then $\left[x_{\omega}, x_{\sigma}\right]=\partial / \partial x_{s}+Y$ for some vector field Y such that $Y(0)=0$.

Now suppose that L_{0} contains the odd element $x=d x_{1} \wedge d x_{2}+\varphi$ for some $\varphi \in E(5,10)_{\overline{1}}$ such that $\varphi(0)=0$. It follows that $d x_{3} \wedge d x_{4}+\omega$ and, similarly, $d x_{3} \wedge d x_{5}+\omega$ and $d x_{4} \wedge d x_{5}+\omega$ cannot lie in L_{0} for any $\omega \in E(5,10)_{\overline{1}}$ such that $\omega(0)=0$.

Now, either (i) $d x_{1} \wedge d x_{j}+\rho$ lies in L_{0} for some $j \neq 2$ and some $\rho \in E(5,10)_{\overline{1}}$ such that $\rho(0)=0$, and we may assume that ρ has the same weight as $d x_{1} \wedge d x_{j}$, or (ii) L_{0} contains no element of the form $d x_{1} \wedge d x_{j}+\mu$ for any $j \neq 2$ and any $\mu \in E(5,10)_{\overline{1}}$ such that $\mu(0)=0$. Let us analyze these two possibilities:
(i) Up to conjugation we can assume $j=3$. Since $d x_{1} \wedge d x_{3}+\rho$ lies in L_{0}, L_{0} contains no element of the form $d x_{2} \wedge d x_{4}+\omega$ and $d x_{2} \wedge d x_{5}+\omega$ for any $\omega \in E(5,10)_{\overline{1}}$ such that $\omega(0)=0$. The following two possibilities may then occur:
(i1) $d x_{2} \wedge d x_{3}+\omega$ does not lie in L_{0} for any $\omega \in E(5,10)_{\overline{1}}$ such that $\omega(0)=0$. It follows that L_{0} contains no vector field of the form $x_{i} \partial / \partial x_{1}+Y$ for any $i \neq 1$ and any Y such that $Y(0)=0$ of order greater than or equal to 2 . Indeed, if such a vector field lies in L_{0} then, if $i \neq 1,2$, $\left[x_{i} \partial / \partial x_{1}+Y, d x_{1} \wedge d x_{2}+\varphi\right]=d x_{i} \wedge d x_{2}+\tau$ lies in L_{0}, for some form τ such that $\tau(0)=0$, in contradiction to our assumptions. Similarly, if $x_{2} \partial / \partial x_{1}+Y$ lies in L_{0} for some Y such that $Y(0)=0$ of order greater than or equal to 2 , then $\left[x_{2} \partial / \partial x_{1}+Y, d x_{1} \wedge d x_{3}+\varphi\right]=d x_{2} \wedge d x_{3}+\tau$ lies in L_{0}, for some τ such that $\tau(0)=0$, in contradiction to our assumptions.

Using Remark 8.2, we can conclude that L_{0} is contained in the maximal graded subalgebra of L of type $(2,1,1,1,1)$ and, due to its maximality, it coincides with it.
(i2) $d x_{2} \wedge d x_{3}+\tau$ lies in L_{0} for some $\tau \in E(5,10)_{\overline{1}}$ such that $\tau(0)=0$. Then L_{0} contains no element of the form $d x_{1} \wedge d x_{i}+\omega$ for any $i=4,5$ and any $\omega \in E(5,10)_{\overline{1}}$ such that $\omega(0)=0$. As a consequence, the vector fields $x_{i} \partial / \partial x_{j}+Y$ cannot lie in L_{0} for any $i=4,5, j=1,2,3$, and any Y such that $Y(0)=0$ of order greater than or equal to 2 .

Notice that L_{0} does not contain the elements $x_{4} d x_{4} \wedge d x_{5}+\sigma$ and $x_{5} d x_{4} \wedge d x_{5}+\sigma$ for any $\sigma \in E(5,10)_{\overline{1}}$ such that $\sigma(0)=0$ of order greater than or equal to 2 . Indeed if $x_{4} d x_{4} \wedge$ $d x_{5}+\sigma$ lies in L_{0} for some σ such that $\sigma(0)=0$ of order greater than or equal to 2 , then $\left[d x_{1} \wedge d x_{2}+\varphi, x_{4} d x_{4} \wedge d x_{5}+\sigma\right]=x_{4} \partial / \partial x_{3}+Z$ lies in L_{0}, for some Z such that $Z(0)=0$ of order greater than or equal to 2 , in contradiction to our assumptions. Similarly for the elements $x_{5} d x_{4} \wedge d x_{5}+\sigma$.

Note that if a 2-form σ has the same weight as $x_{4} d x_{4} \wedge d x_{5}$ (respectively $x_{5} d x_{4} \wedge d x_{5}$), then $\sigma(0)=0$ of order greater than or equal to 2 . It follows, using Remark 8.2, that L_{0} is contained in the graded subalgebra of L of type $(2,2,2,1,1)$ and thus coincides with it.
(ii) $d x_{1} \wedge d x_{j}+\mu$ does not lie in L_{0} for any $j \neq 2$ and any μ such that $\mu(0)=0$. Then two possibilities may occur:
(ii1) $d x_{2} \wedge d x_{t}+v$ lies in L_{0} for some $t \neq 1,2$ and some $v \in E(5,10)_{\overline{1}}$ such that $v(0)=0$. Then, exchanging x_{1} with x_{2} and x_{3} with x_{t}, we are again in case (i1).
(ii2) $d x_{2} \wedge d x_{t}+v$ does not lie in L_{0} for any $t \neq 1,2$ and any v such that $v(0)=0$. It follows that the vector fields $x_{i} \partial / \partial x_{1}+Z$ and $x_{i} \partial / \partial x_{2}+Z$ cannot lie in L_{0} for any $i=3,4,5$ and any Z such that $Z(0)=0$ of order greater than or equal to 2 . By Remark $8.2, L_{0}$ is the graded subalgebra of L of type ($3,3,2,2,2$).

We are now ready to prove the statement. Up to conjugation we can assume that one of the following cases occurs:
(1) the elements $d x_{i} \wedge d x_{j}+\omega$ do not lie in L_{0} for any i, j, and any $\omega \in E(5,10)_{\overline{1}}$ such that $\omega(0)=0$. Then, by Remark 8.2, L_{0} is the maximal graded subalgebra of L of type $(2,2,2,2,2)$.
(2) $d x_{1} \wedge d x_{2}+\varphi$ lies in L_{0} for some $\varphi \in E(5,10)_{\overline{1}}$ such that $\varphi(0)=0$ and the elements $d x_{i} \wedge$ $d x_{j}+\sigma$ do not for any $(i, j) \neq(1,2)$ and any σ such that $\sigma(0)=0$. Then L_{0} is the maximal graded subalgebra of type ($3,3,2,2,2$);
(3) the elements $d x_{1} \wedge d x_{2}+\varphi, d x_{1} \wedge d x_{3}+\rho$ lie in L_{0} for some $\varphi, \rho \in E(5,10)_{\overline{1}}$ such that $\varphi(0)=0=\rho(0)$ but $d x_{2} \wedge d x_{3}+\omega$ does not lie in L_{0} for any $\omega \in E(5,10)_{\overline{1}}$ such that $\omega(0)=0$. Then L_{0} is the graded subalgebra of L of type ($2,1,1,1,1$);
(4) the elements $d x_{1} \wedge d x_{2}+\varphi, d x_{1} \wedge d x_{3}+\rho$ and $d x_{2} \wedge d x_{3}+\tau$ lie in L_{0} for some $\varphi, \rho, \tau \in$ $E(5,10)_{\overline{1}}$ such that $\varphi(0)=\rho(0)=\tau(0)=0$. Then L_{0} is the graded subalgebra of L of type (2, 2, 2, 1, 1).

Corollary 8.4. All irreducible gradings of $E(5,10)$ are, up to conjugation, the gradings of type $(2,1,1,1,1),(3,3,2,2,2),(2,2,2,1,1)$ and $(2,2,2,2,2)$.

Theorem 8.5. All maximal open subalgebras of $L=E(5,10)$ are, up to conjugation, the graded subalgebras of type $(2,1,1,1,1),(3,3,2,2,2),(2,2,2,1,1)$ and $(2,2,2,2,2)$.

Proof. Let L_{0} be a maximal open subalgebra of L and let $G r L$ be the graded Lie superalgebra associated to the Weisfeiler filtration corresponding to L_{0}. Then $\overline{G r L}$ has growth equal to 5 and size equal to 8 (see Table 2), and, by Proposition 7.1, it is of the form (7.1). It follows from Table 2 that $S=S(5, h), K(5, h)$ or $E(5,10)$, and $n=0$ in the last case. Hence, by Proposition 7.4 and Remark 7.3, $n=0$ in the first two cases as well, so $S \subset \overline{G r L} \subset \operatorname{Der} S$, where S is as above. If $S=K(5, h)$, then, by Remark $7.3, E(5,10)=L=\overline{G r L}=S$, which is impossible. If $S=$ $S(5, h)$, then $\operatorname{size}(S)=(4+h) 2^{h} \neq 8$. Thus $S=E(5,10)$. In particular $\overline{G r L}$ contains a torus of dimension 4 , thus L_{0} contains a torus of dimension 4 , and, up to conjugation, we may assume that this is the maximal torus T. Now the result follows from Theorem 8.3.

We recall that if $L=E(5,10)$ then $\operatorname{Der} L=E(5,10)+\mathbb{C} Z$ where Z is the grading operator of L with respect to its principal grading.

Remark 8.6. The same arguments as in the proof of Theorem 8.3 show that all maximal open regular subalgebras of $\operatorname{Der} L$ are, up to conjugation, its graded subalgebras of type ($2,1,1,1,1$), $(3,3,2,2,2),(2,2,2,1,1)$ and $(2,2,2,2,2)$.

Theorem 8.7. All maximal among Z-invariant subalgebras of $L=E(5,10)$ are, up to conjugation, the graded subalgebras listed in Theorem 8.5.

Proof. The same considerations on growth and size as in Theorem 8.5 show that every fundamental maximal subalgebra of $\operatorname{Der} L$ is regular. If L_{0} is a maximal among Z-invariant subalgebras of L, then $L_{0}+\mathbb{C} Z$ is a fundamental maximal subalgebra of $\operatorname{Der} L$, hence it is regular. The thesis then follows from Remark 8.6.

9. Maximal open subalgebras of $E(4,4)$

The Lie superalgebra $E(4,4)$ has the following structure $[10, \S 5.3]: E(4,4)_{\overline{0}}=W_{4}$ and $E(4,4)_{\overline{1}} \cong \Omega^{1}(4)^{-1 / 2}$ as an $E(4,4)_{\overline{0}}$-module (cf. Definition 2.5). Besides, for $\omega_{1}, \omega_{2} \in E(4,4)_{\overline{1}}$:

$$
\left[\omega_{1}, \omega_{2}\right]=d \omega_{1} \wedge \omega_{2}+\omega_{1} \wedge d \omega_{2}
$$

Let us fix the maximal torus $T=\left\langle x_{i} \partial / \partial x_{i} \mid i=1,2,3,4\right\rangle$ of L and let $T^{\prime}=\left\langle x_{i} \partial / \partial x_{i}-\right.$ $x_{i+1} \partial / \partial x_{i+1}|i=1,2,3\rangle$.

If we set $\operatorname{deg} x_{i}=1=-\operatorname{deg}\left(\partial / \partial x_{i}\right)$ and $\operatorname{deg} d=-2$ we obtain an irreducible \mathbb{Z}-grading of $E(4,4)=\prod_{j \geqslant-1} E(4,4)_{j}$, called the principal grading of $E(4,4)$, such that the $E(4,4)_{0^{-}}$ module $E(4,4)_{-1}$ is isomorphic to the $\hat{p}(4)$-module $\mathbb{C}^{4 \mid 4}$. Then, by Proposition $1.11, L_{0}=$ $\prod_{j \geqslant 0} E(4,4)_{j}$ is a maximal open subalgebra of $E(4,4)$, which is graded.

Remark 9.1. The Lie superalgebra $L=E(4,4)$ is a free finite type module over $\mathbb{C} \llbracket x_{1}, \ldots, x_{4} \rrbracket$. Let $\left\{b_{i}\right\}$ be a set of free generators of L as a module over $\mathbb{C} \llbracket x_{1}, \ldots, x_{4} \rrbracket$ so that every element $a \in L$ can be written as $a=\sum_{i} P_{i} b_{i}$ with $P_{i} \in \mathbb{C} \llbracket x_{1}, \ldots, x_{4} \rrbracket$. Then we can define a valuation v on L by assigning the value of v on any formal power series, as in Remark 2.23, and on any b_{i}, and defining $v(a)=\min _{i}\left\{v\left(P_{i}\right)+v\left(b_{i}\right)\right\}$.

We shall give below three examples of maximal regular subalgebras of $L=E(4,4)$ which are not graded, making use of Remark 9.1. In all these examples $\partial / \partial x_{i}$ and $d x_{i}$, with $i=1,2,3,4$, will be the generators of L as a $\mathbb{C} \llbracket x_{1}, x_{2}, x_{3}, x_{4} \rrbracket$-module.

Example 9.2. Throughout this example, the valuation v will be defined as follows:

$$
\begin{gathered}
v\left(\partial / \partial x_{i}\right)=-1, \quad v\left(d x_{i}\right)=-1 \quad \text { for } i=1,2,3, \\
v\left(\partial / \partial x_{4}\right)=-2, \quad v\left(d x_{4}\right)=0
\end{gathered}
$$

besides, for every $P \in \mathbb{C} \llbracket x_{1}, x_{2}, x_{3}, x_{4} \rrbracket, v(P)$ will denote the order of vanishing at $t=0$ of the formal power series $P\left(t, t, t, t^{2}\right) \in \mathbb{C} \llbracket t \rrbracket$.

Let us consider the following filtration $L=L_{-2} \supset L_{-1} \supset L_{0} \supset \cdots$ of L :

$$
\begin{aligned}
& \left(L_{j}\right)_{\overline{0}}=\left\{X \in W_{4} \mid v(X) \geqslant j, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{Y \in W_{4} \mid v(Y) \geqslant j+1\right\} \\
& \left(L_{j}\right)_{\overline{1}}=\left\{\omega \in \Omega^{1}(4) \mid v(\omega) \geqslant j, d \omega=0\right\}+\left\{\sigma \in \Omega^{1}(4) \mid v(\sigma) \geqslant j+1\right\} .
\end{aligned}
$$

Then $\operatorname{Gr} L$ has the following structure:

$$
\begin{gathered}
\left(G r_{j} L\right)_{\overline{0}}=\left\{X \in W_{4} \mid v(X)=j, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{Y \in W_{4} \mid v(Y)=j+1\right\} /\{Y \mid \operatorname{div}(Y) \in \mathbb{C}\} \\
\left(G r_{j} L\right)_{\overline{1}}=\left\{\omega \in d \Omega^{0}(4) \mid v(\omega)=j\right\}+\left\{\sigma \in \Omega^{1}(4) \mid v(\sigma)=j+1\right\} / d \Omega^{0}
\end{gathered}
$$

$\overline{G r L}$ is isomorphic to the Lie superalgebra $\operatorname{SHO}(4,4)+\mathbb{C} E$ with the irreducible \mathbb{Z}-grading of type $(1,1,1,2 \mid 1,1,1,0)$, where $E=\sum_{i=1}^{4} x_{i} \partial / \partial x_{i}+\sum_{i=1}^{4} x_{i} \partial / \partial \xi_{i}$ is the Euler operator. The hypotheses of Corollary 1.12 are then satisfied. It follows that L_{0} is a maximal subalgebra of L.

Example 9.3. Throughout this example, the valuation v will be defined as follows:

$$
\begin{array}{lll}
\nu\left(\partial / \partial x_{i}\right)=-1, & v\left(d x_{i}\right)=-1 & \text { for } i=1,2, \\
\nu\left(\partial / \partial x_{i}\right)=-2, & v\left(d x_{i}\right)=0, & \text { for } i=3,4 ;
\end{array}
$$

besides, for every $P \in \mathbb{C} \llbracket x_{1}, x_{2}, x_{3}, x_{4} \rrbracket, v(P)$ will denote the order of vanishing at $t=0$ of the formal power series $P\left(t, t, t^{2}, t^{2}\right) \in \mathbb{C} \llbracket t \rrbracket$.

Let us consider the following filtration $L=L_{-2} \supset L_{-1} \supset L_{0} \supset \cdots$ of L :

$$
\begin{aligned}
& \left(L_{j}\right)_{\overline{0}}=\left\{X \in W_{4} \mid v(X) \geqslant j, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{Y \in W_{4} \mid v(Y) \geqslant j+2\right\} \\
& \left(L_{j}\right)_{\overline{1}}=\left\{\omega \in \Omega^{1}(4) \mid v(\omega) \geqslant j, d \omega=0\right\}+\left\{\sigma \in \Omega^{1}(4) \mid v(\sigma) \geqslant j+2\right\} .
\end{aligned}
$$

It follows that $\operatorname{Gr} L=\bigoplus_{j \geqslant-2} G r_{j} L$ has the following structure:

$$
\begin{gathered}
\left(G r_{j} L\right)_{\overline{0}}=\left\{Y \in W_{4} \mid v(Y)=j+2\right\} /\{Y \mid \operatorname{div}(Y) \in \mathbb{C}\}+\left\{X \in W_{4} \mid v(X)=j, \operatorname{div}(X) \in \mathbb{C}\right\} \\
\left(G r_{j} L\right)_{\overline{1}}=\left\{\omega \in d \Omega^{0}(4) \mid v(\omega)=j\right\}+\left\{\omega \in \Omega^{1}(4) \mid v(\omega)=j+2\right\} / d \Omega^{0}
\end{gathered}
$$

$\overline{G r L}$ is isomorphic to $\operatorname{SHO}(4,4)+\mathbb{C} E$ with respect to its irreducible grading of type $(1,1,2,2 \mid 1,1,0,0)$. By Corollary $1.12, L_{0}$ is therefore a maximal subalgebra of L.

Example 9.4. Throughout this example, the valuation v will be defined as follows:

$$
\nu\left(\partial / \partial x_{i}\right)=-1, \quad \nu\left(d x_{i}\right)=0 \quad \text { for } i=1,2,3,4 ;
$$

besides, for every $P \in \mathbb{C} \llbracket x_{1}, x_{2}, x_{3}, x_{4} \rrbracket, \nu(P)$ will denote the order of vanishing of P at 0 .
If we define L_{j} as in Example 9.3 we obtain a filtration of L of depth 1 . In this case $\overline{\operatorname{Gr} L}$ is isomorphic to $\operatorname{SHO}(4,4)+\mathbb{C} E$ with the irreducible grading of type $(1,1,1,1 \mid 0,0,0,0)$. It follows that L_{0} is a maximal subalgebra of L.

Remark 9.5. (i) The vector fields $x_{i} \partial / \partial x_{j}$ and $x_{h} \partial / \partial x_{k}$, with $i \neq j$ and $h \neq k$, have the same weights with respect to T^{\prime} if and only if $(i, j)=(h, k)$.
(ii) The vector fields $x_{i} \partial / \partial x_{j}$ and $x_{h} x_{k} \partial / \partial x_{k}$ have never the same weights with respect to T^{\prime}, for any i, j, h, k.

Remark 9.6. (i) The 1 -forms $d x_{i}$ and $d x_{j}$ have the same weights with respect to T^{\prime} if and only if $i=j$.
(ii) The 1-forms $d x_{i}$ and $x_{j} d x_{k}$ have never the same weights with respect to T^{\prime}, for any i, j, k.
(iii) The 1-forms $x_{i} d x_{j}$ and $x_{h} d x_{k}$ have the same weights with respect to T^{\prime} if and only if $\{i, j\}=\{k, h\}$.

Theorem 9.7. Let L_{0} be a maximal open T^{\prime}-invariant subalgebra of $L=E(4,4)$. Then L_{0} is a regular subalgebra of L which is conjugate either to the graded subalgebra of type $(1,1,1,1)$, or to one of the non-graded subalgebras constructed in Examples 9.2, 9.3, 9.4.

Proof. We first notice that the vector fields $\partial / \partial x_{i}+Y$ such that $Y(0)=0$ cannot lie in L_{0} since they are not exponentiable. Likewise, no non-zero linear combination of vector fields $\partial / \partial x_{i}$ can lie in L_{0}.

We distinguish two cases:

1. The elements $d x_{i}+\omega$ do not lie in L_{0} for any i and any form ω such that $\omega(0)=0$. By Remark 9.6(i), no non-zero linear combination of the forms $d x_{i}$ lies in L_{0}. It follows that L_{0} is contained in the maximal graded subalgebra of type $(1,1,1,1)$, hence they coincide, due to the maximality of L_{0}.
2. $d x_{i}+\omega$ lies in L_{0} for some i and some ω such that $\omega(0)=0$. Up to conjugation we can assume $i=4$, i.e., $d x_{4}+\omega \in L_{0}$ for some ω such that $\omega(0)=0$. Then, up to conjugation, the following possibilities may occur:
(a) $d x_{i}+\varphi \notin L_{0}$ for any $i \neq 4$ and any 1 -form φ such that $\varphi(0)=0$.

Suppose that the vector field $x_{i} \partial / \partial x_{4}+Y$, such that $i \neq 4$ and Y has a zero in 0 of order greater than or equal to 2 , lies in L_{0}. Then $\left[x_{i} \partial / \partial x_{4}+Y, d x_{4}+\omega\right]=d x_{i}+\omega^{\prime} \in L_{0}$ for some ω^{\prime}
such that $\omega^{\prime}(0)=0$, thus contradicting our hypotheses. It follows that $x_{i} \partial / \partial x_{4}+Y$ does not lie in L_{0} for any $i \neq 4$ and any Y such that $Y(0)=0$ of order greater than or equal to 2 . Besides, by Remark 9.5(i), no non-zero linear combination of the vector fields $x_{i} \partial / \partial x_{4}$ lies in L_{0}.

Now suppose that the form $x_{i} d x_{j}+\alpha x_{j} d x_{i}+\sigma$ lies in L_{0}, for some $i \neq j \neq 4$, some $\alpha \neq 1$ and some σ such that $\sigma(0)=0$ of order greater than or equal to 2 . Then $\left[x_{i} d x_{j}+\alpha x_{j} d x_{i}+\sigma\right.$, $\left.d x_{4}+\omega\right]=(1-\alpha) \partial / \partial x_{k}+Y \in L_{0}$ for some $k \neq i, j, 4$ and some Y such that $Y(0)=0$, contradicting our hypotheses. It follows that no 1 -form $\tau+\sigma$ such that $\tau \in\left\langle x_{i} d x_{j} \mid i \neq j \neq 4\right\rangle$ and $d \tau \neq 0$, and $\sigma(0)=0$ of order greater than or equal to 2 , lies in L_{0}. By Remark 9.6, L_{0} is contained in the maximal regular subalgebra of $E(4,4)$ constructed in Example 9.2, thus coincides with it.
(b) $d x_{3}+\varphi \in L_{0}$ for some φ such that $\varphi(0)=0$ and $d x_{i}+\psi \notin L_{0}$ for every $i \neq 3,4$, and every ψ such that $\psi(0)=0$.

Arguing as in (a), one shows that the vector fields $x_{i} \partial / \partial x_{4}+Y$ and $x_{i} \partial / \partial x_{3}+Y$ do not lie in L_{0} for every $i=1,2$ and any Y such that $Y(0)=0$ of order greater than or equal to 2 . Likewise, the 1 -forms $\tau+\sigma$ such that $\tau \in\left\langle x_{i} d x_{j} \mid i, j=1,2, i \neq j\right\rangle$ and $d \tau \neq 0$ do not lie in L_{0} for any σ such that $\sigma(0)=0$ of order greater than or equal to 2 .

Now suppose that $x_{i} d x_{4}+\alpha x_{4} d x_{i}+\tilde{\omega} \in L_{0}$ for some $i=1,2$, some $\alpha \neq 1$ and some $\tilde{\omega}$ such that $\tilde{\omega}(0)=0$ of order greater than or equal to 2 . Then $\left[x_{i} d x_{4}+\alpha x_{4} d x_{i}+\tilde{\omega}, d x_{3}+\varphi\right.$] = $(1-\alpha) \partial / \partial x_{j}+Y \in L_{0}$ for some vector field Y such that $Y(0)=0$, contradicting our hypotheses. Therefore the 1 -forms $\tau+\tilde{\omega}$ such that $\tau \in\left\langle x_{i} d x_{4}, x_{4} d x_{i} \mid i=1,2\right\rangle$ and $d \tau \neq 0$, do not lie in L_{0} for any $\tilde{\omega}$ such that $\tilde{\omega}(0)=0$ of order greater than or equal to 2 .

Likewise, the 1 -forms $\tau+\sigma$ such that $\tau \in\left\langle x_{i} d x_{3}, x_{3} d x_{i} \mid i=1,2\right\rangle$ and $d \tau \neq 0$, do not lie in L_{0} for any σ such that $\sigma(0)=0$ of order greater than or equal to 2 .

Finally, suppose that a vector field $X+Z$ such that $X(0)=0$ of order greater than or equal to 2 and $\operatorname{div}(X)=\alpha x_{1}+\beta x_{2} \neq 0$, and $Z(0)=0$ of order greater than or equal to 3 , lies in L_{0}. Then $\left[X+Z, d x_{4}+\omega\right]=\left[X, d x_{4}\right]+\sigma \in L_{0}$, where $\left[X, d x_{4}\right]$ is a non-closed 1-form in $\left\langle x_{i} d x_{4}, x_{4} d x_{i}\right|$ $i=1,2\rangle$ and $\sigma(0)=0$ of order greater than or equal to 2 . This contradicts our hypotheses. Therefore no such a vector field $X+Z$ lies in L_{0}. It follows that L_{0} is the maximal regular subalgebra of L constructed in Example 9.3.
(c) $d x_{3}+\varphi \in L_{0}$ and $d x_{2}+\psi \in L_{0}$, for some φ and ψ such that $\varphi(0)=0$ and $\psi(0)=0$, and $d x_{1}+\tilde{\varphi} \notin L_{0}$ for every $\tilde{\varphi}$ such that $\tilde{\varphi}(0)=0$.

We will show that, since L_{0} is maximal, this case cannot in fact occur. Indeed, arguing as in (a) and (b) one shows that the 1 -forms $\tau+\sigma$, where $\tau \in\left\langle x_{i} d x_{j}\right\rangle, d \tau \neq 0$, do not lie in L_{0} for any σ such that $\sigma(0)=0$ of order greater than or equal to 2 . It follows that the vector fields $X+Z$ where $\operatorname{div}(X) \in\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ and $\operatorname{div}(X) \neq 0$ do not lie in L_{0} for any Z such that $Z(0)=0$ of order greater than or equal to 3 . Therefore L_{0} is contained in the maximal subalgebra of L constructed in Example 9.4. In fact, since we assumed that $d x_{1}+\tilde{\varphi} \notin L_{0}$ for every $\tilde{\varphi}$ such that $\tilde{\varphi}(0)=0, L_{0}$ is properly contained in the maximal subalgebra of L constructed in Example 9.4. This contradicts the maximality of L_{0}.
(d) $d x_{i}+\omega_{i}$ lies in L_{0} for every i and some ω_{i} such that $\omega_{i}(0)=0$.

Arguing as above, one shows that L_{0} is the subalgebra of L constructed in Example 9.4.

Corollary 9.8. The Lie superalgebra $E(4,4)$ has, up to conjugation, only one irreducible grading, that of type $(1,1,1,1)$.

Theorem 9.9. All maximal open subalgebras of $L=E(4,4)$ are, up to conjugation, the following:
(i) the graded subalgebra of type $(1,1,1,1)$;
(ii) the non-graded subalgebras constructed in Examples 9.2, 9.3, 9.4.

Proof. Let L_{0} be a maximal open subalgebra of L and let $G r L$ be the graded Lie superalgebra associated to the Weisfeiler filtration corresponding to L_{0}. Then $\overline{G r L}$ has growth equal to 4 and size equal to 8 and, by Proposition 7.1, it is of the form (7.1). Using Table 2 we see that either $n=0$ and $S=S(4,1), H(4,3), S H O(4,4), S H O \sim(4,4), E(4,4)$, or $n>0$ and $S=W(4,0)$ or $S=H(4, h)$ for $h<3$. Remark 7.3 shows that the case $n>0, S=W(4,0)$ cannot hold.

If $S=\operatorname{SHO}(4,4)$ then S contains a maximal torus \hat{T} of dimension 3, thus L_{0} contains a torus \tilde{T} of dimension 3 which is the lift of \hat{T}. In particular, the weights of \tilde{T} on L / L_{0} coincide with the weights of \hat{T} on $G r L / G r_{\geqslant 0} L$. Since L is transitive, these weights determine the torus \tilde{T} completely. Therefore we may assume, up to conjugation, that L_{0} contains the standard torus T^{\prime} of S_{4}. By Theorem 9.7, L_{0} is thus conjugate to one of the non-graded subalgebras constructed in Examples 9.2, 9.3, 9.4. Likewise, if $S=E(4,4)$, then S contains a maximal torus of dimension 4, hence L_{0} contains a torus of dimension 4, i.e., it is regular. By Theorem 9.7, L_{0} is thus conjugate to the graded subalgebra of type $(1,1,1,1)$.

If $S=S H O^{\sim}(4,4)$, then S contains a maximal torus \hat{T} of dimension 3, hence we may assume, as above, that L_{0} contains the standard torus T^{\prime} of S_{4}. Then, by Theorem 9.7, $\overline{\operatorname{GrL}}$ is of the form (7.1) with either $S=S H O(4,4)$ or $S=E(4,4)$ and this is impossible. By the same argument, if $S=S(4,1)$, one gets a contradiction.

Finally, we will show that the case $S=H(4, h)$ cannot hold for any $h \leqslant 3$. Indeed, suppose $S=H(4, h)$. If $\overline{G r \geqslant 0 L}$ contains a torus of dimension 4 then L_{0} is regular and, by Theorem 9.7, $\overline{\operatorname{GrL}}$ is of the form (7.1) with $S=E(4,4)$ or $S=\operatorname{SHO}(4,4)$, contradicting our assumptions. Therefore $\overline{G r \geqslant 0 L}$ contains a maximal torus \hat{T} of dimension $k<4$, containing the standard torus T_{h} of $H(4, h)$. Then L_{0} contains a maximal torus \tilde{T} of dimension k (which is the lift of \hat{T}) and the even part of $G r_{<0} L$ contains a \hat{T}-weight subspace of weight 0 of dimension $4-k$. Consider the Lie superalgebra $H(4, h) \otimes \Lambda(3-h)$ with respect to an irreducible grading of $H(4, h)$. Then the negative part of this grading contains a non-trivial even T_{h}-weight subspace of weight 0 if and only if $h=1$. Therefore we conclude that $h=1$. Notice that $H(4,1)$ has, up to conjugation, only one irreducible grading (that of principal type) and this is of depth 1 . In this case $G r_{-1} L$ contains a two-dimensional even T_{h}-weight subspace V of weight 0 . Since L is transitive the weights of \hat{T} on $G r_{-1} L$ determine \hat{T} completely and we can assume, up to conjugation, that the lift \tilde{T} of \hat{T} is contained in the standard torus of L. It follows that the standard torus of L contains some non-zero element $\sum_{i} a_{i} x_{i} \partial / \partial x_{i}$ whose projection on $G r_{-1} L$ lies in V. Since $G r_{-1} L$ is commutative and $\partial / \partial x_{j}$ is not exponentiable for any j, hence it cannot lie in L_{0}, it follows that there exist some vector fields P and Q in W_{4}, such that $P(0)=0$ of order greater than or equal to 2 , and $Q(0)=0$ of order greater than or equal to 1 , such that the commutators [$\left.\sum_{i} a_{i} x_{i} \partial / \partial x_{i}+P, \partial / \partial x_{j}+Q\right]$ lie in L_{0} for every $j=1, \ldots, 4$. But this is impossible since $\left[\sum_{i} a_{i} x_{i} \partial / \partial x_{i}+P, \partial / \partial x_{j}+Q\right]=-a_{j} \partial / \partial x_{j}+R$ for some $R \in W_{4}$ such that $R(0)=0$. We conclude that S cannot be the Lie superalgebra $H(4, h)$ for any h.

10. Maximal open subalgebras of $E(3,8)$

The Lie superalgebra $L=E(3,8)$ has the following structure [6,10]: it has even part $E(3,8)_{\overline{0}}=W_{3}+\Omega^{0}(3) \otimes s l_{2}+d \Omega^{1}(3)$ and odd part $E(3,8)_{\overline{1}}=\Omega^{0}(3)^{-1 / 2} \otimes \mathbb{C}^{2}+$ $\Omega^{2}(3)^{-1 / 2} \otimes \mathbb{C}^{2} . W_{3}$ acts on $\Omega^{0}(3) \otimes s l_{2}+d \Omega^{1}(3)$ in the natural way while, for $X, Y \in W_{3}$, $f, g \in \Omega^{0}(3), A, B \in s l_{2}, \omega_{1}, \omega_{2} \in d \Omega^{1}(3)$, we have:

$$
\begin{gathered}
{[X, Y]=X Y-Y X-\frac{1}{2} d(\operatorname{div}(X)) \wedge d(\operatorname{div}(Y)),} \\
{\left[f \otimes A, \omega_{1}\right]=0,} \\
{[f \otimes A, g \otimes B]=f g \otimes[A, B]+d f \wedge d g \operatorname{tr}(A B), \quad\left[\omega_{1}, \omega_{2}\right]=0 .}
\end{gathered}
$$

Besides, for $X \in W_{3}, f \in \Omega^{0}(3)^{-1 / 2}, g \in \Omega^{0}(3), v \in \mathbb{C}^{2}, A \in s l_{2}, \omega \in d \Omega^{1}(3), \sigma \in \Omega^{2}(3)^{-1 / 2}$,

$$
\begin{gathered}
{[X, f \otimes v]=\left(X . f+\frac{1}{2} d(d i v X) \wedge d f\right) \otimes v,} \\
{[g \otimes A, f \otimes v]=(g f+d g \wedge d f) \otimes A v, \quad[g \otimes A, \sigma \otimes v]=g \sigma \otimes A v,} \\
{[\omega, f \otimes v]=f \omega \otimes v, \quad[\omega, \sigma \otimes v]=0 .}
\end{gathered}
$$

Here W_{3} acts on $\Omega^{2}(3)$ by Lie derivative.
Finally, we identify W_{3} with $\Omega^{2}(3)^{-1}$ and $\Omega^{0}(3)$ with $\Omega^{3}(3)^{-1}$. Besides, we identify $\Omega^{2}(3)^{-1 / 2}$ with $W_{3}^{1 / 2}$ and we denote by X_{ω} the vector field corresponding to the 2-form ω under this identification. Then, for $\omega_{1}, \omega_{2} \in \Omega^{2}(3)^{-1 / 2}, f_{1}, f_{2} \in \Omega^{0}(3)^{-1 / 2}, u_{1}, u_{2} \in \mathbb{C}^{2}$, we have:

$$
\begin{gathered}
{\left[\omega_{1} \otimes u_{1}, \omega_{2} \otimes u_{2}\right]=\left(X_{\omega_{1}}\left(\omega_{2}\right)-\left(\operatorname{div} X_{\omega_{2}}\right) \omega_{1}\right) u_{1} \wedge u_{2}} \\
{\left[f_{1} \otimes u_{1}, f_{2} \otimes u_{2}\right]=d f_{1} \wedge d f_{2} \otimes u_{1} \wedge u_{2}} \\
{\left[f_{1} \otimes u_{1}, \omega_{1} \otimes u_{2}\right]=\left(f_{1} \omega_{1}+d f_{1} \wedge d\left(\operatorname{div} X_{\omega_{1}}\right)\right) \otimes u_{1} \wedge u_{2}-\frac{1}{2}\left(f_{1} d \omega_{1}-\omega_{1} d f_{1}\right) \otimes u_{1} \cdot u_{2}}
\end{gathered}
$$

where, as in the description of $E(3,6), u_{1} \cdot u_{2}$ denotes an element in the symmetric square of \mathbb{C}^{2}, i.e., an element in $s l_{2}$, and $u_{1} \wedge u_{2}$ an element in the skew-symmetric square of \mathbb{C}^{2}, i.e., a complex number. (Note that the last formula is corrected as compared to [6].) Let $\left\{v_{1}, v_{2}\right\}$ be the standard basis of \mathbb{C}^{2} and E, F, H the standard basis of $s l_{2}$. We shall simplify notation by writing elements of L omitting the \otimes sign. Let us fix the maximal torus $T=\left\langle H, x_{i} \partial / \partial x_{i}, i=1,2,3\right\rangle$.

Remark 10.1. The \mathbb{Z}-gradings of $E(3,8)$ are parametrized by quadruples $\left(a_{1}, a_{2}, a_{3}, \epsilon\right)$ where $a_{i}=\operatorname{deg} x_{i} \in \mathbb{N}$ and $\epsilon=\operatorname{deg} v_{1} \in \mathbb{Z}[10, \S 5.4]$. The following relations hold:

$$
\operatorname{deg} v_{2}=-\epsilon-\sum_{i=1}^{3} a_{i}, \quad \operatorname{deg} E=-\operatorname{deg} F=2 \epsilon+\sum_{i=1}^{3} a_{i}, \quad \operatorname{deg} d=\operatorname{deg} H=0
$$

The grading of type $(2,2,2,-3)$ is called the principal grading of $E(3,8)$ (cf. [17, Example 5.4]). It is an irreducible consistent \mathbb{Z}-grading of depth 3 . Its 0 th graded component is isomorphic to $s l_{3} \oplus s l_{2} \oplus \mathbb{C}$ and is spanned by the elements $x_{i} \partial / \partial x_{j}, E, H$ and $F . E(3,8)_{-1}$ is spanned by the elements $x_{i} v_{1}$ and $x_{i} v_{2}$ and is isomorphic, as an $E(3,8)_{0}$-module, to
$\mathbb{C}^{3} \boxtimes \mathbb{C}^{2} \boxtimes \mathbb{C}(-1)$ where \mathbb{C}^{k} denotes the standard $s l_{k}$-module. Besides, $E(3,8)_{-2}=\left\langle\partial / \partial x_{i}\right\rangle$ and $E(3,8)_{-3}=\left\langle v_{1}, v_{2}\right\rangle$. It is then immediate to verify that g_{-1} generates g_{-}, since, for $i \neq j$, $\left[x_{i} v_{1}, x_{j} v_{2}\right]=\partial / \partial x_{k}$ and $\left[\partial / \partial x_{k}, x_{k} v_{h}\right]=v_{h}$.

Let us now consider the grading of type $(2,1,1,-2)$. This is an irreducible grading of depth 2 whose 0 th graded component is spanned by the following elements: E, F, H, $x_{1} \partial / \partial x_{1}, x_{i} x_{j} \partial / \partial x_{1}, x_{i} \partial / \partial x_{j}, x_{1} v_{k}, x_{i} x_{j} v_{k}$, and $d x_{2} \wedge d x_{3} v_{k}$, for $i, j=2,3, k=1,2$; it follows that $E(3,8)_{0}=\left[E(3,8)_{0}, E(3,8)_{0}\right]+\mathbb{C} c$ where $c=2 x_{1} \partial / \partial x_{1}+x_{2} \partial / \partial x_{2}+x_{3} \partial / \partial x_{3}$ is central in $E(3,8)_{0}$ and $\left[E(3,8)_{0}, E(3,8)_{0}\right] \cong s l_{2} \otimes \Lambda(2)+W(0,2)$. Besides, $E(3,8)_{-1}=$ $\left\langle x_{i} v_{1}, x_{i} v_{2}, x_{i} \partial / \partial x_{1}, \partial / \partial x_{i}, i=2,3\right\rangle$ is isomorphic, as an $E(3,8)_{0}$-module, to $\mathbb{C}^{2} \otimes \Lambda(2)$ where \mathbb{C}^{2} is the standard $s l_{2}$-module; finally, by Remark 1.13, $E(3,8)_{-2}=\left[E(3,8)_{-1}, E(3,8)_{-1}\right]$ since $\left[E(3,8)_{-1}, E(3,8)_{-1}\right] \neq 0$.

Now let us consider the grading of type $(1,1,1,-1)$. This is an irreducible grading of depth 2 whose 0 th graded component is spanned by the elements $x_{i} \partial / \partial x_{j}, H, x_{i} F, x_{i} x_{j} v_{2}, x_{i} v_{1}$, $d x_{i} \wedge d x_{j} v_{2}$. One can verify that $E(3,8)_{0} \cong W(0,3)+\mathbb{C} Z$ where Z is the grading operator of $W(0,3)$ with respect to its principal grading. Besides, $E(3,8)_{-1}=\left\langle\partial / \partial x_{i}, F, v_{1}, x_{i} v_{2}\right\rangle$ is an irreducible $E(3,8)_{0}$-module with highest weight vector F. Finally, by Remark $1.13, E(3,8)_{-2}=$ $\left[E(3,8)_{-1}, E(3,8)_{-1}\right]$ since $\left[E(3,8)_{-1}, E(3,8)_{-1}\right] \neq 0$.

The gradings of type $(2,2,2,-3),(2,1,1,-2)$ and $(1,1,1,-1)$ satisfy the hypotheses of Proposition 1.11, therefore the corresponding subalgebras $\prod_{j \geqslant 0} E(3,8)_{j}$ are maximal subalgebras of $E(3,8)$, which are graded, hence regular.

We shall give below six examples of maximal regular subalgebras of L which are not graded.
Remark 10.2. We can view the Lie superalgebra $L=E(3,8)$ as a submodule of a (nonfree) module M over $\mathbb{C} \llbracket x_{1}, x_{2}, x_{3} \rrbracket$. In order to define a valuation on L we can fix a set of generators $\left\{b_{i}\right\}$ of M so that every element $a \in L$ can be written as $a=\sum_{i} P_{i} b_{i}$ with $P_{i} \in \mathbb{C} \llbracket x_{1}, x_{2}, x_{3} \rrbracket$, and assign the value of ν on any formal power series and any b_{i}. Then we

Example 10.3. Throughout this example, for every $P \in \mathbb{C} \llbracket x_{1}, x_{2}, x_{3} \rrbracket, \nu(P)$ will be the order of vanishing of P at 0 . Let us fix the following set of elements $\left\{b_{i}\right\}$ (see Remark 10.2):

$$
\partial / \partial x_{i}, E, H, F, d x_{i} \wedge d x_{j}, v_{1}, v_{2}, x_{i} v_{1}, d x_{i} \wedge d x_{j} v_{1}, d x_{i} \wedge d x_{j} v_{2} \quad(i, j=1,2,3)
$$

and let us set:

$$
\begin{gathered}
v\left(\partial / \partial x_{i}\right)=-1, \quad v(E)=1, \quad v(H)=0, \quad v(F)=-2, \quad v\left(d x_{i} \wedge d x_{j}\right)=1 \\
v\left(v_{1}\right)=0, \quad v\left(v_{2}\right)=-2, \quad v\left(x_{i} v_{1}\right)=0, \quad v\left(d x_{i} \wedge d x_{j} v_{1}\right)=1, \quad v\left(d x_{i} \wedge d x_{j} v_{2}\right)=-1 .
\end{gathered}
$$

Let us consider the following filtration $L_{-2} \supset L_{-1} \supset L_{0} \supset \cdots$ of L :

$$
\begin{aligned}
\left(L_{j}\right)_{\overline{0}}= & \left\{X \in W_{3} \mid v(X) \geqslant j, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{\left.X+\frac{1}{2} \operatorname{div}(X) H \right\rvert\, X \in W_{3}, v(X) \geqslant j\right\} \\
& +\left\{X \in W_{3} \mid v(X) \geqslant j+1\right\}+\left\{\omega \in d \Omega^{1}(3) \mid v(\omega) \geqslant j\right\} \\
& +\left\langle f E, f F \in \Omega^{0}(3) \otimes s l_{2} \mid v(f E) \geqslant j, v(f F) \geqslant j\right\rangle,
\end{aligned}
$$

$$
\begin{aligned}
\left(L_{j}\right)_{\overline{1}}= & \left\{f \in \Omega^{0}(3) \otimes \mathbb{C}^{2} \mid \nu(f) \geqslant j\right\}+\left\{\omega v_{1} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid \nu\left(\omega v_{1}\right) \geqslant j, d \omega=0\right\} \\
& +\left\{\omega v_{1} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid \nu\left(\omega v_{1}\right) \geqslant j+1\right\}+\left\{\omega v_{2} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid \nu\left(\omega v_{2}\right) \geqslant j\right\} .
\end{aligned}
$$

Then $\operatorname{Gr} L$ has the following structure:

$$
\begin{aligned}
\left(G r_{j} L\right)_{\overline{0}}= & \left\{X \in W_{3} \mid v(X)=j, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{\left.X+\frac{1}{2} \operatorname{div}(X) H \right\rvert\, v(X)=j\right\} \\
+ & \left\langle X \in W_{3}, f H \in \Omega^{0}(3) \otimes s l_{2} \mid v(X)=j+1=v(f H)\right\rangle \\
& /\left\langle Y, \left.X+\frac{1}{2} \operatorname{div}(X) H \right\rvert\, \operatorname{div}(Y) \in \mathbb{C}\right\rangle \\
+ & \left\{\omega \in d \Omega^{1}(3) \mid v(\omega)=j\right\}+\left\langle f E, f F \in \Omega^{0}(3) \otimes s l_{2} \mid v(f E)=j=v(f F)\right\rangle
\end{aligned}
$$

$\left(G r_{j} L\right)_{\overline{1}}=\left\{f \in \Omega^{0}(3) \otimes \mathbb{C}^{2} \mid v(f)=j\right\}+\left\{\omega v_{1} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid \nu\left(\omega v_{1}\right)=j, d \omega=0\right\}$

$$
\begin{aligned}
& +\left\{\omega v_{1} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid v\left(\omega v_{1}\right)=j+1\right\} /\left\{\omega v_{1} \mid d \omega=0\right\} \\
& +\left\{\omega v_{2} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid v\left(\omega v_{2}\right)=j\right\} .
\end{aligned}
$$

It follows that $\overline{\operatorname{Gr} L} \cong \operatorname{SKO}(3,4 ;-1 / 3) \otimes \Lambda(\xi)+\mathfrak{a}$ with respect to the irreducible grading of type $(1,1,1 \mid 1,1,1,2)$ of $\operatorname{SKO}(3,4 ;-1 / 3)$ and $\operatorname{deg} \xi=0$, with $\mathfrak{a}=\mathbb{C}(\partial / \partial \xi)+\mathbb{C}(Z+\xi \partial / \partial \xi)$, where Z is the grading operator of $\operatorname{SKO}(3,4 ;-1 / 3)$ with respect to its principal grading. By Corollary $1.12, L_{0}$ is a maximal subalgebra of L.

Example 10.4. Let us fix the same set $\left\{b_{i}\right\}$ as in Example 10.3. Throughout this example, for every $P \in \mathbb{C} \llbracket x_{1}, x_{2}, x_{3} \rrbracket, \nu(P)$ will be the order of vanishing at $t=0$ of the formal power series $P\left(t^{2}, t, t\right) \in \mathbb{C} \llbracket t \rrbracket$. Besides we set:

$$
\begin{gathered}
\nu\left(\partial / \partial x_{1}\right)=-2, \quad \nu\left(\partial / \partial x_{2}\right)=v\left(\partial / \partial x_{3}\right)=-1, \quad \nu(E)=0, \quad \nu(H)=0, \quad \nu(F)=-2, \\
\nu\left(v_{1}\right)=0, \quad \nu\left(v_{2}\right)=-2, \quad \nu\left(x_{1} v_{1}\right)=0, \quad \nu\left(x_{2} v_{1}\right)=v\left(x_{3} v_{1}\right)=-1, \\
v\left(d x_{2} \wedge d x_{3}\right)=0, \quad \nu\left(d x_{2} \wedge d x_{3} v_{1}\right)=0, \quad \nu\left(d x_{2} \wedge d x_{3} v_{2}\right)=-2, \\
\nu\left(d x_{1} \wedge d x_{i}\right)=1, \quad \nu\left(d x_{1} \wedge d x_{i} v_{1}\right)=1, \quad \nu\left(d x_{1} \wedge d x_{i} v_{2}\right)=-1, \quad \text { for } i=2,3 .
\end{gathered}
$$

Let us consider the filtration $L=L_{-2} \supset L_{-1} \supset L_{0} \supset \cdots$ of L where:

$$
\begin{aligned}
\left(L_{j}\right)_{\overline{0}}= & \left\{X \in W_{3} \mid v(X) \geqslant j, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{\left.X+\frac{1}{2} \operatorname{div}(X) H \right\rvert\, X \in W_{3}, v(X) \geqslant j\right\} \\
& +\left\{X \in W_{3} \mid v(X) \geqslant j+2\right\}+\left\{\omega \in d \Omega^{1}(3) \mid v(\omega) \geqslant j\right\} \\
& +\left\langle f E, f F \in \Omega^{0}(3) \otimes s l_{2}, v(f E) \geqslant j, v(f F) \geqslant j\right\rangle, \\
\left(L_{j}\right)_{\overline{1}}= & \left\{f \in \Omega^{0}(3) \otimes \mathbb{C}^{2} \mid v(f) \geqslant j\right\}+\left\{\omega v_{1} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid v\left(\omega v_{1}\right) \geqslant j, d \omega=0\right\} \\
& +\left\{\omega v_{1} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid v\left(\omega v_{1}\right) \geqslant j+2\right\}+\left\{\omega v_{2} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid v\left(\omega v_{2}\right) \geqslant j\right\} .
\end{aligned}
$$

Then $\operatorname{Gr} L$ has the following structure:

$$
\begin{aligned}
\left(G r_{j} L\right)_{\overline{0}}= & \left\{X \in W_{3} \mid v(X)=j, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{\left.X+\frac{1}{2} \operatorname{div}(X) H \right\rvert\, v(X)=j\right\} \\
& +\left\langle X \in W_{3}, f H \in \Omega^{0}(3) \otimes s l_{2} \mid v(X)=j+2=v(f H)\right\rangle \\
& /\left\langle X+\frac{1}{2} \operatorname{div}(X) H, Y \mid \operatorname{div}(Y) \in \mathbb{C}\right\rangle \\
& +\left\{\omega \in d \Omega^{1}(3) \mid v(\omega)=j\right\}+\langle f E, f F| v(f E)=j=v(f F) \mid, \\
\left(G r_{j} L\right)_{\overline{1}}= & \left\{f \in \Omega^{0}(3) \otimes \mathbb{C}^{2} \mid v(f)=j\right\}+\left\{\omega v_{1} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid v\left(\omega v_{1}\right)=j, d \omega=0\right\} \\
& +\left\{\omega v_{1} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid v\left(\omega v_{1}\right)=j+2\right\} /\left\{\omega v_{1} \mid d \omega=0\right\} \\
& +\left\{\omega v_{2} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid v\left(\omega v_{2}\right)=j\right\} .
\end{aligned}
$$

It follows that $\overline{G r L} \cong \operatorname{SKO}(3,4 ;-1 / 3) \otimes \Lambda(\xi)+\mathfrak{a}$ with respect to the irreducible grading of type $(2,1,1 \mid 0,1,1,2)$ of $S K O(3,4 ;-1 / 3)$ and $\operatorname{deg} \xi=0$, with $\mathfrak{a}=\mathbb{C}(\partial / \partial \xi)+\mathbb{C}(Z+2 \xi \partial / \partial \xi)$, where Z is the grading operator of $\operatorname{SKO}(3,4 ;-1 / 3)$ with respect to the grading of type $(2,1,1 \mid 0,1,1,2)$. By Corollary $1.12, L_{0}$ is a maximal subalgebra of L.

Example 10.5. Let us fix the same set $\left\{b_{i}\right\}$ as in Examples 10.3, 10.4. Throughout this example, for every $P \in \mathbb{C} \llbracket x_{1}, x_{2}, x_{3} \rrbracket, \nu(P)$ will denote the order of vanishing of P at 0 . Besides, we set:

$$
\begin{gathered}
v\left(\partial / \partial x_{i}\right)=-1, \quad v(E)=-1, \quad v(H)=0, \quad v(F)=-1, \quad \nu\left(d x_{i} \wedge d x_{j}\right)=0 \\
\nu\left(v_{1}\right)=0, \quad \nu\left(v_{2}\right)=-1, \quad \nu\left(x_{i} v_{1}\right)=-1, \quad v\left(d x_{i} \wedge d x_{j} v_{1}\right)=0, \quad v\left(d x_{i} \wedge d x_{j} v_{2}\right)=-1
\end{gathered}
$$

Now, if we define L_{j} as in Example 10.4, we obtain a filtration of L of depth 1 . In this case $\overline{G r L} \cong \operatorname{SKO}(3,4 ;-1 / 3) \otimes \Lambda(\xi)+\mathfrak{a}$ with respect to the irreducible grading of type $(1,1,1 \mid 0,0,0,1)$ of $\operatorname{SKO}(3,4 ;-1 / 3)$ and $\operatorname{deg} \xi=0$, with $\mathfrak{a}=\mathbb{C}(\partial / \partial \xi)+\mathbb{C}(Z+2 \xi \partial / \partial \xi)$, where Z is the grading operator of $\operatorname{SKO}(3,4 ;-1 / 3)$ with respect to the grading of type $(1,1,1 \mid 0,0,0,1)$. By Corollary $1.12, L_{0}$ is a maximal subalgebra of L.

Example 10.6. Throughout this example, for every $P \in \mathbb{C} \llbracket x_{1}, x_{2}, x_{3} \rrbracket, v(P)$ will be the order of vanishing at $t=0$ of the formal power series $P\left(t^{2}, t, t\right) \in \mathbb{C} \llbracket t \rrbracket$. Let us fix the following elements:

$$
\begin{aligned}
& \partial / \partial x_{i}, E, H, F, x_{i} E, x_{i} H, x_{i} F, d x_{i} \wedge d x_{j} \\
& \quad v_{1}, v_{2}, x_{i} v_{1}, x_{i} v_{2}, d x_{i} \wedge d x_{j} v_{1}, d x_{i} \wedge d x_{j} v_{2} \quad(i, j=1,2,3)
\end{aligned}
$$

and let us set, for $t=2,3, h=1,2$:

$$
\begin{gathered}
v\left(\partial / \partial x_{1}\right)=-2, \quad v\left(\partial / \partial x_{t}\right)=-1, \quad \nu(E)=v(H)=v(F)=0, \\
v\left(x_{1} E\right)=v\left(x_{1} H\right)=v\left(x_{1} F\right)=0, \quad v\left(x_{t} E\right)=v\left(x_{t} H\right)=v\left(x_{t} F\right)=-1, \\
v\left(v_{h}\right)=0, \quad v\left(x_{1} v_{h}\right)=0, \quad v\left(x_{t} v_{h}\right)=-1, \\
v\left(d x_{i} \wedge d x_{j}\right)=v\left(\partial / \partial x_{k}\right), \quad v\left(d x_{i} \wedge d x_{j} v_{h}\right)=v\left(\partial / \partial x_{k}\right), \quad \text { for } i \neq j \neq k .
\end{gathered}
$$

Let us consider the following filtration $L=L_{-2} \supset L_{-1} \supset L_{0} \supset \cdots$ of L where

$$
\begin{aligned}
\left(L_{j}\right)_{\overline{0}}= & \left\{X \in W_{3} \mid v(X) \geqslant j, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{X \in W_{3} \mid v(X) \geqslant j+2\right\} \\
& +\left\{g \in \Omega^{0}(3) \otimes s l_{2} \mid v(g) \geqslant j\right\}+\left\{\omega \in d \Omega^{1}(3) \mid v(\omega) \geqslant j\right\}, \\
\left(L_{j}\right)_{\overline{1}}= & \left\{f \in \Omega^{0}(3) \otimes \mathbb{C}^{2} \mid v(f) \geqslant j\right\}+\left\langle\omega v_{h} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid v\left(\omega v_{h}\right) \geqslant j, \operatorname{div}\left(X_{\omega}\right) \in \mathbb{C}\right\rangle \\
& +\left\{\sigma \in \Omega^{2} \otimes \mathbb{C}^{2} \mid v(\sigma) \geqslant j+2\right\} .
\end{aligned}
$$

Then $\operatorname{Gr} L$ has the following structure:

$$
\begin{aligned}
\left(G r_{j} L\right)_{\overline{0}}= & \left\{X \in W_{3} \mid v(X)=j, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{X \in W_{3} \mid v(X)=j+2\right\} /\{X \mid \operatorname{div}(X) \in \mathbb{C}\} \\
& +\left\{g \in \Omega^{0}(3) \otimes s l_{2} \mid v(g)=j\right\}+\left\{\omega \in d \Omega^{1}(3) \mid v(\omega)=j\right\}
\end{aligned}
$$

$\left(G r_{j} L\right)_{\overline{1}}=\left\{f \in \Omega^{0}(3) \otimes \mathbb{C}^{2} \mid v(f)=j\right\}+\left\langle\omega v_{h} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v(\omega)=j, \operatorname{div}\left(X_{\omega}\right) \in \mathbb{C}\right\rangle$

$$
+\left\langle\omega v_{h} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v\left(X_{\omega}\right)=j+2\right\rangle /\left\langle\omega v_{h} \mid \operatorname{div}\left(X_{\omega}\right) \in \mathbb{C}\right\rangle .
$$

It follows that $\overline{\operatorname{Gr} L} \cong \operatorname{SHO}(3,3) \otimes \Lambda\left(\eta_{1}, \eta_{2}\right)+\mathfrak{b}$ with respect to the grading of type $(2,1,1 \mid 0,1,1)$ of $\operatorname{SHO}(3,3)$ and $\operatorname{deg} \eta_{i}=0$, with

$$
\begin{aligned}
\mathfrak{b} & \cong \\
& \mathbb{C}\left(\partial / \partial \eta_{1}\right)+\mathbb{C}\left(\partial / \partial \eta_{2}\right)+s l_{2}+\mathbb{C}\left(Z+2 \eta_{1} \partial / \partial \eta_{1}+2 \eta_{2} \partial / \partial \eta_{2}\right) \\
& +\mathbb{C}\left(-4 e \eta_{1}+4 \eta_{1} \eta_{2} \partial / \partial \eta_{1}+(2 h-Z) \eta_{2}\right)+\mathbb{C}\left(4 f \eta_{2}+4 \eta_{1} \eta_{2} \partial / \partial \eta_{2}+(2 h+Z) \eta_{1}\right),
\end{aligned}
$$

where Z is the grading operator of $\operatorname{SHO}(3,3)$ with respect to its grading of type $(2,1,1 \mid 0,1,1)$. Here $s l_{2}$ has generators $e-\eta_{2} \partial / \partial \eta_{1}, f-\eta_{1} \partial / \partial \eta_{2}$ and $h+\eta_{2} \partial / \partial \eta_{2}-\eta_{1} \partial / \partial \eta_{1}$, where e, f, h is the Chevalley basis of the copy of $s l_{2}$ of outer derivations of $\operatorname{SHO}(3,3)$ described in Remark 2.37. By Corollary $1.12, L_{0}$ is a maximal subalgebra of L.

Example 10.7. Throughout this example, for every element $P \in \mathbb{C} \llbracket x_{1}, x_{2}, x_{3} \rrbracket, \nu(P)$ will denote the order of vanishing of P at 0 . Let us fix the following set of elements of L :

$$
\begin{aligned}
& \partial / \partial x_{i}, E, H, F, x_{i} E, d x_{i} \wedge d x_{j} \\
& \quad v_{1}, v_{2}, x_{i} v_{1}, x_{i} v_{2}, d x_{i} \wedge d x_{j} v_{h}, \quad \text { for } i, j=1,2,3
\end{aligned}
$$

and let us set:

$$
\begin{gathered}
v\left(\partial / \partial x_{i}\right)=-1, \quad v(E)=0, \quad \nu(H)=0, \quad v(F)=-2, \quad v\left(x_{i} E\right)=0, \\
v\left(v_{1}\right)=0=v\left(v_{2}\right), \quad \nu\left(x_{i} v_{1}\right)=0, \quad v\left(x_{i} v_{2}\right)=-1, \\
\nu\left(d x_{i} \wedge d x_{j}\right)=v\left(\partial / \partial x_{k}\right), \quad \nu\left(d x_{i} \wedge d x_{j} v_{h}\right)=v\left(\partial / \partial x_{k}\right), \quad \text { for } i \neq j \neq k, h=1,2 .
\end{gathered}
$$

Let us consider the following filtration $L=L_{-2} \supset L_{-1} \supset L_{0} \supset \cdots$ of L where

$$
\begin{aligned}
\left(L_{j}\right)_{\overline{0}}= & \left\{X \in W_{3} \mid v(X) \geqslant j, \operatorname{div}(X) \in \mathbb{C}\right\} \\
& +\left\{\left.X-\frac{1}{2} \operatorname{div}(X) H \right\rvert\, X \in W_{3}, v(X) \geqslant j \text { and } \operatorname{div}(X) \in \mathbb{C}, \text { or } v(X) \geqslant j+1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{X \in W_{3} \mid v(X) \geqslant j+2\right\}+\left\langle f E, f F \in \Omega^{0}(3) \otimes s l_{2} \mid v(f E) \geqslant j, v(f F) \geqslant j\right\rangle \\
& +\left\{\omega \in d \Omega^{1}(3) \mid v(\omega) \geqslant j\right\} \\
\left(L_{j}\right)_{\overline{1}}= & \left\{f \in \Omega^{0}(3) \otimes \mathbb{C}^{2} \mid v(f) \geqslant j\right\}+\left\{\omega v_{1} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v(\omega) \geqslant j, \operatorname{div}\left(X_{\omega}\right) \in \mathbb{C}\right\} \\
& +\left\{\omega v_{1} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v(\omega) \geqslant j+1\right\}+\left\{\omega v_{2} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v\left(X_{\omega}\right) \geqslant j, d \omega=0\right\} \\
& +\left\{\omega v_{2} \in \Omega^{2} \otimes \mathbb{C}^{2} \mid v\left(X_{\omega}\right) \geqslant j+2\right\} .
\end{aligned}
$$

Then $\operatorname{Gr} L$ has the following structure:

$$
\begin{aligned}
\left(G r_{j} L\right)_{\overline{0}}= & \left\{X \in W_{3} \mid v(X)=j, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{\left.X-\frac{1}{2} \operatorname{div}(X) H \right\rvert\, v(X)=j, \operatorname{div}(X) \in \mathbb{C}\right\} \\
& +\left\{\left.X-\frac{1}{2} \operatorname{div}(X) H \right\rvert\, v(X)=j+1\right\} /\left\langle X, \left.X-\frac{1}{2} \operatorname{div}(X) H \right\rvert\, \operatorname{div}(X) \in \mathbb{C}\right\rangle \\
& +\left\{X \in W_{3}, f H \in \Omega^{0}(3) \otimes s l_{2} \mid v(X)=j+2=v(f H)\right\} \\
& \left./\left\langle Y, X-\frac{1}{2} \operatorname{div}(X) H\right| \operatorname{div}(Y) \in \mathbb{C}\right\} \\
& +\left\langle f E, f F \in \Omega^{0}(3) \otimes s l_{2} \mid v(f E)=j=v(f F)\right\rangle+\left\{\omega \in d \Omega^{1} \mid v(\omega)=j\right\}, \\
\left(G r_{j} L\right)_{\overline{1}}= & \left\{f \in \Omega^{0}(3) \otimes \mathbb{C}^{2} \mid v(f)=j\right\}+\left\{\omega v_{1} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v\left(X_{\omega}\right)=j, \operatorname{div}\left(X_{\omega}\right) \in \mathbb{C}\right\} \\
& +\left\{\omega v_{1} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v\left(X_{\omega}\right)=j+1\right\} /\left\{\omega v_{1} \mid \operatorname{div}\left(X_{\omega}\right) \in \mathbb{C}\right\} \\
& +\left\{\omega v_{2} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v\left(X_{\omega}\right)=j, d \omega=0\right\} \\
& +\left\{\omega v_{2} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v\left(X_{\omega}\right)=j+2\right\} /\left\{\omega v_{2} \mid \operatorname{d\omega }=0\right\} .
\end{aligned}
$$

Note that $G r_{-2} L=\left\langle F, \omega v_{2}\right\rangle$, where $\omega \in\left\langle x_{i} d x_{j} \wedge d x_{k}\right\rangle / d \Omega^{1}(3)$, is an ideal of $G r L$ and $\overline{\operatorname{Gr} L} / G r_{-2} L \cong \operatorname{SHO}(3,3) \otimes \Lambda\left(\eta_{1}, \eta_{2}\right)+\mathfrak{b}$, with respect to the irreducible grading of type $(1,1,1 \mid 0,0,0)$ of $\operatorname{SHO}(3,3)$ and deg $\eta_{i}=0$, with $\mathfrak{b}=\mathbb{C}\left(\partial / \partial \eta_{1}\right)+\mathbb{C}\left(\partial / \partial \eta_{2}\right)+\mathbb{C}\left(Z+\eta_{1} \partial / \partial \eta_{1}+\right.$ $\left.2 \eta_{2} \partial / \partial \eta_{2}\right)+\mathbb{C}\left(\eta_{2} \partial / \partial \eta_{1}\right)+\mathbb{C}\left(h+\eta_{1} \partial / \partial \eta_{1}-\eta_{2} \partial / \partial \eta_{2}\right)+\mathbb{C}\left(3 \eta_{1} \eta_{2} \partial / \partial \eta_{1}-(2 h+Z) \eta_{2}\right)$, where Z is the grading operator of $\operatorname{SHO}(3,3)$ with respect to its grading of subprincipal type. It follows that $G r \geqslant_{0} L$ is not a maximal subalgebra of $G r L$, since it is contained in $G r \geqslant 0 L+G r_{-2} L$. Nevertheless, L_{0} is a maximal subalgebra of L, since, for every non-trivial subspace V of $G r_{-2} L$, $L_{0}+V$ generates the whole algebra L.

Example 10.8. Let us fix the same set of elements as in Example 10.6. Throughout this example, for every $P \in \mathbb{C} \llbracket x_{1}, x_{2}, x_{3} \rrbracket, \nu(P)$ will denote twice the order of vanishing of P at 0 . Besides, we set:

$$
\begin{gathered}
v\left(\partial / \partial x_{i}\right)=-2, \quad v(E)=v(H)=v(F)=0, \quad v\left(x_{i} E\right)=v\left(x_{i} H\right)=v\left(x_{i} F\right)=-1 \\
v\left(v_{1}\right)=0=v\left(v_{2}\right), \quad v\left(x_{i} v_{1}\right)=-1=v\left(x_{i} v_{2}\right) \\
v\left(d x_{i} \wedge d x_{j}\right)=v\left(\partial / \partial x_{k}\right), \quad v\left(d x_{i} \wedge d x_{j} v_{h}\right)=v\left(\partial / \partial x_{k}\right) \quad \text { for } i \neq j \neq k, h=1,2
\end{gathered}
$$

Let us consider the filtration $L=L_{-2} \supset L_{-1} \supset L_{0} \supset \cdots$ of L where:

$$
\begin{aligned}
L_{2 j}= & \left\{X \in W_{3} \mid v(X) \geqslant 2 j, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{X \in W_{3} \mid v(X) \geqslant 2 j+4\right\} \\
& +\left\{g \in \Omega^{0}(3) \otimes s l_{2} \mid v(g) \geqslant 2 j\right\}+\left\{\omega \in d \Omega^{1}(3) \mid v(\omega) \geqslant 2 j\right\} \\
& +\left\{f \in \Omega^{0}(3) \otimes \mathbb{C}^{2} \mid v(f) \geqslant 2 j\right\}+\left\langle\omega v_{h} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v(\omega) \geqslant 2 j, \operatorname{div}\left(X_{\omega}\right) \in \mathbb{C}\right\rangle \\
& +\left\{\sigma \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v(\sigma) \geqslant 2 j+4\right\}, \\
L_{2 j+1}= & \left\{X \in W_{3} \mid v(X) \geqslant 2 j+2, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{X \in W_{3}, v(X) \geqslant 2 j+4\right\} \\
& +\left\{g \in \Omega^{0}(3) \otimes s l_{2} \mid v(g) \geqslant 2 j+1\right\}+\left\{\omega \in d \Omega^{1}(3) \mid v(\omega) \geqslant 2 j+1\right\} \\
& +\left\{f \in \Omega^{0}(3) \otimes \mathbb{C}^{2} \mid v(f) \geqslant 2 j+1\right\} \\
& +\left\langle\omega v_{h} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v(\omega) \geqslant 2 j+2, \operatorname{div}\left(X_{\omega}\right) \in \mathbb{C}\right\rangle \\
& +\left\{\sigma \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v(\sigma) \geqslant 2 j+4\right\} .
\end{aligned}
$$

Then $\operatorname{Gr} L$ has the following structure:

$$
\begin{aligned}
G r_{2 j} L= & \left\{X \in W_{3} \mid v(X)=2 j, \operatorname{div}(X) \in \mathbb{C}\right\}+\left\{g \in \Omega^{0}(3) \otimes s l_{2} \mid v(g)=2 j\right\} \\
& +\left\{\omega \in d \Omega^{1}(3) \mid v(\omega)=2 j\right\}+\left\{f \in \Omega^{0}(3) \otimes \mathbb{C}^{2} \mid v(f)=2 j\right\} \\
& +\left\langle\omega v_{h} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v\left(X_{\omega}\right)=2 j, \operatorname{div}\left(X_{\omega}\right) \in \mathbb{C}\right\rangle, \\
G r_{2 j+1} L= & \left\{X \in W_{3} \mid v(X)=2 j+4\right\} /\{X \mid \operatorname{div}(X) \in \mathbb{C}\}+\left\{g \in \Omega^{0}(3) \otimes s l_{2} \mid v(g)=2 j+1\right\} \\
& +\left\{\omega \in d \Omega^{1}(3) \mid v(\omega)=2 j+1\right\}+\left\{f \in \Omega^{0}(3) \otimes \mathbb{C}^{2} \mid v(f)=2 j+1\right\} \\
& +\left\langle\omega v_{h} \in \Omega^{2}(3) \otimes \mathbb{C}^{2} \mid v\left(X_{\omega}\right)=2 j+4\right\rangle /\left\langle\omega v_{h} \mid \operatorname{div}\left(X_{\omega}\right) \in \mathbb{C}\right\rangle .
\end{aligned}
$$

It follows that $\overline{\operatorname{Gr} L} \cong \operatorname{SHO}(3,3) \otimes \Lambda\left(\eta_{1}, \eta_{2}\right)+\mathfrak{b}$ with respect to the grading of type $(2,2,2 \mid 1,1,1)$ on $\operatorname{SHO}(3,3)$ and $\operatorname{deg} \eta_{i}=0$, with

$$
\begin{aligned}
\mathfrak{b}= & \mathbb{C}\left(\partial / \partial \eta_{1}\right)+\mathbb{C}\left(\partial / \partial \eta_{2}\right)+s l_{2}+\mathbb{C}\left(Z+3 \eta_{1} \partial / \partial \eta_{1}+3 \eta_{2} \partial / \partial \eta_{2}\right) \\
& +\mathbb{C}\left(3 e \eta_{1}+3 \eta_{1} \eta_{2} \partial / \partial \eta_{1}+\frac{1}{2}(3 h-z) \eta_{2}\right)+\mathbb{C}\left(-3 f \eta_{2}+3 \eta_{1} \eta_{2} \partial / \partial \eta_{2}+\frac{1}{2}(Z+3 h) \eta_{1}\right),
\end{aligned}
$$

where Z is the grading operator of $\operatorname{SHO}(3,3)$ with respect to its grading of type $(2,2,2 \mid 1,1,1)$. Here $s l_{2}$ has generators $e+\eta_{2} \partial / \partial \eta_{1}, f+\eta_{1} \partial / \partial \eta_{2}$ and $h+\eta_{2} \partial / \partial \eta_{2}-\eta_{1} \partial / \partial \eta_{1}$, where e, f, h is the Chevalley basis of the copy of $s l_{2}$ of outer derivations of $\operatorname{SHO}(3,3)$ described in Remark 2.37.

Recall that the \mathbb{Z}-grading of type $(2,2,2 \mid 1,1,1)$ is an irreducible grading of $\operatorname{Der~} \operatorname{SHO}(3,3)$ (cf. Theorem 2.48(iii)), therefore $G r L$ is irreducible. It follows that L_{0} is a maximal subalgebra of L.

Remark 10.9. Let $T^{\prime}=\left\langle x_{1} \partial / \partial x_{1}-x_{2} \partial / \partial x_{2}, x_{2} \partial / \partial x_{2}-x_{3} \partial / \partial x_{3}\right\rangle$.

1. Let us consider the odd elements $x_{i} v_{h}$ for $i=1,2,3$ and $h=1,2$. Then:

- $x_{i} v_{h}$ and $x_{j} v_{k}$ have the same weights with respect to T^{\prime} if and only if $i=j$;
- $x_{i} v_{h}$ and v_{k} have different T^{\prime}-weights, for every i, h, k.

2. For every $i \neq j$, the T^{\prime}-weight of $d x_{i} \wedge d x_{j}$:

- is equal to the T^{\prime}-weight of $d x_{h} \wedge d x_{k}$ if and only if $\{i, j\}=\{h, k\}$;
- is different from the T^{\prime}-weight of v_{h} and $x_{k} v_{h}$ for every h, k.

3. The T^{\prime}-weight of the vector field $x_{i} \partial / \partial x_{j}$, for $i \neq j$:

- is different from $(0,0)$;
- is equal to the T^{\prime}-weight of $x_{h} \partial / \partial x_{k}$ if and only if $(i, j)=(h, k)$;
- is different from the T^{\prime}-weight of the vector field $\partial / \partial x_{k}$, for every k;
- is different from the T^{\prime}-weight of any vector field X such that $X(0)=0$ of order 2 ;
- is different from the T^{\prime}-weight of any element $x_{h} a$ for any $a \in s l_{2}$.

4. The elements E, F and H have T^{\prime}-weight $(0,0)$.

Theorem 10.10. Let L_{0} be a maximal open T^{\prime}-invariant subalgebra of $L=E(3,8)$. Then L_{0} is conjugate either to a graded subalgebra of type $(1,1,1,-1),(2,1,1,-2)$ or $(2,2,2,-3)$, or to one of the non-graded subalgebras constructed in Examples 10.3-10.8. In particular L_{0} is regular.

Proof. We first notice that the even elements $\partial / \partial x_{i}+X+z$ such that $X \in W_{3}, X(0)=0$ and $z \in \Omega^{0}(3) \otimes s l_{2}+d \Omega^{1}(3)$, cannot lie in L_{0} since they are not exponentiable. Likewise, no non-zero linear combination of the vector fields $\partial / \partial x_{i}$ lies in L_{0}. Up to conjugation, we may distinguish the following three cases:

1. The elements $v_{1}+f v_{1}+g v_{2}+\omega v_{1}+\sigma v_{2}$ and $v_{2}+f v_{1}+g v_{2}+\omega v_{1}+\sigma v_{2}$ do not lie in L_{0} for any $f, g \in \Omega^{0}(3)$ such that $f(0)=0=g(0)$, and any $\omega, \sigma \in \Omega^{2}(3)$ such that $\omega(0)=0=\sigma(0)$.
2. The elements $v_{1}+f v_{1}+g v_{2}+\omega v_{1}+\sigma v_{2}$ and $v_{2}+f^{\prime} v_{1}+g^{\prime} v_{2}+\omega^{\prime} v_{1}+\sigma^{\prime} v_{2}$ lie in L_{0} for some $f, g, f^{\prime}, g^{\prime} \in \Omega^{0}(3)$ such that $f(0)=f^{\prime}(0)=0=g(0)=g^{\prime}(0)$ and some $\omega, \sigma, \omega^{\prime}, \sigma^{\prime} \in \Omega^{2}(3)$ such that $\omega(0)=\omega^{\prime}(0)=0=\sigma(0)=\sigma^{\prime}(0)$.
3. The element $v_{1}+f v_{1}+g v_{2}+\omega v_{1}+\sigma v_{2}$ lies in L_{0} for some $f, g \in \Omega^{0}(3)$ such that $f(0)=$ $0=g(0)$ and some $\omega, \sigma \in \Omega^{2}(3)$ such that $\omega(0)=0=\sigma(0)$, but the elements $v_{2}+f^{\prime} v_{1}+$ $g^{\prime} v_{2}+\omega^{\prime} v_{1}+\sigma^{\prime} v_{2}$ do not lie in L_{0} for any f^{\prime}, g^{\prime} such that $f^{\prime}(0)=0=g^{\prime}(0)$ and any $\omega^{\prime}, \sigma^{\prime} \in \Omega^{2}(3)$ such that $\omega^{\prime}(0)=0=\sigma^{\prime}(0)$.

Let us analyze case 1 . Two possibilities may occur:
(1a) The elements $\alpha v_{1}+\beta v_{2}+f v_{1}+g v_{2}+\omega v_{1}+\sigma v_{2}$ do not lie in L_{0} for any $\alpha, \beta \in \mathbb{C}$ such that $(\alpha, \beta) \neq(0,0)$, any $f, g \in \Omega^{0}(3)$ such that $f(0)=0=g(0)$, and any $\omega, \sigma \in \Omega^{2}(3)$ such that $\omega(0)=0=\sigma(0)$.
(1b) The element $v_{1}+\beta v_{2}+f v_{1}+g v_{2}+\omega v_{1}+\sigma v_{2}$ lies in L_{0} for some $\beta \in \mathbb{C}, \beta \neq 0$, some $f, g \in \Omega^{0}(3)$ such that $f(0)=0=g(0)$ and some $\omega, \sigma \in \Omega^{2}(3)$ such that $\omega(0)=0=$ $\sigma(0)$. It follows that $v_{1}-\beta v_{2}+f^{\prime} v_{1}+g^{\prime} v_{2}+\omega^{\prime} v_{1}+\sigma^{\prime} v_{2}$ does not lie in L_{0} for any $f^{\prime}, g^{\prime} \in \Omega^{0}(3)$ such that $f^{\prime}(0)=0=g^{\prime}(0)$ and any $\sigma^{\prime}, \omega^{\prime} \in \Omega^{2}(3)$ such that $\omega^{\prime}(0)=0=$ $\sigma^{\prime}(0)$. Therefore, up to a change of basis of \mathbb{C}^{2}, this is equivalent to case 3 , that we will analyze below.

Case 1 therefore reduces to case (1a). Then two possibilities may occur:
(1A) The elements $x_{i} v_{1}+f v_{1}+g v_{2}+\omega v_{1}+\sigma v_{2}$ and $x_{i} v_{2}+f v_{1}+g v_{2}+\omega v_{1}+\sigma v_{2}$ do not lie in L_{0} for any i, any $f, g \in \Omega^{0}(3)$ such that $f(0)=0=g(0)$ of order greater than or equal to 2 , and any $\omega, \sigma \in \Omega^{2}(3)$ such that $\omega(0)=0=\sigma(0)$.
(1B) The element $x_{i} v_{k}+f^{\prime} v_{1}+g^{\prime} v_{2}+\omega^{\prime} v_{1}+\sigma^{\prime} v_{2}$ lies in L_{0} for some i, k, some $f^{\prime}, g^{\prime} \in \Omega^{0}(3)$ such that $f^{\prime}(0)=0=g^{\prime}(0)$ of order greater than or equal to 2 , and some $\omega^{\prime}, \sigma^{\prime} \in \Omega^{2}(3)$ such that $\omega^{\prime}(0)=0=\sigma^{\prime}(0)$. Up to conjugation, we can assume $i=1$ and $k=1$, i.e., $x_{1} v_{1}+f^{\prime} v_{1}+g^{\prime} v_{2}+\omega^{\prime} v_{1}+\sigma^{\prime} v_{2} \in L_{0}$.

Let us first analyze case (1B). In this case the odd elements $x_{2} v_{2}+f^{\prime \prime} v_{1}+g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}$ do not lie in L_{0} for any $f^{\prime \prime}, g^{\prime \prime}$ such that $g^{\prime \prime}(0)=0$ of order greater than or equal to 2 and $f^{\prime \prime}(0)=0$, and any $\omega^{\prime \prime}, \sigma^{\prime \prime} \in \Omega^{2}(3)$ such that $\omega^{\prime \prime}(0)=0=\sigma^{\prime \prime}(0)$. Indeed, if such an element lies in L_{0}, then L_{0} contains the element $\left[x_{1} v_{1}+f^{\prime} v_{1}+g^{\prime} v_{2}+\omega^{\prime} v_{1}+\sigma^{\prime} v_{2}, x_{2} v_{2}+f^{\prime \prime} v_{1}+\right.$ $\left.g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}\right]=\partial / \partial x_{3}+Y+z$ for some vector field Y such that $Y(0)=0$ and some $z \in \Omega^{0}(3) \otimes s l_{2}+d \Omega^{1}(3)$. But such an element cannot lie in L_{0} since it is not exponentiable.

Likewise, $x_{3} v_{2}+f^{\prime \prime} v_{1}+g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}$ does not lie in L_{0} for any $f^{\prime \prime}, g^{\prime \prime} \in \Omega^{0}(3)$ such that $g^{\prime \prime}(0)=0$ of order greater than or equal to 2 and $f^{\prime \prime}(0)=0$, and any $\omega^{\prime \prime}, \sigma^{\prime \prime} \in \Omega^{2}(3)$ such that $\omega^{\prime \prime}(0)=0=\sigma^{\prime \prime}(0)$.

We distinguish two cases:
$(1 \mathrm{Bi}) x_{1} v_{2}+\tilde{f} v_{1}+\tilde{g} v_{2}+\tilde{\omega} v_{1}+\tilde{\sigma} v_{2}$ does not lie in L_{0} for any \tilde{f}, \tilde{g} such that $\tilde{f}(0)=0=\tilde{g}(0)$ of order greater than or equal to 2 , and any $\tilde{\omega}, \tilde{\sigma} \in \Omega^{2}(3)$ such that $\tilde{\omega}(0)=0=\tilde{\sigma}(0)$.

It follows that $x_{1} v_{2}+\beta x_{1} v_{1}+\hat{f} v_{1}+\hat{g} v_{2}+\hat{\omega} v_{1}+\hat{\sigma} v_{2}$ does not lie in L_{0} for any $\beta \in \mathbb{C}$, any \hat{f}, \hat{g} such that $\hat{f}(0)=0=\hat{g}(0)$ of order greater than or equal to 2 , and any $\hat{\omega}, \hat{\sigma} \in \Omega^{2}(3)$ such that $\hat{\omega}(0)=0=\hat{\sigma}(0)$.

Suppose that the even element $F+f H+g E+X+Y+\check{\omega}$ lies in L_{0} for some $f, g \in \Omega^{0}(3)$ such that either f and g lie in \mathbb{C} or $f(0)=0=g(0)$ of order greater than or equal to 2 , some $X \in W_{3}$ such that $X(0)=0$ of order greater than or equal to 2 , some $Y \in T$ and $\check{\omega} \in d \Omega^{1}(3)$. Then L_{0} contains the element $\left[F+f H+g E+X+Y+\tilde{\omega}, x_{1} v_{1}+f^{\prime} v_{1}+g^{\prime} v_{2}+\omega^{\prime} v_{1}+\sigma^{\prime} v_{2}\right]=$ $x_{1} v_{2}+\beta x_{1} v_{1}+\varphi v_{1}+\psi v_{2}+\tau v_{1}+\rho v_{2}$ for some $\beta \in \mathbb{C}$, some φ, ψ such that $\varphi(0)=0=\psi(0)$, contradicting our hypotheses. By Remark 10.9, L_{0} is contained in the maximal graded subalgebra of type $(1,1,1,-1)$, hence it coincides with it by maximality.
(1Bii) $x_{1} v_{2}+\tilde{f} v_{1}+\tilde{g} v_{2}+\tilde{\omega} v_{1}+\tilde{\sigma} v_{2}$ lies in L_{0} for some \tilde{f}, \tilde{g} such that $\tilde{f}(0)=0=\tilde{g}(0)$ of order greater than or equal to 2 , and some $\tilde{\omega}, \tilde{\sigma} \in \Omega^{2}(3)$ such that $\tilde{\omega}(0)=0=\tilde{\sigma}(0)$.

As a consequence, the elements $x_{2} v_{1}+f^{\prime \prime} v_{1}+g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}$ and $x_{3} v_{1}+f^{\prime \prime} v_{1}+$ $g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}$ do not lie in L_{0} for any $f^{\prime \prime}, g^{\prime \prime}$ such that $f^{\prime \prime}(0)=0$ of order greater than or equal to 2 and $g^{\prime \prime}(0)=0$, and any $\omega^{\prime \prime}, \sigma^{\prime \prime}$ such that $\omega^{\prime \prime}(0)=0=\sigma^{\prime \prime}(0)$.

Now consider the elements $x_{i} \partial / \partial x_{1}+\sum_{j} f_{j} A_{j}+Y+\delta$ for $i \neq 1$, where $f_{j} \in \Omega^{0}(3), f_{j}(0)=$ 0 of order greater than or equal to $2, A_{j} \in s l_{2}, \delta \in d \Omega^{1}(3)$, and Y is a vector field such that $Y(0)=0$ of order greater than or equal to 3 . If such an element lies in L_{0}, then the commutator $\left[x_{i} \partial / \partial x_{1}+\sum f_{j} A_{j}+Y+\delta, x_{1} v_{1}+f^{\prime} v_{1}+g^{\prime} v_{2}+\omega^{\prime} v_{1}+\sigma^{\prime} v_{2}\right]=x_{i} v_{1}+\varphi v_{1}+\psi v_{2}+\tau v_{1}+\rho v_{2}$ lies in L_{0}, for some $\varphi, \psi \in \Omega^{0}(3)$ such that $\varphi(0)=0$ of order greater than or equal to 2 and $\psi(0)=0$, and some $\tau, \rho \in \Omega^{2}(3)$ such that $\tau(0)=\rho(0)=0$, contradicting our hypotheses. By Remark $10.9, L_{0}$ is contained in the graded subalgebra of L of type $(2,1,1,-2)$, thus coincides with it due to its maximality.

Let us now go back to case (1A). Again, we distinguish two possibilities:
(1Ai) L_{0} does not contain any element of the form $\alpha x_{i} v_{1}+\beta x_{i} v_{2}+f v_{1}+g v_{2}+\omega v_{1}+\sigma v_{2}$, for any i, any $\alpha, \beta \in \mathbb{C}$, any $f, g \in \Omega^{0}(3)$ such that $f(0)=0=g(0)$ of order greater than or equal to 2 , and any $\omega, \sigma \in \Omega^{2}(3)$ such that $\omega(0)=0=\sigma(0)$.

Then, using arguments similar to those used above and Remark 10.9 , one shows that L_{0} is contained in the maximal graded subalgebra of type $(2,2,2,-3)$, thus coincides with it due to its maximality.
(1Aii) L_{0} contains the element $\alpha x_{i} v_{1}+\beta x_{i} v_{2}+\tilde{f} v_{1}+\tilde{g} v_{2}+\tilde{\omega} v_{1}+\tilde{\sigma} v_{2}$ for some i, some $\alpha, \beta \in \mathbb{C}$ such that $(\alpha, \beta) \neq(0,0)$, some $\tilde{f}, \tilde{g} \in \Omega^{0}(3)$ such that $\tilde{f}(0)=0=\tilde{g}(0)$ of order greater than or equal to 2 , and some $\omega, \sigma \in \Omega^{2}(3)$ such that $\omega(0)=0=\sigma(0)$.

Up to conjugation, we can assume $i=1$ and $\alpha \neq 0$, i.e., $x_{1} v_{1}+\beta x_{1} v_{2}+\tilde{f} v_{1}+\tilde{g} v_{2}+\tilde{\omega} v_{1}+$ $\tilde{\sigma} v_{2} \in L_{0}$. It follows that $x_{1} v_{1}-\beta x_{1} v_{2}+f^{\prime \prime} v_{1}+g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}$ does not lie in L_{0} for any $f^{\prime \prime}, g^{\prime \prime}$ such that $f^{\prime \prime}(0)=0=g^{\prime \prime}(0)$ of order greater than or equal to 2 . Therefore, up to a change of basis, this case is equivalent to $(1 \mathrm{Bi})$.

Let us now consider case 2 . Arguing as above, one shows that, up to conjugation, the following possibilities may occur:
(2a) The elements $x_{i} v_{1}+\tilde{f}_{i} v_{1}+\tilde{g}_{i} v_{2}+\tilde{\omega}_{i} v_{1}+\tilde{\sigma}_{i} v_{2}$ lie in L_{0} for every $i=1,2,3$, some $\tilde{f}_{i}, \tilde{g}_{i} \in$ $\Omega^{0}(3)$ such that $\tilde{f}_{i}(0)=0=\tilde{g}_{i}(0)$ of order greater than or equal to 2 , and some $\tilde{\omega}_{i}, \tilde{\sigma}_{i} \in$ $\Omega^{2}(3)$ such that $\tilde{\omega}_{i}(0)=0=\tilde{\sigma}_{i}(0)$ and the elements $x_{i} v_{2}+f^{\prime \prime} v_{1}+g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}$ do not lie in L_{0} for any $i=1,2,3$, any $f^{\prime \prime}, g^{\prime \prime} \in \Omega^{0}(3)$ such that $g^{\prime \prime}(0)=0$ of order greater than or equal to 2 and $f^{\prime \prime}(0)=0$, and any $\omega^{\prime \prime}, \sigma^{\prime \prime} \in \Omega^{2}(3)$ such that $\omega^{\prime \prime}(0)=0=\sigma^{\prime \prime}(0)$. Then L_{0} is the non-graded Lie superalgebra constructed in Example 10.7.
(2b) The elements $x_{1} v_{1}+\bar{f} v_{1}+\bar{g} v_{2}+\bar{\omega} v_{1}+\bar{\sigma} v_{2}$ and $x_{1} v_{2}+f^{\prime \prime} v_{1}+g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}$ lie in L_{0} for some $\bar{f}, \bar{g}, f^{\prime \prime}, g^{\prime \prime} \in \Omega^{0}(3)$ such that $\bar{f}(0)=f^{\prime \prime}(0)=0=\bar{g}(0)=g^{\prime \prime}(0)$ of order greater than or equal to 2 , and some $\bar{\omega}, \bar{\sigma}, \omega^{\prime \prime}, \sigma^{\prime \prime} \in \Omega^{2}(3)$ such that $\bar{\omega}(0)=\omega^{\prime \prime}(0)=0=$ $\bar{\sigma}(0)=\sigma^{\prime \prime}(0)$ and the elements $x_{i} v_{1}+\varphi v_{1}+\psi v_{2}+\tau v_{1}+\rho v_{2}, x_{i} v_{2}+\varphi^{\prime} v_{1}+\psi^{\prime} v_{2}+\tau v_{1}+$ ρv_{2} do not lie in L_{0} for any $i=2,3$, any $\varphi, \psi, \varphi^{\prime}, \psi^{\prime} \in \Omega^{0}(3)$ such that $\varphi(0)=0=\psi^{\prime}(0)$ of order greater than or equal to 2 and $\varphi^{\prime}(0)=0=\psi(0)$, and any $\tau, \rho \in \Omega^{2}(3)$ such that $\tau(0)=0=\rho(0)$. Then L_{0} is the non-graded subalgebra of L constructed in Example 10.6.
(2c) The elements $x_{i} v_{1}+f^{\prime \prime} v_{1}+g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}, x_{i} v_{2}+f^{\prime \prime} v_{1}+g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}$ do not lie in L_{0} for any $i=1,2,3$, any $f^{\prime \prime}, g^{\prime \prime} \in \Omega^{0}(3)$ such that $f^{\prime \prime}(0)=0=g^{\prime \prime}(0)$ of order greater than or equal to 2 , and any $\omega^{\prime \prime}, \sigma^{\prime \prime} \in \Omega^{2}(3)$ such that $\omega^{\prime \prime}(0)=0=\sigma^{\prime \prime}(0)$. Then L_{0} is the non-graded Lie subalgebra of L constructed in Example 10.8.

Likewise, in case 3, one shows that, up to conjugation, the following cases may occur:
(3a) The elements $x_{i} v_{1}+\tilde{f}_{i} v_{1}+\tilde{g}_{i} v_{2}+\tilde{\omega}_{i} v_{1}+\tilde{\sigma}_{i} v_{2}$ lie in L_{0} for every $i=1,2,3$, some $\tilde{f}_{i}, \tilde{g}_{i} \in$ $\Omega^{0}(3)$ such that $\tilde{f}_{i}(0)=0=\tilde{g}_{i}(0)$ of order greater than or equal to 2 , and some $\tilde{\omega}_{i}, \tilde{\sigma}_{i} \in$ $\Omega^{2}(3)$ such that $\tilde{\omega}_{i}(0)=0=\tilde{\sigma}_{i}(0)$ and the elements $x_{i} v_{2}+f^{\prime \prime} v_{1}+g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}$ do not lie in L_{0} for any $i=1,2,3$, any $f^{\prime \prime}, g^{\prime \prime} \in \Omega^{0}(3)$ such that $g^{\prime \prime}(0)=0$ of order greater than or equal to 2 and $f^{\prime \prime}(0)=0$, and any $\omega^{\prime \prime}, \sigma^{\prime \prime} \in \Omega^{2}(3)$ such that $\omega^{\prime \prime}(0)=0=\sigma^{\prime \prime}(0)$. Then L_{0} is the non-graded Lie superalgebra constructed in Example 10.3.
(3b) The elements $x_{1} v_{1}+\bar{f} v_{1}+\bar{g} v_{2}+\bar{\omega} v_{1}+\bar{\sigma} v_{2}$ and $x_{1} v_{2}+f^{\prime \prime} v_{1}+g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}$ lie in L_{0} for some $\bar{f}, \bar{g}, f^{\prime \prime}, g^{\prime \prime} \in \Omega^{0}(3)$ such that $\bar{f}(0)=f^{\prime \prime}(0)=0=\bar{g}(0)=g^{\prime \prime}(0)$ of order greater than or equal to 2 , and some $\bar{\omega}, \bar{\sigma}, \omega^{\prime \prime}, \sigma^{\prime \prime} \in \Omega^{2}(3)$ such that $\bar{\omega}(0)=\omega^{\prime \prime}(0)=0=$ $\bar{\sigma}(0)=\sigma^{\prime \prime}(0)$ and the elements $x_{i} v_{1}+\varphi v_{1}+\psi v_{2}+\tau v_{1}+\rho v_{2}, x_{i} v_{2}+\varphi^{\prime} v_{1}+\psi^{\prime} v_{2}+\tau v_{1}+$ ρv_{2} do not lie in L_{0} for any $i=2,3$, any $\varphi, \psi, \varphi^{\prime}, \psi^{\prime} \in \Omega^{0}(3)$ such that $\varphi(0)=0=\psi^{\prime}(0)$ of order greater than or equal to 2 and $\varphi^{\prime}(0)=0=\psi(0)$, and any $\tau, \rho \in \Omega^{2}(3)$ such that $\tau(0)=0=\rho(0)$. Then L_{0} is the non-graded subalgebra of L constructed in Example 10.4.
(3c) The elements $x_{i} v_{1}+f^{\prime \prime} v_{1}+g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}, x_{i} v_{2}+f^{\prime \prime} v_{1}+g^{\prime \prime} v_{2}+\omega^{\prime \prime} v_{1}+\sigma^{\prime \prime} v_{2}$ do not lie in L_{0} for any $i=1,2,3$, any $f^{\prime \prime}, g^{\prime \prime} \in \Omega^{0}(3)$ such that $f^{\prime \prime}(0)=0=g^{\prime \prime}(0)$ of order greater than or equal to 2 , and any $\omega^{\prime \prime}, \sigma^{\prime \prime} \in \Omega^{2}(3)$ such that $\omega^{\prime \prime}(0)=0=\sigma^{\prime \prime}(0)$. Then L_{0} is the non-graded Lie subalgebra of L constructed in Example 10.5.

Corollary 10.11. All irreducible gradings of $E(3,8)$ are, up to conjugation, the gradings of type $(1,1,1,-1),(2,1,1,-2)$ and $(2,2,2,-3)$.

Theorem 10.12. All maximal open subalgebras of $L=E(3,8)$ are, up to conjugation, the following:
(i) the graded subalgebras of type $(1,1,1,-1),(2,1,1,-2),(2,2,2,-3)$;
(ii) the non-graded regular subalgebras constructed in Examples 10.3-10.8.

Proof. Let L_{0} be a maximal open subalgebra of L and let $G r L$ be the graded Lie superalgebra associated to the Weisfeiler filtration corresponding to L_{0}. Then $\overline{G r L}$ has growth equal to 3 and size equal to 16 , and, by Proposition 7.1, it is of the form (7.1). It follows, using Table 2, Remark 7.3 and Proposition 7.4, that $S=H O(3,3), \operatorname{SHO}(3,3), \operatorname{SKO}(3,4 ; \beta)$, and $n=1,2,1$, respectively, or $S=S(3,2), E(3,8)$ and $n=0$. Therefore $\overline{\operatorname{Gr} L}$ necessarily contains a torus \hat{T} of dimension greater than or equal to 2 , thus L_{0} contains a torus \tilde{T} of dimension greater than or equal to 2 which is the lift of \hat{T}. In particular, the weights of \tilde{T} on L / L_{0} coincide with the weights of \hat{T} on $G r L / G r \geqslant 0 L$. Since L is transitive, these weights determine the torus \tilde{T} completely. Therefore we may assume, up to conjugation, that L_{0} contains the standard torus T^{\prime} of S_{3}. Now the statement follows from Theorem 10.10.

We conclude this section with an immediate corollary of the work we have done in Sections 2-10. It is assumed here that $\Lambda(s), \Lambda(\eta)$, etc, as well as $\mathfrak{a}, \mathfrak{b}$, etc, have zero degree.

Corollary 10.13. The following is a complete list of infinite-dimensional linearly compact irreducible graded Lie superalgebras that admit a non-trivial simple filtered deformation (listed in the parentheses at the beginning of each item):
$(\boldsymbol{H}(\mathbf{2 k}, \boldsymbol{n}+\boldsymbol{s})) \quad H(2 k, n) \otimes \Lambda(s)+H(0, s)$ with $H(2 k, n)$ having gradings of type $(1, \ldots, 1 \mid$ $2, \ldots, 2,1, \ldots, 1,0, \ldots, 0$) with t zeros and $t 2$'s, for $0 \leqslant t \leqslant[n / 2]$;
$(\boldsymbol{K O}(\boldsymbol{n}, \boldsymbol{n}+\mathbf{1})) H O(n, n) \otimes \Lambda(\eta)+\mathfrak{a}$ with $H O(n, n)$ having gradings of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ and $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with t zeros and $t 2$'s, for $0 \leqslant t \leqslant n-2$, where $\mathfrak{a}=\mathbb{C} \partial / \partial \eta+\mathbb{C}(E-2+2 \eta \partial / \partial \eta)$ and E is the Euler operator;
$(\mathbf{S K O}(\boldsymbol{n}, \boldsymbol{n}+\mathbf{1} ; \boldsymbol{\beta})) \operatorname{SHO}(n, n) \otimes \Lambda(\eta)+\mathfrak{a}$ for $n \geqslant 3$, with $\operatorname{SHO}(n, n)$ having gradings of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ and $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with t zeros and $t 2$'s, for $0 \leqslant$ $t \leqslant n-2$, where $\mathfrak{a}=\mathbb{C} \partial / \partial \eta+\mathbb{C}(E-2-\beta a d(\Phi)+2 \eta \partial / \partial \eta)$ and $\Phi=\sum x_{i} \xi_{i}$, or $\mathfrak{a}=$ $\mathbb{C} \partial / \partial \eta+\mathbb{C}(E-2-\beta a d(\Phi)+2 \eta \partial / \partial \eta)+\mathbb{C} \xi_{1} \ldots \xi_{n} ;$
$(\mathbf{S K O}(\mathbf{2}, \mathbf{3} ; \boldsymbol{\beta}), \boldsymbol{\beta} \neq \mathbf{0}) \operatorname{SHO}(2,2) \otimes \Lambda(\eta)+\mathfrak{a}$ with $\operatorname{SHO}(2,2)$ having grading of type $(1,1 \mid 1,1)$, where $\mathfrak{a}=\mathbb{C} \partial / \partial \eta+\mathbb{C}(E-2-\beta a d(\Phi)+2 \eta \partial / \partial \eta)+\mathbb{C} \xi_{1} \xi_{2} ;$
$\left(\mathbf{S H O}^{\sim}(\boldsymbol{n}, \boldsymbol{n})\right) \mathrm{SHO}^{\prime}(n, n)$ with the gradings of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with t zeros and $t 2$'s, for $0 \leqslant t \leqslant n-2$;
$\left(\mathbf{S K O}^{\sim}(\boldsymbol{n}, \boldsymbol{n}+\mathbf{1})\right) \operatorname{SKO}^{\prime}(n, n+1 ;(n+2) / n)$ with the gradings of type $(1, \ldots, 1 \mid 0 \ldots, 0,1)$ and $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$ with t zeros and $t+12$'s, for $0 \leqslant t \leqslant n-2$;
$\left(\mathbf{S K O}^{\sim}(\boldsymbol{n}, \boldsymbol{n}+\mathbf{1})\right) \operatorname{SHO}(n, n) \otimes \Lambda(\eta)+\mathfrak{a}$ with $\operatorname{SHO}(n, n)$ having gradings of type $(1, \ldots, 1$, $2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with t zeros and $t 2$'s, for $0 \leqslant t \leqslant n-2$, where $\mathfrak{a}=\mathbb{C}(\partial / \partial \eta-$ $\left.\xi_{1} \ldots \xi_{n} \otimes \eta\right)+\mathbb{C} \xi_{1} \ldots \xi_{n}+\mathbb{C}\left(E-2+\frac{n+2}{n} a d(\Phi)+2 \eta \partial / \partial \eta\right) ;$
$(\boldsymbol{E}(4,4)) \operatorname{SHO}(4,4)+\mathbb{C} E$, where E is the Euler operator, with $\operatorname{SHO}(4,4)$ having gradings of type $(1,1,1,2 \mid 1,1,1,0),(1,1,2,2 \mid 1,1,0,0)$, and $(1,1,1,1 \mid 0,0,0,0)$;
$(\boldsymbol{E}(\mathbf{3}, \mathbf{8})) \operatorname{SKO}(3,4 ;-1 / 3) \otimes \Lambda(\xi)+\mathfrak{a}$, where $\mathfrak{a}=\mathbb{C} \partial / \partial \xi+\mathbb{C}(Z+\xi \partial / \partial \xi)$ and Z is the grading operator, with $\operatorname{SKO}(3,4 ;-1 / 3)$ having gradings of type $(1,1,1 \mid 1,1,1,2),(2,1,1 \mid$ $0,1,1,2),(1,1,1 \mid 0,0,0,1)$;
$(\boldsymbol{E}(\mathbf{3}, \mathbf{8})) \operatorname{SHO}(3,3) \otimes \Lambda(2)+\mathfrak{b}$ with $\operatorname{SHO}(3,3)$ having gradings of type $(2,1,1 \mid 0,1,1),(1,1$, $1 \mid 0,0,0),(2,2,2 \mid 1,1,1)$, where \mathfrak{b} is the finite-dimensional subalgebra of $\operatorname{Der}(\operatorname{SHO}(3,3) \otimes$ $\Lambda(2))$ described in Examples 10.6, 10.7, 10.8.

11. Invariant maximal open subalgebras and the canonical invariant

Given a linearly compact Lie superalgebra L, we call invariant a subalgebra of L which is invariant with respect to all its inner automorphisms, or, equivalently, which contains all exponentiable elements of L.

In order to obtain all invariant maximal open subalgebras of all linearly compact infinitedimensional simple Lie superalgebras L, we take the list of all maximal open subalgebras of L, up to conjugation by G (obtained in the previous sections), select those which contain all exponentiable elements of L, and then apply to each of them the subgroup of G of outer automorphisms. This leads to the following

Theorem 11.1. The following is a complete list, up to conjugation by G, of invariant maximal open subalgebras in infinite-dimensional linearly compact simple Lie superalgebras L :
(a) the graded subalgebras of principal type in $L \neq \operatorname{SKO}(2,3 ; 0), \operatorname{SHO}^{\sim}(n, n)$ or $\operatorname{SKO}^{\sim}(n$, $n+1$);
(b) the non-graded subalgebra $L_{0}(n)$ in $\operatorname{SHO}^{\sim}(n, n)$ and $\operatorname{SKO}^{\sim}(n, n+1)$, constructed in Examples 5.2 and 5.8 respectively;
(c) the graded subalgebras of subprincipal type in $W(m, 1), S(m, 1), H(m, 2), K(m, 2)$, $K O(2,3), S K O(2,3 ; \beta), S K O(3,4 ; 1 / 3)$;
(d) the graded subalgebra of type $(1,1 \mid-1,-1,0)$ in $\operatorname{SKO}(2,3 ; \beta)$ for $\beta \neq 1$;
(e) the non-graded regular subalgebra $L_{0}(0)$ in $H(m, 1)$, constructed in Example 3.3;
(f) the graded subalgebra of type $(2,1, \ldots, 1 \mid 0,2)$ in $K(m, 2)$ and the graded subalgebra of type $(1, \ldots, 1 \mid 0,2)$ in $H(m, 2)$.

Next theorem follows from our classification of maximal open subalgebras and Theorem 11.1.

Theorem 11.2.

(a) In all infinite-dimensional linearly compact simple Lie superalgebras $L \neq \operatorname{SKO}(3,4 ; 1 / 3)$ there is a unique, up to conjugation by automorphisms of L, subalgebra of minimal codimension. These are the subalgebras listed in Theorem 11.1(a) and (b) if $L \neq \operatorname{KO}(2,3)$, $\operatorname{SKO}(2,3 ; \beta)$, and the graded subalgebra of subprincipal type in $K O(2,3)$ and $\operatorname{SKO}(2,3 ; \beta)$.
(b) If $L \neq W(1,1), S(1,2), \operatorname{SHO}(3,3)$ and $\operatorname{SKO}(3,4 ; 1 / 3)$, L contains a unique subalgebra of minimal codimension. In $L=W(1,1), S(1,2)$ and $\operatorname{SHO}(3,3)$, subalgebras of minimal
codimension are invariant with respect to inner automorphisms and are conjugate by outer automorphisms of L.
(c) $L=\operatorname{SKO}(3,4 ; 1 / 3)$ contains infinitely many subalgebras of minimal codimension which are conjugate by an outer automorphism of L to the subalgebra of subprincipal type; besides, the subalgebra of principal type has minimal codimension and it is not conjugate to the previous ones.

Remark 11.3. Let L be an infinite-dimensional linearly compact simple Lie superalgebra. If $L=W(1,1)$ the subalgebras of principal and subprincipal type, which are invariant with respect to inner automorphisms, are permuted by an outer automorphism of L. If $L=S(1,2)$ or $\operatorname{SHO}(3,3)$, then L has infinitely many invariant subalgebras: these subalgebras have minimal codimension and are permuted by an $S L_{2}$-copy of outer automorphisms of L. If $L=S K O(2,3 ; 1)$ then L has a unique invariant subalgebra of minimal codimension (the subalgebra of subprincipal type) and infinitely many invariant maximal open subalgebras of codimension (2|3), which are permuted by an $S L_{2}$-copy of outer automorphisms of L. If $L=S K O(3,4 ; 1 / 3)$, then there are infinitely many subalgebras of minimal codimension which are conjugate to the subalgebra of subprincipal type by the automorphisms $\exp \left(a d\left(t \xi_{1} \xi_{2} \xi_{3}\right)\right)$ with $t \in \mathbb{C}$. If $L=K(m, 2)$ (respectively $H(m, 2)$) the subalgebra of subprincipal type, which is invariant with respect to inner automorphisms, is conjugate by an outer automorphism to the subalgebra of type $(2,1, \ldots, 1 \mid 0,2)$ (respectively $(1, \ldots, 1 \mid 0,2)$). In all other cases all invariant maximal open subalgebras of L, listed in Theorem 11.1, are invariant with respect to all automorphisms of L.

Let L be an infinite-dimensional linearly compact simple Lie superalgebra and let L_{0} be a maximal open subalgebra of L. In the introduction we defined the subspace $\pi\left(L_{0}\right)$ of $V=L / S_{0}$, where S_{0} is the canonical subalgebra, defined as the intersection of all subalgebras of minimal codimension. Since S_{0} contains all exponentiable elements of L and all even elements of L_{0} are exponentiable, we conclude that $\pi\left(L_{0}\right)$ is an abelian subspace of $V_{\overline{1}}$.

Denote by \bar{G} the linear subgroup of $G L\left(V_{\overline{1}}\right)$ induced by the action of G on L, and by Π the map from the set of conjugacy classes of open maximal subalgebras of L to the set of \bar{G}-orbits of abelian subspaces of $V_{\overline{1}}$. Recall that the \bar{G}-orbit of $\pi\left(L_{0}\right)$ is called the canonical invariant of L_{0}.

We list below in all cases the linear group \bar{G}, all its orbits of abelian subspaces of $V_{\overline{1}}$, and those of them which are canonical invariants of maximal open subalgebras. When $L=W(1,1)$, $S(1,2), \operatorname{SHO}(3,3)$ or $\operatorname{SKO}(3,4 ; 1 / 3)$, we will describe the canonical subalgebra of L. In all other cases, since L has a unique subalgebra of minimal codimension, this will be its canonical subalgebra.
(1) $L=W(1,1) . L$ has two invariant subalgebras of minimal codimension: the graded subalgebras of principal and subprincipal type. It follows that the canonical subalgebra of L is its graded subalgebra of type (2|1). Therefore $V_{\overline{1}}=\langle\partial / \partial \xi, \xi \partial / \partial x\rangle$ with the symmetric bilinear form $(\partial / \partial \xi, \partial / \partial \xi)=0,(\xi \partial / \partial x, \xi \partial / \partial x)=0,(\partial / \partial \xi, \xi \partial / \partial x)=1$, and the abelian subspaces of $V_{\overline{1}}$ are its isotropic subspaces; $\bar{G}=\mathbb{C}^{\times} \times \mathbb{C}^{\times}$.

If L_{0} is the graded subalgebra of L of type (1|1) then $\pi\left(L_{0}\right)=\langle\xi \partial / \partial x\rangle$; if L_{0} is the graded subalgebra of L of type $(1 \mid 0)$ then $\pi\left(L_{0}\right)=\langle\partial / \partial \xi\rangle$. It follows from Theorem 2.3 that the map Π is injective but it is not surjective since the orbit of the trivial subspace of $V_{\overline{1}}$ is not in the image of Π.
(2) $L=S(1,2) . L$ has infinitely many invariant subalgebras of minimal codimension whose intersection is the graded subalgebra of type $(2 \mid 1,1)$ which is, therefore, the canonical subalgebra
of L (cf. Remark 2.12). It follows that $V_{\overline{1}}=\left\langle\partial / \partial \xi_{1}, \partial / \partial \xi_{2}, \xi_{1} \partial / \partial x, \xi_{2} \partial / \partial x\right\rangle$ with the symmetric bilinear form $\left(\partial / \partial \xi_{i}, \partial / \partial \xi_{j}\right)=0,\left(\xi_{i} \partial / \partial x, \xi_{j} \partial / \partial x\right)=0,\left(\partial / \partial \xi_{i}, \xi_{j} \partial / \partial x\right)=\delta_{i j}$; the abelian subspaces of $V_{\overline{1}}$ are its isotropic subspaces and $\bar{G}=\mathbb{C}^{\times} \mathrm{SO}_{4}$. The orbit of an h-dimensional isotropic subspace of $V_{\overline{1}}$ is determined by h if $h<2$; besides, there are two orbits of maximal isotropic subspaces: the orbit of the subspace $\left\langle\xi_{1} \partial / \partial x, \xi_{2} \partial / \partial x\right\rangle$ and the orbit of the subspace $\left\langle\partial / \partial \xi_{2}, \xi_{1} \partial / \partial x\right\rangle$.

If L_{0} is the graded subalgebra of L of type $(1 \mid 1,1)$ then $\pi\left(L_{0}\right)=\left\langle\xi_{1} \partial / \partial x, \xi_{2} \partial / \partial x\right\rangle$; if L_{0} is the graded subalgebra of L of type $(1 \mid 1,0)$ then $\pi\left(L_{0}\right)=\left\langle\partial / \partial \xi_{2}, \xi_{1} \partial / \partial x\right\rangle$. It follows from Theorem 2.13(b) that the map Π is injective, but it is not surjective: its image consists of the orbits of the maximal isotropic subspaces of $V_{\overline{1}}$.
(3) $L=W(m, n)$ with $(m, n) \neq(1,1)$, or $S(m, n)$ with $(m, n) \neq(1,2) . V_{\overline{1}}=\left\langle\partial / \partial \xi_{1}, \ldots\right.$, $\left.\partial / \partial \xi_{n}\right\rangle, \bar{G}=G L_{n}(\mathbb{C})$, any subspace of $V_{\overline{1}}$ is abelian and its \bar{G}-orbit is determined by the dimension.

If L_{0} is the graded subalgebra of L of type $(1, \ldots, 1 \mid 1, \ldots, 1,0, \ldots, 0)$ with k zeros, for some $k=0, \ldots, n$, then $\pi\left(L_{0}\right)=\left\langle\partial / \partial \xi_{n-k+1}, \ldots, \partial / \partial \xi_{n}\right\rangle$. By Theorems 2.3 and 2.13(a), the map Π is bijective.
(4) $L=K(m, n)$: we identify $K(m, n)$ with $\Lambda(m, n)$. Therefore $V_{\overline{1}}=\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle$ with symmetric bilinear form $\left(\xi_{i}, \xi_{j}\right)=\delta_{i, n-j+1}$, the abelian subspaces of $V_{\overline{1}}$ are its isotropic subspaces, and $\bar{G}=\mathbb{C}^{\times} S O_{n}(\mathbb{C})$. The \bar{G}-orbit of any abelian subspace of $V_{\overline{1}}$ is determined by the dimension k of the subspace unless $n=2 h$ and $k=h$. If $n=2 h$ there are two distinct \bar{G}-orbits of h-dimensional isotropic subspaces.

Let $L=K(1,2 h)$: if L_{0} is the graded subalgebra of L of type $(1 \mid 1, \ldots, 1,0, \ldots, 0)$ with h zeros, then $\pi\left(L_{0}\right)=\left\langle\xi_{1}, \ldots, \xi_{h}\right\rangle$; if L_{0} is the graded subalgebra of L of type $(1 \mid 1, \ldots, 1,0,1,0, \ldots, 0)$ with h zeros, then $\pi\left(L_{0}\right)=\left\langle\xi_{1}, \ldots, \xi_{h-1}, \xi_{h+1}\right\rangle$; if L_{0} is the graded subalgebra of L of type ($2 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0$) with $s+12$'s and s zeros, for some $s=0, \ldots, h-2$, then $\pi\left(L_{0}\right)=\left\langle\xi_{1}, \ldots, \xi_{s}\right\rangle$. Therefore, by Theorem 2.31(i), all possible images of π are the isotropic subspaces of $V_{\overline{1}}$ except those of dimension $h-1$, and Π is injective.

Let $L=K(2 k+1, n)$ where n is odd and $k=0$, or n is arbitrary and $k>0$: if L_{0} is the graded subalgebra of L of type $(2,1, \ldots, 1 \mid 2, \ldots, 2,1, \ldots, 1,0, \ldots, 0)$ with $s+12$'s and s zeros, for some $s=0, \ldots,[n / 2]$, then $\pi\left(L_{0}\right)=\left\langle\xi_{1}, \ldots, \xi_{s}\right\rangle$. If $n=2 h$ the graded subalgebra of L of type ($2,1, \ldots, 1 \mid 2, \ldots, 2,0,2,0, \ldots, 0$), with h zeros and $h+12$'s, is not conjugate to the graded subalgebra of type $(2,1, \ldots, 1 \mid 2, \ldots, 2,0, \ldots, 0)$ with h zeros and $h+12$'s, and its image through π is the subspace $\left\langle\xi_{1}, \ldots, \xi_{h-1}, \xi_{h+1}\right\rangle$. By Theorem 2.31(ii) and (iii), Π is bijective.
(5) $L=S H O(3,3)$: we identify L with the set of elements in $\{f \in \Lambda(3,3) / \mathbb{C} 1 \mid \Delta(f)=0\}$ not containing the monomial $\xi_{1} \xi_{2} \xi_{3}$, with reversed parity. L has infinitely many invariant subalgebras of minimal codimension whose intersection is the subalgebra of type ($2,2,2 \mid 1,1,1$) which is, therefore, the canonical subalgebra of L (cf. Remark 2.38). It follows that $V_{\overline{1}}=$ $\left\langle x_{1}, x_{2}, x_{3}, \xi_{1} \xi_{2}, \xi_{1} \xi_{3}, \xi_{2} \xi_{3}\right\rangle$ and $\bar{G}=S L_{3} \times G L_{2}$. Consider the map $\psi: S^{2} V_{\overline{1}} \rightarrow\left\langle\xi_{i} \mid i=1,2,3\right\rangle$ given by $\psi\left(x_{j} \otimes x_{k}\right)=0, \psi\left(\xi_{i} \xi_{j} \otimes \xi_{h} \xi_{k}\right)=0, \psi\left(x_{i} \otimes \xi_{j} \xi_{k}\right)=\delta_{i j} \xi_{k}-\delta_{i k} \xi_{j}$. A subspace of $V_{\overline{1}}$ is abelian if and only if $\psi(a \otimes b)=0$ for any pair of elements a, b of this subspace. It follows that the \bar{G}-orbits of the non-trivial abelian subspaces of $V_{\overline{1}}$ are the orbits of the following subspaces: $\left\langle x_{1}\right\rangle,\left\langle x_{1}, x_{2}\right\rangle,\left\langle x_{1}, \xi_{2} \xi_{3}\right\rangle,\left\langle x_{1}, x_{2}, x_{3}\right\rangle$.

If L_{0} is the graded subalgebra of L of type $(1,1,1 \mid 1,1,1)$, then $\pi\left(L_{0}\right)=\left\langle\xi_{1} \xi_{2}, \xi_{1} \xi_{3}, \xi_{2} \xi_{3}\right\rangle$; if L_{0} is the graded subalgebra of L of type $(1,1,2 \mid 1,1,0)$, then $\pi\left(L_{0}\right)=\left\langle\xi_{1} \xi_{2}, x_{3}\right\rangle$. By Theo-
rem 2.42(b), the map Π is injective but not surjective. Indeed its image does not contain the orbit of the trivial subspace, that of the one-dimensional subspaces and that of the subspace $\left\langle x_{1}, x_{2}\right\rangle$.
(6) $L=H O(n, n)$ (respectively $L=S H O(n, n)$ with $n>3$): we identify $H O(n, n)$ with $\Lambda(n, n) / \mathbb{C} 1$ with reversed parity, and $\operatorname{SHO}(n, n)$ with the set of elements in $\{f \in \Lambda(n, n) / \mathbb{C} 1 \mid$ $\Delta(f)=0\}$ not containing the monomial $\xi_{1} \ldots \xi_{n}$. Then $V_{\overline{1}}=\left\langle x_{1}, \ldots, x_{n}\right\rangle, \bar{G}=G L_{n}(\mathbb{C})$, any subspace of $V_{\overline{1}}$ is abelian and its \bar{G}-orbit is determined by the dimension.

If L_{0} is the graded subalgebra of L of type $(1, \ldots, 1 \mid 0, \ldots, 0)$, then $\pi\left(L_{0}\right)=\left\langle x_{1}, \ldots, x_{n}\right\rangle$; if L_{0} is the graded subalgebra of L of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with $n-s 2$'s and $n-s$ zeros, for some $s=2, \ldots, n$, then $\pi\left(L_{0}\right)=\left\langle x_{s+1}, \ldots, x_{n}\right\rangle$. By Theorem 2.42(a), the image of π consists of all subspaces of $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ except those of codimension 1 , and the map Π is injective.
(7) $L=H(2 k, n)$: we identify L with $\Lambda(2 k, n) / \mathbb{C} 1$. Then $V_{\overline{1}}=\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle$ with the bilinear form $\left(\xi_{i}, \xi_{j}\right)=\delta_{i, n-j+1}\left(\mathrm{cf}\right.$. Example 3.3), $\bar{G}=\mathbb{C}^{\times} S O_{n}(\mathbb{C})$, and any subspace of $V_{\overline{1}}$ is abelian. Let S be a subspace of $V_{\overline{1}}$ and let $S=S^{0} \oplus S^{1}$ where S^{0} is the kernel of the restriction of the bilinear form (\cdot, \cdot) to S. Let $s_{i}=\operatorname{dim} S^{i}$. Then the \bar{G}-orbit of S is determined by the pair $\left(s_{0}, s_{1}\right)$ unless $s_{1}=0, n$ is even and $s_{0}=n / 2$. If n is even then there are two distinct orbits of maximal isotropic subspaces of $V_{\overline{1}}$.

If $L_{0}=L_{0}(U)$ is the maximal open subalgebra of L constructed in Example 3.3, then $\pi\left(L_{0}(U)\right)=U^{0}+\left(U^{1}\right)^{\prime}$. By Theorem 3.10 and Remark 3.4, the map Π is bijective.
(8) $L=K O(2,3)$: we identify L with $\Lambda(2,3)$ with reversed parity. The canonical subalgebra of L is its subalgebra of subprincipal type. Therefore $V_{\overline{1}}=\left\langle 1, \xi_{1} \xi_{2}\right\rangle$ and any subspace of $V_{\overline{1}}$ is abelian. \bar{G} is the subgroup of $G L_{2}(\mathbb{C})$ consisting of upper triangular matrices, thus there are four \bar{G}-orbits of abelian subspaces in $V_{\overline{1}}$: the orbit of the zero-dimensional subspace, the orbit of the two-dimensional subspace, the orbit of the one-dimensional subspace $\langle 1\rangle$ and the orbit of the one-dimensional subspace $\left\langle\xi_{1} \xi_{2}\right\rangle$.

If L_{0} is the subalgebra of L of principal type or the subalgebra of subprincipal type, then $\pi\left(L_{0}\right)=\left\langle\xi_{1} \xi_{2}\right\rangle$ or $\pi\left(L_{0}\right)=\langle 0\rangle$, respectively; if L_{0} is the subalgebra constructed in Example 4.7, then $\pi\left(L_{0}\right)=\langle 1\rangle$; finally, if $L_{0}(2)$ is the subalgebra constructed in Example 4.8, then $\pi\left(L_{0}(2)\right)=$ $\left\langle 1, \xi_{1} \xi_{2}\right\rangle$. By Theorem 4.12, the map Π is bijective.
(9) $L=\operatorname{SKO}(2,3 ; \beta)$ with $\beta \neq 0,1$. The canonical subalgebra of L is its subalgebra of subprincipal type. Therefore $V_{\overline{1}}=\left\langle 1, \xi_{1} \xi_{2}\right\rangle$, any subspace of $V_{\overline{1}}$ is abelian and \bar{G} is the subgroup of $G L_{2}(\mathbb{C})$ consisting of diagonal matrices. It follows that there are five \bar{G}-orbits of abelian subspaces in $V_{\overline{1}}$: the orbit of the zero-dimensional subspace, the orbit of the two-dimensional subspace, the orbit of the one-dimensional subspace $\langle 1\rangle$, the orbit of the one-dimensional subspace $\left\langle\xi_{1} \xi_{2}\right\rangle$, and the orbit of the one-dimensional subspace $\left\langle 1+\xi_{1} \xi_{2}\right\rangle$.

If L_{0} is the subalgebra of L of type $(1,1 \mid 0,0,1),(1,1 \mid 1,1,2),(1,1 \mid-1,-1,0)$, then $\pi\left(L_{0}\right)=\langle 0\rangle, \pi\left(L_{0}\right)=\left\langle\xi_{1} \xi_{2}\right\rangle, \pi\left(L_{0}\right)=\langle 1\rangle$, respectively; if $S_{0}(2)$ is the subalgebra of L constructed in Example 4.21, then $\pi\left(S_{0}(2)\right)=\left\langle 1, \xi_{1} \xi_{2}\right\rangle$. By Theorem 4.24(a), the map Π is injective but not surjective, since its image does not contain the orbit of the subspace $\left\langle 1+\xi_{1} \xi_{2}\right\rangle$.
(10) $L=\operatorname{SKO}(2,3 ; 1)$. The canonical subalgebra of L is its subalgebra of subprincipal type. Therefore $V_{\overline{1}}=\left\langle 1, \xi_{1} \xi_{2}\right\rangle$, any subspace of $V_{\overline{1}}$ is abelian and $\bar{G}=G L_{2}$. It follows that the \bar{G}-orbit of an abelian subspace of $V_{\overline{1}}$ is determined by its dimension.

If L_{0} is the subalgebra of L of type $(1,1 \mid 0,0,1)$ or $(1,1 \mid 1,1,2)$, then $\pi\left(L_{0}\right)=\langle 0\rangle$ or $\pi\left(L_{0}\right)=$ $\left\langle\xi_{1} \xi_{2}\right\rangle$, respectively; if $S_{0}(2)$ is the subalgebra of L constructed in Example 4.21, then $\pi\left(S_{0}(2)\right)=$ $\left\langle 1, \xi_{1} \xi_{2}\right\rangle$. By Theorem 4.24(b), the map Π is bijective.
(11) $L=\operatorname{SKO}(2,3 ; 0)$. The canonical subalgebra of L is its subalgebra of subprincipal type. $V_{\overline{1}}=\langle 1\rangle$ and any subspace of $V_{\overline{1}}$ is abelian; $\bar{G}=\mathbb{C}^{\times}$. It follows that there are two \bar{G}-orbits of abelian subspaces in $V_{\overline{1}}$: the orbit of the zero-dimensional subspace and the orbit of the onedimensional subspace.

If L_{0} is the subalgebra of type $(1,1 \mid 0,0,1)$, then $\pi\left(L_{0}\right)=\langle 0\rangle$; if L_{0} is the subalgebra of type $(1,1 \mid-1,-1,0)$, then $\pi\left(L_{0}\right)$ is $\langle 1\rangle$. By Theorem 4.24(c), Π is bijective.
(12) $L=\operatorname{SKO}(3,4 ; 1 / 3)$. L has, up to conjugation by $G, 2$ subalgebras of minimal codimension: the subalgebras of principal and subprincipal type. These subalgebras are not conjugate since the grading of principal type has depth 2 and the grading of subprincipal type has depth 1 . The canonical subalgebra is the graded subalgebra of type $(2,2,2 \mid 1,1,1,3)$, therefore $V_{\overline{1}}=\left\langle 1, x_{1}, x_{2}, x_{3}, \xi_{2} \xi_{3}, \xi_{3} \xi_{1}, \xi_{1} \xi_{2}\right\rangle$ with the non-trivial filtration: $V_{\overline{1}}=V_{-3} \supset V_{-1}$ where $V_{-1}=\left\langle x_{1}, x_{2}, x_{3}, \xi_{2} \xi_{3}, \xi_{3} \xi_{1}, \xi_{1} \xi_{2}\right\rangle . \bar{G}=\mathbb{C}^{\times} G^{\prime}$ where G^{\prime} consists of matrices $\left(\begin{array}{cc}a & c \\ 0 & 1\end{array}\right)$ where c is an arbitrary 6×1 matrix and a belongs to the subgroup of $G L_{6}(\mathbb{C})$ consisting of matrices

$$
\left\{\left(\begin{array}{c|c}
A & 0 \\
\hline \sigma A & A
\end{array}\right)\right\}
$$

such that $A \in S L_{3}(\mathbb{C})$ and $\sigma \in \mathbb{C}$. Here \mathbb{C}^{\times}acts on $\mathfrak{g}_{-1}=V_{-1}$ by multiplication by a scalar λ and on $\mathfrak{g}_{-3}=V_{-3} / V_{-1}$ by multiplication by λ^{3}. Consider the map $\psi: S^{2} V_{\overline{1}} \rightarrow\left\langle\xi_{i} \mid i=1,2,3\right\rangle$ given by: $\psi(1 \otimes a)=0$ for $a \in V_{\overline{1}}, \psi\left(x_{i} \otimes x_{j}\right)=0=\psi\left(\xi_{i} \xi_{j} \otimes \xi_{k} \xi_{h}\right), \psi\left(x_{i} \otimes \xi_{j} \xi_{k}\right)=$ $\delta_{i j} \xi_{k}-\delta_{i k} \xi_{j}$. A subspace of $V_{\overline{1}}$ is abelian if and only if $\psi(a \otimes b)=0$ for any pair of elements a, b of this subspace. It follows that the \bar{G}-orbits of the non-trivial abelian subspaces of $V_{\overline{1}}$ are the orbits of the following subspaces: $\langle 1\rangle,\left\langle x_{1}\right\rangle,\left\langle\xi_{1} \xi_{2}\right\rangle,\left\langle 1, x_{1}\right\rangle,\left\langle 1, \xi_{1} \xi_{2}\right\rangle,\left\langle x_{3}, \xi_{1} \xi_{2}\right\rangle$, $\left\langle x_{1}, x_{2}\right\rangle,\left\langle\xi_{1} \xi_{2}, \xi_{1} \xi_{3}\right\rangle,\left\langle 1, x_{1}, x_{2}\right\rangle,\left\langle 1, \xi_{1} \xi_{2}, \xi_{1} \xi_{3}\right\rangle,\left\langle x_{1}, x_{2}, x_{3}\right\rangle,\left\langle\xi_{1} \xi_{2}, \xi_{1} \xi_{3}, \xi_{2} \xi_{3}\right\rangle,\left\langle 1, \xi_{1} \xi_{2}, x_{3}\right\rangle$, $\left\langle 1, x_{1}, x_{2}, x_{3}\right\rangle,\left\langle 1, \xi_{1} \xi_{2}, \xi_{1} \xi_{3}, \xi_{2} \xi_{3}\right\rangle$.

If L_{0} is the subalgebra of type $(1,1,1 \mid 0,0,0,1),(1,1,1 \mid 1,1,1,2),(1,1,2 \mid 1,1,0,2)$, then $\pi\left(L_{0}\right)=\left\langle x_{1}, x_{2}, x_{3}\right\rangle, \pi\left(L_{0}\right)=\left\langle\xi_{1} \xi_{2}, \xi_{1} \xi_{3}, \xi_{2} \xi_{3}\right\rangle, \pi\left(L_{0}\right)=\left\langle x_{3}, \xi_{1} \xi_{2}\right\rangle$, respectively; if S_{0}^{\prime} is the subalgebra of L constructed in Example 4.20, then $\pi\left(S_{0}\right)=\left\langle 1, x_{1}, x_{2}, x_{3}\right\rangle$; if $S_{0}(2)$ and $S_{0}(3)$ are the subalgebras of L constructed in Example 4.21, then $\pi\left(S_{0}(2)\right)=\left\langle 1, \xi_{1} \xi_{2}, x_{3}\right\rangle$ and $\pi\left(S_{0}(3)\right)=$ $\left\langle 1, \xi_{1} \xi_{2}, \xi_{1} \xi_{3}, \xi_{2} \xi_{3}\right\rangle$. By Theorem 4.24(d), the map Π is injective but not surjective.
(13) $L=K O(n, n+1)$ with $n>2$ (respectively $L=S K O(n, n+1 ; \beta)$ with $n \geqslant 3$ and $\beta \neq 1 / 3$ if $n=3$). $V_{\overline{1}}=\left\langle 1, x_{1}, \ldots, x_{n}\right\rangle$. In this case $V_{\overline{1}}$ has a non-trivial filtration: $V_{\overline{1}}=V_{-2} \supset V_{-1}$ where $V_{-1}=\left\langle x_{i} \mid i=1, \ldots, n\right\rangle ; \bar{G}=\mathbb{C}^{\times} G^{\prime}$ where G^{\prime} consists of matrices $\left(\begin{array}{cc}a & c \\ 0 & 1\end{array}\right)$ with $a \in G L_{n}(\mathbb{C})$, and where c is an arbitrary $n \times 1$ matrix. Here \mathbb{C}^{\times}acts on $\mathfrak{g}_{-1}=V_{-1}$ by multiplication by a scalar λ (respectively $\sigma^{1-\beta}$) and on $\mathfrak{g}_{-2}=V_{-2} / V_{-1}$ by multiplication by λ^{2} (respectively σ^{2}). Any subspace of $V_{\overline{1}}$ is abelian. For any $k \in \mathbb{N}, 1 \leqslant k \leqslant n$, there are two \bar{G}-orbits of abelian subspaces of $V_{\overline{1}}$ of dimension k : one containing 1 and the other contained in $\left\langle x_{1}, \ldots, x_{n}\right\rangle$.

Let $L=K O(n, n+1)$ with $n>2$: if L_{0} is the graded subalgebra of type $(1, \ldots, 1 \mid 0, \ldots, 0,1)$ then $\pi\left(L_{0}\right)=\left\langle x_{1}, \ldots, x_{n}\right\rangle$; if L_{0} is the graded subalgebra of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0$, $\ldots, 0,2)$ with $n-t+12$'s and $n-t$ zeros, for some $t=2, \ldots, n$, then $\pi\left(L_{0}\right)=\left\langle x_{t+1}, \ldots, x_{n}\right\rangle$; if L_{0} is the subalgebra of L constructed in Example 4.7, then $\pi\left(L_{0}\right)=\left\langle 1, x_{1}, \ldots, x_{n}\right\rangle$; if $L_{0}(t)$ is the subalgebra of L constructed in Example 4.8, for some $t=2, \ldots, n$, then $\pi\left(L_{0}\right)=$ $\left\langle 1, x_{t+1}, \ldots, x_{n}\right\rangle$.

By Theorem 4.12 the image of π consists of all subspaces of $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ except those of codimension 1 , and of all subspaces of $\left\langle 1, x_{1}, \ldots, x_{n}\right\rangle$ containing 1 except those of codimen-
sion 1. By Theorem 4.24 the same description of the image of π holds for $L=S K O(n, n+1 ; \beta)$ with $n>2$. The map Π is therefore injective but not surjective.
(14) $L=S H O^{\sim}(n, n) . V_{\overline{1}}=\left\langle x_{1}, \ldots, x_{n}\right\rangle ; \bar{G}=S L_{n}$; any subspace of $V_{\overline{1}}$ is abelian and its \bar{G}-orbit is determined by the dimension.

If L_{0} is the graded subalgebra of type $(1, \ldots, 1 \mid 0, \ldots, 0)$ then $\pi\left(L_{0}\right)=\left\langle x_{1}, \ldots, x_{n}\right\rangle$; if $L_{0}(t)$ is the maximal open subalgebra of L constructed in Example 5.2, for some $t=2, \ldots, n$, then $\pi\left(L_{0}(t)\right)=\left\langle x_{t+1}, \ldots, x_{n}\right\rangle$.

By Theorem 5.4 the image of π consists of all subspaces of $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ except those of codimension 1. Therefore the map Π is injective but not surjective.
(15) $L=S K O^{\sim}(n, n+1) . V_{\overline{1}}=\left\langle 1, x_{1}, \ldots, x_{n}\right\rangle$. As in the case of $K O(n, n+1), V_{\overline{1}}$ has a nontrivial filtration: $V_{\overline{1}}=V_{-2} \supset V_{-1}$ where $V_{-1}=\left\langle x_{i} \mid i=1, \ldots, n\right\rangle ; \bar{G}=\mathbb{C}^{\times} G^{\prime}$ where G^{\prime} consists of matrices $\left(\begin{array}{ll}a & c \\ 0 & 1\end{array}\right)$ with $a \in S L_{n}(\mathbb{C})$, and where c is an arbitrary $n \times 1$ matrix. Here \mathbb{C}^{\times}acts on $\mathfrak{g}_{-1}=V_{-1}$ by multiplication by a scalar $\sigma^{-2 / n}$, and on $\mathfrak{g}_{-2}=V_{-2} / V_{-1}$ by multiplication by σ^{2}. The description of the \bar{G}-orbits of the abelian subspaces of $V_{\overline{1}}$ is the same as for $\operatorname{SKO}(n, n+1$; $(n+2) / n)$ with $n>2$.

If L_{0} is the subalgebra of L constructed in Example 5.7, then $\pi\left(L_{0}\right)=\left\langle x_{1}, \ldots, x_{n}\right\rangle$; if $L_{0}(t)$ is the subalgebra of L constructed in Example 5.8, for some $t=2, \ldots, n$, then $\pi\left(L_{0}(t)\right)=$ $\left\langle x_{t+1}, \ldots, x_{n}\right\rangle$; if $S_{0}(t)$ is the subalgebra of L constructed in Example 5.9, for some $t=2, \ldots, n$, then $\pi\left(S_{0}(t)\right)=\left\langle 1, x_{t+1}, \ldots, x_{n}\right\rangle$.

By Theorem 5.11 all possible images of π are all subspaces of $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ except those of codimension 1 , and all subspaces of $\left\langle 1, x_{1}, \ldots, x_{n}\right\rangle$ containing 1 except those of codimension 1 and 0 . The map Π is therefore injective but not surjective.
(16) $L=E(1,6) . V_{\overline{1}}, \bar{G}$ and the \bar{G}-orbits of the abelian subspaces of $V_{\overline{1}}$ are the same as for $K(1,6)$.

If L_{0} is the graded subalgebra of type $(2 \mid 1,1,1,1,1,1),(1 \mid 1,1,1,0,0,0),(1 \mid 1,1,0,0,0,1)$, $(1 \mid 2,1,1,0,1,1)$, then $\pi\left(L_{0}\right)=\langle 0\rangle,\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle,\left\langle\xi_{1}, \xi_{2}, \eta_{3}\right\rangle$, and $\left\langle\xi_{1}\right\rangle$, respectively. Therefore, by Theorem 7.5, all possible images of π are (as for $L=K(1,6)$) all isotropic subspaces of $V_{\overline{1}}$ except those of dimension 2 . The map Π is therefore injective but not surjective.
(17) $L=E(3,6) . V_{\overline{1}}=\left\langle a_{i j}:=d x_{i} v_{j} \mid i=1,2,3, j=1,2\right\rangle ; \bar{G}=G L_{3}(\mathbb{C}) \times S L_{2}(\mathbb{C})$ acting on $V_{\overline{1}} \simeq \mathbb{C}^{3} \otimes \mathbb{C}^{2}$. Consider the map $\psi: S^{2} V_{\overline{1}} \rightarrow\left\langle\partial / \partial x_{i} \mid i=1,2,3\right\rangle$, given by $\psi\left(a_{i j} \otimes a_{r s}\right)=$ $\epsilon(\operatorname{irk}) \epsilon(j s) \partial / \partial x_{k}$, where ϵ is the sign of the permutation irk (respectively $j s$) if all i, r, k (respectively j, s) are distinct and $\epsilon=0$ otherwise. A subspace of $V_{\overline{1}}$ is abelian if and only if $\psi(a \otimes b)=0$ for any pair of elements a, b of this subspace.

By Theorem 7.6, all maximal open subalgebras are graded, and they are, up to conjugation, the subalgebras of type $(2,2,2,0),(2,1,1,0)$ and $(1,1,1,1 / 2)$, so that the corresponding abelian subspaces are $0,\left\langle a_{11}, a_{12}\right\rangle$ and $\left\langle a_{11}, a_{21}, a_{31}\right\rangle$, respectively. Therefore all possible non-zero images of π are given by all maximal abelian subspaces of $V_{\overline{1}}$. Thus, the map Π is injective, but not surjective, as the remaining two \bar{G}-orbits of abelian subspaces, that of $\left\langle a_{11}\right\rangle$ and $\left\langle a_{11}, a_{21}\right\rangle$, are missing.
(18) $L=E(5,10) . V_{\overline{1}}=\left\langle q_{i j}:=d x_{i} \wedge d x_{j} \mid i, j=1,2,3,4,5\right\rangle, \bar{G}=G L_{5}(\mathbb{C})$, acting on $V_{\overline{1}} \simeq \Lambda^{2} \mathbb{C}^{5}$. Consider the map $\varphi: S^{2} V_{\overline{1}} \rightarrow\left\langle\partial / \partial x_{i} \mid i=1, \ldots, 5\right\rangle$, given by $\varphi\left(q_{i j} \otimes q_{r s}\right)=$ $\epsilon(i j r s k) \partial / \partial x_{k}$, where as before, ϵ is the sign of the permutation ijrsk if all i, j, r, s, k are distinct and $\epsilon=0$ otherwise. A subspace of $V_{\overline{1}}$ is abelian if and only if $\varphi(a \otimes b)=0$ for any pair of elements of this subspace.

By Theorem 8.5 all maximal open subalgebras are graded, of type (2, 2, 2, 2, 2), (3, 3, 2, 2, 2), $(2,2,2,1,1)$ and $(2,1,1,1,1)$, up to conjugation, so that the corresponding abelian subspaces of $V_{\overline{1}}$ are $0,\left\langle q_{12}\right\rangle,\left\langle q_{12}, q_{13}, q_{23}\right\rangle$ and $\left\langle q_{1 j} \mid j=2,3,4,5\right\rangle$, respectively. Thus the map Π is injective, but not surjective, as the remaining two \bar{G}-orbits of abelian subspaces, that of $\left\langle q_{12}, q_{13}\right\rangle$ and $\left\langle q_{12}, q_{13}, q_{14}\right\rangle$, are missing.
(19) $L=E(4,4) . V_{\overline{1}}=\left\langle d x_{i} \mid i=1,2,3,4\right\rangle ; \bar{G}=G L_{4}(\mathbb{C})$ acting on $V_{\overline{1}} \cong \mathbb{C}^{4}$. Any subspace of $V_{\overline{1}}$ is abelian and its \bar{G}-orbit is determined by the dimension.

If L_{0} is the graded subalgebra of L of type $(1,1,1,1)$, then $\pi\left(L_{0}\right)=\langle 0\rangle$; if L_{0} is the maximal open subalgebra of L constructed in Examples 9.2, 9.3, and 9.4, then $\pi\left(L_{0}\right)=\left\langle d x_{1}\right\rangle, \pi\left(L_{0}\right)=$ $\left\langle d x_{1}, d x_{2}\right\rangle$, and $\pi\left(L_{0}\right)=\left\langle d x_{i} \mid i=1,2,3,4\right\rangle$ respectively. By Theorem 9.9 all possible images of π are all subspaces of $V_{\overline{1}}$ except those of codimension 1 . Therefore the map Π is injective but not surjective.
(20) $L=E(3,8) . V_{\overline{1}}=\left\langle v_{1}, v_{2}, x_{i} v_{1}, x_{i} v_{2} \mid i=1,2,3\right\rangle$ has a non-trivial filtration: $V_{\overline{1}}=$ $V_{-3} \supset V_{-1}$ where $V_{-1}=\left\langle q_{i j}:=x_{i} v_{j} \mid i=1,2,3, j=1,2\right\rangle$. We can give the following description of abelian subspaces of $V_{\overline{1}}$: consider the map $\varphi: S^{2} V_{-1} \rightarrow\left\langle\partial / \partial x_{i} \mid i=1,2,3\right\rangle$, given by $\varphi\left(q_{i j} \otimes q_{r s}\right)=\epsilon(i r k) \epsilon(j s) \partial / \partial x_{k}$, where, as for $L=E(3,6), \epsilon$ is the sign of the permutation $\operatorname{irk}($ respectively $j s$) if all i, r, k (respectively j, s) are distinct and $\epsilon=0$ otherwise. A subspace of $V_{\overline{1}}$ is abelian if and only if $\varphi(a \otimes b)=0$ for any a, b from this subspace.
$\bar{G}=\mathbb{C}^{\times}\left(S L_{3} \times S L_{2}\right)$ acts on $V_{\overline{1}}$ as follows: \mathbb{C}^{\times}acts on $\mathfrak{g}_{-1}=V_{-1}$ by multiplication by a scalar λ and on $\mathfrak{g}_{-3}=V_{-3} / V_{-1}$ by multiplication by $\lambda^{3} ; S L_{3}$ acts trivially on \mathfrak{g}_{-3} and it acts on $\mathfrak{g}_{-1}=\mathbb{C}^{3} \otimes \mathbb{C}^{2}$ as on the direct sum of two copies of the standard $S L_{3}$-module; finally, $S L_{2}$ acts on \mathfrak{g}_{-3} as on the standard $S L_{2}$-module and it acts on \mathfrak{g}_{-1} as on the direct sum of three copies of the standard $S L_{2}$-module.

If L_{0} is the graded subalgebra of type $(2,2,2,-3),(2,1,1,-2)$, or $(1,1,1,-1)$, then $\pi\left(L_{0}\right)=\langle 0\rangle,\left\langle x_{1} v_{1}, x_{1} v_{2}\right\rangle$, or $\left\langle x_{i} v_{1} \mid i=1,2,3\right\rangle$, respectively; if L_{0} is the maximal subalgebra of L constructed in Example 10.3, 10.4, 10.5, 10.6, 10.7, or 10.8, then $\pi\left(L_{0}\right)=\left\langle v_{1}, x_{i} v_{1}\right| i=$ $1,2,3\rangle,\left\langle v_{1}, x_{1} v_{1}, x_{1} v_{2}\right\rangle,\left\langle v_{1}, x_{i} v_{2} \mid i=1,2,3\right\rangle,\left\langle v_{1}, v_{2}, x_{1} v_{1}, x_{1} v_{2}\right\rangle,\left\langle v_{1}, v_{2}, x_{i} v_{1} \mid i=1,2,3\right\rangle$, or $\left\langle v_{1}, v_{2}\right\rangle$, respectively.

Therefore, by Theorem 10.12, all possible images of π are the subspace $\left\langle v_{1}, v_{2}\right\rangle$ and every subspace S of $V_{\overline{1}}$ such that $S \cap V_{-1}$ is a maximal abelian subspace of V_{-1}. It follows that the map Π is injective but not surjective. The \bar{G}-orbits of the following abelian subspaces of $V_{\overline{1}}$ are missing: $\left\langle v_{1}\right\rangle,\left\langle x_{1} v_{1}\right\rangle,\left\langle v_{1}, x_{1} v_{1}\right\rangle,\left\langle v_{1}, x_{1} v_{2}\right\rangle,\left\langle x_{1} v_{1}, x_{2} v_{1}\right\rangle,\left\langle v_{1}, v_{2}, x_{1} v_{1}\right\rangle,\left\langle v_{1}, x_{1} v_{1}, x_{2} v_{1}\right\rangle$, $\left\langle v_{2}, x_{1} v_{1}, x_{2} v_{1}\right\rangle,\left\langle v_{1}, v_{2}, x_{1} v_{1}, x_{2} v_{1}\right\rangle$.

We conclude by listing the maximal among \mathfrak{a}_{0}-invariant open subalgebras of S which are not maximal and also those maximal open subalgebras of S, none of whose conjugates is \mathfrak{a}_{0} invariant. The lists follow from Theorems 2.17, 2.18, 2.47, 2.48, 4.28, 4.30, and 4.31.

Theorem 11.4. Let S be an infinite-dimensional linearly compact simple Lie superalgebra and let \mathfrak{a}_{0} be a subalgebra of the subalgebra \mathfrak{a} of outer derivations of S.
(a) A complete list of pairs $\left(S_{0}, \mathfrak{a}_{0}\right)$ where S_{0} is an open, maximal among the \mathfrak{a}_{0}-invariant subalgebras of S, which is not maximal, is as follows:

- $S=S(1,2), S_{0}$ is the canonical subalgebra, $\mathfrak{a}_{0}=\mathfrak{a} \cong s l_{2}$;
- $S=\operatorname{SHO}(3,3), S_{0}$ is the canonical subalgebra and $\mathfrak{a}_{0}=s l_{2}$, or $\mathfrak{a}_{0}=\mathfrak{a} \cong g l_{2}$;
- $S=S K O(2,3 ; 0), S_{0}$ is the subalgebra of principal type or S_{0} is the subalgebra $S_{0}(2)$ constructed in Example 4.21, and $\mathfrak{a}_{0}=\mathbb{C} \xi_{1} \xi_{2}$ or $\mathfrak{a}_{0}=\mathfrak{a}(\operatorname{dim} \mathfrak{a}=2)$.
(b) A complete list of pairs $\left(\mathfrak{a}_{0}, S_{0}\right)$ where S_{0} is a maximal open subalgebra of S, none of whose conjugates is \mathfrak{a}_{0}-invariant, is as follows:
- $S=S(1,2)$ or $S=S K O(2,3 ; 1): \mathfrak{a}_{0}=\mathfrak{a} \cong s l_{2}$ and S_{0} is the graded subalgebra of S of principal type;
- $S=\operatorname{SHO}(3,3): \mathfrak{a}_{0}=s l_{2}$ or $\mathfrak{a}_{0}=\mathfrak{a} \cong g l_{2}$ and S_{0} is the graded subalgebra of S of principal type;
- $S=S(1, n)$ with $n \geqslant 3: \mathfrak{a}_{0}=\mathbb{C} \xi_{1} \ldots \xi_{n} \partial / \partial x_{1}$ or $\mathfrak{a}_{0}=\mathfrak{a}(\operatorname{dim} \mathfrak{a}=2)$, and S_{0} is the graded subalgebra of S of type $(1 \mid 0, \ldots, 0)$;
- $S=S H O(n, n)$ with $n \geqslant 4: \mathfrak{a}_{0}=\mathbb{C} \xi_{1} \ldots \xi_{n} \rtimes \mathfrak{t}$ where \mathfrak{t} is a torus of $\mathfrak{a}(\operatorname{dim} \mathfrak{a}=3)$, and S_{0} is the graded subalgebra of S of type $(1, \ldots, 1 \mid 0, \ldots, 0)$;
- $S=S K O(2,3 ; 0): \mathfrak{a}_{0}=\mathbb{C} \xi_{1} \xi_{2}$ or $\mathfrak{a}_{0}=\mathfrak{a}(\operatorname{dim} \mathfrak{a}=2)$, and S_{0} is the subalgebra of type $(1,1 \mid 0,0,1)$ or the subalgebra of type $(1,1 \mid-1,-1,0)$;
- $S=S K O(n, n+1 ;(n-2) / n)$ with $n>2: \mathfrak{a}_{0}=\mathbb{C} \xi_{1} \ldots \xi_{n}$ or $\mathfrak{a}_{0}=\mathfrak{a}(\operatorname{dim} \mathfrak{a}=2)$, and S_{0} is the graded subalgebra of S of type $(1, \ldots, 1 \mid 0, \ldots, 0,1)$ or the subalgebra S_{0}^{\prime} constructed in Example 4.20;
- $S=S K O(n, n+1 ; 1)$ with $n>2: \mathfrak{a}_{0}=\mathbb{C} \xi_{1} \ldots \xi_{n} \tau$ or $\mathfrak{a}_{0}=\mathfrak{a}(\operatorname{dim} \mathfrak{a}=2)$, and S_{0} is the subalgebra S_{0}^{\prime} constructed in Example 4.20.

Appendix A. The radical of an artinian linearly compact Lie superalgebra

Let L be a linearly compact Lie superalgebra and let $\operatorname{rad} L$ denote the closure of the sum of all its solvable ideals. This is a closed ideal of L, which, in general, is not solvable, but we will show that this is the case if L is artinian.

Lemma A.1. Let S be a simple linearly compact Lie superalgebra. Then

$$
\operatorname{rad}(S \hat{\otimes} \Lambda(m, n))=S \hat{\otimes} J
$$

where J is the ideal of $\Lambda(m, n)$ generated by the generators ξ_{1}, \ldots, ξ_{n}.
Proof. It is clear that the right-hand side is a solvable ideal. Since the quotient by this ideal is $S \hat{\otimes} \Lambda(m, 0)$, we need to prove that any abelian ideal of the latter Lie superalgebra is zero. Suppose the contrary, let

$$
a=\sum_{i \in \mathbb{Z}_{+}^{m}} a_{i} x^{i}
$$

be a non-zero element of an abelian ideal I of $S \hat{\otimes} \Lambda(m, 0)$, where $a_{i} \in S$. Let $i_{0} \in \mathbb{Z}_{+}^{m}$ be the minimal in the lexicographical ordering index, such that $a_{i_{0}} \neq 0$. Since S is simple, we conclude that for any $b \in S, I$ contains an element of the form $b x^{i_{0}}+\sum_{i>i_{0}} a_{i} x^{i}$. Hence I is not abelian, a contradiction.

Theorem A.2. Let L be an artinian linearly compact Lie superalgebra. Then the ideal rad L is solvable.

Proof. By [13, Theorem 7.1], L contains a sequence of closed ideals $L=I_{0} \supsetneq I_{1} \supsetneq \cdots \supsetneq I_{k}=0$, such that each quotient I_{j} / I_{j+1} is either abelian, or else there are no closed ideals of L properly contained between I_{j} and I_{j+1}. (The proof given in [13] works verbatim in the "super" case).

We will prove the theorem by induction on k. Consider the Lie superalgebra $\bar{L}=L / I_{k-1}$. Since it is again artinian, by the inductive assumption, $\operatorname{rad} \bar{L}$ is solvable. If I_{k-1} is an abelian ideal of L, we immediately conclude that $\operatorname{rad} L$ is solvable. If I_{k-1} is not abelian, it is a nonabelian minimal closed ideal of L, hence by [13, Theorem 7.1] and [11, Corollary 2.8], I_{k-1} is isomorphic to $S \hat{\otimes} \Lambda(m, n)$, where S is a simple linearly compact Lie superalgebra. Hence, by Lemma A.1, $(\operatorname{rad} L) \cap I_{k-1}$ is a solvable ideal of L, and, as in the previous case, we conclude that $\operatorname{rad} L$ is solvable.

Examples A.3. (a) Let \mathfrak{g}_{n} be an infinite sequence of finite-dimensional solvable Lie algebras of increasing length and let $L=\prod_{n} \mathfrak{g}_{n}$. Then $\operatorname{rad} L=L$ is not solvable.
(b) Let S be simple. Then, $L=S \hat{\otimes} \Lambda(m, n)$ is not artinian if $m>0$, but $\operatorname{rad} L$ is solvable by Lemma A.1. Note that L is noetherian.
(c) The linearly compact Lie algebra $\mathbb{C} \llbracket t \rrbracket \rtimes d / d t$ is artinian, but not noetherian.

Theorem A.4. Let L be an artinian linearly compact Lie superalgebra and let T be a maximal torus of L.
(a) Any ad-diagonalizable element t of L can be conjugated to an element of T by an inner automorphism of L.
(b) Any maximal torus T_{1} of L can be conjugated to T by an inner automorphism of L.

Proof. Note that the properties (a) and (b) are equivalent. Indeed, it follows from the proof of Theorem 1.7 that $\operatorname{dim} T<\infty$ and T has at most a countable number of weights in L. Hence there exists $t_{0} \in T$ such that $\lambda\left(t_{0}\right) \neq 0$ for all these weights λ. Hence (b) follows from (a). Including t in a maximal torus, we obtain that (a) follows from (b).

Since $\operatorname{rad} L$ is solvable by Theorem A.2, it has a finite derived series $\operatorname{rad} L=J_{0} \supsetneq J_{1} \supsetneq \cdots \supsetneq$ $J_{k-1} \supsetneq J_{k}=0$. We prove (a) by induction on k. If $k=0, L$ is semisimple, and (b) is Theorem 1.7, hence (a) holds by the above remark. Hence we may assume that $k>0$.

By the inductive assumption, the image of t in L / J_{k-1} is conjugate to an element of the image of T. Hence we may assume that $t=t_{1}+r$, where $t_{1} \in T, r \in J_{k-1}$. We can write:

$$
r=\sum_{i} r_{i}, \quad \text { where }\left[t, r_{i}\right]=\lambda_{i} r_{i}, \lambda_{i} \in \mathbb{C} .
$$

If $\lambda_{i} \neq 0$, applying $\exp \left(-\lambda_{i}^{-1} a d r_{i}\right)$ to t, kills r_{i} and does not change r_{j} with $j \neq i$ (since J_{k-1} is abelian). Thus, we may assume that $[t, r]=0$, hence $\left[t_{1}, r\right]=0$. Hence $a d r$ is diagonalizable, and since $[r, L] \subset J_{k-1}$ and $\left[r, J_{k-1}\right]=0$, we conclude that r is a central element of L, hence $r \in T$, and (a) is proved.

Appendix B. Description of the non-graded maximal open subalgebras of non-exceptional Lie superalgebras via their embedding in $W(m, n)$

Let S be a non-exceptional simple infinite-dimensional linearly compact Lie superalgebra. Then every maximal open subalgebra of S in its defining embedding in $W(m, n)$, can be constructed as the intersection of S with a graded subalgebra of $W(m, n)$. Here we describe this construction for all non-graded maximal open subalgebras of S.

If $S=K O(n, n+1)$ or $S=S K O(n, n+1 ; \beta)$ with $n>2$, then, by Theorems 4.12 and 4.24, S has, up to conjugation by G, n non-graded maximal open subalgebras. These are obtained by intersecting S with the subprincipal subalgebra of $W(n, n+1)$ and with the subalgebras of $W(n, n+1)$ of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,0)$ with $n-t 2$'s and $n-t+1$ zeros, for $t=2, \ldots, n$.

If $S=S K O(2,3 ; \beta)$ with $\beta \neq 0$, then, by Theorem $4.24, S$ has, up to conjugation by G, only one non-graded maximal open subalgebra. This is obtained by intersecting S with the subalgebra of $W(2,3)$ of type $(1,1 \mid 1,1,0)$.

If $S=\operatorname{SHO}^{\sim}(n, n)$, then, by Theorem 5.4, S has, up to conjugation by $G, n-1$ non-graded maximal open subalgebras. These are obtained by intersecting S with the subalgebras of $W(n, n)$ of type $(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0)$ with $n-t 2$'s and $n-t$ zeros, for $t=2, \ldots, n$.

If $S=S K O^{\sim}(n, n+1)$, then, by Theorem 5.11, S has, up to conjugation by $G, 2 n-1$ nongraded maximal open subalgebras. These are obtained by intersecting S with the subalgebras of $W(n, n+1)$ of type $(1, \ldots, 1 \mid 0, \ldots, 0,1),(1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,2)$ with $n-t+1$ 2 's and $n-t$ zeros, for $t=2, \ldots, n$, and ($1, \ldots, 1,2, \ldots, 2 \mid 1, \ldots, 1,0, \ldots, 0,0$) with $n-t 2$'s and $n-t+1$ zeros, for $t=2, \ldots, n$.

If $S=H(m, n)$ with $n=2 h+1$, then, by Theorem 3.10, all maximal open subalgebras of S are regular. The non-graded maximal open subalgebras of S are obtained, up to conjugation by G, by intersecting S with the subalgebras of $W(m, 2 h+1)$ of type

$$
(1, \ldots, 1 \mid \underbrace{2, \ldots, 2}_{t}, 1, \ldots, 1, \underbrace{0, \ldots, 0}_{s}, \alpha, \underbrace{0, \ldots, 0}_{s}, 1, \ldots, 1, \underbrace{0, \ldots, 0}_{t})
$$

with $\alpha=0,1$, for $s=0, \ldots, h$ and $t=0, \ldots, h-s,(\alpha, s) \neq(0,0)$.
If $S=H(m, n)$ with $n=2 h$, then all regular non-graded maximal open subalgebras of S, up to conjugation by G, are obtained by intersecting S with the subalgebras of $W(m, 2 h)$ of type

$$
(1, \ldots, 1 \mid \underbrace{2, \ldots, 2}_{t}, 1, \ldots, 1, \underbrace{0, \ldots, 0}_{2 s}, 1, \ldots, 1, \underbrace{0, \ldots, 0}_{t})
$$

for $s=1, \ldots, h$ and $t=0, \ldots, h-s$.
All non-regular maximal open subalgebras of $H(m, 2 h)$, up to conjugation by G, can be obtained as the intersection of $H(m, 2 h)$ with the graded subalgebras of $W(m, 2 h)$ defined as follows:

- $\operatorname{deg}\left(\xi_{1}+\xi_{n}\right)=1$;
- $\operatorname{deg}\left(\xi_{1}-\xi_{n}\right)=0$;
- grading of type

$$
(1, \ldots, 1 \mid \underbrace{2, \ldots, 2}_{t}, 1, \ldots, 1, \underbrace{0, \ldots, 0}_{2 s}, 1, \ldots, 1, \underbrace{0, \ldots, 0}_{t})
$$

on the subalgebra $W(m, 2 h-2)$ of $W(m, 2 h)$ consisting of vector fields in the indeterminates $x_{1}, \ldots, x_{m}, \xi_{2}, \ldots, \xi_{n-1}$, with $s=0, \ldots, h-1$ and $t=0, \ldots, h-s-1$.

It follows that the number of non-regular maximal open subalgebras of $H(m, 2 h)$, up to conjugation by G, is $h(1+h) / 2$.

References

[1] D. Alekseevsky, D. Leites, I. Shchepochkina, Examples of simple infinite-dimensional Lie superalgebras of vector fields, C. R. Acad. Bulgare Sci. 33 (9) (1980) 1187-1190.
[2] B. Bakalov, A. D'Andrea, V.G. Kac, Theory of finite pseudoalgebras, Adv. Math. 162 (2001) 1-140.
[3] R.J. Blattner, A theorem of Cartan and Guillemin, J. Differential Geom. 5 (1970) 295-305.
[4] R.E. Block, Determination of the differentiably simple rings with a minimal ideal, Ann. of Math. 90 (2) (1969) 433-459.
[5] N. Cantarini, V.G. Kac, Automorphisms and forms of simple infinite-dimensional linearly compact Lie superalgebras, math.QA/0601292.
[6] N. Cantarini, S.-J. Cheng, V.G. Kac, Errata: Structure of some \mathbb{Z}-graded Lie superalgebras of vector fields, Transform. Groups 9 (2004) 399-400.
[7] E. Cartan, Les groupes des transformations continués, infinis, simples, Ann. Sci. École Norm. Sup. 26 (1909) 93161.
[8] S.-J. Cheng, Differentiably simple Lie superalgebras and representations of semisimple Lie superalgebras, J. Algebra 173 (1995) 1-43.
[9] S.-J. Cheng, V.G. Kac, Generalized Spencer cohomology and filtered deformations of \mathbb{Z}-graded Lie superalgebras, Adv. Theor. Math. Phys. 2 (1998) 1141-1182; Addendum, Adv. Theor. Math. Phys. 8 (2004) 697-709.
[10] S.-J. Cheng, V.G. Kac, Structure of some \mathbb{Z}-graded Lie superalgebras of vector fields, Transform. Groups 4 (1999) 219-272.
[11] D. Fattori, V.G. Kac, Classification of finite simple Lie conformal superalgebras, J. Algebra 258 (2002) 23-59.
[12] D. Fattori, V.G. Kac, A. Retakh, Structure theory of finite Lie conformal superalgebras, in: H.D. Dobner, V.V. Dobrev (Eds.), Lie Theory and Its Applications to Physics, World Sci., 2004, pp. 27-63.
[13] V.W. Guillemin, A Jordan-Hölder decomposition for a certain class of infinite-dimensional Lie algebras, J. Differential Geom. 2 (1968) 313-345.
[14] V.W. Guillemin, Infinite-dimensional primitive Lie algebras, J. Differential Geom. 4 (1970) 257-282.
[15] V.G. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8-96.
[16] V.G. Kac, Classification of simple \mathbb{Z}-graded Lie superalgebras and simple Jordan superalgebras, Comm. Algebra 5 (1977) 1375-1400.
[17] V.G. Kac, Classification of infinite-dimensional simple linearly compact Lie superalgebras, Adv. Math. 139 (1998) 1-55.
[18] V.G. Kac, Classification of infinite-dimensional simple groups of supersymmetries and quantum field theory, in: GAFA, Geom. Funct. Anal. (2000) 162-183 (special volume GAFA2000).
[19] Yu. Kotchetkoff, Déformation de superalgébras de Buttin et quantification, C. R. Acad. Sci. Paris I 299 (14) (1984) 643-645.
[20] A.N. Rudakov, Groups of automorphisms of infinite-dimensional simple Lie algebras, Math. USSR-Izv. 3 (4) (1969) 707-722.
[21] I. Shchepochkina, The five exceptional simple Lie superalgebras of vector fields and their fourteen regradings, Represent. Theory 3 (1999) 373-415.
[22] B.Y. Weisfeiler, Infinite-dimensional filtered Lie algebras and their connections with graded Lie algebras, Funct. Anal. Appl. 2 (1968) 88-89.

[^0]: * Corresponding author.

 E-mail address: kac@math.mit.edu (V.G. Kac).
 ${ }^{1}$ Partially supported by Progetto Giovani Ricercatori CPDG031245.
 2 Partially supported by NSF grants DMS0201017 and DMS0501395.

