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Delayed development of virus-specific immune response has been observed in pigs infected with the porcine
reproductive and respiratory syndrome virus (PRRSV). Several studies support the hypothesis that the PRRSV
is capable of modulating porcine immune system, but the mechanisms involved are yet to be defined. In this
study, we evaluated the induction of T regulatory cells by PRRSV-infected dendritic cells (DCs). Our results
showed that PRRSV-infected DCs significantly increased Foxp3+CD25+ T cells, an effect that was reversible
by IFN-α treatment, and this outcome was reproducible using two distinct PRRSV strains. Analysis of the
expressed cytokines suggested that the induction of Foxp3+CD25+ T cells is dependent on TGF-β but not IL-
10. In addition, a significant up-regulation of Foxp3 mRNA, but not TBX21 or GATA3, was detected.
Importantly, our results showed that the induced Foxp3+CD25+ T cells were able to suppress the
proliferation of PHA-stimulated PBMCs. The T cells induced by the PRRSV-infected DCs fit the Foxp3+CD25+

T helper 3 (Th3) regulatory cell phenotype described in the literature. The induction of this cell phenotype
depended, at least in part, on PRRSV viability because IFN-α treatment or virus inactivation reversed these
effects. In conclusion, this data supports the hypothesis that the PRRSV succeeds to establish and replicate in
porcine cells early post-infection, in part, by inducing Th3 regulatory cells as a mechanism of modulating the
porcine immune system.
© 2009 Elsevier Inc. All rights reserved.
Introduction

Porcine reproductive and respiratory syndrome (PRRS) is currently
considered to be the most significant and economically important
infectious disease affecting swine industry worldwide with economic
losses estimated at ∼560 millions dollars per year (Neumann et al.,
2005). The causative agent is PRRS virus (PRRSV) (Meulenberg et al.,
1997), which belongs to the order Nidovirales, family Arteriviridae and
genus Arterivirus (Cavanagh, 1997). Two PRRSV genotypes, the
American and the European, have been described and they share
approximately 55 to 65% nucleotide identities but high variability has
also been described (Andreyev et al., 1997; Mateu et al., 2006).

The PRRSV can replicate and persist in pigs for long periods of time
after the initial infection and that persistently infected animals can
shed infectious virus, but eventually the virus is cleared bymost of the
infected animals by 150 days post-infection (dpi) or shortly thereafter
(Allende et al., 2000). PRRSV-specific cellular immune response
evaluated by the antigen-specific proliferation of PBMC is evident
until 4 wk post-infection (PI) and is detectable 9–14 wk PI (Molitor,
ll rights reserved.
Bautista, and Choi, 1997). In addition, low-levels of IFN-γ producing
cells are detected until 2 wk PI and increase significantly at 10 wk PI
(Batista et al., 2004; Meier et al., 2003). The mechanisms involved in
this unusual and delayed immune responses are still unknown, but
available evidence suggests that the PRRSV is able to modulate the
porcine immune system, at least during the first few weeks PI (Mateu
and Díaz, 2008; Murtaugh et al., 2002).

It has been described that viruses are able to evade the immune
response by utilizing a wide range of mechanisms including antigenic
variation, infection of immune system cells, production of cytokine-
like immunosuppressive proteins, modulation of DC function, and the
induction of regulatory T cells (Tregs). Given the importance of DCs in
initiating antiviral immune responses, PRRSV interference of DCs
function represents an immune evasion mechanism that could confer
advantages to this virus by inhibiting or reducing the DC-mediated
immune response (Banchereau and Steinman, 1998; Chang et al.,
2008; Charerntantanakul et al., 2006; Flores-Mendoza et al., 2008;
Loving et al., 2007; Wang et al., 2007). This viral advantage can be
reverted by IFN-α treatment, which is a potent antiviral molecule
(Loving et al., 2007).

Induction of Tregs is a way that viruses such as HIV, HCV, EBV,
CMV, HTLV, HBV, and FIV use to suppress or evade the immune
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response and in this way persist in the host (reviewed in Li et al.,
2008). The conventional phenotype of Tregs is CD4+CD25+Foxp3+,
and it has been classified into natural and inducible Tregs, both in
human and mice (Belkaid, 2007; Shevach, 2006). In addition,
inducible Tregs can be classified according to the cytokines they
produce and several subtypes have been described: 1) Treg 1 (TR1)
cells which secrete IL-10; 2) T helper 3 (Th3) cells which secrete TGF-
β; and 3) converted Foxp3+ Tregs (Belkaid, 2007; Shevach, 2006).
Inducible Tregs acquire their function following infection or exposure
to other stimulus (Belkaid, 2007).

In pigs, a population of Tregs has recently been described in blood
and tissues. This phenotype of porcine Tregs is heterogeneous, and the
twomain populations described are CD4+CD25+Foxp3+CD8α−MHC-
II− and CD4+CD25+Foxp3+CD8α+MHC-II−. The first population is
described as resting Tregs and could represent natural Tregs. The
second population represents activated or memory-like Tregs and
could correspond to pathogen-induced Tregs (Kaser et al., 2008).
However, no other reports have described natural or induced Tregs in
pigs. Given that delayed development of virus-specific immune
response has been observed in pigs infected with the PRRSV and
that DCs plays a key role in priming immune responses, we evaluated
the induction of T regulatory cells by PRRSV-infected DCs.
Fig. 1. Effect of two distinct PRRSV strains on induction of Foxp3+CD25+ T cells. (A) Expre
lymphocytes co-cultured for five days with PRRSV-infected (strain NVSL) DCs. I) mock-treated
after infection. (B) The percentage of Foxp3+CD25+ Tcells induced by NVSL-or CIAD008-infe
is from six independent experiments (n=6 pigs). Data analysis was done using a paired t-t
virus.
Results

Induction of Foxp3+CD25+ lymphocyte phenotype by PRRSV-infected
DCs

In vitro induction of Foxp3+CD25+ T cells by PRRSV-infected DCs
was evaluated by two color flow cytometry. Co-culture of lymphocytes
with PRRSV-infected DCs for five days increased the percentage of
Foxp3+CD25+ T cell subset and this effect was reversed significantly
by IFN-α treatment (Fig. 1A, I–III). Compared to mock-treated DCs, a
Foxp3+CD25+ T cell subset was significantly increased following co-
culture of lymphocytes with CIAD008-infected DCs (pb0.01) or the
NVSL-infected DCs (pb0.01) (Fig. 1B). Interestingly, addition of IFN-α
significantly reduced the induction of the Foxp3+CD25+ T cell subset
by both the CIAD008-infected DCs (pb0.01) and the NVSL-infected
DCs (pb0.05) (Fig. 1B). In addition, heat inactivation (HI) of both
PRRSV strains abrogated induction of the Foxp3+CD25+ T cell subset
suggesting that virus viability is required (Fig. 1B). Previous reports
have mentioned that IFN-α inhibits PRRSV replication but not
infection of susceptible cells (Loving et al., 2007). To confirm that
IFN-α blocks PRRSV replication in infected DCs, PRRSV viral load was
quantified by real-time PCR and no changes were observed following
ssion profile of Foxp3+, CD25+, and Foxp3+CD25+ was analyzed by flow cytometry in
DCs; II) PRRSV-infected DCs; and III) PRRSV-infected DCs treated with IFN-α before and

cted DCs was quantified by flow cytometry using cells from five-day co-cultures. The data
est and significant differences are shown (⁎pb0.05, and ⁎⁎pb0.01). HI, heat-inactivated



Fig. 2. Effect of IFN-α on PRRSV-infected DCs. PRRS viral RNA was quantified by real-
time PCR at different time points after infection of DCs with PRRSV strain (A) NVSL; and
(B) CIAD008 without IFN-α (black bars) or with IFN-α (white bars) treatment. PRRSV
load is expressed as RNA copies-log/reaction.
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treatment (Fig. 2). This outcome supports previous observations that
PRRSV is capable of modulating porcine immune system, including
reduced lymphocyte proliferation induced by PRRSV-infected DCs
(Flores-Mendoza et al., 2008; Wang et al., 2007) and is consistent
with the documented evidence that induction of T regulatory cells is a
frequent event during viral infections, and can be induced both in vivo
and in vitro (Balkowet al., 2007; Billerbeck et al., 2007; Estes et al., 2006;
Granelli-Piperno et al., 2004; Krathwohl et al., 2006; Li et al., 2008).

Up-regulation of TGF-β expression by PRRSV

Up-regulation of IL-10 and TGF-β mRNA in lymphocytes co-
cultured with PRRSV-infected DCs was evaluated by real-time PCR,
whereas ELISA was used to quantify expressed proteins in the
supernatants. Compared to mock treatment, TGF-β mRNA, but not
IL-10 mRNA, was significantly (pb0.05) up-regulated in lymphocytes
co-cultured with DCs infected with the CIAD008 or the NVSL PRRSV
strains and both strains had similar effects on TGF-β mRNA up-
regulation (Figs. 3A, B). Treatment with IFN-α showed a small but not
significant reduction in the TGF-β mRNA expression (Fig. 3B). No IL-4
and IFN-γ mRNA changes were detected (Figs. 3C, D). Surprisingly,
addition of IFN-α to lymphocytes co-cultured with the CIAD008-
infected, but not the NVSL-infected DCs, significantly (pb0.05) up-
regulated IFN-γ mRNA expression (Fig. 3D).

Compared to mock treatment, co-culture of lymphocytes with
CIAD008- or NVSL-infected DCs, significantly (pb0.05) increased
production of TGF-β, but not IL-10, protein and this outcome was
reversed by addition of IFN-α (Fig. 4). This data suggests that PRRSV-
infected DCs preferentially induce TGF-β-secreting immunosuppres-
sive T lymphocytes which fit the previously described T helper (Th3)
regulatory T lymphocyte phenotype (Belkaid, 2007; Shevach, 2006).

Up-regulation of Foxp3 mRNA

Real-time PCR was used to evaluate the mRNA profiles of the
Foxp3, TBX21, and GATA-3 transcription factors in lymphocytes co-
cultured with PRRSV-infected DCs. Compared to mock-treated DCs,
NVSL-infected DCs significantly (pb0.05) up-regulated expression of
Foxp3 mRNA (Fig. 5A). Although the CIAD008-infected DCs induced
higher Foxp3 mRNA expression than NVSL-infected DCs, the differ-
ence was not significant (pb0.08) due to high variability (Fig. 5A) but
the outcome was consistent with the finding that Foxp3+CD25+ T
lymphocyte profile induced by the CIAD008-infected DCs was less
affected by IFN-α treatment (Fig. 1B). This outcome suggests that
Tregs induced by PRRSV are a consequence of Foxp3 up-regulation
which is consistent with the previous demonstration that Foxp3 is
required for the induction of Tregs (Billerbeck et al., 2007). The mRNA
profile of the TBX21 and GATA-3 transcription factors which are
responsible for the polarization of the immune response into Th1 or
Th2, respectively, was not significantly changed following co-culture
of lymphocytes with the PRRSV-infected DCs, and treatment with IFN-
α did not have any effect (Figs. 5B, C). This outcome is consistent with
previous results obtained in similar studies conducted in mice (Wei
et al., 2007).

Suppressor activity of Tregs

An in vitro suppression assay was used to test whether Tregs
induced by the PRRSV-infected DCs have suppressor activity on PHA-
stimulated lymphocytes. Compared to mock treatment, lymphocytes
previously co-cultured with the CIAD008- or the NVSL-infected DCs
had a 58% suppressive effect on the proliferation of PHA-stimulated
lymphocytes but IFN-α treatment did not reverse the suppressor
activity (Fig. 6). This outcome is consistent with the previous
demonstration that Tregs have suppressive activity on immuno-
competent cells and function through several mechanisms (Bettelli et
al., 2005; Miyara and Sakaguchi, 2007).

Discussion

In this study, a significant Foxp3+CD25+ T cell subset was induced
in lymphocytes by the CIAD008- or the NVSL-infected DCs. The
induced Foxp3+CD25+ T cell subset was associated with a significant
up-regulation of TGF-β, but not IL-10, mRNA and protein expression.
No significant IL-4 or IFN-γ mRNA changes were detected. The
induced porcine Foxp3+CD25+ T cell phenotype closely resemble the
TGF-β-secreting Th3 regulatory T cells described in humans and mice
(Belkaid, 2007; Miyara and Sakaguchi, 2007; Shevach, 2006). This
outcome supports the hypothesis that PRRSV induces regulatory T
cells (Th3 Tregs cells) which, in part, could play a role in the
documented delay in cellular immune responses in PPRSV-infected
pigs early post-infection (Batista et al., 2004; Mateu and Díaz, 2008;
Molitor et al., 1997; Murtaugh et al., 2002). This would be consistent
with the previous demonstrations that viruses, such as HIV, HCV, EBV,
CMV, HTLV, HBV, and FIV, modulate host immune responses by
inducing Tregs and in this way persist in the host (Granelli-Piperno et
al., 2004; Li et al., 2008). In pigs, natural CD4+CD25high Tregs have
been described, but to the best of our knowledge, this study describes
in vitro pathogen-induced porcine Th3 Tregs for the first time (Kaser
et al., 2008). Studies are underway to determine whether Th3 Tregs
are induced in vivo upon PRRSV infection and if so, determine their
profile during the ∼30 days post-infection when most infected pigs
shed infectious PRRSV. Understanding the role, if any, played by
PRRSV-induced Tregs in delaying cellular immune responses early



Fig. 3. Up-regulation of cytokine mRNA by PRRSV-infected DCs. Up-regulated of cytokine mRNAwas evaluated by real-time PCR expression using cells from 24 h co-cultures. (A) IL-10;
(B) TGF-β; (C) IL-4; and (D) IFN-γ. The data presented is theMean±SE of five independent experiments. Relative expression for each cytokinewas calculated using the formula 2−ΔΔCt.
Data analysis was done using a Kruskal–Wallis Z test and a pb0.05 was considered significant. ⁎pb0.05.
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post-infection is necessary for the development of contemporary
vaccines and control strategies. In addition, determination of the
immunemechanisms and factors involved in enabling infected pigs to
naturally overcome the PRRSV-induced immuno-modulation and
then clear the virus, will pave the way for the development of
efficacious vaccines.

Induction of the Foxp3+CD25+ Tcell subset by the CIAD008- or the
NVSL-infected DCs was completely abolished by heat inactivation of
the virus, suggesting that virus viability and hence the ability to infect
host cells is required. This is consistent with previous findings that
viability of pathogens is required for the induction of Tregs (Balkow et
al., 2007). Interestingly, IFN-α treatment significantly reduced the
induction of the Foxp3+CD25+ T cells by the NVSL- (pb0.01) or
CIAD008-infected DCs (pb0.05) (Fig. 1B). Treatment of CIAD008-
infected DCs with IFN-α inhibited virus replication (Fig. 3), but it
had a minimal effect on Foxp3 expression and the induction of
Foxp3+CD25+ T cells, suggesting that infection of DCs is sufficient to
induce Tregs (Fig. 5A). The different susceptibility to IFN-α treatment
has been reported to occur in field strains of PRRSV but the ability to
withstand IFN-α-mediated clearance early post-infection does not
seem to be necessary for the establishment of persistence (Díaz et al.,
2006; Lee et al., 2004).

Naturally existing and pathogen-induced Tregs can inhibit priming
of productive immune responses required for pathogen clearance, but
Tregs can also play a role in the control of pathogen-induced
inflammatory diseases (Belkaid, 2007; Sehrawat et al., 2008). The
Tregs induced by the NVSL- or the CIAD008-infected DCs had a
significant suppressive effect on the proliferation of PHA-stimulated
PBMC. This outcome suggested that the induced Tregs function in a
broad, non-pathogen-specific fashion and could function through the
previously described mechanisms (Bettelli et al., 2005; Miyara and
Sakaguchi, 2007). Consequently, the PRRSV-induced Tregsmay hinder
the ability of infected pigs to mount productive immune responses
against PRRSV. Interestingly, the induction of the Foxp3+CD25+ by
the PRRSV-infected DCs and the up-regulation of TGF-β expression
could be reverted by IFN-α, but the suppressor activity of the induced
Tregs was not affected, suggesting that the effector function(s) of the
Tregs is not influenced by IFN-α.

It has been shown that PRRSV infection induces polyclonal B cell
activation in piglets which results in lymphoid hyperplasia, hyper-
gammaglobulinemia, and autoimmunity (Butler et al., 2007; Lemke et
al., 2004). There is no evidence that PRRSV infects B cells and the
mechanism(s) involved in the selection of the B cells that proliferate
upon infection has not been studied (Therrien et al., 2000).
Surprisingly, the PRRSV-responsive B cells constitute a minor popula-
tion and thus it can be hypothesized that the virus directly or
indirectly creates favorable conditions to facilitate proliferation of this
B cell sub-population that is normally deselected during development
(Butler et al., 2007). It is speculated that a PRRSV-derived super
antigen-like product engages a minor subset of naive B cells
expressing identical hydrophobic H chain third complementary region
(HCDR3) and directs T-independent, non-antigen-specific, B cell
proliferation without repertoire diversification (Butler et al., 2007;
Butler et al., 2008). It is likely that PRRSV-induced Tregs are indirectly
responsible for this polyclonal B cell activation given that PRRSV
infection hinders induction of productive immune responses capable
of mediating virus clearance early post-infection. We hypothesize that
PRRSV-induced Tregs delays development of PRRSV-specific immune



Fig. 5. Up-regulation of transcription factors. The relative expression of Foxp3, TBX21,
and GATA-3 was evaluated in lymphocytes co-cultured for 24 h with PRRSV-infected
DCs with or without IFN-α treatment. Relative expression for each cytokine was
calculated using formula 2−ΔΔCt. The results presented are from five independent
experiments and the data analysis was done using a Kruskal–Wallis Z test. A significant
difference was detected when compared to mock treatment (⁎pb0.05).

Fig. 4. Cytokine production. TGF-β and IL-10 in the supernatants of three-day old co-
cultures of the lymphocytes and the PRRSV-infected DCs were quantified by ELISA.
Differences among treatments (n=6 for TGF-β and n=3 for IL-10) were evaluated
using one-way ANOVA. ⁎Significant differences (pb0.05) were detected when
compared to mock treatment.
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effectors and this allows rapid virus expansionwhich in turn directs T-
independent proliferation of the naïve HCDR3+ B cell population
responsible for the PRRSV-induced pathology. In conclusion, the data
from this study supports the hypothesis that the PRRSV succeeds to
establish and replicate in porcine cells early post-infection, in part, by
inducing Th3 regulatory cells as a mechanism of delaying PRRSV-
specific porcine immune response.

Materials and methods

Viruses and cells

The PRRSV NVSL 97-7895 (GenBank accession no. AY545985) and
CIAD008 (GenBank accession no. DQ250071) strains were used. The
viruses were propagated inMARC-145 cells using Dulbecco's modified
Eagle medium (DMEM; GIBCO, Grand Island, NY, USA) supplemented
with 10% heat-inactivated fetal bovine serum (FBS; GIBCO), 100 IU
penicillin ml−1 and 100 μg streptomycin ml−1 (Sigma, St Louis, MO,
USA) (complete DMEM). Once the cytopathic effect was apparent, cell
cultures were freeze-thawed twice and the cell lysates were
centrifuged at 650 ×g at 4 °C for 20 min. The supernatant containing
the virus was collected, titrated, and stored at −70 °C.

Isolation of porcine PBMCs

Peripheral blood from PRRSV-free pigs was collected into heparin-
coated collection tubes (Becton-Dickinson, BD), diluted 1:2 with
DMEM (GIBCO), overlaid on Ficoll-Hypaque (Amersham Biosciences,
Uppsala, Sweden), and centrifuged at 500 ×g for 20 min. PBMCs were
washed three times in DMEM, and resuspended in complete DMEM.
Generation of monocyte-derived DCs

Generation of DCs was conducted as previously reported (Flores-
Mendoza et al., 2008). Briefly, freshly isolated PBMCs were placed into
tissue culture flasks (Corning) and incubated overnight in complete
DMEM at 37 °C in 5% CO2 to allowmonocytes to adhere. Non-adherent
cells were removed by washing with DMEM and frozen for use in co-
culture experiments. Adherent cells were cultured in complete DMEM
containing 20 ng ml−1 of recombinant porcine GM-CSF (rpGM-CSF)
and 20 ngml−1 of recombinant porcine-interleukin 4 (rpIL-4) at 37 °C
in 5% CO2. Cells were incubated for 5 days with replacement of 50% of
media on day 3. DCs were harvested on day 5 using cell dissociation



Fig. 6. Suppressor activity of Tregs induced by PRRSV-infected DCs. Suppressor activity
of Tregs induced by PRRSV-infected DCs was evaluated by determining the reduction in
proliferation of CFSE-labeled PHA-stimulated PBMC co-cultured with lymphocytes
previously co-cultured for five days with PRRSV-infected DCs. Data presented is the
Mean±SE of six independent experiments. The percentage of suppression was
calculated as follows: % suppression=100×[1−(% proliferation w/PRRSV/% prolif-
eration w/mock)].
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enzyme-free Hanks'-based buffer (Gibco) and resuspended in
complete DMEM with 10% of FBS.

Infection of DCs with PRRSV

Monocyte-derived DCs were infected with PRRSV at a multiplicity
of infection (m.o.i.) of 0.1 for 1 h at 37 °C in complete DMEM
containing 50 mM 2-mercaptoethanol (Sigma), washed three times at
200 g at 4 °C, and resuspended in freshmedium. Infected DCs (5×104)
were seeded into 96-well tissue culture plates (Corning) and after
24 h, 5×105 lymphocytes (obtained by washing non-adherent cells
after over night culture of PBMC) were added. In some experiment,
DCs were pulsedwith heat-inactivated (1 h at 56 °C) PRRSV, or treated
with 200 U rpIFN-α (PBL Biomedical Laboratories) for 30 min prior to
infection and during the co-culture with lymphocytes.

Flow cytometry

Co-expression of the CD25 and the Foxp3 markers by lymphocytes
after 5 days of co-culture with PRRSV-infected DCs was evaluated by
flow cytometry. Cells were harvested and stained with mouse anti-
porcine CD25 (Serotec), followed by FITC-labeled goat anti-mouse IgG
(Southern Biotech). For intracellular staining, the cells were fixedwith
200 μl of 4% paraformaldehyde at 4 °C in the dark for 20 min followed
by two washes with wash buffer (PBS containing 1% BSA and 0.02%
Sodium azide), resuspended in 500 μl of wash buffer containing 0.1%
saponin (permeabilization buffer) and incubated for 20 min at 4 °C in
the dark. The cells were then washed once with permeabilization
buffer and stained with mouse anti-human Foxp3 (Alexa Fluor®647-
conjugate, clone 221D/D3, Serotec) for 30 min. Finally, the cells were
Table 1
Primer and probe sequences.

Gene Forward primer sequence (5′ to 3′) Reverse primer

IL-10a TGAGAACAGCTGCATCCACTTC TCTGGTCCTTCG
TGF-βa AGGGCTACCATGCCAATTTCT CCGGGTTGTGCT
TBX21a TGGACCCAACTGTCAATTGCT ACGGCTGGGAAC
GATA-3a TCTAGCAAATCCAAAAAGTGCAAA GGGTTGAACGAG
Foxp3a CCCTGCCCTTCTCATCCA GTGGCCCGGATG
PPIAb GCCATGGAGCGCTTTGG TTATTAGATTTGT

a Sequences from Porcine Immunology and Nutrition database (http://www.ars.usda.go
b PPIA (peptidylprolyl isomerase A).
washed twice and resuspended in wash buffer containing 1%
paraformaldehyde. Flow cytometric analysis was conducted on the
whole lymphocytes using FACSCalibur cytometer (BD) and analyzed
using the WinMDI 2.9 software.

ELISA

Supernatants from a three-day co-culture of lymphocyte and
PRRSV-infected DCs were collected, and the levels of secreted IL-10
and TGF-β were quantified using a commercial ELISA Kit according to
the manufacturer's recommendations (Biosource, Camarillo, CA).
Results are expressed as pg/ml.

Real-time PCR

IL-10, TGF-β, TBX21, GATA-3 and Foxp3 mRNA expression were
quantified by real-time PCR. Viral load in PRRSV-infected DCs was also
quantified by real-time PCR as previously described (Christopher-
Hennings et al., 2006). Total RNA was extracted from co-cultures of
lymphocytes and the PRRSV-infected DCs after 24 h using RNAeasy
Protocol Mini Kit (Qiagen) according to the manufacturer's instruc-
tions. Real-time PCR was performed with one-step QRT-PCR Core
Reagent Kits Brilliant® Master Mix (Stratagene, La Jolla, CA) and a
SmartCycler system (Cepheid, Sunnyvale, CA). Amplification condi-
tions were as follows: one cycle at 50 °C for 30 min and 95 °C for
10 min, followed by 40 cycles at 95 °C for 15 s and at 60 °C for 1 min.
Primers and probes are listed in Table 1. Ct values from different
treatments were normalized against an endogenous control gene
(peptidylprolyl isomerase A, PPIA) and differences in Ct values
between the monocyte-depleted lymphocytes co-cultured with the
PRRSV-treated DCs vs the lymphocytes co-cultured with mock-
treated DCs were evaluated using the 2−ΔΔCT formula. Results are
expressed as relative increments of mRNA between the treatment and
control co-cultures.

Suppression activity assay

Suppressor activity of PRRSV-induced Tregs was tested by
evaluating proliferation of PHA-treated (10 mg/ml) PBMCs (5×105)
stained with CFSE and then co-cultured with five-day cultured
lymphocytes (1×105) exposed to the PRRSV-infected DCs, with or
without IFN-α treatment. Lymphocytes exposed to mock-treated DCs
were used as negative control. Proliferation was assessed by flow
cytometry using the fluorescent dye carboxifluorescein succinimidyl
ester (CFSE; Molecular Probes). Briefly, PBMCs (10×106) were stained
with 0.1 μMCFSE in RPMI-1640medium for 10min at 37 °C in the dark
and, after addition of 10 ml RPMI-1640 containing 10% FBS (complete
RPMI), the cells were centrifuged at 400 ×g for 10 min. 5×105 CFSE
labeled-PBMC were co-cultured with 1×105 five-day cultured
lymphocytes exposed to PRRSV-infected or rpIFN-α-treated DCs.
Results are expressed as Mean±SE percentage of suppression
determined with the formula: % suppression=100×[1−(% prolif-
eration w/PRRSV/% proliferation w/mock)] (Brusko et al., 2007).
sequence (5′ to 3′) Probe sequence (5′ to 3′)

TTTGAAAGAAA TET-CAACCAGCCTGCCCCACATGC-BHQ1
GGTTGTACA TET-CCTAGACACTCAGTACAGCAAGGTCCTGGC-BHQ1
GGGATA TET-ACCACTACTCTCCTCTCCTCCCCAACCAGT-BHQ1
CTGCTCTT TET-TCCTCCAGCGTGTCGTGCACCT-BHQ1
TGAAAA TET-AGCCAGAGGACTTCCTCAAGCACTGCC-BHQ1
CCACAGTCAGCAAT TET-TGATCTTCTTGCTGGTCTTGCCATTCCT-BHQ1

v/Services/docs.htm?docid=6065).

http://www.ars.usda.gov/Services/docs.htm?docid=6065
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Statistical analysis

Data was analyzed using paired student t-test or one-way analysis
of variance (ANOVA). Differences among treatments were determined
by Tukey's test (pb0.05). Kruskal–Wallis test was used to assess effect
of treatments in relative expression of cytokines. Data were analyzed
using NCSS 2007 software.
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