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This paper describes and applies a general approach for incorporating factors with
structural equations into models for discrete choice. The approach gives form to the
covariance matrix in random coefficient models. The factors act directly on the random
coefficients as unobserved attributes. The structural equations allow the factors to act on
each other building structures that can represent a variety of concepts such as global
heterogeneity and segmentation. The practical outcomes include parsimonious and
identified models with rich covariances and better fit. Of greater interest is the ability
to specify models that represent and test theory on the relationships between the taste
heterogeneities for covariates and in particular between the attributes within a discrete
choice experiment. The paper describes the general model and then applies it to a discrete
choice experiment with seven attributes. Four competing specifications are evaluated,
which demonstrates the ability of the model to be identified and parsimonious. The four
specifications also demonstrate how competing a priori knowledge of the structure of the
attributes used in the experiment can be empirically tested and evaluated. The outcomes
include new behavioral insights and knowledge about choice and choice processes for the
subject area of discrete choice experiments.

& 2013 Elsevier Ltd.Open access under CC BY-NC-ND license.
1. Introduction

Random utility theory assumes that the utility individuals derive from a choice object can be partitioned into a
systematic component, capturing the attributes of the choice alternatives and the characteristics of the individual decision
makers, and a random idiosyncratic component. Building on this foundation, McFadden (1974, 2001) derived the conditional
logit model to represent discrete choice, extending the work of Thurstone (1927), Luce (1959), and Marschak (1960). Many
different developments in choice models have been evident since, with the motivation for much of this development being
to better represent choice processes (Ben-Akiva and Lerman, 1985; Hensher et al., 2005). For example, Train (2003)
proposed a random coefficients model where utility parameters vary over individuals with distributions reflecting some
latent choice process(es). The systematic component of utility is a weighted sum of the covariates, representing the
attributes and characteristics, where the weights are random coefficients (McFadden and Train, 2000). However, generating
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valid, parsimonious, and identified specifications for the covariance matrix,∑, for the random coefficients has been problematic.
In this paper we describe an approach using factors with structural equations that is shown to be effective. The approach, known
as structural choice modeling (SCM), has practical benefits in generating identified and parsimonious models that fit the data
better. It has the even more important property of being able to validly represent and test propositions and a priori knowledge
regarding the form of ∑ and the structure of the taste heterogeneity for the covariates. The purpose of this paper is to describe
the use and benefits of incorporating factors and structural equations into models for choice data.

The paper starts with a review of the literature on specifying the form of ∑ in random utility models. It develops and
describes SCM. The SCM approach is used to analyze a discrete choice experiment that investigates postgraduate candidates'
preferences for postdoctoral employment in universities. Four competing specifications of the model are fitted to the data
and tested.

2. Literature

Factors have been incorporated explicitly into choice models to represent unobserved attributes of objects (often brands)
of interest. For example, Elrod and Keane (1995) use a factor analytic probit model to study consumers' repeated brand
purchases with model parameters representing market structure. That is, the factors are assumed to be unobserved
attributes of brands and the associated factor loadings capture the location of each brand on these latent attributes. Taste
heterogeneity for the brands is modeled as having several dimensions, one for each unobserved attribute. Each loading
shows the contribution of the dimension to the taste heterogeneity of the brand. The loadings collectively show the
positioning of the brand relative to the unobserved attributes. Keane (1997) extends the approach to a range of attributes
and to the analysis of state dependency. Typically, the aforementioned models have been applied to observational data (i.e.,
revealed preference data that reflects actual choices of decision makers in real markets).

By contrast, stated preference methods, such as the discrete choice experiments (DCE) discussed by Louviere and
Woodworth (1983) and Louviere et al. (2000), control for colinearity and incidental correlations prevalent in observational
data, enabling evaluation of the causal impact of attributes on choice. We focus on modeling attributes in DCEs in part
because of these aspects of DCE data. Models with factors also are used to combine data sets from the same individuals and
to combine RP (revealed preference, or real market choices) and SP (stated preference) data (Ben-Akiva and Morikawa, 1990;
Hensher et al., 1999; Louviere et al., 1999, 2002; Ben-Akiva et al., 2002; Morikawa et al., 2002). Extending the work
by applying SCM to combining data sets from DCEs has considerable potential, such as combining SP and RP. DCEs with
the same individuals but different combinations of attributes, and even with different choice tasks, can be modeled
simultaneously and the common attributes linked (Rungie et al., 2011).

Building on the models of Ben-Akiva, Keane and others, Walker (2001) developed a general model combining factors and
structural equations. The random coefficients for the covariates are functions of factors, with the factors also being functions
of each other. This structural choice model is the basis for our work and is described in greater detail in the next section.
However, we first consider some other important developments in the use of factors and structural equations in discrete
choice.

Choice models proposed by Maydeu-Olivares and Böckenholt (2005) can achieve similar outcomes, but use a different
data generation and modeling approach. Maydeu-Olivares and Böckenholt use data from paired comparison and ranking
tasks that yield binary measures of stated preferences for the brands they studied. The binary choices are transformed using
threshold models, with the transformed data analyzed with widely available standard structural equation modeling
software (Jöreskog, 1970, 1973; Bollen, 1989; Jöreskog and Sörbom, 1996). This approach allows one to specify the form of
the sample covariance matrix, particularly for the choice models Thurstone (1927) proposed. In principle, it can be extended
to more complex choice designs, but such extensions cannot be easily accommodated with existing SEM software.
Furthermore, with the exception of Bayesian approaches (e.g., Dunson, 2000; Lee, 2007), using threshold models to
transform binary responses necessarily implies a two-step (sequential) estimation approach.

An alternate approach to specifying the form of ∑ is the latent class (finite mixture) version of Train's model proposed by
Kamakura and Russell (1989). Utility parameters are estimated for each of several homogenous segments. The analysis is a
posteriori; that is, the number of classes specified by the analyst is typically derived from the data analysis process and does
not necessarily reflect a priori knowledge (Bollen, 2002).

A different approach to applying factors, referred to as latent variables, is taken by Ashok et al. (2002) and Walker (2001).
Here the latent variables specifically represent characteristics of individuals, typically constructs like attitudes (e.g.,
satisfaction with past experiences). The latent variables are incorporated via a measurement model relating observed
indicators (typically, rating scales), per conventional structural equations systems (e.g., Morikawa et al., 2002; Temme et al.,
2008; Bolduc and Alvarez-Daziano, 2010; Yáñez et al., 2010; Hess and Stathopoulos, 2011). Proponents of this approach
claim that it more closely captures choice processes by incorporating latent characteristics of decision makers. However, a
statistical peculiarity of this approach is that the observed indicators of the latent characteristics are treated as endogenous
and not used to make choice predictions.

SCM is consistent with random utility theory. It is a random coefficient model in which the coefficients for the covariates
have a multivariate distribution with unknown parameters. It has factors that influence the random coefficients and can
influence each other (i.e., structural equations link the factors). While the SCM approach can be more broadly applied, we
typically describe it as a conditional logit model being applied to the attributes in a discrete choice experiment with
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Gaussian random coefficients. It allows the specification of the form for ∑ and structure for the covariates in general, and
the attributes in particular.

The approach and contribution is more easily demonstrated through a concrete example, as in Section 4. The example
shows that SCM can be parsimonious and identified while testing a priori knowledge regarding individuals' choice behavior.
However, the general model, and the more abstract mathematics, is presented first.

3. The model

Random utility theory specifies that for individual n alternative i has a utility Uin with a systematic component Vin and a
idiosyncratic IID random error component εin where

Uin ¼ Vin þ εin ð1Þ
On any one choice occasion the individual selects the alternative in the choice set with the highest utility. The individual

can make different choices in situations which appear to an analyst to be identical. This apparent randomness is accounted
for by the error term εin.

The probability of an alternative i being chosen from a choice set C, conditional on a choice being made, is known as the
choice probability p. McFadden (1974, 2001) showed that under certain conditions for the error term, ε, the choice
probability, p, is well approximated by the logit functional form, also known as a conditional logit model:

pin ¼
expðVinÞ

∑j∈CexpðVjnÞ
ð2Þ

The model we use for the systematic component of utility imposes no conditions on ε. Thus, other functional forms can
be used. Conditional logit, as in Eq. (2), is used only for clarity and practical ease of estimation; it is not a necessary
theoretical assumption of the model.

Traditionally, the systematic component of utility has been specified as a linear combination of covariates, X, as a row
vector, being weighted by regression coefficients, β, as a column vector.

Uin ¼ Xinβn þ εn ð3Þ
Walker (2001, pp. 177–178) has the general class of models with β as random and with factors, ξ, see Eq. (4). There are N

individuals and the total number of alternatives considered by individual n is Jn:

Un ¼ Xnβn þ Fnξn þ vn ð4Þ
where n is an individual, n¼1,…, N; i is an alternative, i¼1,…, Jn; Un is a (Jn�1) column vector of utilities; Xn is a (Jn�K)
matrix of K covariates; βn is a (K�1) column vector of random components; ξn is a (M�1) column vector ofM factors; Fn is a
(Jn�M) matrix of factor loadings and vn is a (Jn�1) column vector of idiosyncratic random utility errors. βn�N(β, ∑β) and
ξn is distributed as discussed below.

We modify the role and reduce the size of the factor matrix Fn by specifying that the factors act through the covariates:

Un ¼ Xnβn þ XnFnξn þ vn ð5Þ
where Fn is now a smaller (K�M) matrix of factor loadings.

As a result the analyst has the ability to specify factors for the covariates, X, not just for the utilities, U. As discussed
below, the analyst also can specify that any one factor acts only on a subset of the covariates and with different factors acting
on different covariates. This is achieved through some factor loadings in Fn being specified by the analyst as unknown
parameters and conversely some being specified to be zero. If required, factors can still act directly on the utilities for the
alternatives, as in Eq. (4), by expanding the covariate matrix X to include columns of constants (ones). As a result Eq. (4) is a
special case of Eq. (5).

Shifting from Eqs. (4) to (5), with the additional Xn, is a small change with deceptively large implications. In statistical
terms the model no longer decomposes the variance of εn in Eq. (1), but instead decomposes and better specifies the
variance of the coefficients for the covariates, X; leaving εn to capture the random utility error. In analytical terms, it is now
possible to model associations (factors and structural equations) in the taste heterogeneity for specific attributes and levels.
Implicit in Eq. (4) is that the alternatives can be named, in which case the attribute used in the naming can be included in
the factors and structural equations. However, with Eq. (5) all attributes can be included equally and at the analyst's
discretion. In behavioral terms the model with Eq. (5) recognizes that tastes vary not for alternatives but for attributes and
with structure, not independently. With Eq. (5) this structure can be specified, allowing a priori knowledge to be tested.

Walker (2001, p. 180) adds a structural component:

ξn ¼ ρAnξn þ Tζn ð6Þ
where An is an (M�M) matrix of weights describing the influence of each factor, ξ, on the others. An can either be fixed or a
function of unknown parameters, ρ is an unknown parameter, ζn is a (M�1) column vector of random components with
ζn�N(0,I) and T is a Cholesky matrix applying covariances to the random components.

This model contains the factor loadings in Fn and the structural equation parameters in An. We apply the constraint that
both are not specific to the individual n and so lose the subscripts n. It is these unknown parameters that one wants to
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estimate for the population, not for individuals. Furthermore, because A is now constant, without loss of generalizability we
specify ρ¼1, although we leave to further research a discussion of the scale parameters (Fiebig et al., 2010). Thus, Fn is
replaced with F and ρAn is replaced with A. The model is

Un ¼ Xnβn þ XnFξn þ vn ð7Þ

ξn ¼ Aξn þ Tζn ð8Þ
Solving Eq. (8) for ξ gives

ξn ¼ ð1−AÞ−1Tζn ð9Þ
and substituting in Eq. (7) gives

Un ¼ Xnβn þ XnFð1−AÞ−1Tζn þ vn ð10Þ
Next we define the more general form of random coefficients, ηn, for the covariates as

ηn ¼ βn þ Fð1−AÞ−1Tζn ð11Þ
then, from Eq. (10):

Un ¼ Xnηn þ vn ð12Þ
which is the structural choice model (SCM). The βn in the model are traditionally referred to as the random coefficients, but
we will (consistently) refer to them as regression coefficients. Our aim is to specify the form of ∑, which is the covariance
matrix for the more general random coefficients, ηn. Finally, from Eq. (11) this covariance matrix, ∑, is

Σ ¼ CovðηnÞ ¼ CovðβnÞ þ ðFð1−AÞ−1TÞðFð1−AÞ−1TÞ′ ð13Þ
The parameters are summarized
Description
 Symbol
 Maximum number of unknown parameters
Factor loading
 F
 K�M

Structural equation coefficient
 A
 M�M

Constant: regression coefficient
 E[βn]
 K

Random component: regression coefficient
 Cov(βn)
 K� (K+1)/2

Random component: factor
 Cov(Tζn)
 M� (M+1)/2
This general model is actually too general; hence, typically one would want to constrain it in some appropriate way.
There are a large number of potential unknown parameters that cannot all be estimated from the data, including some that
can be redundant, and not all are identified. In any one application each parameter is specified by the analyst to be either (i)
unknown, and to be estimated from the data (if identified), or (ii) fixed to zero, or (iii) fixed to one. Hence the number of
parameters to be estimated can be manageable and parsimonious. Also, there are only two sources of heterogeneity in the
model, the regression coefficients βn and the independent standard random components ζn. Both can be specified as random
but in many applications they are not. In the example below in specification 1 neither is random, in 2 only βn is random, in 3
only ζn is random, and in 4 both βn and ζn are random. Furthermore, experience shows that due to the flexibility of SCM to
create appropriate forms for ∑ and fit the data well, one often can constrain Cov(Tζn) to be an identity matrix (i.e., the
variances are one, there are no covariances, and T is an identity matrix).

It is now possible to specify the log likelihood function and estimate the parameters. From Eq. (10)

Vin ¼ Xinβn þ XinFð1−AÞ−1Tζn ð14Þ
Substituting in Eq. (2) gives the probability of a single choice. However, individual n makes a choice from each of several

different choice sets. The additional information available through the joint probability of these choices (effectively,
repeated measures) leads to the ability to identify the model. Let there be a choice sets C1 to Ca each containing a finite
number of alternatives. Let individual n select one alternative from each of these choice sets where the alternatives selected
are c1 to ca. Then the joint probability of the a choices is

Pr c1;…; ca C1;…;Caj g ¼∬ ∏
a

j ¼ 1

expðVcjnðβn; ζnÞÞ
∑i∈Cj

expðVinðβn; ζnÞÞ
f ðβnÞf ðζnÞdβndζn

(
ð15Þ

The expression includes integrals that reflect the fact that the random components have known distributions but
unknown values. Combining Eq. (15) over all individuals gives the likelihood function. The parameters can be estimated
from the data using simulated maximum likelihood.

The model has K covariates, each with a random coefficient, η, where the covariance matrix for these coefficients, ∑, is of
size (K�K). In the traditional random coefficient model∑ can be problematic. It can be fully parameterized leading to K� (K
+1)/2 unknown parameters, which are too many and cannot be fully identified.∑ can be diagonal, with K parameters, which
is fewer, but is naïve, and still may not be fully identified. Instead, the structural choice model provides form such that∑ can
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be fuller than diagonal while being identified and based on a manageable number of parameters. Next, we consider an
example where structural choice models are used to test a priori knowledge of the nature of the taste heterogeneity for the
attributes in a DCE.

4. Attracting Ph.D. students to jobs

The model is illustrated with data from a traditional DCE involving choices of employment options (job offers) made by a
sample of PhD students at the 30 leading research universities in the United States.3 The data were collected as part of a
study conducted by the Harvard Graduate School of Education involving 797 doctoral participants. Seven attributes were
varied (Table 1 describes attributes and associated levels). Each sample participant received eight choice sets containing two
choice alternatives. Choice sets and choice alternatives were designed using the LMA approach described in Louviere and
Woodworth (1983) and Louviere et al. (2000). Participants made 4801 total choices.

A conditional logit model with fixed coefficients (in the model above the vector of parameters β has the same value for all
individuals) was fitted to the data using effects coding for each attribute. The estimated partworths for each of the 26
attribute levels are given in Table 1 and the optimum log likelihood value was −2326. The range of partworths is a measure
of the importance for each attribute; and the results suggest that the importance ordering is Geographic Location¼2.16,
Rating of Department¼1.34, Salary¼1.12, Tenure¼1.04, Institution¼0.88, Contract¼0.82 and Balance of Work/life¼0.67.

The US university market is differentiated with some universities offering high Rating of Department and Institution and
some high Geographic Location and only a few offering both. The research question we seek to address is whether all
individuals are segmented on the same basis? That is, do individuals differ, tending to prefer either Departmental Rating or
Geographic Location, but not both? And if so how do preferences for salary vary? Such questions about segmentation are
routine in marketing and are often approached by observing continuous variables, such as attitude scales, and applying
multivariate techniques such as factor analysis and structural equation modeling. Our objective is to apply the same style of
analysis to model the taste heterogeneity in the DCE.

To emphasize the point, differentiation is a reflection of the alternatives available. It is a property of the choice set.
Segmentation is a reflection of the patterns of consistency in individuals. It is a property of taste heterogeneity and ∑.
Table 1 can be used in the traditional manner to evaluate the tradeoffs made between differentiated alternatives and
attributes, but it cannot be used to explore dimensions of taste heterogeneity and the existence of segments. The latter
require one to specify and estimate a mixed logit model and SCM.

The first step is to convert the data from effects coding to continuous coding. One covariate is created for each attribute,
generating seven covariates in total. For each attribute the levels are scaled in proportion to the partworths in Table 1
varying from +1 for the highest partworth down to −1 for the lowest. The argument for this approach includes: (i) it is
sensible when the levels of attributes are ordinal, as is the case in this DCE, (ii) it focuses the analysis on attribute taste
heterogeneity and not on the separate levels of each attribute, (iii) the models are better identified (Walker, 2001, p. 54), and
(iv) the output is more easily interpreted.

Four models are fit to the data. In specifications 1 (Fixed) and 2 (Random) utility is a function of βn only; there are no
factors. For specification 1 (Fixed) βn¼β which is a vector of unknown constants to be estimated from the data and is
equivalent to specifying βn�N(β, ∑β¼0). In specification 2 (Random) there is a random component and βn�N(β, ∑β) where
∑β is diagonal. The elements on the diagonal are unknown variances to be estimated from the data. The model and fit
statistics are reported in Table 6. For the Fixed model the log likelihood and estimates of the parameters, in Table 2, are
consistent with the earlier model applied to effects coding.

Of greater interest, in the analysis of taste heterogeneity, is the mixed logit model with random coefficients (in the model
above the vector of parameters β has a unique value, βn, for each individual n). The estimates of the parameters are:

In the Random model the vector βn mediates the impact of the attributes. For larger values of βn,j attribute j will have
greater impact on choice. Consider the first attribute, Balance of Work/life. Its covariate, X1, takes on two values +1 and −1. If
βn,1¼0.3 then the contribution of the two levels of the attribute to utility is +0.3 and −0.3. However, if the coefficient is
greater, say βn,1¼0.5, then contribution increases, +0.5 and −0.5, and a change in the level of the attribute has a greater
impact on choice. Over the population of individuals the vector β has Gaussian distributions that include negative values.
An interesting example is the last attribute, Contract, where the standard deviation is large and many individuals will have
a negative value for βn,7. The interpretation is that shorter contracts are preferred by some individuals, where a possible
explanation is that a long wait to convert to tenure is undesirable.

The Random model has high standard deviations, see Table 3, showing there is considerable taste heterogeneity, but the
model cannot identify correlations between attributes and the multidimensional structure; the distributions of the vector β
are specified to be independent and the covariance matrix ∑ is specified to be diagonal.

In contrast, specification 3 (Exploratory) looks for correlations (see Fig. 1). It applies an exploratory factor analysis with
two correlated factors, ξ1 and ξ2; that is, M¼2. The factor matrix, F, of size (K�M)¼(7�2), contains 14 unknown factor
loadings to be estimated from the data. The estimates in Table 4 provide a clear interpretation; the first factor relates to
living ‘conditions’ and in particular Geographic Location while the second factor relates to ‘rating’, specifically, of the
3 The authors thank the Harvard Graduate School of Education for the data used in the application.



Table 1
The experiment recorded doctoral participants' preferences for postdoctoral employment.

Attribute Level Partworth

1 Balance of work/life 1 Balance of work significantly different from your preference. −0.33
2 Balance of work matches your preference. 0.33

2 Tenure 1 Greater than 85% chance of tenure/contract renewal. 0.48
2 71–85% chance of tenure/contract renewal. 0.15
3 50–70% chance of tenure/contract renewal. −0.08
4 Less than 50% chance of tenure/contract renewal. −0.56

3 Geographic Location 1 Somewhere you would really like to live. 0.95
2 Somewhere you would be comfortable living. 0.53
3 Somewhere you would be marginally satisfied with living. −0.27
4 Somewhere you would not like to live. −1.21

4 Rating of Department 1 Department rated among the top 10 in your discipline. 0.62
2 Department rated between 11 and 20 in your discipline. 0.22
3 Department rated between 21 and 40 in your discipline. −0.11
4 Department not in top 40 in your discipline. −0.72

5 Rating of Institution 1 Institution rated among the top 10 in the U.S. 0.28
2 Institution rated between 10 and 20 in the U.S. 0.14
3 Institution rated between 21 and 40 in the U.S. −0.01
4 Institution not in top 40 in the U.S. −0.41

6 Salary 1 At least 25% above average for your discipline. 0.50
2 At least 10% above average for your discipline. 0.08
3 About average for your discipline. 0.04
4 At least 15% below average for your discipline. −0.62

7 Contract 1 10 years. 0.37
2 5 years. 0.12
3 3 years. −0.05
4 1 year. −0.44

Table 2
Parameter estimates for the Fixed model with continuous coding.

Attribute Estimate of β se

Balance of work/life 0.33 0.022
Tenure 0.52 0.038
Geographic Location 1.08 0.041
Rating of Department 0.67 0.038
Rating of Institution 0.35 0.036
Salary 0.56 0.037
Contract 0.41 0.037

Table 3
Parameter estimates for the Random model with continuous coding.

Attribute Estimate of mean for β se Estimate of std. dev. for β se

Balance of work/life 0.60 0.05 0.33 0.085
Tenure 0.92 0.09 0.50 0.163
Geographic Location 2.07 0.15 1.44 0.140
Rating of Department 1.10 0.09 0.95 0.126
Rating of Institution 0.57 0.07 0.58 0.135
Salary 1.01 0.09 0.89 0.133
Contract 0.61 0.08 1.03 0.129
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Department. However, the estimate of the correlation between the two factors is zero (and not significant). Finally, Salary,
which earlier was identified as important, is common to both factors. Before interpreting these results a new model,
specification 4 (Confirmatory), is fitted to the data.

Specification 4 (Confirmatory) captures the role of Salary, see Fig. 2. It divides the attributes into two mutually exclusive
confirmatory factors for ‘conditions’ and ‘rating’ and then analyses the impact of each on a third factor, ‘salary’; thus, M¼3.
The factor matrix, F, of size (K�M)¼(7�3), contains 6 unknown parameters to be estimated from the data. One parameter



Fig. 1. Specification 3: Exploratory factor analysis with 2 factors.

Table 4
The factor loadings (the f parameters) in the
Explanatory model show that factor 1 reflects
‘conditions’ and factor 2 ‘rating’, but both reflect
salary.

Attribute Factor 1
‘Conditions’

Factor 2
‘Rating’

Salary 0.4 0.3
Geographic
Location

1.1 −0.2

Balance of
work/life

0.2 0.0

Tenure 0.2 0.0
Contract −0.3 −0.1
Rating of
Department

0.0 0.7

Rating of
Institution

0.0 0.1
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is fixed to a value of one (otherwise the model cannot be fully identified), and the remaining 14 are specified to be zero.

F ¼

f 1;1 0 0
f 2;1 0 0
f 3;1 0 0
0 f 4;2 0
0 f 5;2 0
0 0 1
f 7;1 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

The structural equation matrix A, of size (M�M)¼(3�3), contains 2 unknown parameters to be estimated from the data
and the remaining 7 are specified to be zero:

A¼
0 0 0
0 0 0
a3;1 a3;2 0

0
B@

1
CA

Estimates of the parameters are in Table 5 and Fig. 3. The results confirm that individuals can be segmented on the basis
of the two dimensions, ‘conditions’ and ‘rating’, where ‘conditions’ is dominated by Geographic Location and ‘rating’ by
Rating of Department. Again the two factors are not correlated. Those preferring ‘conditions’ are no less, or more, likely to



Fig. 2. Specification 4: Confirmatory model.

Table 5
Parameter estimates for the Confirmatory model.

Attribute Estimate of mean for β se Estimate of std. dev. for β se

β1 Work/life 0.64 0.06 0.28 0.09
β2 Tenure 0.99 0.10 0.53 0.15
β3 Geography 2.17 0.16 0.00 0.50
β4 Department 1.14 0.10 0.00 0.80
β5 Institute 0.59 0.07 0.59 0.14
β6 Salary 1.12 0.10 0.68 0.16
β7 Contract 0.61 0.09 1.00 0.13

From factor to Attribute Estimate of f se
f1,1 ‘Conditions’ Work/life 0.21 0.05
f2,1 ‘Conditions’ Tenure 0.19 0.10
f3,1 ‘Conditions’ Geography 1.51 0.15
f7,1 ‘Conditions’ Contract −0.15 0.12
f4,2 ‘Rating’ Department 1.03 0.13
f5,2 ‘Rating’ Institute 0.07 0.10
f6,3 ‘Salary’ Salary Fixed to 1

From factor to Factor Estimate of a se
a3,1 ‘Conditions’ ‘Salary’ 0.47 0.12
a3,2 ‘Rating’ ‘Salary’ 0.46 0.14

From factor to Factor Estimate of φ se
φ ‘Conditions’ ‘Rating’ −0.10 0.22
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prefer ‘rating’. Both dimensions link to ‘salary’ equally (both have an equal concern for salary). The model generates
R-squared statistics. Of the taste heterogeneity in the attribute Salary 46% is explained by the two factors ‘conditions’ and
‘rating’.

The analysis started with the observation that the market might be seen as being differentiated along the lines of Rating
of Department and Institution versus Geographic Location; a priori we proposed that segmentation might be on the same
basis. The analysis shows that Rating of Institution is quite unimportant whereas Rating of Department is important as is
Geographic Location. The analysis shows there is considerable taste heterogeneity for all the attributes but the two principal
factors in the multidimensional structure are based on Rating of Department and Geographic Location. Preferences for these
two attributes are independent. The market is segmented on preference for Rating of Department and preference for
Geographic Location but it is not accurate to conclude that individuals prefer either one or the other and not both.
Furthermore, Salary is equally important to those who prefer Rating of Department and those who prefer Geographic
Location.
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SCMs were used above to conduct an exploratory factor analysis, a confirmatory factor analysis and to fit structural equations
involving all the attributes. Models of this nature are well known in SEM but are new to the analysis of taste heterogeneity in DCEs.
They are prevalent in the analysis of continuous variables but not to the specific type of data generated by DCEs where discrete
choices are made from choice sets that differ. The new outcomes from SCM for DCEs include a parsimonious and full specification
for the covariance matrix, ∑ (see Table 10).The SCM approach also introduces a new role for DCEs in testing competing a priori
knowledge and hypotheses on the structure of taste heterogeneity. In the DCE, Fig. 3 confirms a priori knowledge regarding
segmentation on the basis of conditions and rating but disconfirms that individuals necessarily favor only one or the other. Had
prior knowledge suggested other competing structures, the SCM analysis also could have tested the competing models. This
approach in operationalizing and testing theory for the structure of taste heterogeneity is new to DCEs
5. Diagnostics

SCM provides an array of diagnostics (Rungie, 2011). From the AIC and Likelihood ratio tests in Table 6 the Confirmatory
model is preferred, although the Random model performs well on the BIC measure. The means for the random coefficients η
Fig. 3. Path diagram for the Confirmatory model.

Table 6
Harvard case study: the five competing specifications of the model.

Specification 1 2 3 4
Fixed Random Exploratory Confirmatory

Number of covariates, K¼ 7 7 7 7
Number of factors, Μ¼ 2 3

F 14 6
A 2
E[βn] 7 7 7 7
Cov(βn) 7 7
Cov(Tζn) 1 a 1 a

Total 7 14 22 23

Log likelihood −2326 −2212 −2214 −2185
AIC 4665 4452 4472 4417
BIC 4698 4517 4575 4525
LR Test c.f. specification 1 p¼2E−45 p¼4E−39 p¼3E−50
LR Test c.f. specification 2 p¼3E−08

Note: There is one correlation and no other unknown parameters: ζn are independent standard Gaussian and T provides the one correlation.
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for each covariate X are restated in Table 7 and the variances are in Table 8. While proofs are yet to be developed, we suspect
that choice models are biased to smaller variances. When fully identified models estimate higher variances they are likely to
be better models that capture more of the taste heterogeneity in the data. On the basis of the results in Tables 6 and 8 the
Confirmatory model is preferred.

In particular, the analysis indicates that the Exploratory model is not a good fit to the data. For completeness its
correlation matrix is given in Table 9 and unsurprisingly it reports high correlations because this type of model is designed
to emphasize correlations.

The correlation matrix for the Confirmatory model is given in Table 10. Consistent with the earlier findings it shows
Geographic Location and Rating of Department both correlate with Salary but not with each other.

For SCM, as with SEM (Bollen, 1989), effective identification is established by examining the properties of models and
following a series of guidelines (Rungie et al., 2011). First, each model presented above has face validity. In the Confirmatory
model there is the potential for redundant parameters. As a result some parameters rather than being free, to be estimated
Table 9
Exploratory model: correlation matrix (extracted from ∑) for the random coefficients η.

Work/life Tenure Geography Department Institute Salary Contract

Work/life
Tenure 0.95
Geography 1.00 0.96
Department −0.17 0.14 −0.14
Institute −0.21 0.10 −0.18 1.00
Salary 0.55 0.78 0.58 0.73 0.70
Contract −0.90 -0.99 −0.91 −0.28 −0.23 −0.86

Table 7
Means of the random coefficients η for the four models.

Fixed Random Exploratory Confirmatory

Balance of work/life 0.33 0.60 0.46 0.12
Tenure 0.52 0.92 0.73 0.32
Geographic Location 1.08 2.07 1.63 2.28
Rating of Department 0.67 1.10 0.88 1.06
Rating of Institution 0.35 0.57 0.46 0.35
Salary 0.56 1.01 0.83 0.86
Contract 0.41 0.61 0.40 1.02

Table 8
Variance of the random coefficients η for the four models.

Fixed Random Exploratory Confirmatory

Balance of work/life 0 0.11 0.03 0.12
Tenure 0 0.25 0.04 0.32
Geographic Location 0 2.09 1.29 2.28
Rating of Department 0 0.91 0.52 1.06
Rating of Institution 0 0.34 0.00 0.35
Salary 0 0.80 0.26 0.86
Contract 0 1.06 0.08 1.02

Table 10
Confirmatory model: correlation matrix (extracted from ∑) for the random coefficients η.

Work/life Tenure Geography Department Institute Salary Contract

Work/life
Tenure 0.20
Geography 0.59 0.34
Department −0.06 −0.03 −0.10
Institute −0.01 0.00 −0.01 0.11
Salary 0.27 0.16 0.46 0.44 0.05
Contract −0.09 −0.05 −0.15 0.01 0.00 −0.07



C.M. Rungie et al. / Journal of Choice Modelling 5 (2012) 145–156 155
from the data, instead are fixed. For ‘salary’ the factor loading f6,2 is fixed to 1 and the random components ζ3 is omitted
(fixed to zero). Secondly, for each model the Hessian matrix is well-behaved; the inverse exists and has positive values in the
leading diagonal. Thirdly, standard errors throughout are small (a poorly identified parameter will have a large standard
error). Exceptions include estimates of the standard deviations of β for Geographic Location and Rating of Department in
Table 10. The results suggest that these two parameters are effectively identified but they make little contribution to the fit
of the model. Finally, the estimation was well-behaved: conversion was quick and all parameter estimates are sensible.
6. Conclusion

In the DCE the a priori structure of the attributes has separate forms. Firstly, differences between individuals in their
involvement and engagement in the subject and domain of the DCE, postdoctoral employment issues, will lead to
differences in how much they differentiate globally between all levels of all attributes. Secondly, the seven attributes reflect
a smaller set of over-arching meta-attributes that will be reflected in correlations between attributes and in segments.
However, a priori knowledge suggested a particular structure for this correlation that was first explored through
specification 3 and then confirmed through specification 4. The analysis confirmed part of the prior knowledge and
disconfirmed part. The DCE demonstrates how a priori knowledge about the structure of the taste heterogeneity for
attributes can be operationalized, and in turn lead to specifications that fit the data better and have greater validity.

The structural choice models can be parsimonious. The number of unknown parameters to be estimated from the data in
the four specifications is relatively small, particularly when compared to extending the classic random coefficient model by
directly parameterizing the correlations in ∑. Specifications 1–4 are all identified. The inclusion of the factors in
specifications 3 and 4 and structural equations in 4 did not compromise identification.

The four specifications are competing models. They demonstrate how structural choice models can test and evaluate
competing a priori knowledge. They give an indication of potential new contributions to the development of the theory in
the subject area and domain of DCEs and to the theory of choice.

The structural choice model is a general model with one functional form. All four specifications for the DCE are just that,
different specifications of the one model. This property has two useful implications. First, the need for a special software
program is avoided. The four specifications were fit to the data by providing different input matrices to a single computer
program. Potentially all analysts can share and use the same programs. Second, the model has a standard language and
notation that can assist communication between analysts when working on the same DCE and even on different DCEs.

The structural choice model is a random coefficient model where the covariance matrix, ∑, has form. The model can be
parsimonious, valid, identified, and fit the data better. It can reflect a priori knowledge on the structure of the attributes.
It can test, evaluate, and develop the theory for the subject area and domain of DCEs. The model follows the call by
Adamowicz et al. (2008) to develop new behavioral insights and theory about choice and choice processes. There are likely
many more applications.
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