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Abstract 

Although the Razumikhin-type theorems have been well developed for the stability of func- 
tional differential equations and they are very useful in applications, so far there is almost no 
result of Razumikhin type on the stability of stochastic functional differential equations. The 
main aim of this paper is to close this gap by establishing several Razumikhin-type theorems 
on the exponential stability for stochastic functional differential equations. By applying these 
new results to stochastic differential delay equations and stochastically perturbed equations we 
improve or generalize several known results, and this shows the powerfulness of our new results 
clearly. 

Keywords: Lyapunov exponent; Razumikhin theorem; Brownian motion; Burkholder-Davis 
Gundy’s inequality; Borel-Cantelli lemma 

1. Introduction 

Stochastic modelling has come to play an important role in many branches of science 
and industry. An area of particular interest has been the automatic control of stochastic 
systems, with consequent emphasis on the analysis of stability in stochastic models 
(cf. Arnold, 1972; Friedman, 1976; Has’minskii, 1981; Mao, 1991). One of the most 
useful stochastic models which appear frequently in applications are the stochastic 
functional differential equations of the form 

dx(t) = f(t,xt)dt + g(t,xt)dw(t), t>O, (1.1) 

with initial data x0 = 5, where x, = {x(t+O): --z < 0 GO} is regarded as a C([-z, 01; R”)- 

valued stochastic process. The stability of Eq. (1.1) has been studied by many authors 
and we here mention Kolmanovskii and Myshkis (1992), Ladde and Lakshmikantham 
(1980), Mao (1994) and Mohammed (1986) among others. Especially, Kolmanovskii 
and Nosov (1986) established the following theorem. 
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Theorem 1.1 (Kolmanovskii and NOSOV, 1986, p. 169). Let the standing hypothesis 
(Hl) imposed in Section 2 below hold. Let pa2 and cl-c3 be positive constants. 
Let x(t; 5) denote the solution of Eq. (1.1) and xt(r) = {x(t + 8; 0: -z< 8~0). 
Assume that there is a continuous functional V: R+ x C([-z, 01; R”) + R such that 

~~lrp(0)lp~V~t,~)~:czIlcpllp, (t,cP) ER, x CCL-~01; R”) (1.2) 

and 
h 

EV(tz,xt2(0) - EV(tl,x,, (5)) G - ~3 
s 

EJn(s; l)lP ds, tz > tl 20. (1.3) 
11 

Then the trivial solution of Eq. (1.1) is asymptotically pth moment stable. 

This theorem is of course a natural generalization of the Lyapunov direct method but 
is somewhat not very convenient in applications. This is not only because condition 
(1.3) is not related to the coefficients f and g of Eq. (1.1) explicitly but also because 
it appears to be more difficult to construct the Lyapunov flmctionals than the Lyapunov 
functions. It is in this spirit that we would like to explore the possibility of using the 
rate of change of a function on R” to determine sufficient conditions for stability. 

To explain the idea, let V(t,x) E C2*l(R+ x R”; R+). Then the expectation of the 
derivative of V along the solution of Eq. (1.1) is given by 

=Wt,x,) :=E(W,W) + Ut,x(t))f (t,xt) 

+ t trace[gT(t,x~)v,(t,x(t))s(t,xl)l). (1.4) 

In order for E9?V(t,xt) to be negative for all initial data and t 20, one would be 
forced to impose very severe restrictions on the functions f (t, cp) and g(t, cp). In fact, 
the point q(O) must play a dominant role and, therefore, the results will apply only 
to equations that are very similar to stochastic differential equations. This seems to 
indicate that it is not good enough to use the Lyapunov functions. Fortunately, a few 
moments of reflection in the proper direction indicate that it is unnecessary to require 
that (1.4) be negative for all initial data in order to have asymptotic stability, and this 
is the basic idea exploited in this paper. This idea originated with Razumikhin for the 
(1956, 1960) ordinary differential delay equation and was developed by several people 
to more general functional differential equations (cf. Hale and Lunel (1993) and the 
references therein). The results in this direction are generally referred to as theorems 
of Razumikhin type. However, so far there is almost no result of Razumikhin type for 
stochastic fUnctiona differential equations. The aim of this paper is to establish some 
Razumikhin-type theorems on exponential stability of stochastic functional differential 
equations. 

In this paper we shall first establish the Razumikhin-type theorems on pth moment 
and almost sure exponential stability for stochastic functional differential equations 
in Section 2. These general results will then be applied to stochastic differential delay 
equations and stochastically perturbed equations in Sections 3 and 4 in order to improve 
or generalize several known results, and this shows the powerfulness of our new results. 
Furthermore, several interesting examples will be given in Section 5 to illustrate the 
theory. 



X MaolStochastic Processes and their Applications 65 (1996) 233-250 235 

2. Main results 

Throughout this paper, unless otherwise specified, we let r > 0 and C([-r, 01; R”) 

denote the family of continuous functions cp from [-r, 0] to R” with the norm 1) cp(] = 
sup, G04,, I&0)], where 1 . I is the Euclidean norm in R”. If A is a vector or matrix, 
its transpose is denoted by AT. If A is a matrix, its norm JJAJJ is defined by J/A/J = 
sup{(Ax]: 1x1 = 1) (without any confusion with ]]q]]). Moreover, let w(t) = (WI(~), . . . , 
~,(t))~ be an m-dimensional Brownian motion defined on a complete probability space 
(Q,9,P) with a natural filtration {&}t,c (i.e. 4 = a{w(s): O<sbt}). Denote by 
C&([--r, 01; R”) the family of all bounded, &-measurable, C( [-r, 01; R”)-valued ran- 
dom variables. For p > 0 and t 3 0, denote by L$([-r, 01; R”) the family of all &- 
measurable C([-r, 01; R”)-valued random variables &J = {4(e): --z < 19 < 0) such that 

~~P-,,oqlm@)lp < 0. 
Consider an n-dimensional stochastic functional differential equation 

dx(O = f(vt)dt + g(t,xt)dw(t), ta0, 
(2.1) 

x0 = 5. 

Here &j E C’O([-r, 01; R”) and xf = {x(t + 0): --z < 0 ~0) which is regarded as a 
C([-r, 01; R”)-valued stochastic process. Moreover, 

f :R+ x C([-z,O];R”) -+ R”, g:R+ x C([-qO];R") -+ RnXm. 

For the existence and uniqueness of the solution we impose a standing hypothesis: 
(Hl) Both f and g satisfy the local Lipschitz condition and the linear growth con- 

dition. That is, for each i = 1,2,. . . , there is an h; > 0 such that 

If(4w) - f(tv(P2)l + Ild~~(Pl) - S(~,cP2)ll~mfa - q21( 

for all t>O and those cpl,~p2 E C([--r,O];R”) with ]]~i]] v I(q~l(<i, and, moreover, 
there is an h > 0 such that 

If (c cp) + Ildc v>II GhU + lIdI) 

for all tg0 and all cp E C([-z,O];R”). 
It is known (cf. Mao (1994) or Mohammed (1986)) that, under (Hl), Eq. (2.1) 

has a unique global solution, which is denoted by x(t; 5) in this paper, and, moreover, 
E(~up~~~~~ Jx(s; t)l’) < 00 for all ta0 and r > 0. For the purpose of stability in this 
paper we also assume that f (t, 0) E 0 and g(t, 0) z 0. So Eq. (2.1) admits a zero 
solution or trivial solution x(t;O) = 0. 

Let C2~‘( [ -r, co) x R”; R+) denote the family of all nonnegative functions V(t,x) 
on [-r, co) x R” which are continuously twice differentiable in x and once differentiable 
in t. If V E C2*‘([-r, cc) x R”; R+), define an operator YV from R+ x C([-z,O]; R”) to 

R by 
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where 

wo> ut,x> = 7’ Vx(t,x> = ( wt,x> Wt,x) -,...,- 
8x1 > ax, 9 

Yxdt,x> = (y$q,.. 
Let us now first establish a Razumikhin-type theorem on the pth moment exponential 

stability for the stochastic functional differential equation. 

Theorem 2.1. Let (Hl) hold. Let 1, p, cl, 122 all be positive numbers and q > 1. As- 
sume that there exists a function V(t,x) E C2~‘([--z,~) x R”;R+) such that 

c~~~~~<V(t,x),<c~~x~~ for all (t,x) E [-z,co) x R”, 

and also for all t 3 0 

J=wt, 4) < - MV(t, &J(O)) 

provided 4 = {I$(@: -~6860} E L$,([-z,O];R”) satisfying 

EV(t + g,+(g)) < qEV(t, 4(O)) for all - z d 0 GO. 

Then for all 5 E C&([-z,O];R”) 

Elx(t; {)lp < ~E]I~IIP6” on t 20, 

where y = min{A, log(q)/r}. 

Proof. Fix the initial data 5 E C&([-r,O]; R”) arbitrarily and write x(t; 5) 
simply. Let E E (0, y) be arbitrary and set jj = y - E. Define 

u(t) = _~!:a [e F('+e)EV(t + e,x(t + e))] for tao. 
. . 

(2.2) 

(2.3) 

(2.4) 

= x(t) 

Since ~~~~~~~~~~ Ix(s)l’) < 00 for all r > 0 and both x(t) and V(x, t) are continuous, 

EV(t,x(t)) is continuous. Hence U(t) is well defined and is continuous. We claim that 

D+U(t) := lim sup 
U(t + h) - U(t) 

GO for all 120. 
t (2.5) 

h-+0+ 

To show this, for each t 20 (fixed for the moment), define 

8 = max(8 E [-r,O]: e ~(*+%v(t + e,x(t + e)) = u(t)). 

Obviously, 8 is well defined, 6 E [-z, 0] and 

U(t) = eF(‘+‘)EV(t f 8,x(t + 6)). 

If 6 < 0, then 

ei(‘+‘)EV(t + e,x(t + e)) -c e l(‘+e)EV(t + 8,x(t + 4)) for all 0 < 8 d 0. 
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It is therefore easy to observe that for all h > 0 sufhciently small 

eY(‘+h)EY( t + h,x( t + h)) 6 e s(t+%V(t + &x(t + 4)) 

hence 

U(t+h)<U(t) and D+U(t)<O. 

If 4 = 0, then 

ei@+‘)EV(t + f3,x(t + O))<ef’EV(t,x(t)) 

so 

EV(t + 13,x(t + 0)) < eWVeEV(t,x(t)) 

< eY“EV(t,x(t)) for 

for all - z<e<o. 

all - z<e<o. (2.6) 

Note that either EV(t,x(t)) = 0 or EV(t,x(t)) > 0. In the case EV(t,x(t)) = 0, (2.6) 
and (2.2) yield that x(t+Q = 0 a.s. for all --z < 0 < 0. Recalling the fact that f(t, 0) 5 0 
and s(t,O) E 0, one sees that x(t + h) = 0 a.s. for all h > 0, hence U(t + h) = 0 and 

D+U(t) = 0. On the other hand, in the case EV(t,x(t)) > 0, (2.6) implies 

EV(t + e,x(t + e)) < gw(t,x(t)) for all - r G e f 0 

since eyr <q. Thus, by condition (2.3), 

EW(t,x,)< - /EV(t,x(t)). 

However, by Ito’s formula, one can derive that for all h > 0 

eY(‘+h)EV(t + h,x(t + h)) - e@EV(t,x(t)) 

.I 

t+h 
= e~~[[yEV(s,x(s))+E~~(s,x,)]ds. 

t 

Note that 

$W(t,x(t)) + LW(t,xt)< - (1 - ~)EV(t,x(t)) < 0. 

One sees from the continuity of V etc. that for all h > 0 sufficiently small 

yEV(s,x(s)) + E_YV(s,x,) GO if t<s<h, 

and consequently 

eY(‘+‘)EV(t + h,x(t + h)) <eY’EV(t,x(t)). 

So it must hold that U(t + h) = U(t) for all h > 0 sufficiently small, and hence 
D+U(t) = 0. Inequality (2.5) has been proved. It now follow from (2.5) immediately 
that 

U(t)<U(O) for all t>O. 
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By the definition of U(t) and condition (2.2) one sees 

E(x(~)(~< $Ei]S]IPeP” = ~EI]~llPeP(Y-E)‘. 

Since E is arbitrary, the required (2.4) must hold. The proof is complete. 0 

In the sequel of this section we shall deal with the almost sure exponential stability 
for the stochastic functional differential equation. 

Theorem 2.2. Suppose all of the conditions of Theorem 2.1 are satisjed and in addi- 
tion p 22. If there is a constant K > 0 such that for all t 30 and 4 E L&([-z, 01; R”) 

Elf (6 4)Ip + E(t=lkT(ty 4)s(t, 4Mp’* GK _~s~~~~~I~(SV’. (2.7) 
. . 

then for all 5 E C&([-z,O];R”) 

liztp f log jx(t; l)l < - s a.s. (2.8) 

where y is the same as defined in Theorem 2.1, i.e. y = min{l, log(q)/r}. 

Proof. Fix any 6 E C&([--r,O]; R”) and write again x(t; 5) =x(t) simply. For t >z, 

~lh+~IIP = E ( 
sup Ix(t + h)lP 

O<h<? > 

< 3p-1 (EIW +E [ ~‘,f(s,s),ds] 

t+h P 

g(s,x,) dw(s) II) . 
L 

But by Holder’s inequality, 

(2.9) 

condition (2.7) and Theorem 2.1, one derives that 

[s t+r 
E If( ds ’ I 

I J 
t+r < zp--l Elf (s,x,)Ip ds f t+r < Kzp-’ J sup EJx(s + 6)lP d3 
* -?<BCO 

(2.10) 

Also by the Burkholder-Davis-Gundy inequality (cf. Karatzas and Shreve (1991) or 
Mao ( 1994)) 

‘+h g(s.i)d+v(s)[] < C,E ( 6”’ trace[gT(s,XS)g(s,IcS)] dsy , 
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where C, is a positive constant dependent on p only. One can then show in the same 
way as (2.10) that 

(2.11) 

Substituting (2.10), (2.11) and (2.4) into (2.9) yields 

Ellxt+,lIP G&e- yf for all taz, 

where 

(2.12) 

K 

1 
= y-‘c2 ~E~~~~~J’[l + KeY’(zP + Cpzpi2)]. 

We shall now show that (2.12) implies the required (2.8). Let E E (0,~) be arbitrary 
and let k = 1,2,... It follows from (2.12) that 

P(o: IIqk+~)~ll > e --(y-E)kr~p)fe(Y--E)krEIJ~(k+l)~lJP~:Kle-Ekr. 

In view of the well-known Borel-Cantelli lemma, one sees that for almost all o E s2 

IIx(k+r j7 (( < e--(y--a)kr’p (2.13) 

holds for all but finitely many k. Hence there exists a b(w), for all o E 52 excluding 
a P-null set, for which (2.13) holds whenever k 2 ko. Consequently, for almost all 
w E sz, 

if kz < t < (k + 1 )z, k B h. Therefore 

lim sup 1 log (x(t)1 < - 7 a.s. 
t--boo t 

and the required (2.8) follows by letting E -+ 0. The proof is complete. 0 

3. Exponential stability of stochastic differential delay equations 

In this section we shall apply the general Razumikhin-type theorems established in 
the previous section to deal with the exponential stability of stochasitc differential delay 
equations. 

Consider a delay equation of the form 

dx(t) = F(t,x(t),x(t - i?,(t)), . . . ,x(t - c&(t))) dt 

+ G(t,x(t),x(t - b(t)), . . . At - Mt)))Wt) (3.1) 

on t >O with initial data x0 = 5 E C!$([-z, O];R”), where 6i : R+ -+ [0, T], 1 <id k, 
are all continuous, and 

F:R+ x R” x Rnxk + R” and G:R+ x R” x Rnxk -+ RnXm. 
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We also impose a standing hypothesis: 
(H2) Both F and G satisfy the local Lipschitz condition and the linear growth 

condition. That is, for each j = 1,2, . . . , there is an hj > 0 such that 

If(WY Yl )...) yk)-f(t,.cYl,... ,yk)l+lIg(t,x,yl,...,Yk)-g(t~~,~l~...~Yk)ll 

Gi(lx- il + 1~1 -&I +...+ lyk - _%I) 

for all t 2 0 and those x, yi, X, j E R” with 1x1 V Jyi ( V (f] v Ij 1 <j, and there is moreover 
an h > 0 such that 

If(t,x~yl,..., Yk)l + l1s(w~ Yl, . . . , MN Gh(l + I4 + IN I + . . . + Iv/cl> 

for all t>O and x,yi E R”. 
Under (H2), Eq.(3.1) has a unique global solution which is again denoted by x(t; 5). 

Besides, we also assume that F(t, 0,. . . ,O) = 0, G(t,O,. . . ,O) s 0. 

Theorem 3.1. Let A, 11,. . . ,&, p,c~,cz be all positive numbers. Assume that there 
exists a function V(t,x) E C2,1([--z,oo) x R”;R+) such that 

cllxlP< V(t,x)<C21XlP for all (t,x) E [--z,oo) x R”, (3.2) 

and 

K(t,x) + K(fx)F(t,x, yl,. . . ,y/c) 

+ i trace[GT(t,x, y1 ,...,yk)Vxx(t,x)G(t,x,yl,...,Yk)l 

<--ilV(t,X)+ &Aiv(t - di(t),yj) (3.3) 
i=l 

for all (t,x,yl,..., yk)ER+ xR” xRnXk. Zf A > CF=, Ji, then the zero solution of 
Eq. (3.1) is pth moment exponentially stable and its pth moment Lyapunou exponent 

should not be greater than -(A - q Cf=, Ai), where q E (I,;l/~~X1 4) is the unique 
root of 1 - q Cf=, /zi = log(q)/z. In addition, if p 22 and there is a K > 0 such 
that 

IO&x, ~1,. . . , yk)12+traCe[GT(t,x,yl,...,yk)G(t,x,yl,...,Yk)l 

<K (lx12+$lYi12) (3.4) 

for all (t,x, yl,. . . , yk)ER+xR”xR , nxk then the zero solution of Eq. (3.1) is also 
almost surely exponentially stable and its sample Lyapunov exponent should not be 
greater than -(Al - q Cf=, &)/p. 

Proof. Define, for t 2 0 and q~ E C([-r, 01; R”), 

f(t, 40) = F(t, P(O), (p(-61(t))> ...y (P(-dk(t))) 
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and 

At, cp) = G(c cp(O), v(-61(t)), . . . > (P(-W))). 

Then Eq. (3.1) becomes Eq. (2.1). Moreover, the operator _YV becomes 

gvt, cp) = Vr(t, 40)) + UC cp(O)YTc cpm d-b(t)), . . .T d-&(t))) 

+ $trace[@(t, do), d-b(t)), . . . , d-&(t))) 

x KAt, cp(O))G(r, do), d-b(t)), . . ., d--8dt)))l. 

If tg0 and C$ E L&([-r,O];R”) satisfying 

then 

EV(t + 8,&e)) < qEV(t, 4(O)) for all - zbf3 60, 

by condition (3.3) 

E_YV(t, 4) < -AEV(t, 4(O)) + 2 &EV(t - h(t), 4(-Mt))) 

i=l 

d - ( ) 1 - q e Ai EV(t, 4(O)). 
i=l 

(3.5) 

So, by Theorem 2.1, the zero solution of Eq. (3.1) is pth moment exponentially sta- 
ble and, moreover, its pth moment Lyapunov exponent should not be greater than 
-(A - qCfFl Li). If furthermore p>/2 and (3.4) holds, then for all t30 and 4 E 

~~u-~~wv, 

WY& 4)Ip + E(tracdsT(tT $)s(t, 4)1)p/2 

62E K 14(0)12 + 5 14C-&Ct)l~2 

(1 

PI2 

i=l I) 
d2Kp’2( 1 + k)(p-2)‘2E I&0)1’ + & I+(-bi(t))/P 

i=l 1 
<2[K(l + k)lp” sup El4(0)[“. 

-i<C-IGO 
(3.6) 

Therefore, by Theorem 2.2, the zero solution of Eq. (3.1) is almost surely exponentially 
stable and its sample Lyapunov exponent should not be greater than -(n--q Cf=, &)/p. 

The proof of the theorem is complete. •i 

We now use Theorem 3.1 to establish a useful corollary. 

Corollary 3.2. Assume that there is a ,I > 0 such that 

x’F(t,x,O ,..., O)$ -@I2 for all (t,x) E R+ x R”. (3.7) 
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Assume also that there are nonnegative numbers ai,pi, 0 <ii k such that 

IF(t,x, 0, . . . , 0) - F(f, 2, Yl, . . * , yk)l <a0IX - 4 + e%lYiI 

i=l 

and 

trace[GT(t,x, yl ,...,y~)G(t,X,yl,..., y/c)1 G:BO\X12 + 5 Bi)Yij2 

i=l 

for all t>O, x,I,yl,..., yk E R”. If pa2 and 

(3.8) 

(3.9) 

(3.10) 

then the zero solution of Eq. (3.1) is pth moment exponentially stable and is also 
almost surely exponentially stable. 

Proof. Note first that (3.4) follows from (3.8), (3.9) and f( t, 0,. . . , 0) z 0. To check 
(3.3), let V(t,x) = (~1~. Then for all (t&y1 ,..., yk) E R+ x R” x Rnxk, 

&(t,X) + v,(t,X)F(t,X,Yl,...,Yk) 

+ itrace[GT(t,x,y,,.. ., yk)%(t,x)G(t,x,Y1,. . ., Yk)] 

= plxlp-*xTF(t,x, 0,. . . , 0)+J71X[p-2XT[F(t,X,Yl,...,Yk)-F(t,X,b.,0)] 

+~l~l~-~trace[G~(t,x,y~,...,Yk)G(t,x,Yl,...,Yk)l 

+ P(P - 2) 
2 (Xlp-41XTG(t,x,Y,,...,Yk)(2 

<- 
( 

PA- p(p~L)po) ~XIP+p~UilXl’-‘lyil 

i=l 

+ p(p2- ” ~~iIXIp-2[yi[2. 

i=l 

Note the elementary inequality 

UaV1-a<bU+(l -a)v for u,v~O, O<U< 1. 

Thus 

JX(‘-‘lyjj = (~X~p)(p~l)~p(~y~~p)l~p~p~X~p + +lyil’p 
P 

(3.11) 

(3.12) 

and similarly 
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Substituting these into (3.11) gives 

P(P2-1)80_(p_l)&_(P-l:(p-2) 

i=l 

i=l 

Now the conclusions follow from Theorem 3.1 immediately and the proof is complete. 
0 

The above corollary is in fact a generalization of Theorem 3.1 of Mao ( 1992) 
where the time lags ai( 1 d i G/z were required to be nonincreasing and continu- 
ously differentiable but we here only assume they are nonnegative bounded continuous 
functions. We would also like to mention that Caraballo (1990) studied the expo- 
nential stability of stochastic differential delay equations in Hilbert space where the 
time lag was also assumed to be nonincreasing and continuously differentiable, and we 
believe his result can be improved as above by Razumikhin’s arguments. One more 
point we need point out is that conditions of Corollary 3.2 are delay-independent and 
so the conclusions. However, (3.7) may not hold sometimes and, instead, one may 
have xTF(t,.x,x,. . . ,x)< -A[x[‘. For example, F(t,x,yr,. . . ,yk) = ax - cf=, biyi with 
0 da < Cf=, bi. In this case, the delay effect plays the main role in stabilizing the 
system. The following corollary deals with this case. 

Corollary 3.3. Assume that there is a I> 0 such that 

xTF(t,x,x,. . . ,x)6 -1(xj2 for all(t,x) E R+ x R”. (3.13) 

Let p 2 2 and assume furthermore that there are nonnegative numbers tii, pi, 0 d i < k 
such that 

lF(t,x,x,. . . > x) - F(t, 2, YI,. . . , yk)lp~~lx-~(p+~c(ilx-yi~p (3.14) 
i=l 

and 

(trace[GT(t,x, YI, . . . ,Yk)G(t,x, Yl, . . . ~yk)~)p’2~801xlp +k!?ibilP (3.15) 
i=l 

for all t 2 0, X, .f, yl, . . . , yk E R”. rf 

/I > (Kip + i(p - 1)j2’P, 

where 

Cpp [qQ_q-‘jy 

(3.16) 

K = 2PV1[zJ’(~ +oi)+~ppzJ”2~], oi = cf=, Cli and b = Et, pi, then the zero solution 
of Eq. (3.1) is pth moment exponentially stable and is also almost surely exponentially 
stable. 
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Proof. Regard Eq. (3.1) as a delay equation on tar with initial data on [-r, r], i.e. 
consider the delay interval of length 22 instead of z. By the well-known martingale 

moment inequality (cf. Karatzas and Shreve, 1991), Holder’s inequality and the as- 
sumptions, one can derive that 

E(X(t) - X(t - Gi(t))jP <K SUP E/X(2 + O)l” (3.17) 
-2r<8<0 

for t > z, I< i < k, where K is defined above. One can also show that for t 2 z, 

EYIXfIP 6 -pjZEIX(t)(P + El(p - l)EIX(t)lP + & & QElx(t) -xtt - sitt>lP 
El i=l 

(P - UP 
+ ;EZ(P - l)(p - 2)Elx(t)lP + cp_2j,2 sup Elx(t + W, (3.18) 

E2 
-r<O<O 

where the elementary inequality (3.12) has been used, and ~1, ~2 are two positive param- 

eters to be chosen. Substituting (3.17) into (3.18) and choosing ~1 = (Koi)“J’, ~2 = b2’J’ 

one then obtains 

E%Y]x,lP ,< -prnlx(t)lP + (p(KS)“P + ip(p - l)j2’P) 

X sup Elx(t + @I”. 
-2TQf3<0 

By (3.16), one can choose q > 1 such that 

(3.19) 

A > q ((Kd)l:p + i(p - l)f12’P) . 

Therefore, if Elx(t + O)lp < qElx(t)lp for -2r<e<O, (3.19) implies 

ELiqx,IP,< -p (1 - q(Koi)“P - iq(p - 1)jW) Elx(t)l”. 

So the conclusions follow from Theorems 2.1 and 2.2. The proof is complete. q 

4. Exponential stability of stochastically perturbed equations 

In this section we shall use the general theorems established in Section 2 to deal 
with the exponential stability of stochastically perturbed equations. Consider a stochastic 
equation of the form 

dx(t) = [+(t,x(t)) + F(t,x,)] dt + g(t,x,) dw(t) on t 30 (4.1) 

with initial data x0 = 5 E CiO([-r, 01; R”), where g is the same as defined in Section 2, 
while +:R+xR” -+ R” and F:R,xC([-z,O];R”) -+ R”. As before, assume that Ic/, F,g 
satisfy the local Lipschitz condition and the linear growth condition (similar to (Hl) 
and (H2)), and moreover $(t,O) = F(t,O) z 0, g(t, 0) E 0. Under these conditions 
Eq. (4.1) has a unique global solution. Eq. (4.1) can be regarded as the stochastically 
perturbed equation of the ordinary differential equation 

x(t) = ICl(t,x(t)). (4.2) 
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To a certain degree it is known that if Eq. (4.2) is exponentially stable and the stochas- 
tic perturbation is sufficiently small, then the perturbed Eq. (4.1) will remain exponen- 
tially stable (cf. Mao, 1994, Theorem 6.5.1). The critical research in this direction is to 
give better bound for the stochastic perturbation. We shall now apply the Razumikhin- 
type theorems to establish some new results. 

Theorem 4.1. Let ;~,c~,Q,/?I,. . . , 194 all be positive numbers and p > 2, q > 1. Assume 
that there exists a function V(t,x) E C2,1([-~,oo) x R”;R+) such that 

cl ]xlp < V(t,x)Qc2]x(P for all (t,x) E [--z,oo) x R”, 

and 

U&x) + v,(t,x)$(t,x)< -JUt,x), 

IKdt,x)l ~Blv(t,x)l - 3 (P 1)/P IlKxtt,X)lI ~B2vv,x)l’p-2”‘p 

for all (t,x) E R+ x R”. Assume also that 

-wt? 4>IP QS3Jfwt, 4(O)) and E(trace[gT(t, $)g(t, d)l>p’2 Gb&Ut, 440)) 

for all t>O and those $JEL&([--z,O]; R”) satisfying 

EV(t + 8,&g)) < qEV(t, 4(O)) for all - z < 0 GO. (4.3) 

If 

J. > PI ,:‘p + ;P28:lP, (4.4) 

then the zero solution of Eq. (4.1) is pth moment exponentially stable. In addition, 
if there is a constant K > 0 such that for all t 2 0 and 4 E L&([-T, 01; R”) 

-W(t, &O))lp +V(t, +)I’ + -W-ace[gT(tT 4kdty 9)1)p’2 ~K_T~~~o~l~(~)lP~ 
. . 

then the zero solution of Eq. (4.1) is also almost surely exponentially stable. 

Proof. Define f (t, cp) = $(t, q(O)) + F(t, cp) and Eq. (4.1) becomes Eq. (2.1). More- 
over, 

YUt, cp) = K(C cp(O)) + V,(t, cp(O))[ti(t, V(O)) + F(C CPM 

+ +ce[gT(t, cpK.& cp(O)Mt, cp)l. 

Hence for t >O and those 4 E L&([-z, 01; R”) satisfying (4.3) one can derive from the 
assumptions that 

EZV(t, 4) < -AEV(t, 4(O)) + BrE(F’(t, WWl’P-‘)‘pIW, 4)I) 

+ $E([V(t, ~(0))I(p-2)ip~ace[gT(t, 4Mt, 411). (4.5) 
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But for any E > 0 

E([V(t, &O))]'P-')'plF(t, c$)I) = E (eV(t, 4(0)))(p-1)'p ( lPWlp~ ‘I 
< vEV(t, 4(O)) + -&EIF(r, 6)Ip 

+ p 
3 

- 
PEP-' 

EW 4(O)), 

where the elementary inequality (3.12) has been used once again. In particular, if we 
choose E = &lp, then 

~~~~~~,~~~))l~P-l~‘pl~(~,~)I~~B:’P~~~~,~~~)~. 

Similarly, one can show 

E( [ V(t 9 I#J(O))]‘~-~)‘~ ~ace[gT(h 4>sO, 4)l) GB~‘pW~, MO). 

Substituting these into (4.5) yields 

EYUC 6)G - (A- PlB3 ‘lp - ~p&~)Ev(t, 4(O)). 

Now the conclusions follow from Theorems 2.1 and 2.2 immediately. The proof is 
complete. q 

Corollary 4.2. Assume that there is a 1> 0 such that 

xT$(t,x)< -;llx12 for all (t,x)~R+ x R”. 

Assume also that there are two functions q(e), a~(,) E C([-z, 01; R+) such that 

PC6 cp)l G J” m(WdQl de, -* 
0 

~aceCgT(6cpM6 rp)lG s c4wN912 de --‘T 
for all t30 and ~EC([--z,O];R”). Ifpa and 

il > (z&)“P f 9(roi2)2/P, 

where 

(4.6) 

ii, = 

(1 
O hwi 

P--l 
Pl(P-l)&j ) 

--T ) 
if p = 2, 

if p > 2, 
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then the zero solution of Eq. (4.1) is pth moment exponentially stable. In addition, 
if there is a K > 0 such that I$(t,x)l<Klxl f or all (t,x) E R+ x R”, then the zero 
solution of Eq. (4.1) is also almost surely exponentially stable. 

Proof. Let V(t,x) = (xIp. Then 

K:(o) + V,(fx)ll/(4x)G - P~lXIP, 

vx(t,x>l G PIW, II V,(o)ll G P(P - 1 MP-* 

for all (t,x)ER+ x R”. By (4.6) one can choose q > 1 such that 

(4.7) 

NOW for t20 and 4 = {4(e): -2~8~0}~L~([--z,O];R”) satisfying 

E]$(0)lp <qE(&O)lp for all - r<tI<O, 

one can easily show that 

and 

So the conclusions follow from Theorem 4.1 and the proof is complete. 0 

5. Examples 

In this section we shall discuss two examples to illustrate our theory due to the page 
limit. In the following examples we shall omit mentioning the initial data which are 
always assumed to be in C&( [-z, 01; R”) anyway. 

Example 5.1. Consider a linear stochastic differential delay equation 

dx(t) = -[Ax(t) + Bx(t - s(t))] dt + Cx(t - s(t)) dw(t), (5.1) 

where A,& C are all n x n constant matrices, w(t) is a one-dimensional Brownian 
motion and 6 : R+. + [-z, 0] is continuous. 

Case (i). Assume that A+AT is positive definite and its smallest eigenvalue is denoted 
by &(A + AT). In this case, one can easily conclude by Corollary 3.2 that if p > 2 
and 

iAninCA + AT) > IlBll + q llcl12, (5.2) 

then the zero solution of Eq. (5.1) is both pth moment and almost surely exponentially 
stable. 
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Case (ii). Assume that A+AT+B+BT is positive definite and its smallest eigenvalue 

is denoted by ;Imin(A + AT + B + BT). To apply Corollary 3.2, write Eq. (5.1) as 

dx(t) = -[(A + B).x(t) + Bx(t - d(t)) - Bx(t - c%(t))] dt + Cx(t - &l))dw(t) 

(5.3) 
with 62(t) = 0. One then easily sees that if pb2 and 

(5.4) 

then the zero solution of Eq. (5.3), i.e. (5.1), is pth moment as well as almost surely 

exponentially stable. Of course, in this case one may also apply Corollary 3.3 to obtain 
a delay-dependent result. For simplicity, choose p = 2. Note that for any p > 0 

IAX + By -AZ - BJ12 G(1 + p-1$41(21x - Z12 + (1 + p)l(BJ121y - j12. 

One can then apply Corollary 3.3 (with p = 2) to conclude that if 

iAmin(A +AT +B+BT) > ill 11 c 2 + 5 {ll~llP(1 + im2w + P-wl12 

+ (1 + PWII~I + Wl12~11’2~~ (5.5) 

then the zero solution of Eq. (5.1) is second moment as well as almost surely ex- 

ponentially stable. As a special case, let us look at a one-dimensional linear delay 
equation 

dx(t) = -bx(t - s(t)) dt + cx(t - s(t)) dw(l) (5.6) 

with b > c2/2. In this case, criteria (5.2) and (5.4) do not work but (5.5) reduces to 

c2 
b > - + b 

2 
2(Sb2 + w2). 

Hence, if 

then the zero solution of Eq. (5.6) is both second moment and almost surely exponen- 

tially stable. 

Example 5.2. Consider a stochastic oscillator described by a semi-linear stochastic 
functional differential equation 

Y(t) + 3i(t) + 2z(t) = Ol(Z,,&) + a2(zt,it)d(t), (5.7) 

where G(t) is a one-dimensional white noise, i.e. w(t) a Brownian motion, both gi, a2 : 
C([-z, 0];R2) -+ R are locally Lipschitz continuous and, moreover, 

Iai( V la2(cp)I d 1” Ico(@l de, rp~C([--z,0];R2). 
--z 
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We claim that if 

(5.8) 

then the zero solution of Eq. (5.7) is second moment as well as almost exponentially 
stable. To show this, introduce a new variable n = (~,i)~ and write Eq. (5.7) as a 
two-dimensional stochastic functional differential equation 

dx(t) = [Ax(t) + F(x,)] dt + G(x,) dw(t), (5.9) 

where 

It is easy to find 

H=(_: _:>, andhence H-’ = (2 -:>- 
such that 

H-‘AH= (-; -2). 

Set 

Q = (H-l)TH-l = ; ; ( > 
and define V(x) = xTQx for XE R2. It is easy to verify 

+ 1x12 < V(x) <7\x)2. 

We further compute 

~VCP) = 2vT(‘3QL4do) + F(cp)l + GTWQW) 

< -2V((p(O)) + 2l~~(O)(H-‘)~l IH-‘&A + 21m(d2 

< -2V((p(O)) + J14zV(cp(O)) + &pdv)I’ + 4~2W12 

J 
0 

6 -(2 - Gr)V((p(O)) + (AZ+ 142) Ucp(d)) de. (5.10) 
--T 

By condition (5.8) one can find q > 1 such that 

2 - X&i<1 + q)2 - 14922 > 0. 

Therefore, for any c#JEL&([--r,O];R”) satisf$ngEV(4(8)) <qEV(c$(O)) on -r<0QO, 
(5.10) yields 

EYV(C$)< -(2 - Ai<1 + q)z - 14q22)EV(c#J(O)). 

Thus the conclusions follows from Theorems 2.1 and 2.2. 
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