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The classical Waring problem for forms is to determine the smallest length s of
an additive decomposition of a general degree d homogeneous polynomial or form
f in r variables as sum of s dth powers of linear forms. We show that its solution is
implied by a result of J. Alexander and A. Hirschowitz, concerning the Hilbert
functions of the ideal of functions vanishing to order two at a generic set of s
points in P’!. Using Macaulay’s inverse systems, we show that the
Alexander—Hirschowitz result is equivalent to determining the number of linear
syzygies of s homogeneous forms in r variables that are dth powers of a given set
of general linear forms. We also determine the dimension of the family of degree d
forms that have additive decompositions of length s. We then study several notions
of length for forms f, having to do with the kind of length-s, zero-dimensional
schemes Z in P’ ' whose defining ideal /(Z) annihilates the inverse system of f.
When Z is to consist of distinct points, we obtain the above length of additive
decomposition of f. When Z is smoothable we obtain the “smoothable length” of
f; when Z is arbitrary, we obtain a “scheme length” of f. All these lengths are at
least as large as the dimension of the vector space of all order-i partial derivates of
f, for each i. The above-mentioned length functions are distinct. Using results
about the existence of nonsmoothable Gorenstein point singularities in codimen-
sion 4, we show that when r = 5 there are forms f of scheme length s, which are
not in the closure of the family of forms having additive decompositions of length
s. Finally, we propose a new set of Waring problems for forms, using these lengths.
© 1995 Academic Press, Inc.

1. INTRODUCTION

Any degree-d homogeneous form f in r variables over an algebraically
closed field k& with char k = 0 or char k = p > d has additive decomposi-
tions f=L? + --- + L9 as sums of powers of linear forms. The number of
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summands is the length of the decomposition. We let g,(f) denote the
minimal length of any such decomposition of f. The Waring problem for
degree-d forms in r variables over k is to determine the length g, (r, d) of
a general enough form f of degree d. If W = k', Sym? W is the d-fold
symmetric product of W, and (V) is the projective space on V| then

g:(r,d) = min{s|3U, open—dense in P(Sym’ W)

with f € U, = g,(f) = s).

The Waring problem has attracted interest for its naturality (see [B1], [B3],
[C1], [ERR], [L], [Lu}, [R2], [Re], [WKD, and for its connections to other
problems (see [R1] and [H1).

Recently, A. Alexander and A. Hirschowitz determined the Hilbert
function H(r, s) of the ideal K(P,2) of functions vanishing to order two at
any general enough set P of s points in the projective space P" '(k),
where & is an infinite field (see [A1], [AH1], [AH2]). We use Macaulay’s
inverse systems and their result to determine the number of linear syzygies
of s homogeneous forms that are dth powers of s general enough linear
forms (Theorem 1). It is well known that Theorem 1 implies the solution of
the Waring problem for forms, when & = C (see [T2}, {Wh)], [EhR]). We
show the implication also when char k = ), or when char k > d (Theorem
2). A third corollary of the Alexander—Hirschowitz theorem is a determi-
nation of the dimension dim(PS(r,s,d)) of the family of all degree-d
homogeneous forms f that have additive decompositions of length s
(Theorem 3).

Theorem 1 improves a result of M. Hochster and D. Laksov on the
dimension of the vector space #V = {{Xv,..., X,v, v € V}), where V is
a general enough s-dimensional vector subspace of the space %, of
homogeneous degree-d forms in a polynomial ring # = k[ X,..., X ] (see
[HL)]). The new result is that the expected generic dimensions are attained
—with four exceptions—by vector spaces that can be written as V' = LY =
(L4,...,L%.

The proof that Theorem 1 is a corollary of the Alexander—Hirschowitz
theorem uses Theorem I of [EI2]. The proofs that Theorems 2 and 3 are
corollaries of Theorem 1 when k& = C requires also one of two classical
results, the algebraic Lasker—Wakeford theorem ([L], [Wk]), or the geo-
metric Terracini theorem ([T1], [T2], [B1D. For a different exposition of
the algebraic route from the Alexander—Hirschowitz theorem to Theorem
2, when &k = C, see R. Ehrenborg and G.-C. Rota’s article [EhR]; they
state that the generalization of their results to fields of arbitrary character-
istic is a “completely open problem of the utmost interest.” Of course, the
answer to the Waring problem changes over low characteristics, as when
d = p = char k, the pth powers of linear forms land in a proper subspace
(XP,...,XP) of %, There are two ways to avoid the crux of this
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problem. We choose one in handling the case char & > d. Another would
be to replace # by the divided power algebra &: Theorems 2 and 3 would
then extend to all characteristics over 2. We have not treated the Waring
problem for low characteristics char & < d or for non-algebraically closed
fields. For the real case see Bruce Reznick’s memoir [R1].

In the final section, we compare scveral different notions of length of a
form f, beginning with g,(f); the lengths are related to the kinds of
annihilating length-s schemes of f in P"~! (Lemma 4, Definitions 4A-4D).
We compare these lengths and show that they are in general distinct
(Theorem 5, Proposition 10). We show that for any of our notions of
length, the vector space dimension of the space of ith order derivates of a
length-s form f is at most s (Proposition 6). When 7 < r < 10, d > 5, and
s = 2r there are families of degree-d forms f, having at most s linearly
independent ith order derivates for each i, but not in the closure of
PS(r, s, d) (Proposition 10, Example 11). We give similar examples for the
pairs (r,s) = (6,42) and (5,760) (Example 13). The examples use the
existence of families of nonsmoothable length s punctual Gorenstein
singularities of embedding dimension r — 1 > 4.

In a sequel the author will use inverse systems to give “Koszul” upper
bounds for the Hilbert function of K(P,a), a > 2 [I3]. In work joint with
V. Kanev we will apply Theorem 3 and Section 3 to the study of determi-
nantal loci of catalecticant matrices [IK].

2. INVERSE SYSTEMS OF ORDER Two
VANISHING IDEALS

We denote by R the polynomial ring R = k[x,,...,x,] in r variables
over an infinite field k, and by R, the subspace of forms of degree d. We
denote by K(P,a) the homogeneous ideal in R of functions vanishing to
order at least a at each point of the set P = (p,,..., p,) of points in P"~';
and K(p,a), is the vector space of degree-d homogeneous elements of
K(P,a). We recall the apolarity action from [EI2], for chark = 0 or
char k > d. We denote by # the polynomial ring & = k[ X,..., X,] upon
which the polynomial ring R = &[x,,..., x,] acts as higher order partial
differential operators: if h € R, and fe %, then h-f =
h(o/0X,,...,3/0X,)e f. The pairing R; X%, — k is exact. If I is an
ideal of R, then the inverse system of I is the sequence of vector spaces

[/7']y=Ann({) N, = {L)" .
When 0 < char k < d, we need to take # =2, the divided power ring,

and the contraction action (see [EI2]).
We now recall the Alexander—Hirschowitz result.
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VANISHING THEOREM (J. Alexander and A. Hirschowitz').  Suppose that
k is an infinite field, that P = (p(1),..., p(s)) is a sufficiently general set of
points in P"~ 1(k), and that the integer d > 3. Then K(P,2), has codimension
min(sr,dim; R,) in R,, except for the following four exceptional triples
(r,s,d),

(3.5,4), (4,9,4), (5,14,4), (5,7,3), (1)
for which the codimension is sr — 1.

We next recall the result of [EI2] concerning the inverse system of the
ideal I = K(P,a). If p ={(p,,...,p)is a k-valued point of affine r-space
A'(k) we let L, = p, X, + -+ +p, X, be the corresponding linear form of
. 1f P=(pQ),..., p(s) is a set of s points of affine r-space A'(k) we
let L) = (L}y,..., L} €% denote the k-span of the jth powers of
the corresponding linear forms. Since the vector space L} depends only on
the classes L, of the forms L, up to nonzero constant multiple, it is
well defined for a set P = (p(1),...,p(s)) of s points in projective r — 1
space P!, where p(i) = p(i) mod k* multiple. We will omit the bar and
write P for the s-points of P"~ ', If V is a vector subspace of %, we let
2,V be the vector space span of [hlh €%, v € V}in %, .

LEMMA (Theorem 1 of [EI2)). When char k = 0 or is larger than i, the
annihifator [17'), in %, of the degree-i piece of the ideal I = K(P,a); of R
satisfies

[171]1' =%

a

i+l—a
Ly . (2)
We can now show

THEOREM 1 (number of syzygies of homogeneous forms that are powers
of linear forms). Suppose that k is infinite and char k = 0, or that char k
=pandthatp >j+ 1. IfL,,..., L, are general enough linear forms, and
L/ =(Li,...,L) is the span of their jth powers, and j > 2, then the
Alexander—Hirschowitz theorem implies that the dimension of %, L satisfies

dim, #,L’ = min(rs,dim, %, ), (3)

except when (r,s,d = j + 1) is in the list (1) of four exceptional triples, for
which the dimension of R L’ isrs — 1. When j =1, and s <r, then the
dimension of #, L satisfies

dim, #,L =rs — (s

2) =s5(2r+1-ys)/2.

ISee [A1] for degrees d > 5 and degrees 3 and 4 for r < 5 [AH1] for degree 4 and r > 5,
and [AH2] for degree 3 when r > 5. In view of the scattered nature of the work, and the
authors’ report of improvement and simplification of their method in the later papers, a
coherent exposition of the complete result would be useful!
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If char k = p and is less or equal j + 1, then the above statements are true
with L/ replaced by the space of divided powers LV, and with # replaced by
the divided power ring 9.

Proof. The case chark =0, or chark = p > j + 1 is immediate from
(2) of the lemma (Theorem I of [EI2]) and the Alexander—Hirschowitz
theorem. The case j =1 is simply the Koszul resolution for complete
intersections L generated by forms of degree one. The case chark <j + 1
comes from the exact duality between R and the divided power algebra 2,
(see [EI2]) and the Alexander—Hirschowitz theorem.

Remark (comparison with a result of Hochster and Laksov). M.
Hochster and D. Laksov in [HL] have shown that if V' is a generically
chosen s-dimensional vector subspace of &#;, and j > 3, then the dimen-
sion of #V = {X;vlv € V) satisfies dim, %V = min(dim, &%,, ,, sr).
Theorem 1 strengthens the result of Hochster and Laksov since here the
vector space L/ has a special form. Since the dimension of .2,/ depends
semicontinuously on ¥, Theorem 1 implies the Hochster—Laksov
result—except for the list of four triples in (1).

How special is the condition V' = L/? The dimension of the family

PS(r,s,j) c PY, N = (' “; 1) — 1, parametrizing vector spaces L/, L =
[L,,...,L,], is no greater than sr — 1, as there are s choices of a form L;
in the space (X,,...,X,>. The dimension of the Grassmannian

Grass(s, #;) parametrizing all s-dimensional subspaces V of %; is
s(dim, #; — s), so the codimension of the family PS(r, s, j) in Grass(s, 9?}-)
satisfies

cod(PS(r,s,j) = s(dim, R, — (s + 1)) + 1, 4

a degree r — 1 polynomial in j if r, s are fixed.

Of course, the amount of effort expended in achieving this stronger
result is substantially greater, as the Alexander—Hirschowitz result is over
a hundred pages of journal articles!

We had shown Theorem 1, when Rob Lazarsfeld noted that the solution
of the Waring problem is a consequence of the theorem of J. Alexander
and A. Hirschowitz. Bruce Reznick and Michael Johnson then respec-

*We received on December 23, 1992 an e-mail message from 1. Dolgachev via V. Kanev,
who informed us of R. Lazarsfeld’s observation.
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tively pointed out to us the algebraic route by the Lasker—Wakeford
lemma, and the geometric route for obtaining Theorem 2 from Theorem 1.
We extend these to the case char k > d. We are grateful to L. Avramoyv,
who pointed out to us the principle that polynomial invariants extend from
characteristic zero to characteristic p, used in the proof. Recall that
g(r, d) is the smallest integer s such that the general degree-d r-ary form in
Z# over the field k can be written as the sum of s powers of linear forms.
We let {a] denote the smallest integer greater than a.

THEOREM 2 (Waring problem: representability of a general form f as a
sum of powers). Suppose that d > 2, the field k is algebraically closed, and
k is of characteristic zero, or of characteristic greater than d. Then the
Alexander—Hirschowitz theorem implies that

sty = |7 47| 5)

r

except for the pairs (r,d) = (3,4), (4,4), (5,4), and (5,3), respectively, for
which (r,s,d) is in the list of exceptional triples of (2), and for which
glr,d)=s5s+1=6, 10, 15, and 8, respectively. When d = 2, we have
gr,2)=r.

Proof. The classical Lasker—Wakeford lemma for k& = C states that
g(r,d) is the smallest integer ¢ for which there are linear forms L =
L,,...,L, in &, such that #, 19 ' =%, Thus, Theorem 1 implies
Theorem 2 when k& = C. See [L], [Wk], and for modern treatments [R2] or
[EhR]. Alternatively, in the classical case, Michael Johnson has pointed
out to us that J. Bronowski, in [B1], [B2], uses the classical Terracini
theorem [T1] to show the equivalence of Theorems 1 and 2 when & = C.
But Terracini himself had shown this [T2].

We now assume that k is an algebraically closed field k£ with char k = 0
or char k > d. The key Theorems 4.1 and 4.2 of [EhR], showing that the
Waring problem is equivalent to suitable special cases of the
Alexander—Hirschowitz result, are stated only for & = C. By (2) above, and
the Alexander—Hirschowitz theorem, we need only show

CramM. Under the above hypothesis on ., the dimension of PS(r, s, d)
satisfies

dimPS(r,s,d) = max (dim,%# L") - 1. (6)
LilLi=s

Proof of Claim. In characteristic zero, taking V' =%, the map

G A* - 84VY;  o[Ly,..., L] =LY+ +LY,
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is generically onto its image. The dimension of the image is the same as
that of the tangent space to the image at a general point of the domain.
The tangent space 7, ,, to ¢(A™) at the point ¢(p, ) satisfies

_ d—
'Z)(L) =F# L l,

as can be seen by viewing the map as the s-fold secant to the map
¢: A" = §UV), ¢(v) =rv9 The claim follows, when char k = 0, after
converting from S%V) to PY = P(S4(V)).

In characteristic p, the dimension of the image is at least that of the
tangent space, equal when the map is separable, less if the characteristic
intervenes essentially. Thus, we have dim PS(r, 5, d) greater than or equal
to the right hand side of (6). By the Alexander—Hirschowitz theorem, the
tangent map y: Tar ), — Ty g1, has maximal rank, aside from the
four exceptions. Thus, the dimension of the LHS of (6) could be larger
than the RHS only in the exceptional cases. For the three exceptional
cases where d = 4, equality in (6) now follows from comparing two results:

(i) The second partials of a general quartic are known to span %,
when char k > 4 (see the proof of Prop. 3.3 of [I1], which is valid for char
k > d). The locus of f for which the second partials do not span %, is the
catalecticant hypersurface of P (%,).

(ii) The second partials of a sum of s powers of linear forms spans a
vector space of dimension no greater than s.

For d = 4, and (r, 5, d) in (1), it follows that PS (7, s, d) lies on the nonzero
catalecticant hypersurface of P (#,), implying that the left side of (6) is no
larger than dim (P (%,)) — 1, which is the right side by the
Alexander—Hirschowitz theorem. This shows equality in (6) in these three
cases.

For the last exceptional case (r,d) = (5,3) we conclude equality in (6)
by using a general principal that polynomial invariants with integer coeffi-
cients in characteristic zero extend to characteristic p (see [Bo, Chap. IV,
Sect. 2, Scholium after Theorem 3, p. 29]). We include a proof for
completeness. First, let K be an algebraic closure of Q, and note that if
g = Xy=3¢s X7 ¢c; € K, satisfies g = L3+ 3 then it is a classical
result (see (12) of [Rl] (6) of [WK], or Corollary 4 5 of [EhR)) that there is
a homogeneous polynomial f in the ring K[C] = K[{C,}I|J| = 3}] that
vanishes at C, =¢;, as dimy PS(5,7,3) is 33, not 34 = dim P(#,). By
taking norms and clearing fractions we may assume that the coefficients of
f are in the integers Z, and that their GCD is 1. Then, over Z, the locus
PS,(5,7,3) lies on the hypersurface f = 0. Letting f denote the image of f
in the field Z,, we see that f=0on PS;, (5,7,3), hence fed =0 on
(Az ). It follows that fo ¢ = 0 on (A,)”* over any field k of characteris-
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tic p. Thus, if k is algebraically closed, the dimension of the subvariety
PS,(5,7,3) of P* is at most 33. Since its dimension is at least 33, there is
equality in (6), and (r, d) = (5, 3) remains an exceptional case for Theorem
2 when chark = p > 3.

Remark. As can be seen, the difficult part of the solution of the Waring
problem is the Alexander—Hirschowitz theorem, which uses algebraic-geo-
metric methods. B. Reznick has also independently determined g¢(r, d) in
a large number of cases, and has obtained reasonable upper bounds in all
cases [R2]; his results are the most complete among those eschewing use of
algebraic geometry. His work is also a good source of references to the
classical literature and recent improvements over classical results. We note
again that Terracini [T2], Wakeford [W], as well as Ehrenborg and Rota in
Theorem 4.2 of [ER], restate the Waring problem for C in the language of
K(P, 2). The first exceptional case (r,d) = (3,4) of Theorem 2 is due to
Clebsch [C1], and is shown differently by J. Luroth [Lu]. The exceptions
(4,4) and (5,4) use the same principle (see Reye [Re], Sylvester [S],
Bronowski [B1]). The exception (5,3) appears in Richmond [Ri] and
Wakeford [W]. ]

We have actually shown more than the Waring problem. Recall that
PS(r, s, d) denotes the family of homogeneous forms f in & of degree d
up to k*-multiple, such that f can be written f = L + - + L4, for some

choice of linear forms L,..., L.

THEOREM 3 (dimension of the family of power sums). If d > 2, and
char k = 0 or is greater than d, then the Alexander—Hirschowitz theorem
implies that the dimension of PS(r,s,d) in the projective space P(#,)
satisfies

dim(PS(r,s,d)) = min(rs — 1,dim; £, — 1), (7
except for the triples (r, s, d) of (1), where the dimension is one less.
Proof. See the proof of (6) in Theorem 2.

Remark. Note that when s < g(r, d) and either the product r-g(r, d)
+g(r,d) or (r,d) is an exceptional pair, Theorem 2 does not imply
Theorem 3. To prove their result when s < g(r,d), J. Alexander and A.
Hirschowitz add a set Q of (dim, R, — rs) ordinary points to the double
locus at P (see [H1)).

3. THE LENGTH OF A HOMOGENEOUS POLYNOMIAL
We now compare several notions of length related to generalized

additive decompositions of forms. Our goal is, first, to suggest some
problems and methods related to the Waring problem just solved. Second,
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we establish a connection between definitions of lengths of forms f and
the structure of the punctual annihilating schemes of f. This allows us to
relate known examples of nonsmoothable length-s Gorenstein zero-dimen-
sional schemes Z to the existence of forms f having no more than s
linearly independent derivates in each degree, but which are not in the
closure of PS(r, s, d), the family of sums of dth powers of s linear forms.
We suppose henceforth that k is an algebraically closed field of arbitrary
characteristic. Recall that if f is a degree-d homogeneous element in %,
then R, o f is the vector space of ith order (degree d — i) derivates of f.
As before, when 0 < chark < d below, we need to take # =2, the
divided power ring, and the contraction action (see [EI2]).

A crude measure of the length of a degree-d form f is

1diff( f) = maxﬂsisd{dimk<Rd—i °f>}’ (8)

the maximum number of linearly independent degree-i derivates of f, for
any i. When d = 2t or 2t + 1, there are at most dim, R, linearly indepen-
dent degree-i derivates, no matter what the choice of f. The crude
measure 1diff,(f) is a lower bound for the notions of length in Definitions
4A-4D (Proposition 6). So these “annihilating scheme” notions of length
are interesting only when d is large enough compared to s: if 1 > 0 and if
s = length(f) satisfies dim, R,_, <s < dim; R, then we normally con-
sider degrees d > 2¢ + 2 (see Example 14 for the contrary case d = 21).

We first give an “annihilating scheme” version of the usual notion of
length g,(f) of a form. Recall that g,(f) is the minimal length of an
additive decomposition of f as a sum of powers of linear forms.

LEMMA 4. We have
g(f) =min(sI3P =P,...,P, € P with K(P,1) C Ann(f)). (9)

Proof. By (2) in the case a = 1, we have f € (L%,..., L?) iff there are
s points P =(p(1),...,p(s) of P"~' with L,=L,, and K(P,1),C
Ann(f),. It is well known that if f €%, and I is any ideal of R, then
I, ¢ Ann(f), iff I C Ann(f) (see [Mac] or [IK].

DEFINITION 4A. We say that a degree-d homogeneous form f in %,
has a generalized additive decomposition of length s and multiplier degrees D
into powers of L,,..., L,, iff there are forms h,,..., h, of degrees D =
d,,...,d, such that

f= ¥ nLi%  and s = Y (dim, %, ). (9a)

l<ux<t
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We let g.(f) be the minimal length of a generalized additive decomposi-
tion of f.

If N=(d, +1,...,d,+ 1) we let K(P,N)= mf,;“ NN m;’;“ in
R. Then by a generalization of (2) (Theorem I of [E12]) and the proof of
Lemma 4, g,(f) is the minimal colength s = dim,(R/K(P, N)) of an
ideal K(P, N) such that K(P, N) € Ann(f).

DEFINITION 4B. We say that f has power sum decomposition length
psl (f) < s if it is in the Zariski closure of PS(r, 5, d): there is a family f,,
t € T, such that f = f, and f,lt # 0 is in PS(r, 5, d). We let

psl,(f) = min(s|f € PS(r,s,d). (9b)

I. Dolgachev and V. Kanev construct the variety X (f) of polar s-poty-
hedrons—length-s additive decompositions of f, and the variety X,(f)* of
possibly degenerate polar s-polyhedrons of f, in Section 4.1.1 of [DK]. This
variety is roughly the collection of limits of s-polyhedrons—limits of
families f, = L ()Y + -+ + L (¢t)* of additive decompositions, such that
f=1lim, ,, f,«. The polar—polyhedral length of f is

ppli(f) = min(s| X,( f)* + ). (9¢)

DEFINITION 4C. We say that f has smoothable or additive length

al, (f) < s if the ideal Ann(f) in R contains an ideal 1,, where Z is a

smoothable length-s zero-dimensional subscheme of P{~!: the point p,

parametrizing Z in the punctual Hilbert scheme Hilb*(P"~') is in the
closure of the family U(s) parametrizing s distinct points.

al,(f) = min({length Z|I, C Ann(f),Z c P""',dim(Z) = 0,

Z smoothable}). (9d)

DEFINITION 4D. We say that [ has scheme length 1,(f) < s if the ideal
Ann(f) in R contains an ideal I,, where Z is a length~s zero-dimensional
subscheme of P~ !:

1,(f) = min({length Z|I, € Ann(f), Z < P!, dim(Z) = 0}). (%)
LEMMA. We have

psle(f) <ppL(f)  and  al,(f) <ppL(f). (10)

Proof. 'That ppl,(f) = s implies not only that f = f, is in the closure
of a family f,, t € T, T € PS(r, 5, d) (so psl,(f) < ppl,(f)) but also that
there is a family f, = L ,(¢)? of additive decompositions of f,, and hence
a limit length-s scheme Z, = lim, _, o(p, (, Y --- U p, ,)), where p, is the
point in P’~! corresponding to L, The limit length-s scheme Z, is by
definition smoothable, and I, < Ann(f), implying al,(f) < ppi,(f).
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DEerINITION 4E.  For all the lengths defined above, we let
len,(r,d) =min{s|3Us open—dense in P(Sym® W)lf el

= len,(f) = s},
maxlen,(r,d)=max,. , length,(f),

Len,(r,s,d) = subset of P, (#,) parametrizing f for which len, () = s.

We say a length function len,(f) is semicontinuous in f if len, (f) <s
defines a closed subset of P(Sym“ W) = P(%#,). We say a length function
len,(f) defined by a family .7, of annihilating schemes is weakly semicon-
tinuous in f if when {(f,, Z )|t € T} is a flat family of pairs with len, (f,) = s
for t # 0 and Z |t # 0 a length-s annihilating scheme of f, in #,,, then
len, (f) <.

THEOREM 5. We have

L(f) <al (f) <pph(f) <& (f) <&(f). (11)
If k = C and deg(f) > s, then al (f) < pslc(f). Whenr = 3, then 1 (f) =
al (f). When r = 2, 1 () = gi(f) = psl,(f). All the lengths we have de-
fined but g,(f), g,(f) are weakly semicontinuous in f € #, = Sym“ V. They
all satisfy

len, (f +g) <len(f) + len,(g), (12)
and
len, (L“f) < (maxlen,(2,d + u))-len,(f),

d+u+1
2

The length psl, (f) is semicontinuous. When d > s, 1,(f) and al (f) are
semicontinuous, so (s,r,d) and Al(s,r,d) are locally closed in P(#,).
Then the dimension of Al(s,r, d) satisfies

dim(Al(s,r,d)) <rs ~ 1.

Proof. We first show ppl,(f) < gi(f). It is well known that the ideal
K(P,N) = mi‘l“ NN mg"“ of Definition 4A is smoothable; the in-
equality follows.

We next show that when k& = C and deg(f) > s, then al(f) < psl(f).
Suppose that (f,/n € N), is a sequence of degree-d forms in PS(r, s, d),
convergent in Sym?(V) and let f=lim, _,, f,. Let Z, be a sequence of
length-s subschemes Z, = X p{n), corresponding to the length-s additive
decompositions of f,. Since the closure U(s) of the “distinct points” open
subscheme of Hilb® P~ is compact, the schemes Z, have a limit scheme

“len, (f) for all lengths but g, (f). (13)

<
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Z,. We need to show that I, < Ann(f). By Gotzmann’s regularity result
in [G], a length-s scheme is m-regular by degree m = s. Since d = deg(f)
> s, we have dim([/, ],) = dim (1, 1,) = dim, %, — s is fixed. It fol-
lows that lim,, _.[1,'], = [1;'],, and that f isin [/} '],. We conclude that
al(f) <s, implying al.(f) < pslo(f).

The remaining inequalities of (11) are tautological, or have been shown.
That 1,{(f) = al,(f) when r = 3 follows from the smoothability of punc-
tual schemes in P2 That all the definitions except g,(f) coincide when
r = 2 is the classical Jordan lemma (see Appendix III of [GY], Example
4.1.2 of [DK], or Section 2C of [I1]). The weak semicontinuity of the
lengths (except for g,(f) and g,(f)) is immediate from their definitions.
Likewise, the subadditivity of (12) is immediate.

The point of (13) is that L“ - L¢ has length no greater than maxlen (2, d
+ u)) for two variables, which is [(d + u + 1) /2] by the above-mentioned
Jordan lemma, except for g,(f).

When d > s, that the subsets .#( < s, r, d) and Al( < s, r, d) are closed is
shown by an argument similar to the proof that alo(f) < psle(f). It
follows that the subsets .Z(s,r,d) and ANs,r,d) are locally closed in
P(#,). Since the dimension of the smoothable length-s subschemes of
P! is no greater than s(r — 1), and Al(r, s, d) is fibred over the ideal I,
defining the point p, € Hilb?, ... (P" ") by the projective space P*!
= P(I"'(Z),) of dimension s ~ 1, we conclude that dim(Al,(s,r,d)) <
rs — 1. This completes the proof of the theorem.

We now apply the concept of scheme length of f. The following
proposition generalizes the elementary fact that if f= L{ + --- L%, where
the L, are linear forms, then f has at most s linear independent degree-i
derivates, because of the inclusion, R, ;o fc {(L!,...,L.). We use a
result of A. Geramita and P. Maroscia, that the graded ideal in R of a
punctual subscheme Z of P’ ' has Hilbert function H(R/I,) that is
nondecreasing, and that attains H(R/I,); = length(Z) for i > 0 (Pro-
position 1.4 of [GM]).

PropPOSITION 6. If 1,(f) =s, then the dimension of the vector space
R, o f satisfies dim (R, ° f) <'s. Thus, 1diff () < 1,(f).

Proof. Suppose Z is a length-s zero-dimensional subscheme of P!
whose homogeneous vanishing ideal 7, in R satisfies I, € Ann(f). Then
Z is Cohen—Macaulay, as it is zero-dimensional. If x = 0 defines a
hyperplane missing the support of Z, then the class x of x in R/, is a
regular element, so R/I, is Cohen—Macaulay. It follows that the Hilbert
function H(R/I,) is nondecreasing, and attains its stable value s. Since
Ann(f) > I,, the Hilbert function H(R/Ann(f)) < H(R/I,) termwise,
so H(R/Ann(f)),_; <s. By a result of Macaulay (see [Mac], [EIl], or
[IKD, (R/Ann(f)),_; is dual to the space R, - f of ith derivates of f; this
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implies that the space of ith order derivates of f has vector space
dimension over k no greater than s.

How computable are these lengths? One problem is that there may not
be a unique minimal length scheme Z with [, annihilating f. For
example, if f=X?+Y? in k[X,Y] then f=[(aX - Y) + (X +
aY)1/(a®* + 1), so f has a family of length-two annihilating schemes
xy = 0 and (ax — yXx + ay) = 0. However, we can show a partial converse
to Proposition 6. If I/ is a vector subspace of R;, we let Sat(}") denote its
saturation in R. We say a symmetric sequence H(0),..., H(d), d = 2t or
2t + 1 is strongly unimodal if there is an integer § such that

H(0) <H{) < - <H(t-8)=H({—-86+1)= - H(d—t+98)
> -+ > H(d).

PROPOSITION 7. Suppose 1 <s <t <d. If dim(R,of) =
dim (R, ° f) = s or, equivalently, if H; = H(R/Ann(f)) satisfies H/(t) =
H (1t + 1) =5, then

0 1,(f) = Idiff () = s,

(ii) f has a unique length-s annihilating scheme Z; defined by the graded
ideal Sat(Ann(f),).

(iii) The Hilbert function H, is strongly unimodal.

Proof. The hypothesis implies that the ideal 7 = (Ann(f),), generated
by the degree-t forms in R that annihilate f, is extremal in Macaulay’s
sense of having minimal growth: dim, R/, is the minimum possible given
r, t, and dim, /,. Gotzmann’s persistence and regularity theorems of [G]
imply that the ideal Sat(/,) defines a length-s scheme Z, so Sat(/,) = I,.
As in the proof of Lemma 4, it follows that 7, € Ann(f), and 1,(f) < 5. By
assumption s < 1diff ,(f), so Proposition 6 implies 1,(f) = Idiff (f) = s. If
Z' of length s satisfies 7, € Ann(f), then I, is regular in degree ¢, by
Gotzmann’s regularity theorem; hence ([;), € Ann(f), = (1), have the
same colength s in R,, so (1), = (I,),, implying I, = I,,. Without loss of
generality, by the symmetry of H, around d/2, we may assume that
t >d/2. We have shown that Ann(f), = (I,), for i <t + 1; the
Geramita—Maroscia result now implies H, is nondecreasing for i <t + 1,
and we have H (t) =s. The symmetry of H, implies H (i) =s for
d—t—1<i<t+11Ifthereisani<d/2with H(i) =H/(i+1) =5
< s, then an application of the above proof to ¢ =d — i~ 1 yields a
contradiction. We conclude that #, is strongly unimodal.

We now prepare to show that the two length functions al,(f), defined
from smoothable schemes, and 1,(f), defined from arbitrary length-s
schemes, are distinct functions when r > 7 (Proposition 10, mod Conjec-
ture 9.0).
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LeMma 8. Suppose that g is a homogeneous degree-d, element of the
polynomial ring #' inr — 1 variables X,, ..., X,, let Ann(g) be the ideal of
the ring R' = klx,,...,x,] annihilating g, let T, = H(R/Ann(g)) be the
Hilbert function, and let T = Y.T' be the sum function of T':

L= (ty + - +t).

Suppose t >d, — 1, d =2t or 2t + 1, and let f=gX{ %. The Hilbert
function H; = H(R/Ann(f)) is symmetric around d /2 and satisfies

(Hf)sl'__Tst' (14)
Proof. The submodule R,_, o f of %, satisfies
D Ry, i f = @ (R, o)X
u max(0,¢—(d -dy)) <u < minldy, i)
C OFX] " =, (15)

We have ¢ =dim, R, ,°g, and H(R/Ann(f)), = dim, R, ;°f by
Macaulay’s inverse systems (see [Mac], [EI1], [12], or [IK]). It is not hard to
see that (15) implies that

H(R/AO(f)); = thuo.i-(@-dp T " Flminti. dyys (16)
so implies the lemma.

Recall that a Gorenstein graded Artin algebra A is compressed if it has
the maximum Hilbert function possible, given the embedding dimension r
and socle degree d (see [EI1]. It is “generic” if it lies on a single
component of the punctual Hilbert scheme, and has no deformations
(where A is the special “point” of a family A(¢)) to algebras A(¢) with
different discrete invariants. A form is “general” for property P if there is
a dense open subvariety U, of the projective space P(%#,) such that
f € U, implies property P.

LEMMA 9. When g is a general degree-d form in the polynomial ring
F =kl X,,..., X, }inr =r — 1 variables, then for the following cases, the
Gorenstein algebra A = R'/Ann(g) is compressed, nonsmoothable, and
generic: (r',d) = (r,3),6 <r < 10;(r',d) = (5,5); (r',d) = (4,15).

Proof. We have verified the nonexistence of negative deformations in
each of these cases by computer calculation of I/7? using the “Macaulay”
symbolic algebra program [BSE].* See [EI1] and Example 7 of [I2] for a
discussion of the “small tangent space” method used.

*The case (4, 15) took 23 MB of RAM and more than 8 hours on an accelerated SE-30.
When r' = 6, R = kla, b,c, x,y, z) then g = 2a%z + 2ab? + 3abc + 2bc? + 3bcx + 2cx? +
3cxy + 2xv® + 3xyz + 2yz? is general enough to be nonsmoothable (Example 7 of [I2]).
Finding (Ann(g))? when r > 11 ran up against degree bounds in “Macaulay.”
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Conjecture 9.0. The conclusion of Lemma 9 is valid for (', d) when
r' > 6 and d > 3 is odd; for (5,d) when d > 5 is odd; and for (4, d) when
d > 15 is odd.

PROPOSITION 10. When 7 <r < 11, if g is a general enough degree-3
form of R, if d = 7, and we take f = gX{ ™3, then

(i) H(R/Ann(f)) =(,r,2r — 1,2r)* 5,2r — 1,r,1).

(ii) There is a unique scheme Z of length s = 2r such that I, C Ann(f).
The scheme Z is concentrated at the point p = (1,0,...,0) in P’} and has
Hilbert functions

H(R/I;)=(1,r,2r — 1,2r,2r,...,),
and
H(&,)y=(1,r—=1,r-1,1).

(iii) The lengths of f satisfy s = 2r = 1,(f) < al,(f).
Gv) 1diff,(f) =5 = 2r.

Proof. The statements (i) and (iv) follow from Lemmas 8 and 9 and
Proposition 6. We take @, = R’/Ann(g) concentrated at p. By construc-
tion, 7, € Ann(f). The integer d is large enough that by (14) we have
Ann(f), € (x,,...,x,), so rad(Ann(f),) C (x,,...x,), implying that any
zero-dimensional annihilating scheme Y is concentrated at p. By construc-
tion, (Ann(f); = (1,),, and since I, is regular in degree 3, we have Y C Z;
if the lengths are equal then Y = Z, as claimed.

If there is a family f(¢)|t € T of forms having additive decompositions
f() =LY + -+ +L,,(¢)® of length 2r for ¢ # 0, and approaching f,
then we may further deform the family so that when ¢ # 0, f(z) has 2r
linearly independent degree-3 derivates. Since Z is regular in degree 3,
and the annihilator scheme Y(1) of (L (1) ..., L, (1)) consisting of 2r
smooth points would then also be 3-regular, it follows from considering
(Iy); = Ann(f(1)); — (Ann(f),) = (I;); that the scheme Z would be
smoothable, contradicting its choice. This shows (iii) and completes the
proof.

We let Gor(T) € P(#,) parametrize the f, up to nonzero constant
multiple, such that H, =, H(R/Ann(f)) = T.

ExaMPLE 11 (form of small length s not in the closure of sums of powers
of s linear forms). When (r,d) =(7,d), d > 7, R =k[u,...,w), R =
kit,...,w], then the form f = t'g,

g =2u’z + 2ur’® + 3uww + 2ew? + 3uwx + 2wx? + 3way + 2xy?

+ 3xyz + 2yz?,
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is general enough to satisfy the hypotheses of Proposition 10, so 14 =
Idiff, (f) = L, (f) < al (f). Calculation gives H, = T' = (1, 6,6, 1),
H(R' /(Ann(g)?) = (1,6,21,56,6) of length 90, and if I = Ann(f) we
have A, = R/I has length 70, and satisfies

H,=(1,7,13,14,14,13,7,1),
and

H(R/I*) = (1,7,28,84,90,90,90,75,20,14,13,7,1).

The number 75 = H(R/1?), bounds the dimension of the tangent space Ir
to the affine cone over Gor(T') at f, by [IK], so the dimension of the family
of forms f with this Hilbert function is small compared to dim(PS(7, 14, 4))
= 97. By taking g a general form of degree 3 in R, considering f = L*(g
+ m o g)—adding to g multiples of its 13 linearly independent derivates of
orders 1 to 3—and homogenizing to degree d by a general linear form L,
we find that for the sequence T = H,, there is a neighborhood U; =
Gor(T), of the point parametrizing f in Gor(T), such that

dim(Gor(T) ;) = dim(55 + 13 + 6) = 74,

the same as dim,9; — 1. Thus, U, is composed entirely of similarly
constructed forms for which 14 = Idiff, (f) = 1,(f) < al, (f)!

The tangent space J, to the punctual Hilbert scheme Hilb™A’ at
Spec(A)), satisfies 7, = I/17; hence

dim, 7, = dim,(I/I*) = dim,(R/I*) — dim, R/I = 520 — 70 = 450,

less than the 490 required for smoothable schemes. Thus, 4 ;=R/ Ann(f)
is also nonsmoothable.

ExampLE 12. By adding together several forms arrived at as in Proposi-
tion 10 or Example 11, we may create new examples where Idiff (f) =
1,(f) < al,(f). For example, taking f = tg + u'g’, where g’ is
g(t,v,w, x,y,z), we find H(R/Ann(f)) = (1,7,20,28,28,20,7,1), with 28
= 1diff, (f) = 1,(f) < al,(f), and a tangent space .; of dimension 131.
Taking f = t°g + ug + z°¢" with g" = g(t,u,v,w, x,y), we find
H(R/Ann(f)) = (1,7,24,41,42,42,41,24,7,1), with 42 = Idiff, (f) =
L(f) <al,(f), and a tangent space J; of dimension 196.*

“The Hilbert functions H(R/(f)) and the tangent space size dim, F; = H(R/Ann(f)’),
were found using the “Macaulay” symbolic algebra program [BSE].
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ExaMpLE 13A. When (r,d) = (6,d), d > 11, there are homogeneous
degree-d polynomials f satisfying

(i) H,=(,6,21,36,41,4297°,41,36,21,6,1) and (AH;)_, = (1,
5,15,15,5,1).

(i) There is a unique scheme Z of length s = 42 and concentrated
at a single point of P’ such that I, € Ann(f). H(R/I,) =
(1,6,21,36,41,42,42,...).

ExaMPLE 13B. When (r,d) = (5,d), d > 31, there are homogeneous
degree-d polynomials f satisfying

() H, = 1, 5, 15, 35, 70, 126, 210, 330, 450, 534, 690, 725, 745, 755,
759, 760972, 759,..., D and (AH,) _ 5 = (1, 4, 10, 20, 35, 56, 84, 120, 120,
84, 56, 35, 20, 10, 4, 1).

(it) There is a unique scheme Z of length s = 760 and concentrated
at a single point of P* such that I, ¢ Ann(f). H(R/I,) =
(1,5,...,755,759,760, 760, . ..).

(i) 1diff, (f) = 760 = 1,(f) < al,(f).

Proof. 1If F is a general degree 5 homogeneous polynomial in R’ =
k[x,,...,xs] it defines a Gorenstein ideal J- = Ann(F) in R’ that has no
deformations except to ideals of the same Hilbert function H.—by an
argument of Emsalem and the author [EI1], verified by calculation in
“Macaulay,” that there are only the trivial negative degree tangents J/dx;
in Hom(J,, R'/J;). We take f= FX? °. The proof of Proposition 10
applies to show the assertions in Example 13A. Example 13B is con-
structed similarly from the general degree-15 form F in R = k{x,,..., x,].

ExXAMPLE 14. It is not hard to show that for dimension reasons, if the
length s is large compared to d, then there are forms f not in the closure
of PS(r, 5,d), but satisfying 1diff,(f) < s. The lowest degree example for
r=3 has s = 14 and d = 8. The projective dimension of Gon(T), T =
(1,3,6,10,14,10,6,3, 1), is 43, as Gor(T) is the locus of the catalecticant
hypersurface on P* = P(%,). Thus, dim(Gor(T)) > dim(PS(3, 14, d)) =
41. It follows that there are degree-8 forms f in k[x,y, z] with 14 =
Idiff, () < al (f).

Remark. Let H(3,s,d) be the “maximal Hilbert function Hf bounded
by s’”

H(3,s,d), = min(s,dim, R,,dim, R, ,), O<i<d. (16)
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If s is small enough, the author and V. Kanev show that f & Gor(T),
T = H(3, s, d), implies that f is in the closure of PS(3, s, d).

THEOREM [IK]. When r =3, s <dim, R,_,, and d = 2t, the family
Gor(3,5,d) of all forms fE€R, with Hf=H(3, s,d) is an irreducible
open—dense subvariety of the Zariski closure of PS(3, s, d).

Proposition 10 and Examples 11 and 12 above are obstructions to
extending this result to more general Hilbert functions bounded by s when
r > 7. However, it does not so extend even when r = 3 (see [IK])!

S. J. Diesel has shown that when r =3, and T is any permissible
symmetric sequence, the family Gor(T') of forms f € %, such that H, = T
is irreducible [D]. In [IK], we show that Gor(7") has several components
when 7 is any of the Hilbert functions H, from Proposition 10 or Example
11; we show similar examples for r > 5. Punctual Gorenstein singularities
in P? are smoothable, so when r = 4 the construction of Proposition 10
does not show 1,(f) < al,(f). When r = 4, the questions of whether
Gor(T) is always irreducible and whether there are forms for which
1,(f) < al (f) are still open.

We do not show that the Gorenstein algebras 4 = R/Ann(f) con-
structed in Proposition 10 are nonsmoothable; we expect that they are
smoothable. A tangent space argument shows that 4 determines a compo-
nent of Gor(T), when r > 5; in fact by an example of Geramita and
Orecchia, one can show that there is a component parametrizing forms
f € Gor(T) such that the minimal length annihilating scheme Z with
I, € Ann(f) is smooth (see [IK]). But there are negative weight elements
of the tangent space Hom(7, A) = 1/1*, I = Ann f, to the punctual Hilbert
scheme at A.

We propose several problems, related to these notions of length.

Problem A (Waring problems). What are the values of len (r, d) and
maxlen (r, d) for the above length functions? What is the structure of the

family of degree-d homogeneous polynomials f in R for which len, (f) <
s?

B. Reznick has studied max g,(r,d) in [R1], [R2], and he determines
max g.(3,3) in [R2].

The problem of decomposing ¢ forms simultaneously as sums of powers
of the same set of linear forms is classical (see [B2]).

Problem B (simultaneous decompositions). What are the values of the
analogous constructs len(r, d) and maxlen’ (7, d) for simultaneous decom-
positions of ¢ forms, or, equivalently, for t-dimensional vector spaces W of
degree-d forms in the polynomial ring #?

Problem C. What limit behavior is there for length(f*)/k?
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