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a b s t r a c t

Lung injury associated with hyperoxia reflects in part the secondary effects of pulmonary inflammation
and the associated production of reactive oxygen species due to activation of NADPH oxidase, type 2
(NOX2). Activation of NOX2 requires the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6).
Therefore, we evaluated whether blocking Prdx6 PLA2 activity using the inhibitor MJ33 would be pro-
tective in a mouse model of acute lung injury resulting from hyperoxic exposure. Mice were treated with
an intraperitoneal injection of MJ33 (2.5 nmol/g body weight) at the start of exposure (zero time) and at
48 h during continuous exposure to 100% O2 for 80 h. Treatment with MJ33 reduced the number of
neutrophils and the protein content in the fluid obtained by bronchoalveolar lavage, inhibited the in-
crease in lipid peroxidation products in lung tissue, decreased the number of apoptotic cells in the lung,
and decreased the perivascular edema associated with the 80 h exposure to hyperoxia. Thus, blocking
Prdx6 PLA2 activity by MJ33 significantly protected lungs against damage from hyperoxia, presumably by
preventing the activation of NOX2 and the amplification of lung injury associated with inflammation.
These findings demonstrate that MJ33, a potent inhibitor of Prdx6 PLA2 activity, can protect mouse lungs
against the manifestations of acute lung injury due to oxidative stress.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Continuous exposure to O2 at concentrations greater than 60%
in the inspired air can result in irreversible pulmonary toxicity and
death [11,12,15,16,30,38]. A major mechanism for lung injury as-
sociated with hyperoxia is the oxidation of tissue components,
including lipids, proteins, and DNA, that results subsequent to the
formation of reactive oxygen species (ROS) [15,19,39]. ROS can be
generated directly from the interaction of O2 with tissue compo-
nents or can result from a secondary inflammatory response that
amplifies the primary lung injury.

A major source of secondary ROS in hyperoxic lung injury is the
oxidative burst of inflammatory cells including polymorpho-
nuclear leukocytes (PMN) and alveolar macrophages (AM). This
burst results from activation of a membrane-bound NADPH
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oxidase (NOX), the enzyme that is primarily responsible for ROS
generation associated with inflammation [3]. The generation of
ROS is crucial for the bactericidal function of these phagocytic cells
but an over-exuberant response can damage normal host cells
[1,37]. The NOX enzyme family comprises 7 members; NOX2 is
considered as the prototypical NOX and is the family member
associated with the respiratory burst in phagocytic cells [34].
NOX2 also is present in pulmonary endothelium and other cell
types where it plays an important role in cell signaling, including
the recruitment of phagocytic cells associated with inflammation
[5,50]. Thus, the activation of NOX2 is considered to be an im-
portant factor in the amplification of lung injury and preventing
this activation could be beneficial in preventing tissue injury under
these conditions [8,17].

Currently available NOX inhibitors have relatively low se-
lectivity, potency and bioavailability [20,24]. Recently, 1-hex-
adecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol (MJ33)
has been described as a more potent and non-toxic inhibitor of
agonist-induced activation of NOX2 [9,27]. The mechanism is
through competitive inhibition of the phospholipase A2 (PLA2)
activity of peroxiredoxin 6 that is required for NOX2 activation [9].
We have termed the PLA2 activity of Prdx6 as aiPLA2 [13]. MJ33 has
been shown to markedly inhibit lung injury associated with lung
inflammation in mice treated with endotoxin [26]. MJ33 is a
fluorinated lipid analog that serves to inhibit the enzyme by acting
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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as a mimic of the transition state of the substrate [18]. MJ33 has
specificity for both pancreatic (type 1B) PLA2 and aiPLA2 activities,
but does not inhibit cytosolic (type IV) PLA2, phospholipases C/D,
or other lipases [13,14,18,23]. For the present study, we proposed
that blocking NOX2 activation using MJ33 would be protective in
the mouse model of acute lung injury associated with exposure to
hyperoxia.
Materials and methods

Reagents

MJ33 (as the lithium salt), 2-thiobarbituric acid (TBA), and
butylated hydroxytoluene were purchased from Sigma-Aldrich (St.
Louis, MO). 4′,6-Diamidino-2-phenylindole (DAPI) and Dulbecco's
phosphate-buffered saline (DPBS) were obtained from Life Tech-
nologies (Grand Island, NY). Medical grade O2 was obtained from
Air Products (Allentown, PA). Ferrous oxidation-xylenol orange
(FOX) assay kit was from Northwest Life Science (Vancouver, WA).
Trichloroacetic acid and formalin (10%) were purchased from
Fisher Scientific (Fair Lawn, NJ). Coomassie blue protein assay re-
agent was purchased from Bio-Rad Laboratories (Hercules, CA).
Proteinase K was purchased from DAKO (Carpinteria, CA). Terminal
transferase dUTP nick-end-labeling (TUNEL) Label and TUNEL En-
zyme were purchased from Roche (Indianapolis, IN).
Animals

Male C57BL/6 mice were obtained from The Jackson Laboratory
(Bar Harbor, ME) and used at 8–10 weeks of age. Protocols for the
use of mice for these studies were approved by the University of
Pennsylvania Institutional Animal Care and Use Committee
(IACUC).
Exposure to hyperoxia

Mice were exposed to 100% O2 at 1 atmosphere absolute in a
Plexiglas chamber (Braintree Scientific Inc., Braintree, MA) as de-
scribed previously [46]. Oxygen was passed through a bubble
humidifier and introduced into the sealed chamber at 6–8 l/min to
provide �5 gas exchanges per hour. The oxygen concentration of
the chamber was measured continuously with an oxygen analyzer
(Pacifitech, Temecula, CA) and exceeded 98%; the exposure under
these conditions is termed 100% O2. Chamber CO2 was absorbed
with a soda lime filter and was maintained at o0.2%. Relative
humidity in the chamber was 45–50%. Mice were allowed food
and water ad libitum and maintained on a 12-h dark:light cycle.
Cages were opened daily for 5 min for change of water, food, and
bedding.

To determine the effect of the inhibitor, MJ33 in aqueous so-
lution (50 nmol in 20 ml PBS) was injected intraperitoneally (ip) at
0 and 48 h of hyperoxic exposure. Control mice were injected with
the same volume of PBS. Some mice were sacrificed at 48 h in
order to determine PLA2 activity of the lung homogenate. Re-
maining mice were sacrificed after 80 h of O2 exposure. At the end
of exposure, mice were anesthetized with a cocktail of ketamine/
xylazine/acepromazine (100/15/2 mg/kg body wt) injected in-
traperitoneally, a midline laparotomy/thoracotomy was per-
formed, the trachea was cannulated for continuous ventilation,
and mice were exsanguinated by transection of the abdominal
aorta.
Analytical procedures

Bronchoalveolar lavage
Immediately after sacrifice of mice, the lungs were lavaged

three times by instillation followed by aspiration of 1 ml PBS
containing 0.5 mmol EDTA, pH 8.0, to obtain the bronchoalveolar
lavage fluid (BALF). These lungs were then discarded. BALF was
analyzed for total nucleated cells using a hemocytometer and the
protein concentration of the supernatant was assayed using the
Bradford protocol (see below).

Lipid peroxidation
Tissue lipid peroxidation was evaluated in lungs that were not

lavaged after mice were sacrificed. The pulmonary vasculature was
flushed with PBS by cannulation of the pulmonary artery via the
right ventricle, followed by en bloc removal of the heart and lungs.
The heart and large airways were dissected away from the lungs
and discarded. The lung tissue was then rapidly frozen in liquid
nitrogen and stored at �80 °C for later analysis of lipid perox-
idation using assays that have been described previously in detail
[28]. For assay, an aliquot of frozen lung was homogenized under
N2 in PBS (1:10) containing 0.01% butylated hydroxytoluene (BHT).
To determine TBA-reactive substances (TBARS), the absorbance of
the lung homogenate after addition of thiobarbituric acid was
measured at 535 nm. For determination of lipid hydroperoxides
(LOOH) by the FOX method, absorbance of the Fe3þ-xylenol or-
ange complex was measured at 550 nm. TBARS and lipid LOOH
were normalized to lung homogenate protein. Protein concentra-
tion of lung extracts was measured by Bradford assay with Coo-
massie blue (Bio-Rad) and bovine γ-globulin as the standard; ab-
sorbance was read at 595 nm. Absorbance measurements utilized
a Cary 50 Bio UV–visible spectrophotometer (Agilent Technologies,
Foster City, CA).

PLA2 activity
For measurement of aiPLA2 activity, lungs were cleared of blood

as described above and then homogenized in PBS. Mixed uni-
lamellar liposomes containing tracer [3H-9, 10-palmitate]- DPPC
(4400 dpm/nmol) were used as substrate and were incubated with
lung homogenate at 37 °C for 1 h at pH 4 in Ca2þ-free medium and
then analyzed for 3H-palmitate as described previously [13,35].
PLA2 activity was normalized to the lung homogenate protein
content used for assay.

Histology and apoptosis
Lungs used for histological evaluation were removed from the

thorax of the mouse after sacrifice and inflated via a cannula by
gentle infusion of fixative (10% phosphate-buffered formalin,
pH 7.0) over 5 min to reach a constant fluid pressure of 25 cm H2O.
The trachea was tied with a ligature, and the lungs were placed in
a glass vial containing 10% formalin and kept on ice for 24 h. All
tissue samples were processed by the Pathology Core at the Chil-
dren's Hospital of Philadelphia (Abramson Research Center, Phi-
ladelphia, PA). After fixation, individual lung lobes were embedded
in paraffin and blocks were sectioned; some sections were stained
with hematoxylin and eosin (H&E) while others were stained for
TUNEL assay. For TUNEL assay, lung sections were hydrated and
endogenous hydrogen peroxide was blocked by treatment with
hydrogen peroxide-methanol followed by Proteinase K; sections
were then treated with TUNEL label and TUNEL enzyme and
counterstained with DAPI [28].

Whole lobe mounts stained with H&E were examined in-
dependently by 3 observers and randomly selected fields were
chosen for comparison. Lung lobes from control mice (room air)
and from mice that were exposed to oxygen for 80 h with or
without MJ33 were evaluated (n¼3 for each condition). For



Table 2
Nucleated cells and protein in broncho-alveolar lung lavage fluid (BALF) following
O2 exposure for 80 h: effect of MJ33.

Total cells
�104

Protein
mg

Control 7.370.8 0.270.04
O2 19.271.1n 15.971.3n

O2þMJ33 5.270.14† 5.7þ0.6n†

Values are mean7SE (n¼5).
n Pr0.05 vs. control.
† Pr0.05 vs. O2.
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quantitation of perivascular edema and apoptosis, the results from
5 to 6 fields were averaged to obtain the mean result for each lung.
Perivascular edema was quantitated in H&E stained sections by
measuring the ratio of total area (vessel plus perivascular space) to
luminal area in peripheral arterioles using Aperio ImageScope
software as described previously [28]. TUNEL staining showed
considerable variability in different areas of the O2-exposed lungs.
Therefore, we selected fields that showed a high or a low degree of
apoptosis for further quantitation, and these are reported sepa-
rately. The percentage of apoptotic (TUNEL-positive) cells was
determined in TUNEL-stained sections by Cyto-Nuclear FL Quan-
tification algorithm software (Fluorescent Toolbox, Leica Biosys-
tems Imaging, Buffalo Grove, Il).

Statistical analysis

Data are expressed as mean7SE. Statistical significance was
assessed by analysis of variance using SigmaStat software (Jandel
Scientific, San Jose, CA). Group differences were evaluated by
Student's t-test as appropriate. Differences between mean values
were considered statistically significant at Pr0.05.
Results

PLA2 activity was measured in lung homogenates of mice that
were sacrificed at 48 or 80 h after treatment with MJ33 and kept in
room air or exposed continuously to 100% O2. Mice sacrificed after
48 h of O2 received only a single dose of MJ33 at zero time while
mice sacrificed at 80 h received a second dose of MJ33 at 48 h of
O2 exposure. aiPLA2 activity was higher in lungs from hyperoxic
mice compared to room air controls (Table 1) consistent with the
induction of Prdx6 expression with O2 exposure as we have noted
previously [22]. There was a marked decrease in lung aiPLA2 ac-
tivity with MJ33 treatment in both room air control mice and mice
at 48 and 80 h of hyperoxia indicating efficacy of the MJ33 treat-
ment protocol (Table 1). The residual PLA2 activity after MJ33
(�20% of control) has been a consistent finding that appears to be
unrelated to the dose of the inhibitor and may reflect the activity
of a lung PLA2 enzyme that is not inhibited by MJ33.

Analysis of BALF showed a significant increase in the number of
nucleated cells in lungs after 80 h of hyperoxia; this increase was
abolished by treatment of mice with MJ33 (Table 2). Likewise, the
protein content of BALF was increased significantly by 80 h of
hyperoxia and was decreased by MJ33 treatment (Table 2).

Lipid peroxidation was measured in whole lung homogenates
by two different assays (TBARS, FOX) that are sensitive to different
lipid oxidation products. TBARS reflects breakdown products of
lipid metabolism such as aldehydes while the FOX assay is sensi-
tive to hydroperoxides. Both assays indicate lung lipid
Table 1
Effect of MJ33 on aiPLA2 activity of lung homogenate.

aiPLA2 activity
nmol/h/mg prot

48 hn 80 hn

MJ33 2.570.3 �
O2 12.570.1† 13.270.2†

O2þMJ33 2.870.3 2.570.1

PLA2 activity of control (no treatment) lungs was 8.870.2 nmol/h/mg protein.
Values are mean7SE (n¼3).

n Time after the initial dose of MJ33 (50 nmol ip) and start of O2 exposure; for
80 h experiments, a second dose of MJ33 was given at 48 h.

† Po0.05 vs. MJ337O2.
peroxidation after 80 h of hyperoxia that was significantly de-
creased by treatment with MJ33 (Table 3).

Lung histology was evaluated with H&E stained tissue sections.
Hyperoxia resulted in increased alveolar wall thickness, interstitial
and alveolar edema, and entrapped red blood cells with significant
lymphatic cuffing as indicated by enlargement of peribronchial
and perivascular spaces (Fig. 1). Perivascular edema as quantitated
from the ratio of the total area of vessel plus perivascular space to
the luminal area was increased in hyperoxic lungs (Table 4). MJ33
treatment significantly improved lung morphology and reduced
the perivascular edema associated with hyperoxia (Fig. 1, Table 4).

Apoptotic cell death was evaluated by TUNEL staining of lung
sections (Fig. 2). These were quantitated as the % of total cells that
stained positively with the fluorescent probe (Table 4). Apoptosis
was low in lungs of room air control mice but increased sig-
nificantly although in a patchy fashion, in lungs of mice exposed to
80 h of hyperoxia; the percentage of TUNEL positive cells in fields
with low levels as well as high levels of staining was significantly
increased with hyperoxia (Fig. 2; Table 4). MJ33 treatment sig-
nificantly reduced apoptotic cell death caused by hyperoxia (Fig. 2;
Table 4).
Discussion

As a first step to evaluate the use of MJ33 in mice that were
exposed to hyperoxia, we determined the appropriate dose of
MJ33 to inhibit lung aiPLA2 activity. We elected to administer MJ33
by intraperitoneal injection in order to avoid the more invasive
procedures that would be required for intratracheal or intravenous
administration. MJ33 treatment at zero time inhibited PLA2 ac-
tivity by �80% at 48 h compared to control. Assay at earlier time
points showed similar inhibition and no further inhibition was
observed after the direct addition of MJ33 to the lung homogenate
used for assay (not shown). Thus, this dose of MJ33 appeared to
result in maximal inhibition of lung aiPLA2 activity. A second dose
of MJ33 that was administered at 48 h resulted in maximal in-
hibition of lung aiPLA2 activity for the 80 h duration of exposure to
hyperoxia.

The time course that we used to assess hyperoxia-induced lung
Table 3
Lung lipid peroxidation following O2 exposure for 80 h: effect of MJ33.

TBARS
pmol/mg prot

Lipid OOH
pmol/mg prot

Control 63.079 19.973
O2 173713n 54.872.1n

O2þMJ33 77.078† 31.773†

Values are mean7SE (n¼5).
n Pr0.05 vs. control.
† Pr0.05 vs. O2.



Fig. 1. Lung histology. Hematoxylin and eosin stained sections of mouse lungs after exposure to room air (control) or 100% O2 for 80 h with or without MJ33 treatment. The
green lines outline the luminal area and total vascular area (including the perivascular space) of a small vein. The enlarged perivascular space in the O2 exposed mice
indicates alveolar edema. Upper row: scale bar 300 mm, original magnification �100; lower row: scale bar 200 mm, original magnification �200. A, Airway; V, vessel.

Table 4
Quantitation of perivascular edema and cellular apoptosis following O2 exposure
for 80 h: effect of MJ33.

Total vessel area/luminal area Apoptosisa% of cells

Low High

Control 1.870.1 0.270.01 0.270.04
O2 8071.1† 1.570.3† 4771.8†
O2þMJ33 3.8 70.3†,n 0.470.1n 0.770.01n

Values are mean7SE for n¼3; at least 5 fields were evaluated for each section.
a Apoptosis varied considerably within different fields of the same section; we

chose fields in each section that showed relatively low or high rates of apoptosis.
The values indicate the percentage of total cells that are stained positively for
TUNEL.

† Pr0.05 vs. control.
n Pr0.05 vs. O2.
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injury in mice was based on previous studies that showed early
signs of lung injury at 60 h of exposure and death of 50% of wild
type mice (LT50) at 87 h of 100% O2 [28,46]. We selected 80 h as a
sub-lethal exposure that should result in significant lung injury
and would provide a good test for the efficacy of MJ33.

Analysis of BALF obtained after 80 h of hyperoxia showed lung
inflammation as indicated by increased recovery of PMN. An in-
crease in BALF protein also was observed and reflects increased
alveolar permeability with leakage of plasma proteins into the
airspaces. This latter finding is compatible with the histological
finding of perivascular cuffing that reflects lung edema. The pre-
sence of increased TBARS and lipid hydroperoxides in the lung
homogenate indicates the oxidation of tissue lipid components.
Lipid peroxidation leads to cellular membrane disruption and can
result in cell death, compatible with results of the TUNEL assay. All
of these abnormalities induced by exposure of mice to hyperoxia
were markedly reduced by treatment with MJ33. Based on our
previous studies, we propose that the marked effect of MJ33 in
ameliorating lung injury reflects the inhibition of aiPLA2 activity
and, consequently, the inhibition of NOX2 activation in pulmonary
endothelium and lung inflammatory cells. Thus, We propose that
MJ33 inhibits the amplification of lung injury associated with lung
inflammation by preventing the activation of NOX2.

There are several important questions that require considera-
tion with respect to this proposed mechanism for protection
against lung injury by MJ33. First, are there other effects of MJ33
that could contribute to protection? To date, the only effect de-
scribed for MJ33 has been inhibition of several PLA2 activities.
MJ33 is a non-reactive compound that does not interact chemi-
cally with its target; indeed, it inhibits PLA2 activity by serving as a
mimic of the enzymatic transition state that binds tightly to the
protein preventing catalytic processing. This lack of reactivity also
is the basic for the non-toxicity of the compound as described
previously [27]. The only PLA2 enzymes that are presently known
to be inhibited by MJ33 are aiPLA2 and pancreatic secreted (Type
IB) PLA2. It is unlikely that inhibition of pancreatic PLA2 has a
significant effect on pulmonary injury with O2 since this protein
has not been observed in the lung. Thus, at this time possible off-
target effects of MJ33 would not seem to explain its role in pre-
venting acute lung injury with hyperoxia.

A second possible confounding factor is whether inhibition of
aiPLA2 activity by MJ33 has effects other than preventing NOX2
activation; for example, is aiPLA2 activity required for the activa-
tion of other enzymes besides NOX2? With respect to the other
NOX proteins, there is evidence, albeit limited, indicating that
NOX1 activation is independent of Prdx6 activity [27]. NOX3 has
recently been identified in the lung, but regulation of its activity is
not understood [49]. NOX4 is constitutively active (i.e. increased
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Fig. 2. Apoptosis of lung cells. Apoptosis was evaluated by TUNEL staining after exposure of mice for 80 h to room air (control), 100% O2, or 100% O2þMJ33. TUNEL-positive
cells show as bright green dots. As the TUNEL staining was heterogeneous, we separately assessed regions with low and high levels of staining in each section. (A) Sections
from control mice (room air) and mice exposed to 100% O2 for 80 h without or with MJ33 treatment. Upper row, low levels of staining; lower row, high levels of staining.
Scale bar ¼ 500 mm. (B) Areas enclosed in the box from upper row, low staining (left) or lower row; high staining (right).
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activity requires increased transcription) so that inhibition of
NOX4 activation by MJ33 is extremely unlikely. NOX5 is not pre-
sent in mouse lungs. Possible activation of DUOX enzymes has not
been studied but they are not known to be expressed at significant
levels in the lung alveolar cells. Thus, based on current knowledge,
altered activation of NOX enzymes other then NOX2 cannot be
considered as an explanation for the effect of MJ33. A possible role
for aiPLA2 in the activation of other (non-NOX) enzymes by aiPLA2

has neither been proposed nor studied.
As indicated above, we have proposed that a block in NOX2

activation is the primary mechanism for the effectiveness of MJ33
in preventing lung injury during hyperoxia. Is there evidence from
other studies to support this hypothesis? MJ33 inhibits the PLA2

activity of Prdx6, but does not inhibit its peroxidase activity [10].
Thus, it is not possible to study the effects of the loss of aiPLA2

activity using Prdx6 null mice. Indeed, these latter mice show
increased sensitivity to the toxic effects of oxygen and other oxi-
dants indicating an important anti-oxidant role for the peroxidase
function of Prdx6 [42–45]. The availability of mice expressing only
the peroxidase and not the PLA2 activity of Prdx6 could provide
important insights into the mechanism for the effect of MJ33, but
those studies have not yet been done.
Another possibility to gain insight into the mechanism for the
effectiveness of MJ33 would be to evaluate the effect of elevated
O2 on lungs of NOX2 null mice. Those experiments have been re-
ported in several publications but there does not appear to be a
consensus concerning the role of NOX2 in hyperoxia; one study
showed an important role for NOX2 in lung injury with hyperoxia
[32] while the second study did not [7]. Numerous studies related
to the role of PMN (a major source of NOX2) in hyperoxia as well
as other lung disease models have suggested that ROS from this
source contribute significantly to lung injury, although here again
the results have been variable [2,4,21,25,29,33,36,41,47,48]. Pul-
monary endothelium is another source of NOX2 that could play an
important role in lung injury. The role of ROS produced by lung
microvascular endothelial cells in the pathophysiology of hyper-
oxic lung injury has been demonstrated but the source of ROS has
not been adequately evaluated [6,31,40]; NOX2 appears to be
important but other pathways may also play a role [6,32]. So, the
question of whether MJ33 may have have effects through me-
chanisms in addition to its inhibition of NOX2 activation remain
unsettled.
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Conclusions

Our data indicate that inhibition of the PLA2 activity of the
Prdx6 by MJ33 inhibits the oxidative stress that plays an important
role in lung injury during hyperoxia. Thus, our novel findings re-
garding the inhibition of Prdx6 PLA2 activity by MJ33 may con-
stitute a promising new therapeutic approach for the prevention
of lung injury associated with exposure to elevated concentrations
of O2.
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