On a new class of analytic functions associated with conic domain

Khalida Inayat Noor, Sarfraz Nawaz Malik*
Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan

ARTICLE INFO

Article history:

Received 16 February 2011
Received in revised form 5 May 2011
Accepted 6 May 2011

Keywords:

Analytic functions
Conic domains
k-uniformly convex functions
k-starlike functions

Abstract

The aim of this paper is to generalize the conic domain defined by Kanas and Wisniowska, and define the class of functions which map the open unit disk E onto this generalized conic domain. A brief comparison between these conic domains is the main motivation of this paper. A correction is made in selecting the range interval of order of conic domain.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Let A be the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit $\operatorname{disk} E=\{z:|z|<1\}$. Also let S be the class of functions from A which are univalent in E. The classes S^{*} and C are the well known classes of starlike and convex univalent functions respectively, for details see [1].

Kanas and Wisniowska [2,3] introduced and studied the classes of k-uniformly convex denoted by k-UCV and the corresponding class of k-starlike functions denoted by k-ST related by the Alexandar type relation. They defined these classes as follows:

A function $f(z) \in A$ is said to be in the class k-UCV, if and only if,

$$
\operatorname{Re}\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right)>k\left|\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}-1\right|, \quad k \geq 0
$$

A function $f(z) \in A$ is said to be in the class k-ST, if and only if,

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>k\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, \quad k \geq 0
$$

Geometrically, a function $f(z) \in A$ is said to be in the class $k-U C V($ or $k-S T)$, if and only if, the function $\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\left(\right.$ or $\left.\frac{z f^{\prime}(z)}{f(z)}\right)$ takes all values in the conic domain Ω_{k} which is defined as:

$$
\Omega_{k}=\left\{u+i v: u>k \sqrt{(u-1)^{2}+v^{2}}\right\}
$$

This domain represents the right half plane when $k=0$, a hyperbola when $0<k<1$, a parabola when $k=1$ and an ellipse when $k>1$ as shown in Fig. 1.

[^0]

Fig. 1. The curve $u=k \sqrt{(u-1)^{2}+v^{2}}$.
The functions which play the role of extremal functions for these conic regions are given as:

$$
p_{k}(z)=\left\{\begin{array}{l}
\frac{1+z}{1-z}, \quad k=0, \tag{1.2}\\
1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}, \quad k=1, \\
1+\frac{2}{1-k^{2}} \sinh ^{2}\left[\left(\frac{2}{\pi} \arccos k\right) \arctan h \sqrt{z}\right], \quad 0<k<1, \\
1+\frac{1}{k^{2}-1} \sin \left(\frac{\pi}{2 R(t)} \int_{0}^{\frac{u(z)}{\sqrt{t}}} \frac{1}{\sqrt{1-x^{2}} \sqrt{1-(t x)^{2}}} \mathrm{~d} x\right)+\frac{1}{k^{2}-1}, \quad k>1,
\end{array}\right.
$$

where $u(z)=\frac{z-\sqrt{t}}{1-\sqrt{t z}}, t \in(0,1), z \in E$ and z is chosen such that $k=\cosh \left(\frac{\pi R^{\prime}(t)}{4 R(t)}\right), R(t)$ is Legendre's complete elliptic integral of the first kind and $R^{\prime}(t)$ is complementary integral of $R(t)$, see [2,3]. These conic regions are extensively studied with regard to real and complex orders by Noor [4,5]. We generalize this conic domain and define the following.

Definition 1.1. A function $p(z)$ is said to be in the class $k-P(a, b)$, if and only if,

$$
\begin{equation*}
p(z) \prec p_{k}(a, b ; z) \tag{1.3}
\end{equation*}
$$

where $k \in[0, \infty)$,

$$
\begin{align*}
p_{k}(a, b ; z) & =1+a+(1-b)\left\{p_{k}(z)-1\right\} \\
& =a+b+(1-b) p_{k}(z) \tag{1.4}
\end{align*}
$$

and $p_{k}(z)$ is defined by (1.2). Also a and b must be chosen accordingly as:
(i) For $k=0$, we take $b=0$,
(ii) For $k \in\left(0, \frac{1}{\sqrt{2}}\right)$, we take $b \in\left[\frac{1}{2 k^{2}-1}, 1\right)$,
(iii) For $k \in\left[\frac{1}{\sqrt{2}}, 1\right]$, we take $b \in(-\infty, 1)$,
(iv) For $k \in(1, \infty)$, we take $b \in\left(-\infty, \frac{1}{2 k^{2}-1}\right]$.
and

$$
\left.\begin{array}{ll}
\frac{k^{2}(1-b)}{1-k^{2}}-\eta \leq a<1-\frac{k^{2}(1-b)}{k^{2}-1}+\eta, & 0 \leq k<1, \\
-\frac{1+b}{2} \leq a<\frac{1-b}{2}, & k=1, \tag{1.6}\\
\max \left(\frac{k^{2}(1-b)}{1-k^{2}}-\eta, 1-\frac{k^{2}(1-b)}{k^{2}-1}-\eta\right) \leq a<1-\frac{k^{2}(1-b)}{k^{2}-1}+\eta, & k>1,
\end{array}\right\}
$$

where $\eta=\frac{k \sqrt{k^{2}(1-b)^{2}+\left(1-k^{2}\right)\left(1-b^{2}\right)}}{k^{2}-1}$.
Geometrically, the function $p(z) \in k-P(a, b)$ takes all values from the conic domain $\Omega_{k}(a, b)$ which is defined as:

$$
\begin{equation*}
\Omega_{k}(a, b)=\left\{u+i v:(u-a)^{2}>k^{2}\left[(u-a+b-1)^{2}+v^{2}+2 b(1-b)\right]\right\} \tag{1.7}
\end{equation*}
$$

The conic domain $\Omega_{k}(a, b)$ represents the right half plane when $k=0$, a hyperbola when $0<k<1$, a parabola when $k=1$ and an ellipse when $k>1$.

It can be seen that $\Omega_{k}(0,0)=\Omega_{k}$, the conic domain defined by Kanas and Wisniowska [2], consequently, $k-P(0,0)=$ $P\left(p_{k}\right)$, the well-known class introduced by Kanas and Wisniowska [2]. The function $p_{1}(a, b ; z)=Q_{a, b}(z)$ is defined by Kanas in [6]. Here are some basic facts about the class $k-P(a, b)$.

Remark 1.2. (1) $k-P(a, b) \subset P(\alpha)$, where

$$
\alpha=\left\{\begin{array}{l}
a+\frac{1+b}{2}, \quad k=1, \tag{1.8}\\
a+\frac{k^{2}(1-b)-k \sqrt{k^{2}(1-b)^{2}+\left(1-k^{2}\right)\left(1-b^{2}\right)}}{k^{2}-1}, \quad k \neq 1 .
\end{array}\right.
$$

(2) $k-P\left(a_{1}, b\right) \subset k-P\left(a_{2}, b\right), a_{1}>a_{2}, k \in[0,1]$.
(3) $k-P\left(a, b_{1}\right) \subset k-P\left(a, b_{2}\right), b_{1}>b_{2}, k \in(0, \infty)$.

The domain $\Omega_{k}(a, b)$ always ensures that the point $(1,0)$ is contained inside it whereas the domain $\Omega_{k, \xi}$, studied by several authors, defined by

$$
\begin{equation*}
\Omega_{k, \xi}=(1-\xi) \Omega_{k}+\xi, \quad 0 \leq \xi<1, k \geq 0 \tag{1.9}
\end{equation*}
$$

is not always well defined because in general $(1,0) \notin \Omega_{k, \xi}$ (for example, in particular $(1,0) \notin \Omega_{2,0.5}$). We see that the conic domain $\Omega_{k}(0, b)$ coincides with $\Omega_{k, b}$ only when b is chosen according to (1.5). This means that for $\Omega_{k, \xi}$ to contain the point $(1,0), \xi$ must be chosen according as:

$$
\xi \in \begin{cases}{[0,1),} & \text { if } 0 \leq k \leq 1 \tag{1.10}\\ {\left[0,1-\frac{\sqrt{k^{2}-1}}{k}\right),} & \text { if } k>1\end{cases}
$$

The domain $\Omega_{k, \xi}$ gives only the contraction of Ω_{k} whereas the domain $\Omega_{k}(a, b)$ gives contraction as well as magnification of Ω_{k} depending upon b. For $b>0$, the domain $\Omega_{k}(a, b)$ gives the contraction and for $b<0$, the domain gives the magnification of Ω_{k} as can be seen from the Figs. 2 and 3.

Definition 1.3. A function $f(z) \in A$ is said to be in the class $k-\operatorname{UCV}(a, b), k \geq 0, a, b$ satisfying (1.5) and (1.6), if and only if,

$$
\begin{equation*}
\left[\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}-a\right\}\right]^{2}>k^{2}\left[\left|\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}-a+b-1\right|^{2}+2 b(1-b)\right] \tag{1.11}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \prec p_{k}(a, b ; z) \tag{1.12}
\end{equation*}
$$

where $p_{k}(a, b ; z)$ is defined by (1.4).
Definition 1.4. A function $f(z) \in A$ is said to be in the class $k-S T(a, b), k \geq 0, a, b$ satisfying (1.5) and (1.6), if and only if,

$$
\begin{equation*}
\left[\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-a\right\}\right]^{2}>k^{2}\left[\left|\frac{z f^{\prime}(z)}{f(z)}-a+b-1\right|^{2}+2 b(1-b)\right] \tag{1.13}
\end{equation*}
$$

Fig. 2. The curve $(u-a)^{2}=k^{2}\left[(u-a+b-1)^{2}+v^{2}+2 b(1-b)\right]$.

Fig. 3. The curve $(u-a)^{2}=k^{2}\left[(u-a+b-1)^{2}+v^{2}+2 b(1-b)\right]$.
or equivalently

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec p_{k}(a, b ; z) \tag{1.14}
\end{equation*}
$$

where $p_{k}(a, b ; z)$ is defined by (1.4).
It can be easily seen that

$$
f(z) \in k-\operatorname{UCV}(a, b) \Longleftrightarrow z f^{\prime}(z) \in k-\operatorname{ST}(a, b) .
$$

Special cases.

i. k - $\operatorname{UCV}(0,0)=k$-UCV, the well-known class of k-uniformly convex functions, introduced by Kanas and Wisniowska [2].
ii. k-ST $(0,0)=k$-ST, the well-known class of k-starlike functions, introduced by Kanas and Wisniowska [3].

Lemma 1.5 ([7]). Let the function $w(z)$ be non-constant analytic in E with $w(0)=0$. If $|w(z)|$ attains i maximum value on the circle $|z|=r<1$ at a point z_{0}, then

$$
z_{0} w^{\prime}\left(z_{0}\right)=c w\left(z_{0}\right)
$$

c is real and $c \geq 1$.

2. Main results

Theorem 2.1. If $f(z) \in A$ satisfies the inequality

$$
\operatorname{Re}\left\{\frac{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}{\frac{z f^{\prime}(z)}{f(z)}-1}\right\}<\frac{3-\alpha}{2-\alpha}
$$

where α is defined by (1.8), then $f(z) \in k-\mathrm{ST}(a, b), k \in[0,1], b \leq 0$ with a and b satisfying (1.5) and (1.6).
Proof. We consider the function $w(z)$ as

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}-1=(1-\alpha) w(z) \tag{2.1}
\end{equation*}
$$

where α is defined by (1.8). We see that $w(z)$ is analytic in E and $w(0)=0$. Logarithmic differentiation of (2.1) gives us

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}=\frac{(1-\alpha) z w^{\prime}(z)}{(1-\alpha) w(z)+1}
$$

This implies that

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=(1-\alpha) w(z)+\frac{(1-\alpha) z w^{\prime}(z)}{(1-\alpha) w(z)+1} \tag{2.2}
\end{equation*}
$$

Now from (2.1) and (2.2), we have

$$
\frac{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}{\frac{z f^{\prime}(z)}{f(z)}-1}=1+\frac{z w^{\prime}(z)}{w(z)\{(1-\alpha) w(z)+1\}}
$$

Suppose that there exists a point $z_{0} \in E$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1,\left|w\left(z_{0}\right)\right| \neq 1
$$

and also $w\left(z_{0}\right)=\mathrm{e}^{\mathrm{i} \theta}$. Then applying Lemma 1.5 , we have

$$
z_{0} w^{\prime}\left(z_{0}\right)=c w\left(z_{0}\right), \quad c \geq 1
$$

Using this, we can have

$$
\begin{aligned}
\operatorname{Re}\left\{\frac{\frac{z f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}}{\frac{z f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}-1}\right\} & =\operatorname{Re}\left\{1+\frac{z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)\left\{(1-\alpha) w\left(z_{0}\right)+1\right\}}\right\} \\
& =\operatorname{Re}\left\{1+\frac{c w\left(z_{0}\right)}{w\left(z_{0}\right)\left\{(1-\alpha) w\left(z_{0}\right)+1\right\}}\right\} \\
& =1+c \operatorname{Re}\left\{\frac{1}{(1-\alpha) w\left(z_{0}\right)+1}\right\} \\
& =1+c \operatorname{Re}\left\{\frac{1}{(1-\alpha) \mathrm{e}^{\mathrm{i} \theta}+1}\right\} \\
& =1+c \frac{1+(1-\alpha) \cos \theta}{(1-\alpha)^{2}+2(1-\alpha) \cos \theta+1}=F(\theta), \quad \text { say. }
\end{aligned}
$$

Now as we know that $F(\theta) \geq \min F(\theta)$ and it can easily be seen that

$$
\begin{aligned}
\min F(\theta) & =F(\pi) \\
& =1+c \frac{1+(1-\alpha) \cos \pi}{(1-\alpha)^{2}+2(1-\alpha) \cos \pi+1}
\end{aligned}
$$

$$
\begin{aligned}
& =1+\frac{c}{\alpha} \\
& \geq 1+\frac{1}{\alpha} \\
& >1+\frac{1}{2-\alpha}, \quad \alpha<1 \\
& =\frac{3-\alpha}{2-\alpha}
\end{aligned}
$$

Therefore, we have

$$
\operatorname{Re}\left\{\frac{\frac{z f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}}{\frac{z f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}-1}\right\} \geq \frac{3-\alpha}{2-\alpha}
$$

which is a contradiction to our hypothesis. Thus, we must have $|w(z)|<1$ for all $z \in E$ and therefore we have from (2.1),

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\alpha
$$

which shows that $\frac{z f^{\prime}(z)}{f(z)}$ lies inside a circle centered at $(1,0)$ and having radius $1-\alpha$ and we know from (1.7) that this circle lies inside the conic domain $\Omega_{k}(a, b), k \in[0,1], b \leq 0$ with a and b satisfying (1.5) and (1.6). This implies that $f(z) \in k-\mathrm{ST}(a, b), k \in[0,1], b \leq 0$ with a and b satisfying (1.5) and (1.6).

From the Theorem 2.1, we see that when $a=0, b=0$ and $k=1$, we have the following result which is the special case (when $p=1$) of the result proved by Al-Kharsani et al. [8].

Corollary 2.2. If $f(z) \in A$ satisfies the inequality

$$
\operatorname{Re}\left\{\frac{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}{\frac{z f^{\prime}(z)}{f(z)}-1}\right\}<\frac{5}{3},
$$

then $f(z)$ is uniformly starlike in E (that is $f(z) \in 1-\mathrm{ST}$).
Theorem 2.3. For $b_{1}>b_{2}$,
i. $k-\operatorname{UCV}\left(a, b_{1}\right) \subset k-\operatorname{UCV}\left(a, b_{2}\right)$.
ii. $k-\mathrm{ST}\left(a, b_{1}\right) \subset k-\mathrm{ST}\left(a, b_{2}\right)$.

Proof follows directly from Remark 1.2(3), (1.3), (1.12) and (1.14).
Theorem 2.4. Let $f(z) \in S$. Then $f(z) \in k-\operatorname{UCV}(a, b)$ for $|z|<r_{0}<1$ with

$$
r_{0}=\frac{2-\sqrt{3+\alpha^{2}}}{1+\alpha}
$$

where α is defined by (1.8).
Proof. Let $f(z) \in S$. Then, for $|z|=r<1$, we have

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 r^{2}}{1-r^{2}}\right| \leq \frac{4 r}{1-r^{2}}
$$

for detail, see [1]. This implies that

$$
\begin{equation*}
\left|\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}-\frac{1+r^{2}}{1-r^{2}}\right| \leq \frac{4 r}{1-r^{2}} \tag{2.3}
\end{equation*}
$$

This disk intersects the real axis at the points $\left(\frac{1-4 r+r^{2}}{1-r^{2}}, 0\right)$ and $\left(\frac{1+4 r+r^{2}}{1-r^{2}}, 0\right)$. Now we have to find the largest value of r such that the disk (2.3) lies completely inside the conic domain $\Omega_{k}(a, b)$, that is $\left(\frac{1-4 r+r^{2}}{1-r^{2}}, 0\right) \in \Omega_{k}(a, b)$. For this, we must have

$$
\frac{1-4 r+r^{2}}{1-r^{2}} \geq \alpha
$$

where α is defined by (1.8). This gives us

$$
(1+\alpha) r^{2}-4 r+1-\alpha \geq 0, \quad 0<r<1
$$

This holds only if

$$
r \leq r_{0}=\frac{2-\sqrt{3+\alpha^{2}}}{1+\alpha}
$$

Now it can also be seen that the curves

$$
(u-a)^{2}=k^{2}(u-a+b-1)^{2}+k^{2} v^{2}+2 k^{2} b(1-b)
$$

and

$$
\left(u-\frac{1+r^{2}}{1-r^{2}}\right)^{2}+v^{2}=\frac{16 r^{2}}{\left(1-r^{2}\right)^{2}}
$$

do not intersect any where except the possibility that the points $(\alpha, 0)$ and $\left(\frac{1-4 r+r^{2}}{1-r^{2}}, 0\right)$ coincides. Therefore, the disk (2.3) lies completely inside the conic domain $\Omega_{k}(a, b)$. Hence the proof.

When $a=0$ and $b=0$, then we have the following result, proved by Kanas and Wisniowska [2].
Corollary 2.5. Let $f(z) \in S$. Then $f(z) \in k$-UCV for $|z|<r_{0}<1$ with

$$
r_{0}=\frac{2(k+1)-\sqrt{4 k^{2}+6 k+3}}{2 k+1}
$$

When $a=0, b=0$ and $k=1$, then we have the following result, proved in [9].
Corollary 2.6. Let $f(z) \in S$. Then $f(z) \in \operatorname{UCV}$ for $|z|<r_{0}<1$ with

$$
r_{0}=\frac{4-\sqrt{13}}{3}
$$

When $a=0, b=0$ and $k=0$, then we have the following result, proved in [1].
Corollary 2.7. Let $f(z) \in S$. Then $f(z) \in C$ for $|z|<r_{0}<1$ with $r_{0}=2-\sqrt{3}$.
Now we have an extension of the result proved in [6].
Lemma 2.8. Let $0 \leq k<\infty$. Also, let $\beta, \gamma \in \mathbb{C}$ be such that $\beta \neq 0$ and $\operatorname{Re}(\alpha \beta+\gamma)>0$, where α is defined by (1.8). If $p(z)$ is analytic in $E, p(0)=1, p(z)$ satisfying

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec p_{k}(a, b ; z), \tag{2.4}
\end{equation*}
$$

and $q(z)$ is an analytic solution of

$$
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=p_{k}(a, b ; z)
$$

then $q(z)$ is univalent, $p(z) \prec q(z) \prec p_{k}(a, b ; z)$ and $q(z)$ is the best dominant of (2.4).
The proof follows similarly as given in [6].
As a special case, when $\beta=1$ and $\gamma=0$, we have the function $q(z)$ as

$$
q(z)=\left[\int_{0}^{1}\left(\exp \int_{z}^{t z} \frac{p_{k}(a, b ; u)-1}{u} \mathrm{~d} u\right) \mathrm{d} t\right]^{-1}
$$

Now we see a few applications of the Lemma 2.8.
When $k>1$, the conic domain $\Omega_{k}(a, b)$ may be characterized by the circular domain having its diameter end points as the vertices of the ellipse. As we see that the vertices of ellipse are $(\alpha, 0)$ and ($\alpha_{1}, 0$), where α is defined by (1.8) and

$$
\alpha_{1}=a+\frac{k^{2}(1-b)+k \sqrt{k^{2}(1-b)^{2}+\left(1-k^{2}\right)\left(1-b^{2}\right)}}{k^{2}-1} .
$$

The circle $K(X, R)$ having diameter end points $(\alpha, 0),\left(\alpha_{1}, 0\right)$ has its center at $X\left(\frac{a\left(k^{2}-1\right)+(1-b) k^{2}}{k^{2}-1}, 0\right)$ and radius R as

$$
R=\frac{k \sqrt{k^{2}(1-b)^{2}+\left(1-k^{2}\right)\left(1-b^{2}\right)}}{k^{2}-1}
$$

The point $z=1$ is contained inside the circle $K(X, R)$ and then the function $\phi_{a, b}: E \longrightarrow K(X, R)$ has the form

$$
\phi_{a, b}(z)=a+\frac{k^{2}(1-b)+k z \sqrt{(1-b)\left(1-b-2 b\left(k^{2}-z^{2}\right)\right)}}{k^{2}-z^{2}} .
$$

For $b=0$, we have

$$
\phi_{a, 0}(z)=a+\frac{k}{k-z} .
$$

Theorem 2.9. Let $k \in(1, \infty)$ and $b=0$. Also, let $p(z)$ be analytic in E with $p(0)=1$ and $p(z)$ satisfies (2.4). Then

$$
p(z) \prec \frac{1}{(k-z) \int_{0}^{1} \frac{t^{a}}{k-t z} \mathrm{~d} t}
$$

and

$$
\operatorname{Rep}(z)>\frac{1}{(k+1) \int_{0}^{1} \frac{t^{a}}{k+t} \mathrm{~d} t}
$$

where $-\frac{k}{k+1} \leq a<\frac{1}{k+1}$.
The proof follows directly by taking $q(z)=\phi_{a, 0}(z)$ in Lemma 2.8.
When $a=0$, we have the following result, proved by Kanas [6].
Corollary 2.10. Let $k \in(1, \infty)$ and let $p(z)$ be analytic in E with $p(0)=1$ and $p(z)$ satisfies (2.4). Then

$$
p(z) \prec \frac{z}{(z-k) \log \left(1-\frac{z}{k}\right)}
$$

and

$$
\operatorname{Rep}(z)>\frac{1}{(k+1) \log \left(1+\frac{1}{k}\right)}
$$

Theorem 2.11. Let $f(z), g(z) \in k-\operatorname{ST}(a, b)$ and let μ, c and δ be positive reals. Then the function $F(z)$, defined by

$$
\begin{equation*}
F(z)=\left[c z^{\mu-c} \int_{0}^{z} t^{c-\mu-1}(f(t))^{\delta}(g(t))^{\mu-\delta} \mathrm{d} t\right]^{\frac{1}{\mu}} \tag{2.5}
\end{equation*}
$$

belongs to $k-\mathrm{ST}(a, b)$.
Proof. From (2.5), we have

$$
z^{c-\mu}(F(z))^{\mu}=c \int_{0}^{z} t^{c-\mu-1}(f(t))^{\delta}(g(t))^{\mu-\delta} \mathrm{d} t
$$

This implies that

$$
(c-\mu) z^{c-\mu-1}(F(z))^{\mu}+\mu z^{c-\mu}(F(z))^{\mu-1} F^{\prime}(z)=c z^{c-\mu-1}(f(z))^{\delta}(g(z))^{\mu-\delta} .
$$

Let $h(z)=\frac{z F^{\prime}(z)}{F(z)}$. Then, we have

$$
(F(z))^{\mu}\{(c-\mu)+\mu h(z)\}=c(f(z))^{\delta}(g(z))^{\mu-\delta}
$$

Differentiating logarithmically, we have

$$
\mu \frac{z F^{\prime}(z)}{F(z)}+\frac{\mu z h^{\prime}(z)}{\mu h(z)+(c-\mu)}=\delta \frac{z f^{\prime}(z)}{f(z)}+(\mu-\delta) \frac{z g^{\prime}(z)}{g(z)} .
$$

Now let $h_{1}(z)=\frac{z f^{\prime}(z)}{f(z)}$ and $h_{2}(z)=\frac{z g^{\prime}(z)}{g(z)}$. Then we have

$$
h(z)+\frac{\frac{1}{\mu} z h^{\prime}(z)}{h(z)+\frac{c-\mu}{\mu}}=\frac{\delta}{\mu} h_{1}(z)+\left(1-\frac{\delta}{\mu}\right) h_{2}(z) .
$$

Since $f(z), g(z) \in k-S T(a, b)$, so $h_{1}(z), h_{2}(z) \in k-P(a, b)$. And we know by subordination technique that the class $k-P(a, b)$ is convex. Therefore,

$$
h(z)+\frac{\frac{1}{\mu} z h^{\prime}(z)}{h(z)+\frac{c-\mu}{\mu}} \prec p_{k}(a, b ; z),
$$

which implies by using Lemma 2.8,

$$
h(z) \prec p_{k}(a, b ; z)
$$

This shows that $F(z) \in k-\mathrm{ST}(a, b)$.

Acknowledgments

The authors are thankful to Dr. S.M. Junaid Zaidi (Rector CIIT) for providing excellent research facilities and also to the Higher Education Commission of Pakistan for financial assistance.

References

[1] A.W. Goodman, Univalent Functions, vols. I, II, Mariner Publishing Company, Tampa, Florida, USA, 1983.
[2] S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999) 327-336.
[3] S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000) 647-657.
[4] K.I. Noor, On a generalization of uniformly convex and related functions, Comput. Math. Appl. 61 (1) (2011) 117-125.
[5] K.I. Noor, M. Arif, W. Ul-Haq, On k-uniformly close-to-convex functions of complex order, Appl. Math. Comput. 215 (2) (2009) $629-635$.
[6] S. Kanas, Techniques of the differential subordination for domain bounded by conic sections, Int. J. Math. Math. Sci. 38 (2003) $2389-2400$.
[7] I.S. Jack, Functions starlike and convex of order α, J. Lond. Math. Soc. 3 (1971) 469-474.
[8] H.A. Al-Kharsani, S.S. Al-Hajiry, A note on certain inequalities for p-valent function, JIPAM. J. Inequal. Pure Appl. Math. 93 (2008) 6.
[9] F. Rønning, Some radius results for univalent functions, J. Math. Anal. Appl. 194 (1995) 319-327.

[^0]: * Corresponding author. Tel.: +92 3007226094.

 E-mail addresses: khalidanoor@hotmail.com (K.I. Noor), snmalik110@yahoo.com (S.N. Malik).

