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Role of nitric oxide in airway inflammation and hyper-
responsiveness in bronchial asthma

Hisamichi Aizawa

Research Institute for Diseases of the Chest, Faculty of Medicine, Kyushu University, Fukuoka, Japan

ABSTRACT

Nitric oxide (NO) is produced within the airways and
has a variety of actions on the airway function. Nitric
oxide is a potent bronchodilator, and NO released
from airway epithelial cells and inhibitory nonadren-
ergic non-cholinergic nerve terminals may attenuate
airway hyperresponsiveness. However, a large amount
of NO produced by inducible NO synthase may facili-
tate airway inflammation, which then leads to airway
hyperresponsiveness. Although the role of NO remains
controversial, the measurement of exhaled NO may
well be of value in the clinical management of asthma.
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INTRODUCTION

Nitric oxide (NO) has recently attracted attention in the
pathophysiology of bronchial asthma. Nitric oxide is
produced by a variety of cells within the respiratory
tract, including nerve cells, endothelial cells, vascular
and airway smooth muscle cells, inflammatory cells and
airway epithelial cells. Nitric oxide is synthesized from
one of the guanidino nitrogens of L-arginine by enzyme
nitric oxide synthase (NOS). To date, several isoforms of
NOS have been purified and cloned. These proteins
represent a novel family of mammalian enzymes that
contain both heme and cytochrome P450 reductase

Correspondence: Dr H Aizawa, Research Institute for Diseases
of the Chest, Faculty of Medicine, Kyushu University, 3-1-1
Maidashi, Higashiku, Fukuoka 812-8582, Japan.
Email: aizawa@kokyu.med.kyushu-u.ac.jp

Received 7 September 1998.

domains. The three prototypical forms of NOS are
neuronal NOS (nNOS) and endothelial NOS (eNOS),
which are constitutive, and inducible NOS (iNOS). They
are derived from separate genes and are regulated
by diverse signaling pathways. The biological actions
of NO are terminated by spontaneous oxidation to
NO,~ and NO;-. The biological half-life of the very
lipophilic NO is only 3-5 s and this allows NO to func-
tion locally as an autacoid.

NITRIC OXIDE RELEASED FROM AIRWAY
EPITHELIAL CELLS

Nitric oxide is a potent bronchodilator. Nitric oxide and
various NO-containing compounds activate cytosolic
guanylate cyclase, which catalyzes the formation of the
second messenger cyclic guanosine 3'-5'-monophosphate
(c-GMP). This cyclic nucleotide is involved in the regulation
of certain target cells such as airway smooth muscle. Nitric
oxide-containing vasodilators, such as glyceryl trinitrate
and sodium nitroprusside, activate guanylate cyclase and
raise the c-GMP levels, inducing relaxation of the isolated
airway smooth muscle. Tracheal relaxation by bradykinin
or potassium chloride is mediated by NO released from
the epithelial cells, and it appears to be important in blunt-
ing the histamine contractile response of the airway tissue.
As a result, in guinea-pigs, inhibition of NO synthesis by
Ne-nitro-L-arginine methyl ester (L-NAME) has been shown
to enhance airway responsiveness in vivo and in vitro.1?
Due to the fact that epithelial denudation diminished the
effects of L-NAME, the investigators concluded that the NO
responsible for regulating airway responsiveness may be
released from airway epithelial cells. Virus (para-influenza
type 3)-induced airway hyperreactivity in guinea-pigs has
also been reported to correlate with a deficiency in the
endogenous constitutive NO production by the airways
and can be blocked by low doses of L-arginine 2.
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NITRIC OXIDE AS A NEUROTRANSMITTER OF
THE INHIBITORY NONADRENERGIC AND NON-
CHOLINERGIC RESPONSE

Endogenous NO is also likely to account for the
bronchodilating effect of the inhibitory nonadrenergic
and non-cholinergic (iNANC) response. Although the
neurotransmitters responsible for the iINANC mediated
relaxation of the airways have not yet been conclusively
identified, NO is considered to be a promising candi-
date.®>7 In humans and other mammalian species, the
inhibition of NOS has been reported to produce a
concentration-dependent inhibition of INANC mediated
relaxation. In the human bronchi especially, L-NAME
almost completely abolished INANC mediated relaxation
and the authors thus concluded that NO is entirely
responsible for INANC mediated relaxation in human
airways.® In feline airways, NO has been proposed as the
primary mediator of INANC mediated relaxation.®

We previously investigated the effects of L-NAME on
iINANC relaxation evoked by electrical stimulation of the
vagus nerves in vivo and in vitro in the cat.® To that end,
we measured the pulmonary resistance (R,) during vagal
nerve stimulation (VS) in vivo, and the isometric tension of
the small bronchi (1-3 mm outer diameter) during elec-
trical field stimulation (EFS) in vitro. During the infusion of
5-hydroxytryptamine (5-HT), VS transiently decreased
R, in the presence of atropine and propranolol, with peak
relaxation several seconds after VS and a gradual return
to the baseline within 2-3 min. L-NAME abolished the
initial peak relaxation and reduced the peak amplitude
but did not affect the duration of NANC relaxation
(Fig. 1). In the small bronchi obtained from control cats
EFS evoked a biphasic NANC relaxation, comprising an
initial fast component followed by a second slow com-
ponent, and L-NAME selectively abolished the first
component without affecting the second. However, in the
small bronchi obtained from L-NAME pretreated cats,
EFS elicited only the slow component of NANC relaxa-
tion, which was insensitive to L-NAME but sensitive to
tetrodotoxin. These results indicate that the INANC
relaxation induced by VS during the infusion of 5-HT can
be classified into two components, and that at least two
neurotransmitters, including NO, are involved in the
relaxation. However, the role of NO released from the
iINANC nerve terminals in airway responsiveness remains
to be elucidated.

We next investgated the role of NO in the regulation of
airway responsiveness in anesthetized and mechanically

ventilated cats. To assess airway responsiveness, we mea-
sured the changes in R, produced by delivering 5-HT
aerosol to the airways before and after L-NAME, or the
blockade of iINANC neurons by hexamethonium. The
inhibition of NOS by L-NAME or the blockade of iINANC
neurons by hexamethonium significantly increased airway
responsiveness (Fig. 2). However, the addition of L-NAME
did not further increase airway responsiveness in animals
treated with hexamethonium. These results suggest that
NO may attenuate airway responsiveness and that NO
originates in the INANC neurons because L-NAME did not
cause a further increase in airway responsiveness after
the inhibition of INANC neurons by hexamethonium. To
further clarify the mechanism(s) involved, we also deter-
mined the effect of inhaled capsaicin in the animals with
bronchoconstriction induced by 5-HT after treatment
with atropine and propranolol. In the presence of atropine
and propranolol, inhaled capsaicin caused a marked
bronchodilation during 5-HT-induced bronchoconstriction,
suggesting that such bronchodilation was mediated by
iINANC. This bronchodilation was significantly suppressed
by either hexamethonium or by L-NAME, which suggests
that the NO released from the iINANC neurons by a reflex
mechanism play an important role in modulating the
airway responsiveness of cats in vivo.

The results of our study indicated the importance of
INANC as the source of NO. However, other investiga-
tors also suggested NO to be mainly released from
airway epithelial cells. The reason for the discrepancy
between our study and the previous one by Folkerts et al.
is mainly due to species differences.? Thus, in cats, the
airways from the trachea to the bronchiole are innervated
with a rich supply of INANC neurons.1® The activation of
these neurons causes a potent bronchodilation of the
entire airway in vivo.1%-12 In guinea-pigs, however, in vivo
studies failed to demonstrate such INANC-mediated
bronchodilation.*3*5 This was presumably because the
guinea-pig airways beyond the main bronchi are inner-
vated with a rich supply of excitatory NANC neurons.t6:7
As a result, INANC neurons are not considered to play a
key role in the regulation of airway responsiveness in
guinea-pigs.

NITRIC OXIDE AS AN INFLAMMATORY MEDIATOR

In addition to the forementioned biological activities,
NO also acts as an inflammatory mediator in airways.
Nitric oxide reacts with superoxide (O,"), forming per-
oxynitrite (ONOO"), and this reaction occurs in vivo.



Peroxynitrite is a highly reactive compound with harmful
effects on cells and could therefore be an important
microbicidal compound. It has recently been reported
that peroxynitrate can induce airway hyperresponsive-
ness, which suggests the possibility of NO playing a
role in the induction of airway hyperresponsiveness.®
Inducible NOS has a much greater capacity to produce
NO than cNOS and may thus be involved in airway
inflammation. Inducible NOS is expressed in epithelial
cells after exposure to such cytokines as tumor necrosis
factor-a (TNFa), interleukin-1f (IL-13), and interferon-y
(IFNy).2® In addition, exhaled NO has also been shown
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to be increased in inflammatory airway diseases.?%-??
Asthmatic patients have higher amounts of NO in their
expired air, possibly due to inflammation. This increased
production of NO can be inhibited by inhaled corti-
costeroids. These observations suggest that NO derived
from INOS may facilitate airway inflammation.

We hypothesized that endogenous NO contributes to
airway inflammation and hyperresponsiveness, and that
interleukin (IL)-8 might also be involved in this mecha-
nism. In human transformed bronchial epithelial cells
in vitro, NO donors increased IL-8 production dose-
dependently. In addition, TNFa plus IL-1 plus IFNy also
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Fig. 1 Effect of N®-nitro-L-
arginine methyl ester (L-NAME)
on inhibitory nonadrenergic and
noncholinergic (iNANC) relaxa-
tion induced by electrical vagal 0 '
stimulation in the cats treated
with propranolol and atropine. (c)
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Fig. 2 Effect of (a) hexamethonium ((O), control; (@), hexa-

nethonium) or (b) N-nitro-L-arginine methyl ester (L-NAME)
((©), control; (@), L-NAME) on airway hyperresponsiveness in
cats treated with propranolol and atropine. Airway responsive-
ness was assessed by the dose—response curve to 5-HT aerosol.
Both hexamethonium and L-NAME shifted the dose-response
curve to the right, indicating an increase in airway responsive-
ness. R, pulmonary resistance.

increased IL-8 production in a culture supernatant of
epithelial cells; the combination of NOS inhibitors,
aminoguanidine plus L-NAME, attenuated this cytokine-
induced IL-8 production. In guinea-pigs in vivo, ozone
exposure induced airway hyperresponsiveness to acetyl-
choline and increased neutrophils in bronchoalveolar

lavage fluid, with these changes persisting for at least 5 h.
Pretreatment with NOS inhibitors had no effect on either
airway hyperresponsiveness or neutrophil accumulation
immediately after ozone exposure but significantly inhibi-
ted the changes 5 h after ozone exposure. Nitric oxide
synthase inhibitors also attenuated the increases in the
NO,/NO; levels in bronchoalveolar lavage fluid and
the IL-8 mRNA expression in the epithelial cells and in the
neutrophils in guinea-pig airways 5 h after ozone expo-
sute. These results suggest that endogenous NO may play
an important role in persistent airway inflammation and
hyperresponsiveness after ozone exposure, presumably
through, in part, the upregulation of IL-8. Further study is
needed in order to elucidate the interaction of NO derived
from iNOS with NO released from iNANC neurons and
the resultant effect on airway hyperresponsiveness.

EXHALED NITRIC OXIDE

Although the role of NO in asthma remains controversial,
exhaled NO has been shown to increase in inflammatory
airway diseases. These observations suggest, at least in
part, the clinical importance of measuring NO in the
management of asthma. The evaluation of NO is a non-
invasive method which has recently attracted much
attention regarding the management of asthma.%22-27
The exhaled NO level in asthmatics is reported to reflect
the amount of NO mainly produced by iINOS in the
inflamed airways.2628-31 Very recently, significant corre-
lations were reported to exist among exhaled NO,
sputum eosinophils and airway hyperresponsiveness in
patients with mild asthma who were not being treated
with inhaled steroids.3?

Since bronchial asthma is characterized by eosino-
philic airway inflammation, non-invasive methods which
can estimate the severity of inflammation are needed for
its clinical management. We investigated the correlations
among the eosinophil counts in the induced sputum,
exhaled NO, diurnal variation of peak expiratory flow
(PEF), and airway hyperresponsiveness in order to evalu-
ate their usefulness in predicting deterioration of PEF in
patients with mild to moderate asthma. The airway hyper-
responsiveness to methacholine, induced sputum and
exhaled NO were measured in all patients while daily PEF
monitoring was also performed. Peak expiratory flow
deterioration was retrospectively assessed by a change in
the mean PEF values between the day of the measure-
ments and 1 week after measurements. The exhaled NO
significantly correlated with the eosinophils in induced



sputum and with airway hyperresponsiveness. More
importantly, the deterioration of PEF after these measure-
ments significantly correlated with the diurnal variation of
PEF, exhaled NO and airway hyperresponsiveness. These
results suggest that an evaluation of exhaled NO in
combination with sputum eosinophils may be a useful
and novel modality in the management of asthma.

Because NO has a variety of effects on the airway, the

role of NO in asthma remains uncertain. However, recent
studies indicate the clinical usefulness of measuring
the exhaled NO level in order to improve the manage-
ment of asthma.
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