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We shall study the boundedness of all solutions and their first derivatives 
over the half interval t > 0 for the following second order nonlinear 
differential equations: 

(a(t) x’)’ + b( t)f(x, x’) + c( t)g(x) /2(x’) = p( f, x, x’) I- d 
( 1 -ii ’ (1) 

and 

a(t) x” + b(t)f(x, x’) + c(t)g(x) h(x’) = p(t, x, x’), (2) 

where a, h, c,f, g, h, and p are real valued functions which depend at most 
on the arguments displayed explicitly. 

Both Eqs. (1) and (2) include the so-called generalized Liknard equation. 
Boundedness and stability problems of generalized Liknard equations have 
been extensively (perhaps even exhaustively) investigated. Several surveys 
of the literature dealing with these problems have been made, and in fact, 
the report of Bushaw [lo] contains an excellent summary of the results 
obtained up to 1957, and the book by Sansone and Conti [29] contains a 
list of results obtained up to 1960. Reissig, Sansone, and Conti [29] 
updated the previous volume to 1962, and the papers by Burton and 
Townsend [9], Graef [13], Miiller [25], and Wong [38] continued the 
efforts up to about 1970. Supplementary bibliographies and results prior to 
1979 can be found in Kartsatos [20] and Knowles [21]. 

Equation (1) includes as special cases equations of the type 

Mf) x’)’ + c(t) g(x) 0’) =4(t) 
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which have been the centre of a considerable amount of research, and there 
are a number of papers about these equations; see, in particular, Bihari 
[3], Borodin and Mamii [4], Burton and Grimmer [S], Chang [l 11, 
Graef and Spikes [ 141, Klokov [21], Lalli [23], Olehnik [26, 271, Willett 
and Wong [35], Wong [36,37], Wong and Burton [39], and the referen- 
ces therein, Equations (I) and (2) include also as special cases equations of 
the type 

which have been studied by Antosiewicz [ 11, Burton [S, 6, 71, Heidel 
[ 16, 171, Willett and Wong [34], and others. The greatest part of these 
papers is concerned with the boundedness of solutions of the equations 
being considered and the majority of the obtained results require inter- 
mediate or direct use of energy (Liapunov) functions. 

In the present paper, sufficient conditions are given for the boundedness 
of all solutions and their derivatives of Eqs. (1) and (2). In contrast to the 
results in the above cited papers, we do not have to find Liapunov 
functions. We will present a quite different approach to the problem of 
boundedness. The heart of this approach is the method of “integral 
inequalities” [2]. A standard technique used in this method is the 
integration by parts. We replace this technique by using two forms of the 
mean value theorem for integrals. Such a device seems to be new. Some of 
our results are concerned with the relationship between the boundedness 
behavior of the solutions of (I) and (2) and the monotonic behavior of the 
quotient a(t)/c(t) or c( [)/a(t). We will use Stieltjes integral inequalities in 
the case that a(t)/c(r) or c(t)/a(t) is continuous, positive and locally of 
bounded variation. To our knowledge this approach to the study of boun- 
dedness behavior has not been tried before. Moreover, we will be able to 
replace many of the monotonicity conditions placed on a(r) and c(t) by 
integral conditions involving their derivatives. Finally, in the process of our 
discussion, we not only achieve a certain degree of generalizations, but also 
discover improved versions of earlier results even in the simple cases of the 
Eqs. (1) and (2). 

NOTATION AND PRELIMINARIES 

The following notation is used. We denote by R the real line, by R’ and 
I the intervals (0, m) and [0, cc ), respectively, and by 1 1 an absolute 
value. C(A, R) and C’(A, R) denote the sets of R-valued functions defined 
on the set A that are, respectively, continuous and continuously differen- 
tiable with respect to each variable. L,(A) denotes the set of Lebesgue 
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integrable functions on A. The solution x(t) (of the equation being 
causidered) through the initial point (to, x,,) is bounded, by definition, if 
there exists a positive number P such that Ix(t)1 <P for all t > t,,. This P 
may be determined for each solution. When all solutions of (1) are 
bounded, we say that the solutions of (1) are bounded. 

It is assumed throughout that all solutions of (1) and (2) are con- 
tinuously extendable throughout the entire nonnegative real axis I. In this 
regard see Hastings [lS], Coffman and Urlich [12], and Willett and 
Wong [35]. Without further mention, we note that the results in this paper 
pertain only to continuable solutions of Eqs. (1) and (2). 

The next lemmas will be useful in the proofs of the main results. 

LEMMA 1. Zf u and v are real valued functions, defined and nonnegative 
,for tat,, u, v~L,[t,, co) and if 

s 

I 
u(t)<c+ u(s) v(s) ds, 

111 
for some positive constant c, then 

u(O~cexp(~,:v(s)ds). 

This very useful lemma is due to Bellman [2] (also known as Gronwall’s 
inequality). 

We now state the following two forms of the second mean value theorem 
for integrals. For example, one can refer to Hildebrandt [lS]. 

LEMMA 2. If’ u E L, [cc, 81 and v is a positive, bounded and nonincreasing 
.function on [IX, 81, then there is a number 6 E [cc, /I] such that 

j+ u(s) v(s) ds = V(CL + 0) j” u(s) ds. 
1 n 

LEMMA 3. If u E L, [CL, /?I and v is a positive, bounded and non&creasing 
,function on [cc, /?I, then there is a number 6 E [a, /I] such that 

j+ u(s) v(s) ds = v(fl- 0) 1; u(s) ds. 
1 

The following generalization of Lemma 1 for Riemann-Stieltjes integrals 
is a modification of a result given by Jones [19]. 

LEMMA 4. Let u, v, w be real valued,functions, defined and continuous on 
[cc, /I]. Let u, v be nonnegative and let w be nondecreasing on [a, j?]. If 

u(t) d c + 
I 

’ u(s) v(s) dw(s) 
1 
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,for some positive constunt c, then 

for all t E [cq /)‘I. 

u(t) d c exp 
(1 

’ u(s) dw(s) 
I ) / 

Finally, we state the following lemma. 

LEMMA 5. ZJ ,for t E [a, fl], u(t) zs real valued, continuous, of bounded 
variation and if u( t) > 0, then 

i’ 
” (l/u(s)) du(s) = log u(b) - log U(N). 
z 

The proof is a matter of straightforward application of elementary 
properties of Riemann-Stieitjes integrals, and thus omitted. For an account 
of the theory of Riemann-Stieltjes integrals the reader is referred to [lS]. 

MAIN RESULTS 

We assume that the functions defining the differential equations (1) and 
(2) satisfy the following conditions: 

(c,) a,c~C(z,R+), bEC(I,Z); 

(~2) .fEC(R’,R),gEC(R,R), hEC(R,R+), PECUXR~,R); 

(c3) f(x, y) y>O for all (x, y)~ R*, y#O; 

(cd) G(x) -+ cc as 1x1 -+ co, where G(x) = J; g(r) dT 2 0; 

(cg) H(y)--c, as Jyj -+Go, where H(y)=j;(s/h(t))dz; 

(c6) there is a nonnegative function e(t)EL,(Z) such that 

Ip(t, x, Y) YI 6 e(t) h(y) for all (t, ,y, y)~Zx R2; 

(c,) there are positive constants A4 and k such that 

y*/h(y) d MfG) for all lyl >/k 

and a nonnegative function e,(t) E L,(Z) such that 

IAt, -7 ~11 <e,(t) for ail (t, x, y) E Ix R2. 

Before giving the main results of this paper, we make some observations 
and remarks concerning the above conditions. Conditions (c,) and (c2) are 
sufficient to guarantee the local existence of solutions of (1) and (2). Con- 
ditions (c3) is standard in the case when a(t) = b(t) = c(t) 3 1 and h(x’) = 1; 
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see Antosiewicz [ 11, Burton [IS], and Willett and Wong [34]. In (cd) we 
do not require that xg(x) > 0 if x # 0, as do most authors (see, e.g., Burton 
and Grimmer [8] or Willet and Wong [34]), but only ask that G(x) 3 0. 
Since G(x) -+ cc as 1x1 + co, we have G(x) > 0; generally speaking this is 
the case only for sufficiently large (xl. Conditions (cd) and (c5) are used in 
a number of papers to establish boundedness and continuability theorems; 
see, Burton and Grimmer [IS], Graef and Spikes [ 141, Lalli [23], and 
Wong and Burton [39]. Condition (cg) is a generalization of a condition 
of Legatos [24] and it has been used by Wong [36]. The first part of (c,) 
is less restrictive than bounding h from above and below or asking 
y2/h(y) d MH(y) for all y (see Burton and Grimmer [S], Olehnik [27], 
and Opial [28]), and it does not violate the condition (c5). The second 
part of (c,) generalizes a condition of Tejumola [31]. Since h(x’) = 1 
satisfies (c,) it is clear that any theorem proved for (1) and (2) using (c,) 
will hold for the equations obtained from (1) and (2) by setting h(x’) E 1. 

First, we state and prove theorems on the boundedness of solutions for 
the equation 

x”+ h(t)f(x, x’) + c(t)g(x) h(x’) = p(t, x, x’) (3) 

which is a special case of (2) when a(t) = 1. The obtained results are then 
specialized to (2) as corollaries. 

THEOREM 1. Suppose that conditions (c, )-(c6) hold and c(t) is non- 
decreasing on I. Then any solution x(t) qf (3) is bounded. a in addition, c(t) 
is bounded above on I, then x’(t) is also bounded. 

Proof Let x(t) be a solution of (3) defined on [0, t]. Multiplying (3) 
by x’(t)/c(t) h(x’(t)) and integrating both sides of the resulting equation 
from 0 to t, we obtain 

s ’ [x’(t) x”(T)/c(T) h(x’(r))] dT 
0 

+ s ’ [b(~),f(x(T)> x1(~)) x’(tYc(~) h(x’(r))l dz 0 

+ j-’ g(x(T)) -x’(T) dz <I’ [IP(t, X(T), X’(T)) X’(T)l/C(T) @‘(T))l dT. 
0 0 

The integral in the second term on the left is nonnegative because of 
(c,~(c~) and, hence, using (cg) we get 

i ’ [X’(T) X”(T)/C(T) h(x’(z))] dz + G(x(t)) - G(x(0)) 
0 

d (l/c(O)) J; e(T) dT. 
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From Lemma 2 it follows that there is 6 E [0, t] such that 

(l/c(O)) 1” [s’(z) X"(T)/h(X'(T))] ds + G(x(r))- G(x(0)) 
I1 

< ( l/C(O)) !” e(z) riT 
0 

which because of (c,) and (c5) leads to the estimate 

G(x(t)) 6 G(x(t)) + (l/c(O)) ff(x’(6)) 

< G(x(0)) + (l/c(O)) [ H(x’(0)) + j’m e(r) dT]. 
0 

The right side of the last inequality is a constant indepenent of t, say K, 
and therefore (c,) implies that x(t) is bounded on I. 

We now suppose that c(t) < c0 on I. Substitute x(t) into (3), multiply on 
both sides by x’(t)/h(x’(t)) and integrate from 0 to t. By (c,)-(c3) and (cg) 
the result may be written 

1; [X’(T) X”(T)/h(X’(t))] dT + !‘,’ C(T) g(x(t)) x’(z) dz < 1; e(z) dr. 

Using Lemma 3, there exists SE [0, t] such that 

ff(X’(t)) - H(x’(o)) + c(t) !“’ g(X(T)) X’(T) dz <I; e(z) dz 
d 

which, since c(t) H(x(t)) is nonnegative on Z, yields 

H(x’(t)) 6 H(x’(t)) + C(t) G(x(t)) 

6 H(x’(0)) + c(t) G(x(6)) + jo’ e(r) dz 

<H(x’(O))+c,K+~~’ e(t)dT=L, 
0 

a constant independent of t. Hence (c5) implies that x’(t) is bounded on I. 

Remark. In the case when h(t) =O, h(x’) = 1 and p(t, x, x’)-0, 
Theorem 1 generalizes Theorem 1 of Klokov [21] and Theorem 1 of 
Waltman [33]. If h(t)=c(t)- 1 and h(x’)= 1 it reduces to Theorem 1 of 
Antosiewicz [l] and includes Theorems 1 and 2 of Utz [32]. When 
h(t) z 0 and p( t, x, x’) = 0 it generalizes Theorem 8 of Bihari [3] and, when 
only for h(t) = 0, Theorem 6 of Wong [37]. 
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As a consequence of Theorem 1 we have the following result. 

COROLLARY 2. Suppose that conditions (c, )-(c6) hold an a(t) is bounded 
away from zero on I. If the quotient c(t)/a(t) is nondecreasing on I, then any 
solution x(t) qf (2) is bounded. If, in addition, c( t)/a( t) is bounded above on I, 
then x’(t) is also bounded. 

Proof Multiplying both sides of (2) by l/a(t), we see that the con- 
clusion follows from Theorem 1. 

Remark. If p(t, x, x’) = 0, then the requirement that a(t) is bounded 
away from zero on I can be disregarded. In this case, Corollary 2 
generalizes Theorem 3 of Lalli [23]. 

THEOREM 3. Suppose that conditions (c,)-(c,) and (c,) hold and let c(t) 
be nonincreasing on I. Then, for any solution x(t) of (3) x’(t) is bounded. If 
in addition, c(t) is bounded away from zero on I, then x(t) is also bounded. 

Proof Multiplying (3) by x’(t)/h(x’(t)), integrating both sides of the 
obtaining equation between 0 and t, and using (c,)-(c,), we obtain 

[’ [X’(T) x”(r)/h(x’(t))] ds + j; C(T) g(X(T)) X’(T) dT 
* 0 

6 s ; [lP(T. X(T), x’(T)) ,~‘(t)l/hb’(T))l dT. 
If lyl<max{a, k}, y2/h(y)<d, for some d, >O, so y2/h(y)6d, +MH(y) 
for all Y. Also, for lyl<max{l,k}, Iyl/h(y)dd,, d,>O, and for 
IYI amax{ 1, k}, l.WG) a2/W, SJ l.WG) d 4 I!I y2/Kd 6 
d, + d2 + MH(y) = D + MH(y) for all y. Thus, using (c,) and Lemma 2, we 
see that there is SE [0, t] such that 

H(X’(t)) + C(o) j,; g@(T)) x’(T) dT 

d H(x’(0)) + M j’e,(s) H(x'(t)) dz + D Ji e,(T) dT 
0 

which, since c(0) G(x(6)) is nonnegative, yields 

where 

ff(X’(t)) d K, + h’f/; e,(T) ff(X’(T)) dr, 

K, = H(x’(0)) + c(0) G(x(0)) + D jo* cl(s) dz 
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is a nonnegative constant. By Lemma I it follows that 

fO~-‘(r))dK, exp(Mjl: e,(r)m)=L,, 

a constant independent of 1. Thus condition (cs) implies that x’(t) is 
bounded on I. 

We now suppose that c(t) 3 c0 > 0 on I. Multiplying (3) by 
x’(t)/c(t) h(x’(r)), integrating between 0 and t, and using (cl)-(c~) and (c,) 
we get 

j; [x’(z) x”(r)/c(s) h(x’(r))] dz + j-i g(x(zjj x’(t) dT 

By Lemma 3 we see that there is 6 E [0, t] such that 

(llc(t))CW~‘(t))- Wx’(~))l + G(x(t)) - G(O)) 

~(ML,+D)(ljc,)j’e,(r)d~ 
0 

which, since (l/c(t)) H(x’(t)) is nonnegative on Z, yields 

G(x(t)) G G(x(O)) + L&o + (ML, +D)(l/c,) j-y cl(z) dz = L,, 

a constant independent of t. Thus (c,) implies that x(t) is bounded on I 
and the proof is complete. 

Remark. Theorem 3 generalizes Theorem 1 of Wong and Burton [39] 
and those of Antosiewicz and Utz mentioned before. 

COROLLARY 4. Suppose that conditions (cl)-(c5) and (c,) hold and let 
a(t) be bounded away from zero on I. If the quotient c( t)/a(t) is nonincreas- 
ing on I, then for any solution x(t) of (2), x’(t) is bounded. Zf in addition, 
c(t)/a(t) is bounded below on Z, then x(t) is bounded. 

Proof. Multiplying both sides of (2) by l/a(t), we see that the 
conclusion follows from Theorem 3. 

Remark. If p(t, x, x’) is identically zero, then the condition that a(t) is 
bounded away from zero can be dropped. In this case, Corollary 4 
generalizes Theorem 5 of Lalli [23]. 
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We begin to discuss the boundedness of solutions of Eq. (1). The proof 
of the following theorem resembles that of Theorem 3. 

THEOREM 5. Suppose that conditions (c,)-(q) and (c,) hold and let c(t) 
he nonincreasing on I. Zf a(t) E C’(Z, R+), a’(t) d 0, and if a(t) is bounded 
away from zero on I, then for any solutions x(t) of ( 1 ), x’(t) is bounded. If in 
addition, c(t) is bounded away from zero on I, then x(t) is bounded. 

Proof Multiplying (1) by x’(t)/h(x’(t)), integrating from 0 to t, and 
using (c,)-(c,) we get 

[i [a’(t)(x’(~))‘/h(x’(2))1 dt + 1: [a(z) x’(z) x”(r)/h(x’(~))l dT 

+ I 
’ c(z) g(x(z)) x’(t) dz 
0 

G s ; [Id? x(z), x’(T)) x’(r)l/h(x’(z))l dr. 

As in the proof of Theorem 3 there are d, > 0 and d, > 0 such that 
y2/h(y) d d, + MH(y) and I yl/h( y) <d, + d2 + MH(y) for all y. Thus using 
the supposition that a’(t) < 0 and (c,) we obtain from the above inequality 

d, j: a’(z) d7: + Ml, a’(*) H(x’(z)) dt + 1: a(r)(H(x’(t)))‘dT 

+ 1’ c(z) g(x(s)) x’(z) dr d D i’ e,(~) dz + M ji cl(z) H(x’(t)) ds, 
0 0 

where D = d, + d,. Integrating the third integral and applying Lemma 2 to 
the fourth integral we obtain, after some computations, that 

a(t) H(x’(t)) d N+ (1 -M) Ji a’(t) H(x’(r)) dz 

+ Mji e,(z) H(x’(z)) & 

where 

N= d,a(O) + a(0) H(x’(0)) + c(0) G(x(0)) + D joZ cl(z) dT. 

If Md 1 then Lemma 1 gives 

fW(t)) < (N/a,) ev((Wao) jam e,(z) dz) = RI 
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andifM>l. 

where u0 is the lower bound (positive) of a(t) on I. Thus (c5) implies that 
x’(t) is bounded on I. 

By hypothesis there is c0 > 0 such that c(t) 3 (‘0 on I. Multiplying (1) by 
x’(t)/c(r) /$x’(t)), integrating from 0 to t, using the conditions (c, )-(c~) 
and (c7) and applying Lemma 3, one can show that 

G(-df)) G GMO)) -u(t) M.~‘(t))/c(t) + a(&) H(x’(6,))/c(t) 

- (d&(t)) j’ u’(s) do - (M/c(t)) ?^’ U’(T) H(x’(s)) dz 
<> , <5z 

+ (l/c(t)) 1 u’(t) WX’(T)) d+ (D/cd ji e,(z) dT 
iii 

+ (M/cd Ji cl(T) f@‘(T)) dz, 

where 6,) 6,, 6, E [0, t]. Put R = max(R,, R2) and then, since H(x’(t)) < R 
on I. we obtain 

G(4t)) < G(x(0)) + (Ru(O)/c,)(l + M+ d,/R) 

+ ((D + MR&.J 1,: e,(T) dz. 

Therefore G(x(t)) is bounded on I and (cd) implies that x(t) is bounded. 
This completes the proof. 

Remark. We observe that in the above theorem as in Theorem 3, the 
condition that c(t) is bounded away from zero is essential in order to prove 
the boundedness of x(t). 

In the following two theorems, by appealing to Riemann-Stieltjes 
integrals and examining the quotients a(t)/c(t) and c(t)/a(t), we are able to 
obtain boundedness results for the solutions of (1). 

THEOREM 6. Suppose that conditions (c,)-(cg) hofd. If a(t) E C’(Z, R+), 
u’(t) 3 0, and the quotient a( t)/c( t) is nondecreasing and bounded above on Z, 
then any solution x(t) of(l), along with its derivative x’(t), is boundedfor aN 
t E I. 

Proof: Multiplying (1) by x’( t)/c( t) h(x’( t)), integrating both sides of 



BOUNDEDNESS CRITERIA 471 

the obtained equation from zero to some t 20, using (c,)-(c,), (c6) and the 
fact that a’(t) 3 0 for all t E Z, we obtain 

j-i [(a(z)/c(r))(H(x’(r))‘l& + 1; g(x(~)) x’ dz 

d s ; [e(r)/c(z)l dr. 

By the assumed monotonicity of the quotient a(t)/c(t) we conclude that 
a(z)/c(r) is of bounded variation on [0, t]. From this it follows that 
H(x’(s)) is Riemann-Stieltjes integrable with respect to a(z)/c(t) on [0, t]. 
Using the integration by parts formula for Riemann-Stieltjes integrals we 
find that a(s)/c(z) is Riemann-Stieltjes integrable with respect to H(x'(7)) 

in [IO, t]. Thus, by the theorem of reduction of a Riemann-Stieltjes integral 
to a Riemann integral, we obtain that 

where the second integral is a RiemannStieltjes integral. Substituting this 
in the inequality above, we get 

ji (a(7)lc(7)) dH(-x’(T)) + GMt)) - G(x(O)) G jc: C47)/47)1 d7. 

By assumption, there exists r0 > 0 such that a(t)/c(t) d Y,, for all t E I. Then 
l/c(r) < r on Z, where r = rda(0). We now use the integration by parts 
formula for RiemannStieltjes integrals and obtain that 

I '(~(7)/d7))dfW(7))= (4tMt)) f@'(t)) 
0 

- (40)/c(O)) Wx’(O)). 

Then the last inequality above becomes 

where 

N = G(x(0)) + (u(O)/c(O)) H(x’(0)) + Jam e(t) d7. 

409!123,2-I2 
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Since G(x( t)) 3 0 on I, we have 

(df)/c(t)) ff(X’(f)) < N+ 1; ((Q(T)/C(T))/Q(7) (.(T)) H(X’(T)) d(a(t)jc(T)). 

By Lemma 5, we obtain 

(a(f)lc(t)) ff(x’(t)) d Next 
( 

ji (1/(47)/c(~)) d(u(7)/47)))) 

which, using Lemma 4, becomes 

(a(t)/c(t)) Wx’(t)) 6 NC(O) U(f)/C(f) u(O). 

Hence H(x’(t)) < Nc(O)/a(O) and (cs) implies that x’(t) is bounded on I. 
Since H(x’(t)) 3 0 and u(t)/c(t) is bounded above on I, we have from the 

above that 

d N + N(c(O)/u(O)) i“ d(u(t)/c(~)) 
0 

< Nrc(O)/u(O). 

Therefore (cd) implies that x(r) is bounded on I and this completes the 

THEOREM 7. Suppose ti 
u’(t) 3 0 and the quotient 
then any solution x(t) ~f( 
t E I. 

proof. 

Proof: Multiplying (1 
of Theorem 6, we obtain 

hut conditions (c,)-(c6) hold. vu(t) E C’(Z, R+), 
‘( t)/a(t) is nondecreasing and bounded above on I, 
), along with its derivative x’(t), is houndedfor all 

by x’( [)/a( t) h(x’( f)) and arguing as in the proof 

ffb’(t)) - ff(X’(O)) + j [(c(7)/Q(T)) d-y(T)) -x’(T)] dT 0 

d s 6 [e(t)/u(T)] dT. 
By following an argument similar to that used in the proof of Theorem 6 
we see that c(z)/a(z) is Riemann-Stieltjes integrable with respect to G(x(7)) 

on [0, r]. Then 

( C(c(T)/47)) g(x(7)) x’(r)1 d7 = jd Cc(7)/47)l dG(x(T)), 
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where the second integral is a Riemann-Stieltjes integral. With this and by 
the integration by parts formula for Riemann-Stieltjes integrals the above 
inequality becomes 

f@‘(f)) + (c(tMt)) G(x(f)) < N+ j; G(x(T)) d(c(~)Mz)), 

where 

N= W’(O)) + (c(O)MO)) W(O))+ (W(O)) lam e(r) dT. 

It then follows that 

(c(tMt)) G(x(f)) 6 N 

+ j-’ (U(T)/C(T))(C(T)/U(T)) W(T)) d(c(T)/a(T)). 
0 

From Lemma 4 we see that 

and Lemma 5 gives 

which implies that G(x(t)) < Nu(O)/c(O) on I. The boundedness of x(t) 
follows by (c,). 

By hypothesis c(t)/u( t) 6 p for some p > 0 and for all t E I. Then 

W-x’(t)) G N+ 1; G(x(T)) d(c(T)/a(T)) 

<N+ N(a(O)/c(O)) j’d(c(+(T)) 6 Npa(O)/c(O) 0 

and (c5) implies that x’(t) is bounded on I. The proof is now completed. 

Remark. A number of papers have dealt with boundedness of solutions 
of (1) for the case 6(t) = 0. Theorems 6 and 7 generalize the corresponding 
results in [ 11,23, 401. 

Throughout the remainder of this paper we replace the monoticity 
conditions on u(r) and c(t) by integral conditions on the derivatives u’(t), 
c’(t) and (c( ?)/a( t))‘. 
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THEOREM 8. Let conditions (c,)-(c,) hold und let c(t)EC’(I, R’ ) be 
bounded awuy porn zero und 1 c’( t )I E L,(Z). Then both the solution x( t ) of (3) 
and its derivative x’(t) ure bounded. 

Proqf: Multiplying (3) by x’(t)/h(r’(t)), integrating from 0 to t, and 
using (c,)-(c3) and (c,), we obtain the inequality 

H(.r’(t)) - H(x’(0)) + j’ C(T) g(x(s)) X’(T) dT 6 j’ e(t) d7, 
0 0 

which, after integration by parts, becomes 

c(t) G(x(t)) d N+ j’ Ic’(t)l G(x(z)) dz, 
0 

where 

N= H(x’(0)) + c(0) G(x(0)) + ix e(z) dT. 
0 

By hypothesis c(t) 3 co for some c0 > 0 and all t E: I and Lemma 1 then gives 

Again, the condition (c,) implies that x(t) is bounded. 
Furthermore, it is easy to show that 

Wx’(t))d N+ A4jx k’(z)1 dz 
0 

and (c5) implies that x’(t) is bounded. 

From Theorem 8 we get the following result. 

COROLLARY 9. Suppose that conditions (c,)-(c6) hold. If a(t) and 
c(t)/a(t)E C’(Z, R+) are bounded away from zero and I(c(t)/a(t))‘l E L,(Z), 
then any solution x(t) of (2), along with its derivate x’(t), is bounded. 

Remark. Theorem 8 and its corollary generalize Theorem 7 of 
Bihari [3] and Theorem 4 of Wong [36]. 

THEOREM 10. Let conditions (c,)-(I+,) hold and let u(t) be nonincreasing 
on I. Zf c(t) E C’(Z, R+) is bounded away from zero and (c’(t)/ E L,(I), then 
any solution x(t) of (2) is bounded. If, in addition, a(t) is bounded away from 
zero, then x’(t) is also bounded. 
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Proof: Multiplying (2) by x’(t)/h(x’(t)), integrating between 0 and t, 
and using (c,)-(q) and (c,), we obtain 

j; [a(z) x’(r) x”(t)/h(x’(z)) d+ j; c(t) g(x(z)) X’(T) dr 

I 
f < CT(T) dz. 
0 

Applying Lemma 2 on the first integral and integrating the second integral 
by parts, we obtain 

a(O) H(x’(6)) - a(O) H(x’(0) + c(t) G(x(t)) -c(O) G(x(0)) 

6 ji k’(z)1 G(x(T)) dz + j: e(z) 4 

where 6 E [0, t]. Since c(t) > c0 for some c0 > 0 and all t E I9 we have 

G(x(t)) G NC,+ (l/co) j’ Ic’(t)l G(x(T)) & 0 

where 

N=u(O)H(x'(O))+c(O)G(x(O))+ jo= e(z)dt. 

From Lemma 1 and (cd) it follows that x(t) is bounded on I. 
Suppose now that a(t) > a, for some a, > 0 and all t E I. Multiplying (2) 

by x’(t)/u(t) /$x’(t)) and proceeding as before, we have 

j; [Ix’(r) x”(~YW(~))I dz + jjW44) d.4~)) x’(s)1 dz 

5 
1 

d e(t) dt. 
0 

Integrating the first integral by parts and applying Lemma 3 on the second 
integral, we obtain 

Wx’(t)) - ff(x’(O)) + (ll4t)) j’ 4~) g(x(T)) x’(t) dT 
s 

G (l/so) 1’ e(r) & 
0 
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where 6 E [0, t]. Integrating the integral on the left by parts, we get 

W-x’(t)) - W’(O)) + (c(t)la(t)) G(x(tN 

- (c(bMt)) ‘3.46)) 

6 (l/u(t)) j’ Id(z)I G(x(T)) dz + (l/a,,) jo’e(t) dz. 
ii 

From the conditions on c(t) we see that c(t) tends to a positive limit as 
t -+ KI and then, c(t) is bounded above, say by c,. Thus, from the above 
inequality, we get the following estimate 

H(x’(t)) < ff(x'(O)) + c, L/a, + (L/u,) jox Id(z)\ dz + (l/u,) C,’ e(z) ~9, 

where 

L = (N/c,) exp (1: Ic’(r)idrjc,,). 

Therefore (c5) implies the boundedness of x’(t) and this completes the 
proof. 

Remark. Changing the roles of u(t) and c(t) in Theorem 10 we may 
obtain a similar result. Since the procedure is clear the statement and proof 
will be omitted. 

THEOREM 11. Let conditions (c,)-(q) and (c,) hold, and let u(t) and c(t) 
be bounded away from zero. I’ u(t), C(I)E C’(Z, R+) and lu’(t)l, 
[c’(t)1 E L,(I), then any solution x(t) qf(2), along with its derivative x’(t), is 
bounded on I. 

Proof: Multiplying (2) by x’(t)/h(x’(t)), integrating from 0 to t and 
using (c,)-(c,), we obtain 

?‘; [U(T) x’(t) x”(z)/h(x’(z))] dT + 1; c(z) g(x(t)) x’(T) d7 

d s ; Clp(t, x(z), x’(z))IIX’(~)Ih(x’(~))l dz. 

Arguing as in the proof of Theorem 3, we see that there is D > 0 such that 
I yl/h( y) 6 D + MH( y) for all y. Thus, we have 

j~C4WWWl dT + j; Cc(~)(G(x(~)))‘l dT 

< D 1’ e(z) dz + M j’ e(t) H(x’(z)) dz. 
0 0 
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Integrating the integrals on the left, we obtain 

r[Wx’(t)) + G(x(t))l 
^, 

6 R+ ! ; [Id( + Ic*(~)l + M4~)lCW’(~)) + W(t))1 & 

where r = min(a,, c,), a, and c0 being the lower bounds of a(t) and c(t), 
respectively, and 

R = u(o) H(x’(0)) + c(o) G(x(0)) + D i,:’ e(z) ds. 

By Lemma 1 it follows that H(x’(t)) + G(x(t)) is bounded and then the 
conditions (cd) and (c5) imply that x(t) and x’(t) are bounded on I. The 
proof is now completed. 

Remark. Theorem 11 generalizes Theorem 7 of Bihari [3] and 
Theorem 4 of Wang [36]. An analogous result has been proved by Burton 
and Grimmer [S] for ( 1) where h(t) = 0. Their proof is different from the 
proof given here. 
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