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Introduction and the main results

Throughout this article, K will denote a fixed algebraically closed field. By an algebra we mean
an associative, finite-dimensional K -algebra with an identity, which we moreover assume to be basic
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and indecomposable. Any such algebra A can be written as a bound quiver algebra, that is, A ∼= K Q /I ,
where Q = Q A is the Gabriel quiver of A and I is an admissible ideal in the path algebra K Q of Q .
For an algebra A, we denote by mod A the category of finite-dimensional right A-modules and by ΩA

the syzygy operator which assigns to a module M in mod A the kernel ΩA(M) of a minimal projective
cover P A(M) → M of M in mod A. Then a module M in mod A is called periodic if Ωn

A(M) ∼= M for
some n � 1. Further, the category mod A is called periodic if any module M in mod A without non-zero
projective direct summands is periodic. It is known that the periodicity of a module category mod A
forces the algebra A to be selfinjective, that is, the projective and injective modules in mod A coin-
cide. Many important selfinjective algebras A are even symmetric, that is there exists an associative,
non-degenerate, symmetric K -bilinear form (−,−) : A × A → K . The category of finite-dimensional
A-A-bimodules over an algebra A is equivalent to the category mod Ae over the enveloping algebra
Ae = Aop ⊗K A of A. An algebra A is called periodic if A is a periodic module in mod Ae . It is well
known that if A is a periodic algebra then the module category mod A is periodic and the period
of any module M in mod A without non-zero projective direct summands divides the period of A
in mod Ae . The problem whether an algebra A with periodic module category mod A is a periodic
algebra is an exciting open problem. Recently it has been proved that any selfinjective algebra A
of finite representation type is a periodic algebra (see [11]). Apart from algebras of finite type, the
most prominent periodic algebras are the preprojective algebras of generalized Dynkin type and their
deformations.

Preprojective algebras were introduced by Gelfand and Ponomarev [20] (and implicitly in the work
of Riedtmann [29]) to study the preprojective representations of finite quivers without oriented cycles,
and they occur naturally in very different contexts. The finite-dimensional preprojective algebras are
exactly the preprojective algebras P (�) associated to the Dynkin graphs An (n � 1), Dn (n � 4), E6,
E7, E8 and the graphs of the form

Ln • • · · · • • (n � 1 vertices).

Following [23] the graphs An , Dn , E6, E7, E8 and Ln are called generalized Dynkin graphs. These
are precisely the graphs associated to the indecomposable finite symmetric Cartan matrices which
have subadditive functions which are not additive [24]. We also mention that the preprojective
algebras P (�) of Dynkin types � ∈ {An,Dn,E6,E7,E8} are the stable Auslander algebras of the cate-
gories of maximal Cohen–Macaulay modules of the Kleinian 2-dimensional hypersurface singularities
K [[x, y, z]]/( f�) (see [4,5,13]). Moreover, for each n � 1, the preprojective algebra P (Ln) is the stable
Auslander algebra of the category of maximal Cohen–Macaulay modules over the simple plane curve
singularity K [[x, y]]/(x2 + y2n+1) (see [10,13]). The preprojective algebras of Dynkin types have been
recently exploited by Geiss, Leclerc and Schröer to study the structure of cluster algebras related to
semisimple and unipotent algebraic groups (see [19]). The Hochschild cohomology algebras of prepro-
jective algebras of Dynkin type has been studied by Erdmann and Snashall in [14–16], and recently
used by Etingof and Eu [17,18] to establish the calculus structure (Connes differential, Gerstenhaber
bracket, . . . ) of the Hochschild homology/cohomology of preprojective algebras of Dynkin type.

In this paper we study the deformations of preprojective algebras of generalized Dynkin type
which were introduced in [7]: Namely, to each generalized Dynkin graph � one associates a finite-
dimensional (non-commutative) local selfinjective K -algebra R(�). Then a deformed preprojective
algebra of type � is the deformation P f (�) of P (�) given by an admissible element f of the rad-
ical square of R(�), and P f (�) = P (�) for f = 0 (see [7,13] for details). It has been proved in [7]
that the deformed preprojective algebras P f (�) of generalized Dynkin type are (finite-dimensional)
periodic selfinjective algebras. These are precisely the indecomposable selfinjective algebras A, up to
Morita equivalence, for which the third syzygy Ω3

A(S) of any non-projective simple A-module S is
isomorphic to its Nakayama shift N A(S).

Therefore every indecomposable selfinjective algebra whose stable module category mod A is 2-
Calabi–Yau, is Morita equivalent to some deformed preprojective algebra P f (�) of generalized Dynkin
type �, and it is an interesting open problem when the converse is true. Furthermore, by a result of
Amiot [1] an additively finite triangulated category T is 1-Calabi–Yau if and only if T is equivalent
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to the category proj P f (�) of finite-dimensional projective modules over a deformed preprojective
algebra P f (�) of a generalized Dynkin type �. We refer to the survey article by Keller [26] for basic
background on Calabi–Yau triangulated categories (introduced by Kontsevich in late nineties [28]). We
also note that the deformed preprojective algebras of generalized Dynkin type are, with a few small
exceptions, of wild representation type (see [12, Theorem 3.7]). Therefore, to classify the deformed
preprojective algebras of generalized Dynkin type up to isomorphism, is an important problem.

In this paper we address these problems for the deformed preprojective algebras P f (Ln) of the
types Ln , n � 1.

For a positive integer n, consider the quiver

Q Ln : 0ε=ε̄

a0

1
ā0

a1

2
ā1

· · · n − 2
an−2

n − 1
ān−2

and the local K -algebra R(Ln) = K [x]/(x2n). Then, for an element f ∈ rad2 R(Ln), the deformed pre-

projective algebra P f (Ln) is defined to be the bound quiver algebra K Q Ln /I f
Ln

, where I f
Ln

is the ideal
of the path algebra K Q Ln of Q Ln generated by the elements

ε2 + a0ā0 + ε f (ε), ε2n, ān−2an−2, and āiai + ai+1āi+1 for i ∈ {0, . . . ,n − 3}.
We distinguish also special deformed preprojective algebras of type Ln ,

L(r)
n = P fr (Ln) with fr = x2r + (

x2n), r ∈ {1, . . . ,n}.

Then L(n)
n = P fn (Ln) is the ordinary preprojective algebra P (Ln) of type Ln .

For convenience of the reader we give in this paper a detailed proof of the following fact (which
is a special case of [7, Lemma 3.2]).

Theorem 1. Let Λ = P f (Ln) be a deformed preprojective algebra of type Ln over an algebraically closed
field K . Then Λ is a finite-dimensional selfinjective algebra with the same Cartan matrix as the preprojective
algebra P (Ln). In particular, we have dimK Λ = dimK P (Ln).

The first main result of this paper is the classification of deformed preprojective algebras of
type Ln , up to isomorphism.

Theorem 2. Let Λ = P f (Ln) be a deformed preprojective algebra of type Ln over an algebraically closed
field K . Then the following statements hold.

(1) If K is of characteristic different from 2, then Λ is isomorphic to the preprojective algebra P (Ln).
(2) If K is of characteristic 2, then Λ is isomorphic to an algebra L(r)

n , for some r ∈ {1, . . . ,n}.

It has been proved in [7, Proposition 6.1] that, for K of characteristic 2, the algebras L(1)
n , L(2)

n , . . . ,

L(n)
n = P (Ln) are pairwise non-isomorphic.

The second main result of the paper shows that the classification of the isomorphisms classes of
deformed preprojective algebras of type Ln corresponds nicely (via the stable Auslander algebras) to
the classification of equivalence classes of simple plane curve singularities of Dynkin type A2n (in the
sense of [2,6,21]). It has been shown in [27] that, for K of characteristic different from 2, R = R(n)

n =
K [[x, y]]/(x2 + y2n+1) is a unique such singularity, up to equivalence. For K of characteristic 2, the
simple plane curve singularities

R(r)
n = K [[x, y]]/(x2 + y2n+1 + xyn+r), r ∈ {1, . . . ,n − 1},
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together with R(n)
n , give representatives of the equivalence classes of all simple plane curve singular-

ities of type A2n (see [21, Section 1] and [27]). Moreover, it is known that, for any r ∈ {1, . . . ,n}, the
category CM(R(r)

n ) of maximal Cohen–Macaulay modules over R(r)
n is a Frobenius (Krull–Schmidt) cat-

egory having exactly n + 1 pairwise non-isomorphic indecomposable objects, among them the unique
projective indecomposable object R(r)

n (see [9,10,27]). Consider the direct sum M(r)
n of a complete set

of pairwise non-isomorphic indecomposable non-projective objects in CM(R(r)
n ) and the associated

endomorphism algebra

A
(

R(r)
n

) = End
CM(R(r)

n )

(
M(r)

n
)

of M(r)
n = M(r)

n in the stable category CM(R(r)
n ) of CM(R(r)

n ), called the stable Auslander algebra of R(r)
n .

Theorem 3. Let K be of characteristic 2 and n a positive integer. Then, for any r ∈ {1, . . . ,n}, the algebras L(r)
n

and A(R(r)
n ) are isomorphic.

We note that an isomorphism P (Ln) = L(n)
n

∼= A(R(n)
n ), for K of arbitrary characteristic, follows

from [10].
As a consequence of Theorems 2 and 3 we obtain the following fact.

Corollary 4. Let Λ = P f (Ln) be a deformed preprojective algebra of type Ln. Then Λ is a symmetric algebra.

A minimal bimodule projective resolution of a preprojective algebra P (Ln) of type Ln has been
described in [7, Proposition 2.3] and one has Ω3

P (Ln)e P (Ln) ∼= P (Ln) for K of characteristic 2 and

Ω3
P (Ln)e P (Ln) � P (Ln) ∼= Ω6

P (Ln)e P (Ln) for K of characteristic different from 2. In fact, it has been

proved in [7, Proposition 2.3] that any deformed preprojective algebra P f (Ln) of type Ln is a periodic
algebra but the proof presented there does not allow us to determine the period of P f (Ln). In the
forthcoming paper [8], based on Theorem 2 and Corollary 4, we will determine the period of any
deformed preprojective algebra of type Ln .

We mention also the recent paper by Holm and Zimmermann [25] discussing derived and stable
equivalences of deformed preprojective algebras of type Ln .

For basic background on the representation theory applied here we refer to the book [3] and the
articles [13,30], and on the singularities and Cohen–Macaulay modules to the survey article [9] and
the books [6,22,31].

1. Proof of Theorem 1

For n = 1 we have P (L1) = K [ε]/(ε2), so this is the only deformed preprojective algebra of
type L1. We assume from now that n � 2.

In R(Ln) = K [x]/(x2n), every element f of rad2 R(Ln) is of the form f = (λ1x2 + λ2x3 + · · · +
λ2n−2x2n−1)+ (x2n) for some λ1, λ2, . . . , λ2n−2 ∈ K . Hence, the deformed preprojective algebra P f (Ln)

is the bound quiver algebra given by the quiver

Q Ln : 0ε=ε̄

a0

1
ā0

a1

2
ā1

· · · n − 2
an−2

n − 1
ān−2

and the relations

a0ā0 + ε2 + λ1ε
3 + λ2ε

4 + · · · + λ2n−3ε
2n−1 + λ2n−2ε

2n = 0,

ān−2an−2 = 0, ε2n = 0, āiai + ai+1āi+1 = 0 for i ∈ {0, . . . ,n − 3}.
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Observe that we may omit the parameter λ2n−2 in the above relations, because ε2n = 0. Note that the
relation ε2n = 0 is also satisfied in P (Ln), because we have there

ε2n = (−1)n(a0ā0)
n = (−1)

n(n+1)
2 a0 · · ·an−2ān−2an−2ān−2 · · · ā0 = 0.

Therefore, a deformed preprojective algebra of type Ln is an algebra Ln(λ1, λ2, . . . , λ2n−3), for
λ1, λ2, . . . , λ2n−3 ∈ K , given by the quiver Q Ln and the relations

a0ā0 + ε2 + λ1ε
3 + λ2ε

4 + · · · + λ2n−3ε
2n−1 = 0,

ān−2an−2 = 0, ε2n = 0, āiai + ai+1āi+1 = 0 for i ∈ {0, . . . ,n − 3}.

With this, we have Ln(0, . . . ,0) = P (Ln).
We assume now that Λ = Ln(λ1, λ2, . . . , λ2n−3) for fixed elements λ1, λ2, . . . , λ2n−3 of K .
For the proof of Theorem 1 we will use the following lemma. For a path w in the quiver of Λ, we

denote by r(w) the number of arrows ai in w with even indices i, and similarly we denote by r̄(w)

the number of arrows āi with even indices i.

Lemma 1.1. For k = 0, . . . ,n − 1, the following hold in Λ:

(Ak) All paths from 0 to k of length greater than 2n − k − 1 are zero paths.
(Bk) All paths from 0 to k of length 2n − k − 1 are equal to (−1)r̄(w)ε2n−2k−1a0 · · ·ak−1.

(A′
k) All paths from k to 0 of length greater than 2n − k − 1 are zero paths.

(B′
k) All paths from k to 0 of length 2n − k − 1 are equal to (−1)r(w)āk−1 · · · ā0ε

2n−2k−1.

Proof. We will prove this lemma by induction on k.
We prove first statements (A0) and (B0) for all paths which only have arrows ε, a0, ā0. We proceed

by induction on the number of arrows different from ε. If w is a path of length greater than 2n − 1
with source and target equal to 0 and has only arrows ε, then the claim w = 0 in (A0) follows since
we have the relation ε2n = 0. Moreover, if w = ε2n−1, the claim for w in (B0) is trivial. Assume the
claims from (A0) and (B0) are satisfied for all paths containing at most s arrows a0. Let w be a path of
length l � 2n − 1 with source and target equal 0, containing exactly s + 1 arrows a0. Then noting that
ε and a0ā0 commute, we can write w = a0ā0ε

i w ′ for some path w ′ of length l − i − 2 with source
and target equal 0, containing exactly s arrows a0.

By the inductive assumption we have the equality

εi+2 w ′ = (−1)sεl. (1)

Indeed, if l < 2n, then from (B0) follows that εi+2 w ′ = εl if l is even and εi+2 w ′ = −εl if l is odd. On
the other hand, if l � 2n, then from (A0) we have εi+2 w ′ = 0 and from the relation ε2n = 0 we have
εl = 0 = −εl . Further, using again the relation ε2n = 0 and (1) we obtain

εi+3 w ′ = (−1)sεl−(2n−1)ε2n = 0. (2)

Finally, using the relation

a0ā0 + ε2 + λ1ε
3 + λ2ε

4 + · · · + λ2n−3ε
2n−1 = 0

for w , and equalities (1) and (2), we obtain the required claim
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w = a0ā0ε
i w ′ = −(

ε2 + λ1ε
3 + λ2ε

4 + · · · + λ2n−3ε
2n−1)εi w ′

= −
(

1 +
2n−3∑
i=1

λiε
i

)
εi+2 w ′ = −εi+2 w ′ −

2n−3∑
i=1

λiε
i−1εi+3 w ′ = (−1)s+1εl.

Hence the statements (A0) and (B0) hold for all paths consisting only of the arrows ε, a0, ā0 with at
most s + 1 arrows a0. This proves (by induction) that the statements (A0) and (B0) are satisfied for all
paths only with arrows ε, a0, ā0.

In order to show the statements (A0) and (B0) for arbitrary paths, we may inductively prove these
statements for paths consisting only of the arrows ε, ai , āi , i ∈ {0, . . . , s} (induction on s). Indeed,
assume that the statements are satisfied for some s and let w be a path consisting only of the arrows
ε, ai , āi , i ∈ {0, . . . , s + 1}, having exactly ti arrows ai , for i ∈ {0, . . . , s + 1}. Then, applying ts+1 times
the equality as+1ās+1 = −āsas to w , we obtain that w = (−1)ts+1 w ′ for some path w ′ consisting only
of the arrows ε, ai , āi , i ∈ {0, . . . , s}, and having exactly ti arrows ai , for i ∈ {0, . . . , s − 1}, and ts + ts+1
arrows as .

This ends the proof of the statements (A0) and (B0).
Assume now that the statements (Ak) and (Bk) are satisfied for some k ∈ {0, . . . ,n − 2}. We will

prove the statement (Ak+1).
Let w be a path from 0 to k + 1 of length l > 2n − k − 1. Applying to w some relations ai+1āi+1 =

−āiai with i � k, if necessary, we obtain that w is equal up to sign to w ′ak for some path w ′ of
length l − 1 � 2n − k − 1. Then, applying (Bk), we conclude that w ′ is up to sign equal to the path
εl−k−1a0 · · ·ak−1. Hence, w is equal up to sign to the path εl−k−1a0 · · ·ak−1ak . Further, from (Ak) we
know that, for l − 1 > 2n − k − 1, εl−k−1a0 · · ·ak−1 = 0 holds, and hence w = 0. So assume that l =
2n − k. Applying again (Bk) and the relations āiai + ai+1āi+1 = 0, i ∈ {0, . . . ,n − 3}, and ān−2an−2 = 0,
we obtain that

εl−k−1a0 · · ·ak−1ak = ε2(n−k)−1a0 · · ·ak = (−1)n−k−1ε(a0ā0)
n−k−1a0 · · ·ak

= (−1)(n−k−1)(k+1)εa0 · · ·ak(ākak)
n−k−1

= (−1)(n−k−1)(k+1)+(n−k−1)(n−k)/2−1εa0 · · ·an−2ān−2an−2ān−2 · · · āk+1 = 0.

Therefore w = 0.
Assume now that w is a path from 0 to k + 1 of length 2n − k − 1. Applying to w the relations

āiai + ai+1āi+1 = 0, i ∈ {0, . . . ,n − 3}, we conclude that w is equal up to a sign to w ′a0 · · ·ak , where
w ′ is a path from 0 to 0 consisting of s arrows a0, s arrows ā0 and 2(n −k − s − 1) arrows ε, for some
s ∈ {0, . . . ,n − k}. We note that, by the above arguments, all paths from 0 to k + 1 of length greater
than 2n − k − 1 are zero paths. Hence, applying s times the relation

a0ā0 + ε2 + λ1ε
3 + λ2ε

4 + · · · + λ2n−3ε
2n−1 = 0

to the path w ′a0 · · ·ak , we obtain that

w ′a0 · · ·ak = (−1)sε2(n−k−1)a0 · · ·ak = (−1)s+n−k−1(a0ā0)
n−k−1a0 · · ·ak.

Applying again the relations āiai +ai+1āi+1 = 0, i ∈ {0, . . . ,n − 3}, and ān−2an−2 = 0, we conclude that

(a0ā0)
n−k−1a0 · · ·ak = (−1)(n−k−1)ka0 · · ·ak(ākak)

n−k−1

= (−1)(n−k−1)(k+1)+(n−k−1)(n−k)/2−1a0 · · ·an−2ān−2an−2ān−2 · · · āk+1 = 0.

Hence w is the zero path, and this shows the statement (Ak+1).
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The statement (Bk+1) will be proved similarly. Let w be a path from 0 to k +1 of length 2n −k −2.
As before, by applying to w the relations ai+1āi+1 = −āiai , i ∈ {0, . . . ,n − 3}, we obtain the path
w ′a0 · · ·ak , where w ′ is a path from 0 to 0 consisting from s arrows a0, s arrows ā0 and 2(n − k −
s) − 3 arrows ε, for some s ∈ {0, . . . ,n − k − 1}. Notice that each use of the relation changes the sign,
decreases by one the number of arrows ai+1 and increases by one the number of arrows ai . Then it
follows from (Ak+1) that applying s times the relation

a0ā0 + ε2 + λ1ε
3 + λ2ε

4 + · · · + λ2n−3ε
2n−1 = 0

to w ′a0 · · ·ak we obtain the equality

w ′a0 · · ·ak = (−1)sε2(n−k)−3a0 · · ·ak.

Therefore (Bk+1) holds.
The proofs of the statements (A′

k+1) and (B′
k+1) are dual. �

Proposition 1.2. In the algebra Λ the following hold:

(i) For s, t ∈ {0, . . . ,n − 1}, all paths from s to t of length greater than 2n − |s − t| − 1 are zero.
(ii) For s, t ∈ {0, . . . ,n − 1}, any w from s to t of length 2n − |s − t| − 1 is equal to

w = (−1)r(w)+r(a0···at−1)ās−1 · · · ā0ε
2n−2 max(s,t)−1a0 · · ·at−1.

(iii) For k ∈ {0, . . . ,n − 1}, all paths from k to k of length 2n − 1 are maximal non-zero paths (and they are
equal up to sign).

Proof. For the proof of (i), we assume first that t � s. Let w be a path from s to t of length greater
than 2n + s − t − 1 with t � s. Then applying to w the relations ai+1āi+1 = −āiai , i ∈ {0, . . . ,n − 3}, we
obtain the path ās−1 · · · ā0 w ′ , where w ′ is a path from 0 to t of length greater than 2n − t − 1. Hence
w is up to sign equal to ās−1 · · · ā0 w ′ . By Lemma 1.1(At ) we conclude that w ′ = 0, and so w = 0.
Dually, in the case t < s, by applying to a path w from s to t of length greater than 2n + t − s − 1
the relations ai+1āi+1 = −āiai , i ∈ {0, . . . ,n − 3}, we obtain a path w ′′a0 · · ·at−1, with the subpath w ′′
from s to 0 of length 2n − s − 1. It follows from Lemma 1.1(A′

s) that w ′′ = 0, and so w = 0.
Similarly, one may prove that (ii) follows from Lemma 1.1(B′

s).
To prove (iii) observe first that each path of length 2n − 1 with the same source and target k is

non-zero. Indeed, such a path has to pass through the vertex 0, because it is of odd length and hence
contains an arrow ε, so it has to either pass through the vertex n − 1 at most once, if k �= n − 1, or
to have the source and target as the unique vertex k on the path in the case k = n − 1. In both cases
no such path has a subpath ān−2an−2, hence is non-zero. Uniqueness (up to sign) of the path in (iii)
follows from (ii), while its maximality follows from (i) since all paths of length 2n are zero in Λ. Its
existence is obvious. This proves (iii). �
Proposition 1.3. Let l ∈ {0, . . . ,2n−1} and k, t be fixed vertices of the Gabriel quiver Q Ln of Λ with |k−t| � l.
Consider the quotient algebra Λ̄l = Λ/Il of Λ by the ideal Il generated by all paths of length l + 1. Then in Λ̄l
the following hold:

(i) if k + t + 1 � l � 2n − 1 − |k − t| and k + t + l is odd, then all paths of length l from k to t are non-zero
and are equal up to sign to the path

āk−1 · · · ā0ε
l−(k+t)a0 · · ·at−1;
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(ii) if |k − t| � l � 2(n − 1) − (k + t) and k + t + l is even, then all paths of length l from k to t are non-zero
and are equal up to sign to the path

ak · · ·a k+t+l
2 −1ā k+t+l

2 −1 · · · āt;

(iii) all paths of length l from k to t with l > 2(n − 1)− (k + t) and k + t + l even and all paths of length l from
k to t with l > 2n − 1 − |k − t| and k + t + l odd (if exist) are zero paths.

Proof. The proof of (i) is similar to the proof of Proposition 1.2(ii). Let w be a path of length l from k
to t with k + t +1 � l � 2n −1−|k − t| and k + t + l odd. Applying to w the relations ai+1āi+1 = −āiai ,
i ∈ {0, . . . ,n − 3}, we obtain the path āk−1 · · · ā0 w ′a0 · · ·at−1, where w ′ is a path from 0 to 0 of length
l − k − t > 0 consisting of s arrows a0, s arrows ā0, and l − k − t − 2s arrows ε, for some integer s.
Because in Λ/Il all paths of length greater than l are zero paths, then it follows from the relation at
the vertex 0 that

āk−1 · · · ā0 w ′a0 · · ·at−1 = (−1)sāk−1 · · · ā0ε
l−k−ta0 · · ·at−1.

Finally, the path āk−1 · · · ā0ε
l−(k+t)a0 · · ·at−1 is non-zero, because by Proposition 1.2(iii) it is a subpath

of a maximal non-zero path.
Now we will prove (ii). Let w be a path of length l from k to t with |k − t| � l � 2(n − 1) −

(k + t) and k + t + l even. If w does not contain the arrow ε then we may obtain from w the
path ak · · ·a k+t+l

2 −1ā k+t+l
2 −1 · · · āt by applying the relations ai+1āi+1 = −āiai , i ∈ {0, . . . ,n − 3}. If w

contains the arrow ε then, in general case, we may obtain from w (as in the proof of (i)) the path
āk−1 · · · ā0ε

l−k−ta0 · · ·at−1. Note that in Λ/Il we have

āk−1 · · · ā0ε
l−k−ta0 · · ·at−1 = (−1)

l−k−t
2 āk−1 · · · ā0(a0ā0)

l−k−t
2 a0 · · ·at−1.

Then, applying again the relations ai+1āi+1 = −āiai , i ∈ {0, . . . ,n − 3}, to the path

āk−1 · · · (ā0a0)
l−k−t

2 +1 · · ·at−1, we obtain the path ak · · ·a k+t+l
2 −1ā k+t+l

2 −1 · · · āt . Moreover, following

Proposition 1.2(iii), the path ak · · ·a k+t+l
2 −1ā k+t+l

2 −1 · · · āt is a subpath of a maximal path, and hence

it is non-zero.
We know from Proposition 1.2(i) that all paths of length l from k to t with l > 2n − 1 − |k − t|

and k + t + l odd (if they exist) are zero paths. Moreover, all paths of length l from k to t with
l > 2(n − 1) − (k + t) and k + t + l even (if they exist) are (up to sign) equal to the path

ak · · ·an−2(ān−2an−2)
n−1− k+t+l

2 ān−2 · · · āt = 0,

because ān−2an−2 = 0. This ends the proof of (iii). �
We complete now our proof of Theorem 1.
Applying Proposition 1.3 and Proposition 1.2(i), we conclude that, for each pair s, t ∈ {0, . . . ,n − 1}

of vertices of Q Ln , we have the equalities

dim etΛes = #
{
l ∈ N

∣∣ s + t + 1 � l � 2n − 1 − |s − t| ∧ s + t + l odd
}

+ #
{
l ∈ N

∣∣ |s − t| � l � 2(n − 1) − (s + t) ∧ s + t + l even
}

= 2
(
n − max(s, t)

)
.

Hence, the Cartan matrix of the algebra Λ is of the form
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⎡
⎢⎢⎢⎢⎢⎢⎣

2n 2n − 2 · · · 6 4 2
2n − 2 2n − 2 · · · 6 4 2

...
...

. . .
...

...
...

6 6 · · · 6 4 2
4 4 · · · 4 4 2
2 2 · · · 2 2 2

⎤
⎥⎥⎥⎥⎥⎥⎦

and is equal to the Cartan matrix of the algebra P (Ln). In particular, Λ is finite-dimensional.
This completes the proof of Theorem 1.

2. Proof of Theorem 2

We divide the proof of Theorem 2 into several steps. The first lemma will help us to identify
isomorphisms.

Lemma 2.1. Let n � 2 and λ1, . . . , λ2n−3, λ
′
1, . . . , λ

′
2n−3 ∈ K . Assume that there exists a K -algebra homomor-

phism ϕ : Ln(λ1, . . . , λ2n−3) → Ln(λ′
1, . . . , λ

′
2n−3) given by

ϕ(ε) =
2n−2∑
i=0

γiε
i+1, ϕ(al) = al, ϕ(āl) = āl, for l = 0, . . . ,n − 2,

with γ0, . . . , γ2n−2 ∈ K , γ0 �= 0. Then ϕ is an isomorphism of K -algebras.

Proof. We will construct a K -algebra homomorphism ψ : Ln(λ′
1, . . . , λ

′
2n−3) → Ln(λ1, . . . , λ2n−3) given

by

ψ(ε) =
2n−2∑
i=0

δiε
i+1, ψ(al) = al, ψ(āl) = āl, for l = 0, . . . ,n − 2,

with δ0, . . . , δ2n−2 ∈ K , δ0 �= 0, such that ψϕ = idLn(λ1,...,λ2n−3) .
Let r0 = 0, δ0 = γ −1

0 and

rl =
l∑

i=1

γi

( ∑
0�a1,a2,...,ai+1

a1+a2+···+ai+1=l−i

i+1∏
j=1

δa j

)
and δl = −γ −1

0 rl,

for l ∈ {1, . . . ,2n − 2}.
Note that we have

ψϕ(ε) = ψ

(
2n−2∑
i=0

γiε
i+1

)
=

2n−2∑
i=0

γiψ
(
εi+1) =

2n−2∑
i=0

γiψ(ε)i+1 =
2n−2∑
i=0

γi

(
2n−2∑
j=0

δ jε
j+1

)i+1

=
2n−2∑
i=0

γi

(
2n−i−2∑

l=0

( ∑
0�a1,a2,...,ai+1

a +a +···+a =l

i+1∏
t=1

δat

)
εi+1+l

)

1 2 i+1
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=
2n−2∑
j=0

( j∑
i=0

γi

( ∑
0�a1,a2,...,ai+1

a1+a2+···+ai+1= j−i

i+1∏
t=1

δat

))
ε j+1

=
2n−2∑
j=0

(
γ0δ j +

j∑
i=1

γi

( ∑
0�a1,a2,...,ai+1

a1+a2+···+ai+1= j−i

i+1∏
t=1

δat

))
ε j+1

=
2n−2∑
j=0

(γ0δ j + r j)ε
j+1 = γ0δ0ε +

2n−2∑
j=1

(
γ0

(−γ −1
0 r j

) + r j
)
ε j+1 = ε.

From the definition of ϕ and ψ we also have ψϕ(al) = al and ψϕ(āl) = āl for all l = 0, . . . ,n − 2.
This shows that ψϕ = idLn(λ1,...,λ2n−3) . Since Λ is finite-dimensional it follows that ψ is the 2-sided
inverse of ϕ , and it also follows that ψ is an algebra homomorphism. Hence ϕ = ϕ′ is a K -algebra
isomorphism. �

The following proposition proves part (1) of Theorem 2.

Proposition 2.2. Let K be of characteristic different from 2, and Λ = Ln(λ1, . . . , λ2n−3) for n � 2 and
λ1, . . . , λ2n−3 ∈ K . Then Λ is isomorphic to P (Ln).

Proof. We will choose elements γ0, γ1, . . . , γ2n−3 ∈ K such that, for each k ∈ {0, . . . ,2n−3}, the equal-
ity

(
k∑

i=0

γiε
i+1

)2

+ (
εk+3) =

(
ε2 +

k∑
i=1

λiε
i+2

)
+ (

εk+3)

holds, in the quotient algebra Ln(λ1, . . . , λ2n−3)/(ε
k+3).

Observe that

(
ε2 +

2n−3∑
i=1

λiε
i+2

)
+ (

εk+3) =
(
ε2 +

k∑
i=1

λiε
i+2

)
+ (

εk+3).
For k = 0, the required equality is of the form

(γ0ε)2 + (
ε3) = ε2 + (

ε3),
and hence γ 2

0 ε2 = ε2, γ 2
0 = 1. Hence, we may choose either γ0 = 1 or γ0 = −1. Let γ0 = 1.

Assume now that, for some k � 1, elements γ0, γ1, . . . , γk−1 ∈ K satisfying the equalities

( j∑
i=0

γiε
i+1

)2

+ (
ε j+3) =

(
ε2 +

j∑
i=1

λiε
i+2

)
+ (

ε j+3),
for j ∈ {0, . . . ,k − 1}, are defined. Observe that we have the equalities
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(
k∑

i=0

γiε
i+1

)2

+ (
εk+3) =

(
γkε

k+1 +
k−1∑
i=0

γiε
i+1

)2

+ (
εk+3)

=
(
γ 2

k ε2k+2 + 2γk

k−1∑
i=0

γiε
k+i+2 +

(
k−1∑
i=0

γiε
i+1

)2)
+ (

εk+3)

=
(

2γkγ0ε
k+2 +

(
k−1∑
i=0

γiε
i+1

)2)
+ (

εk+3)

and

(
ε2 +

k∑
i=1

λiε
i+2

)
+ (

εk+3) =
(

λkε
k+2 + ε2 +

k−1∑
i=1

λiε
i+2

)
+ (

εk+3),
because 2k + 2 � k + 3 for k � 1. Moreover, from the choice of γ0, . . . , γk−1, we have

(
k−1∑
i=0

γiε
i+1

)2

+ (
εk+2) =

(
ε2 +

k−1∑
i=1

λiε
i+2

)
+ (

εk+2).
Hence, the required equality

(
k∑

i=0

γiε
i+1

)2

+ (
εk+3) =

(
ε2 +

k∑
i=1

λiε
i+2

)
+ (

εk+3)

forces γk to satisfy the equality

2γkγ0ε
k+2 +

∑
0�i, j�k−1

i+ j=k

γiγ jε
(i+1)+( j+1) = λkε

k+2,

or equivalently

2γkγ0 = λk −
k−1∑
i=1

γiγk−i.

Therefore, we define

γk = γ −1
0

2

(
λk −

k−1∑
i=1

γiγk−i

)
= 1

2

(
λk −

k−1∑
i=1

γiγk−i

)
.

Finally, for k = 2n − 3, we have εk+3 = ε2n = 0, and hence in Ln(λ1, . . . , λ2n−3) the equality

(
2n−3∑

γiε
i+1

)2

= ε2 +
2n−3∑

λiε
i+2
i=0 i=1
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holds. Therefore, the homomorphism ϕ : Ln = Ln(0, . . . ,0) → Ln(λ1, . . . , λ2n−3) given by

ϕ(ε) =
2n−3∑
i=0

γiε
i+1, ϕ(al) = al, ϕ(āl) = āl, for l ∈ {0, . . . ,n − 2},

is well defined. By Lemma 2.1, we conclude that ϕ is an isomorphism of K -algebras. �
Proposition 2.3. Let K have characteristic 2, n � 3, and λ1, . . . , λ2n−3 ∈ K with λ1 = · · · = λ2k−1 = 0 and
λ2k �= 0 for some k ∈ {1, . . . ,n − 2}. Then there exist elements λ′

1, . . . , λ
′
2n−3 ∈ K with λ′

1 = · · · = λ′
2k−1 =

λ′
2k = 0 and λ′

2k+1 = λ2k+1 such that Ln(λ1, . . . , λ2n−3) and Ln(λ′
1, . . . , λ

′
2n−3) are isomorphic.

Proof. We will define elements λ′
2k+1, . . . , λ

′
2n−3 ∈ K so that there is an isomorphism of K -algebras

ϕ : Ln(λ1, . . . , λ2n−3) → Ln(0,0, . . . , λ′
2k+1, . . . , λ

′
2n−3) given by

ϕ(ε) = ε + γ εk+1, ϕ(al) = al, ϕ(āl) = āl, for l ∈ {0, . . . ,n − 2}, (∗)

where γ 2 = λ2k .
For integers k � 1, i � 2k, denote

m(k, i) = min

(⌊
i + 2

k + 1

⌋
,

⌊
i

k
− 2

⌋)
.

We note that m(k, i) is a nonnegative integer and m(k, i) � 
 i−1
k �, because 
 i

k − 2� � 
 i−1
k �.

For i ∈ {2k + 1, . . . ,2n − 3} we define

λ′
i =

m(k,i)∑
j=0

λi− jk

(
i − jk + 2

j

)
γ j,

for i ∈ {2k + 1, . . . ,2n − 3}.
In order to prove that the map ϕ in (∗) is a well-defined homomorphism of K -algebras, it is

enough to show that ϕ(a0ā0 + ε2 + λ2kε
2k+2 + · · · + λ2n−3ε

2n−1) = 0 in Ln(0, . . . ,0, λ′
2k+1, λ

′
2k+2, . . . ,

λ′
2n−3). Indeed, we have in Ln(0, . . . ,0, λ′

2k+1, λ
′
2k+2, . . . , λ

′
2n−3) the equalities

ϕ

(
a0ā0 + ε2 +

2n−3∑
i=2k

λiε
i+2

)
= ϕ(a0)ϕ(ā0) + ϕ(ε)2 +

2n−3∑
i=2k

λiϕ(ε)i+2

= a0ā0 + (
ε + γ εk+1)2 +

2n−3∑
i=2k

λiϕ
(
ε + γ εk+1)i+2

= a0ā0 + ε2 + γ 2ε2k+2 +
2n−3∑
i=2k

λi

i+2∑
j=0

(
i + 2

j

)
γ jε(k+1) j+((i+2)− j)

= a0ā0 + ε2 + λ2kε
2k+2 +

2n−3∑
i=2k

i+2∑
j=0

λi

(
i + 2

j

)
γ jεkj+i+2

= a0ā0 + ε2 + λ2kε
2k+2 +

2n−3∑
l=2k

(m(k,l)∑
j=0

λl− jk

(
l − jk + 2

j

)
γ j

)
εl+2
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= a0ā0 + ε2 + 2λ2kε
2k+2 +

2n−3∑
l=2k+1

(m(k,l)∑
j=0

λl− jk

(
l − jk + 2

j

)
γ j

)
εl+2

= a0ā0 + ε2 +
2n−3∑

l=2k+1

λ′
lε

l+2 = 0,

because for l = 2k we have 
 l
k − 2� = 0, and hence

m(k,l)∑
j=0

λl− jk

(
l − jk + 2

j

)
γ jεl+2 = λ2k

(
2k + 2

0

)
γ 0ε2k+2 = λ2kε

2k+2.

Hence ϕ is a homomorphism of K -algebras, and consequently, by Lemma 2.1, an isomorphism.
We note also that λ′

2k+1 = λ2k+1. Indeed, we have

λ′
2k+1 =

m(k,2k+1)∑
j=0

λ2k+1− jk

(
2k + 1 − jk + 2

j

)
γ j

and

m(k,2k + 1) = min

(⌊
(2k + 1) + 2

k + 1

⌋
,

⌊
2k + 1

k
− 2

⌋)
=

⌊
1

k

⌋
.

Hence for k > 1 we have

λ′
2k+1 = λ2k+1

(
2k + 3

0

)
γ 0 = λ2k+1,

and for k = 1 we obtain

λ′
3 = λ2+1

(
2 + 1 + 2

0

)
γ 0 + λ2

(
2 + 1 − 1 + 2

1

)
γ 1 = λ3 + 4λ2γ = λ3.

This completes our proof. �
We will now prove the crucial step for part (2) of Theorem 2.

Proposition 2.4. Let K be of characteristic 2, n � 2, k ∈ {0, . . . ,n − 2} and λ2k+1, . . . , λ2n−3 ∈ K , λ2k+1 �= 0.

Then Ln(0, . . . ,0, λ2k+1, . . . , λ2n−3) is isomorphic to L(k+1)
n .

Proof. Recall that L(k+1)
n = Ln(0, . . . ,0︸ ︷︷ ︸

2k

,1,0, . . . ,0), for k ∈ {0, . . . ,n − 2}.

We will construct a homomorphism of K -algebras

ϕ : Ln(0, . . . ,0︸ ︷︷ ︸
2k

,1, . . . ,0) → Ln(0, . . . ,0, λ2k+1, . . . , λ2n−3),

given by
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ϕ(ε) =
2n−2∑
i=0

γiε
i+1, ϕ(al) = al, ϕ(āl) = āl, for l ∈ {0, . . . ,n − 2}.

Such a map is an algebra homomorphism provided ϕ(a0ā0 + ε2 + ε2k+3) = 0 in Ln(0, . . . , λ2k+1,

. . . , λ2n−3). So we will choose elements γ0, γ1, . . . , γ2n−3 ∈ K which will satisfy the equalities

(( j∑
i=0

γiε
i+1

)2

+
( j∑

i=0

γiε
i+1

)2k+3)
+ (

εm( j)) =
(
ε2 +

j∑
i=1

λiε
i+2

)
+ (

εm( j)),
for j = 0, . . . ,2n − 2, m( j) = min(2 j + 3, j + 2k + 4), in Ln(λ1, . . . , λ2n−3)/(ε

m( j)).
Let γ0 = 1 and γ j = 0 for 0 < j � k. Then, for 0 � j � k, we have

(( j∑
i=0

γiε
i+1

)2

+
( j∑

i=0

γiε
i+1

)2k+3)
+ (

ε2 j+3) = (
γ 2

0 ε2 + γ 2k+3
0 ε2k+3) + (

ε2 j+3)
= γ 2

0 ε2 + (
ε2 j+3) = ε2 + (

ε2 j+3)
=

(
ε2 +

j∑
i=1

λiε
i+2

)
+ (

ε2 j+3).
From now on assume that we have chosen γ0, . . . , γ j−1, for some j > 0, satisfying the above

equalities. For l = 0, . . . , j, we denote

rl =
∑

0�a1,a2,...,a2k+3<l
a1+a2+···+a2k+3=l

2k+3∏
i=1

γai .

Then we have, for each l ∈ {0, . . . , j − 1}, the equalities

(
l∑

i=0

γiε
i+1

)2k+3

+ (
εl+2k+4) =

l∑
i=0

( ∑
0�a1,a2,...,a2k+3�i
a1+a2+···+a2k+3=i

2k+3∏
t=1

γat

)
εi+2k+3 + (

εl+2k+4)

=
l∑

i=0

(
(2k + 3)γiγ

2k+2
0 + ri

)
εi+2k+3 + (

εl+2k+4)

=
l∑

i=0

(γi + ri)ε
i+2k+3 + (

εl+2k+4)

and

(
l∑

i=0

γiε
i+1

)2

=
l∑

i=0

γ 2
i ε2(i+1).

We will now consider four cases.
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If k < j � 2k, then the required γ j should satisfy the equality

(
γ 2

j ε2( j+1) + (γ2( j−k)−1 + r2( j−k)−1)ε
2( j+1)

) + (
ε2 j+3) = λ2 jε

2( j+1) + (
ε2 j+3),

which is equivalent to the equality

γ 2
j + γ2( j−k)−1 + r2( j−k)−1 = λ2 j.

Hence, we define γ j as the square root of γ2( j−k)−1 + r2( j−k)−1 + λ2 j .
Assume j = 2k + 1. Note that in this case j = 2( j − k) − 1. Then the required γ j should satisfy

(
γ 2

j ε2( j+1) + (γ j + r j)ε
2( j+1)

) + (
ε2 j+3) = λ2 jε

2( j+1) + (
ε2 j+3),

and this is equivalent to

γ 2
j + γ j + r j = λ2 j.

Hence, we define γ j as a root of the polynomial x2 + x + r j + λ2 j ∈ K [x].
Let j > 2k + 1 and assume j is odd. Observe that in this case 2(k + j+1

2 + 1) = j + 2k + 3. Then the
required γ j should satisfy the equality

(
γ 2

k+ j+1
2

ε2(k+ j+1
2 +1) + (γ j + r j)ε

j+2k+3) + (
ε j+2k+4) = λ j+2k+1ε

j+2k+3 + (
ε j+2k+4),

which is equivalent to the equality

γ 2
k+ j+1

2
+ γ j + r j = λ j+2k+1.

Therefore, we define γ j = γ 2
k+ j+1

2

+ r j + λ j+2k+1.

Finally, assume that j > 2k + 1 and j is even. Then the required γ j should satisfy

(γ j + r j)ε
j+2k+3 + (

ε j+2k+4) = λ j+2k+1ε
j+2k+3 + (

ε j+2k+4),
which is clearly equivalent to the equality

γ j + r j = λ j+2k+1.

Hence, we define γ j = r j + λ j+2k+1.
It follows from the above construction of γ0, . . . , γ2n−2 that in Ln(λ1, . . . , λ2n−3)/(ε

m(2n−2)) the
following equality holds

((
2n−2∑
i=0

γiε
i+1

)2

+
( j∑

i=0

γiε
i+1

)2k+3)
+ (

εm(2n−2)
) =

(
ε2 +

2n−2∑
i=1

λiε
i+2

)
+ (

εm(2n−2)
)
.

We note that in Ln(0, . . . ,0, λ2k+1, . . . , λ2n−3) we have εm(2n−2) = 0, because m(2n − 2) � 2n and
ε2n = 0. So the equalities



J. Białkowski et al. / Journal of Algebra 345 (2011) 150–170 165
(
2n−2∑
i=0

γiε
i+1

)2

+
( j∑

i=0

γiε
i+1

)2k+3

= ε2 +
2n−2∑
i=1

λiε
i+2 = a0ā0

hold in Ln(0, . . . ,0, λ2k+1, . . . , λ2n−3). Hence ϕ is a homomorphism of K -algebras, and consequently,
by Lemma 2.1, an isomorphism. This completes our proof. �
Proof of part (2) of Theorem 2. Assume K has characteristic 2. Observe first that

L(r)
n = P fr (Ln) = Ln(0, . . . ,0︸ ︷︷ ︸

2(r−1)

,1, . . . ,0), for r ∈ {1, . . . ,n − 1},

and

L(n)
n = P fn (Ln) = Ln(0, . . . ,0).

Let λ1, . . . , λ2n−3 ∈ K and Λ = Ln(λ1, . . . , λ2n−3). We claim that Λ ∼= L(r)
n for some r ∈ {1, . . . ,n}.

Clearly, if λ1 = · · · = λ2n−3 = 0, then Λ ∼= L(n)
n . Assume λi �= 0 for some i ∈ {1, . . . ,2n − 3}. Take

the minimal index m ∈ {1, . . . ,2n − 3} with λm �= 0. If m is odd, say m = 2r − 1 for some r ∈
{1, . . . ,n − 1}, then it follows from Proposition 2.4 that Λ ∼= L(r)

n . On the other hand, if m is even,
then, by Proposition 2.3, there exist elements λ′

1, . . . , λ
′
2n−3 ∈ K such that λ′

1 = · · · = λ′
m = 0 and

Λ ∼= Ln(λ′
1, . . . , λ

′
2n−3). Applying Propositions 2.3 and 2.4, we conclude, by induction on m, that Λ is

isomorphic to an algebra L(r)
n for some r ∈ {1, . . . ,n}. �

We end this section with the following complementary result.

Proposition 2.5. Let K be of characteristic 2, n � 2, and λ1, . . . , λ2n−3 ∈ K with λ2i+1 = 0 for all i ∈
{0, . . . ,n − 2}. Then Ln(λ1, . . . , λ2n−3) is isomorphic to P (Ln).

Proof. We show that there exists a homomorphism of K -algebras

ϕ : P (Ln) = Ln(0, . . . ,0) → Ln(0, λ2,0, λ4,0, . . . ,0, λ2n−4,0) = Ln(λ1, . . . , λ2n−3)

such that

ϕ(ε) =
n−2∑
i=0

γiε
i+1, ϕ(al) = al, ϕ(āl) = āl, for l ∈ {0, . . . ,n − 2},

where γ0, . . . , γn−2 ∈ K satisfy the conditions γ0 = 1 and γ 2
i = λ2i , for i ∈ {0, . . . ,n − 2}. Then ϕ will

be an isomorphism, by Lemma 2.1.
Indeed, we have

ϕ
(
a0ā0 + ε2) = ϕ(a0ā0) + ϕ

(
ε2) = ϕ(a0)ϕ(ā0) + ϕ(ε)2

= a0ā0 +
(

n−2∑
i=0

γiε
i+1

)2

= a0ā0 +
n−2∑
i=0

γ 2
i ε2i+2

= a0ā0 + γ 2
0 ε2 +

n−2∑
γ 2

i ε2i+2 = a0ā0 + ε2 +
n−2∑

λ2iε
2i+2 = 0,
i=1 i=1
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ϕ(ān−2an−2) = ān−2an−2 = 0,

and

ϕ(āiai + ai+1āi+1) = āiai + ai+1āi+1 = 0

for i ∈ {0, . . . ,n − 3}, and hence ϕ is a well-defined homomorphism of K -algebras. �
3. Proofs of Theorem 3 and Corollary 4

For an integer n � 2 and r ∈ {1, . . . ,n − 1}, we denote by Λ
(r)
n the bound quiver algebra K Q Ln /I(r)n ,

where I(r)n is the ideal in the path algebra K Q Ln generated by the elements

ε2 + a0ā0 + ε(a0ā0)
r, ān−2an−2, and āiai + ai+1āi+1 for i ∈ {0, . . . ,n − 3}.

Proposition 3.1. Let K be of characteristic 2, n � 2 an integer, and r ∈ {1, . . . ,n − 1}. Then the algebras L(r)
n

and Λ
(r)
n are isomorphic.

Proof. Fix r ∈ {1, . . . ,n − 1}. First, we prove by induction on i that in Λ
(r)
n the equalities

ε2i(a0ā0)
n−i = 0, for i ∈ {0, . . . ,n}, hold. Indeed, we have in Λ

(r)
n the equalities

(a0ā0)
n = a0(a1ā1)

n−1ā0 = · · · = a0a1 · · ·an−2ān−2an−2ān−2 · · · ā1ā0 = 0.

Assume now that ε2i(a0ā0)
n−i = 0 for some i ∈ {0, . . . ,n − 1}. Then, from the equality ε2 + a0ā0 +

ε(a0ā0)
r = 0, we conclude that

ε2(i+1)(a0ā0)
n−(i+1) = ε2iε2(a0ā0)

n−(i+1) = ε2i(a0ā0 + ε(a0ā0)
r)(a0ā0)

n−(i+1)

= ε2i(a0ā0)
1+n−(i+1) + ε2iε(a0ā0)

r(a0ā0)
n−i−1

= ε2i(a0ā0)
n−i + ε

(
ε2i(a0ā0)

n−i)(a0ā0)
r−1 = 0.

In particular, for i = n, we obtain ε2n = 0.
We claim now that there exist elements λ2r, . . . , λ2n−3 ∈ K such that the identity endomor-

phism of K Q Ln induces an epimorphism of K -algebras Ln(0, . . . ,0,1, λ2r, . . . , λ2n−3) → Λ
(r)
n . Ob-

serve that it is sufficient to find elements λ2r, . . . , λ2n−3 in K such that the equality ε2 + a0ā0 +
ε2r+1 + ∑2n−3

i=2r λiε
i+2 = 0 holds in Λ

(r)
n . Since K is of characteristic 2, we have in Λ

(r)
n the equality

a0ā0 = ε2 + ε(a0ā0)
r . Then we obtain the sequence of equalities in Λ

(r)
n

ε(a0ā0)
r = ε

(
ε2 + ε(a0ā0)

r)(a0ā0)
r−1 = ε3(a0ā0)

r−1 + ε2(a0ā0)
2r−1

= ε5(a0ā0)
r−2 + ε4(a0ā0)

2r−2 + ε4(a0ā0)
2r−2 + ε3(a0ā0)

3r−2

= ε5(a0ā0)
r−2 + ε3(a0ā0)

3r−2 = · · ·

= ε2r+1 +
2n−3∑
i=2r

λiε
i+2

for some elements λ2r, . . . , λ2n−3 ∈ {0,1} ⊆ K , because ε2n = 0. Obviously then
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a0ā0 + ε2 + ε2r+1 +
2n−3∑
i=2r

λiε
i+2 = a0ā0 + ε2 + ε(a0ā0)

r = 0

in Λ
(r)
n .

Conversely, we show that there exist elements λ′
1, . . . , λ

′
2n−3 ∈ K such that the identity endo-

morphism of K Q Ln induces an epimorphism of K -algebras Λ
(r)
n → Ln(λ′

1, . . . , λ
′
2n−3). Therefore, we

have to find elements λ′
1, . . . , λ

′
2n−3 in K such that the equality ε2 + a0ā0 + ε(a0ā0)

r = 0 holds in
Ln(λ′

1, . . . , λ
′
2n−3).

Now we will construct elements λ′
1, . . . , λ

′
2n−3 ∈ K such that the equality

2n−3∑
i=1

λ′
iε

i+2 = ε2r+1

(
1 +

2n−3∑
i=1

λ′
iε

i

)r

(∗)

holds in the quotient algebra K Q Ln /(ε
2n).

We note that, if we calculate the right side of equality (∗), we will obtain a sum of elements of
the form (

∏
j λ

′
i j
)εi with all indices i j less than i − 2. Hence, we may inductively calculate λ′

k for

k = 1, . . . ,2n − 3 from the following equalities

λ′
kε

k+2 + (
εk+3) =

(
ε2r+1

(
1 +

2n−3∑
i=1

λ′
iε

i

)r

+
k−1∑
i=1

λ′
iε

i

)
+ (

εk+3)

(obtained from (∗)) in the quotient algebras K Q Ln /(ε
k+3). Observe that this procedure uniquely

determines the elements λ′
1, . . . , λ

′
2n−3 ∈ K satisfying the equality (∗) in the quotient algebra

K Q Ln /(ε
2n). We note also that such the chosen elements λ′

1, . . . , λ
′
2n−3 ∈ K satisfy the condi-

tions λ′
1 = · · · = λ′

2r−2 = 0, λ′
2r−1 = 1 and λ′

2r, . . . , λ
′
2n−3 ∈ {0,1}, and hence Ln(λ′

1, . . . , λ
′
2n−3) =

Ln(0, . . . ,0,1, λ′
2r, . . . , λ

′
2n−3).

Consider now the algebra Ln(0, . . . ,0,1, λ′
2r, . . . , λ

′
2n−3). Observe that it is a quotient algebra of

K Q Ln /(ε
2n). Hence, the equality (∗) holds also in the algebra Ln(0, . . . ,0,1, λ′

2r, . . . , λ
′
2n−3). Moreover,

we have in Ln(0, . . . ,0,1, λ′
2r, . . . , λ

′
2n−3) the equality a0ā0 = ε2 + ∑2n−3

i=1 λ′
iε

i+2. Then we obtain the
equalities

ε2 + a0ā0 + ε(a0ā0)
r = ε2 +

(
ε2 +

2n−3∑
i=1

λ′
iε

i+2

)
+ ε

(
ε2 +

2n−3∑
i=1

λ′
iε

i+2

)r

=
2n−3∑
i=1

λ′
iε

i+2 + ε2r+1

(
1 +

2n−3∑
i=1

λ′
iε

i

)r

= 0

in Ln(0, . . . ,0,1, λ′
2r, . . . , λ

′
2n−3).

Summing up, we have epimorphisms of K -algebras

Ln(0, . . . ,0,1, λ2r, . . . , λ2n−3) → Λ
(r)
n

Λ
(r)
n → Ln

(
0, . . . ,0,1, λ′

2r, . . . , λ
′
2n−3

)
.

Moreover, by Proposition 2.4, the algebras Ln(0, . . . ,0,1, λ2r, . . . , λ2n−3) and Ln(0, . . . ,0,1, λ′
2r,

. . . , λ′
2n−3) are isomorphic to L(r)

n . Therefore, the algebras L(r)
n and Λ

(r)
n are isomorphic. �

The following proposition and its proof has been indicated by the referee.
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Proposition 3.2. Let K be of characteristic 2, n � 2 an integer, and r ∈ {1, . . . ,n − 1}. Then the algebras Λ
(r)
n

and A(R(r)
n ) are isomorphic.

Proof. Fix r ∈ {1, . . . ,n − 1}. It follows from [27, (3.1)] that the fractional ideals

Mi = R(r)
n + R(r)

n
x

yn−i
, i ∈ {0,1, . . . ,n − 1},

form a complete set of pairwise non-isomorphic indecomposable non-projective objects in CM(R(r)
n ).

Then there is an isomorphism of algebras ϕ : Λ
(r)
n

∼→ A(R(r)
n ) which assigns to the trivial paths

at the vertices i of Q Ln the identity maps on Mi , to the arrows ai the multiplication maps
·y : Mi → Mi+1, to the arrows āi the inclusion maps Mi+1 ↪→ Mi , and to the loop ε the multiplication
map · x

yn : M0 → M0. We note first that the stable Auslander–Reiten quiver of CM(R(r)
n ) is isomorphic to

Q Ln and that the representative irreducible morphisms are given by the inclusion maps Mi+1 ↪→ Mi ,
the multiplication maps ·y : Mi → Mi+1 and the multiplication map · x

yn : M0 → M0. This shows that

the described above homomorphism ϕ : Λ
(r)
n → A(R(r)

n ) is an epimorphism. In order to prove that ϕ

is a monomorphism, it is enough to show that the non-zero elements of the socle of Λ
(r)
n are sent by

ϕ to non-zero elements of A(R(r)
n ). It follows from Propositions 1.3(iii) and 3.1 that the socle of Λ

(r)
n is

the K -linear subspace of Λ
(r)
n generated by the maximal non-zero paths āk−1 · · · ā0ε

2(n−k)−1a0 · · ·ak−1
from k to k, for k ∈ {0,1, . . . ,n − 1}. Further, for k ∈ {0,1, . . . ,n − 1}, ϕ(āk−1 · · · ā0ε

2(n−k)−1a0 · · ·ak−1)

is the stable class of the multiplication map ·ykt2(n−k)−1 : Mk → Mk , with t = x
yn . Moreover, if

·ykt2(n−k)−1 factors through a projective module in CM(R(r)
n ), then ykt2(n−k)−1 ∈ R(r)

n . On the other
hand, using the identity t2 = y + yrt (which is obtained by dividing x2 = y2n+1 + xyn+r by y2n), we
deduce by induction on j ∈ {1, . . . ,n}, that simultaneously we have

(a) yn− jt2 j−1 /∈ R(r)
n ;

(b) yn− jt2 j ∈ R(r)
n ;

(c) yn− j+1t2 j−1 ∈ R(r)
n .

In particular, for j = n − k, we conclude from (a) that ykt2(n−k)−1 /∈ R(r)
n . Therefore, ϕ : Λ(r)

n → A(R(r)
n )

is a monomorphism, and hence an isomorphism. �
Theorem 3 is a direct consequence of Propositions 3.1 and 3.2.
We note (as pointed out by the referee) that in the stable category CM(R) of the category CM(R)

of maximal Cohen–Macaulay modules over a simple plane curve singularity R there are bifunctorial
isomorphisms

HomCM(R)(M, N) ∼= D HomCM(R)(N, M)

for any modules M , N in CM(R) (see [9, (9.7)]). In particular, for the direct sum U R of a complete set
of pairwise non-isomorphic indecomposable non-projective objects in CM(R) we obtain that

A(R) = EndCM(R)(U R) and D EndCM(R)(U R) = DA(R)

are isomorphic as A(R)-bimodules, and consequently the stable Auslander algebra A(R) of R is a
symmetric algebra. This, together with Theorems 2 and 3, provides the proof of Corollary 4.

In the forthcoming paper [8] we will provide a direct proof of Corollary 4.
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