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a b s t r a c t

In a previous paper, the authors used cyclic and extended cyclic constructions to obtain
codes over an alphabet {A,C,G,T} satisfying a Hamming distance constraint and a GC-
content constraint. These codes are applicable to the design of synthetic DNA strands
used in DNA microarrays, as DNA tags in chemical libraries and in DNA computing. The
GC-content constraint specifies that a fixed number of positions are G or C in
each codeword, which ensures uniform melting temperatures. The Hamming distance
constraint is a step towards avoiding unwanted hybridizations. This approach extended
the pioneering work of Gaborit and King. In the current paper, another constraint known
as a reverse-complement constraint is added to further prevent unwanted hybridizations.

Many new best codes are obtained, and are reproducible from the information pre-
sented here. The reverse-complement constraint is handled by searching for an involu-
tion with 0 or 1 fixed points, as first done by Gaborit and King. Linear codes and additive
codes over GF(4) and their cosets are considered, as well as shortenings of these codes. In
the additive case, codes obtained from two different mappings from GF(4) to {A,C,G,T} are
considered.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The deoxyribonucleic acid (DNA) molecule consists of two complementary strands. Each strand is a sequence of four
different nucleotide bases, called adenine (A), cytosine (C), guanine (G) and thymine (T). In coding theory terms, each
strand can be regarded as a word constructed from the alphabet {A, C,G, T}. DNA can be synthesized, and there has been
considerable interest in the construction of codes over this alphabet satisfying certain combinatorial constraints (see [8,5]
and the references contained therein). The code is used to design the synthetic DNA strands (known as oligonucleotides) to
control their hybridization, permitting desired hybridizations and deterring undesirable imperfect hybridizations.

Oligonucleotides can be used as probes in DNA microarray technologies. They can also be used as tags or bar codes in
chemical libraries [2], exploiting their highly predictable hybridization chemistry. Tagged chemical libraries can help to
automate the process of drug screening. In DNA computing, an important step is to construct an appropriate encoding of the
problem in DNA oligonucleotide sequences. This must be done in such a way that hybridization finds the desired solution.
In all these applications, imperfect hybridizations with an oligonucleotide which is close to, but somewhat different from
the target can introduce errors and reduce efficiency. The library of words must always be large enough to represent the
necessary information, suggesting that the code should be as large as possible.

The first three constraints specified below are the combinatorial constraints on a DNA code C:
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1. Let H(x, y) denote the Hamming distance between two words (i.e. the number of positions in which they differ). The
Hamming distance constraint is that H(x, y) ≥ d for all x, y ∈ C with x ≠ y, for some prescribed minimum distance d.

2. The reverse-complement constraint is that H(xRC, y) ≥ d for all x, y ∈ C, where xRC is the reverse-complement of x
obtained by taking the reverse xR of x and performing the symbol interchanges A ↔ T, C ↔ G (this is called taking
Watson–Crick complements). Note that x = y is included.

3. The GC-content constraint is that each codeword x ∈ C has the same GC-content. The GC-content of a DNA word is
defined to be the number of positions in which the word has coordinate C or G.

4. A further constraint is used as an intermediate step in handling the reverse-complement constraint. The reverse
constraint is that H(xR, y) ≥ d for all x, y ∈ C, where xR is the reverse of a codeword x. As for the reverse-complement
constraint, x = y is included.

The purpose of the first two constraints is to make non-desirable hybridization unlikely to occur. The fixed GC-content
constraint is used to ensure that similar melting temperatures are obtained, where DNA melting is the process by which
double-stranded DNA unwinds and separates into single strands through the breaking of hydrogen bonding between the
bases. Similar melting temperatures can be approximately achieved by ensuring that each word contains the same number
of positions which are either G or C, referred to as constant GC-content [4]. Because CG base-pairing is generally stronger
than AT base-pairing, this allows hybridization of multiple words to take place simultaneously [12].

Following [5], the maximum number of codewords of length n, minimum Hamming distance d, GC-content w satisfying
the first three constraints is denoted AGC,RC

4 (n, d, w). As the actual value of w is unimportant, the aim of the paper is to
improve lower bounds for maxw(AGC,RC

4 (n, d, w)). In [13] the algebraic approach of Gaborit and King [5] was extended
for codes satisfying the Hamming distance and GC-content constraints. A comprehensive evaluation of linear cyclic and
extended cyclic codes over GF(4) and Z4 as well as additive codes was undertaken for n ≤ 30. Cosets of codes were
considered, together with shortened and punctured codes. In the case of additive codes and codes over Z4, attention was
also paid to the two distinct choices for the mapping from the field or ring to the alphabet {A, C,G, T}. As far as was
computationally feasible, all possible choices of polynomial (or polynomials) were considered to generate the code. A
GC-weight enumerator was calculated (see [5]) and the code was selected that gave the maximum number of codewords of
some fixed GC-content.

This paper will follow the same approach, rather than using algorithmic methods [9–11]. The codes found in [13] will be
used to construct codes that also satisfy the reverse-complement constraint. Many improvements to the best known values
for maxw(AGC,RC

4 (n, d, w)) are found, and tables of the best known codes are presented.

2. The reverse-complement constraint and involutions

The use of involutions to handle the reverse-complement constraint was pioneered by Gaborit and King [5], who stated
and proved the following lemma:

Lemma 1. Let C ′ be a code of length n such that:

• n = 2k is even and C ′ has a fixed-point free involution in its permutation group (i.e. a permutation of the form
(a1, a2) · · · (a2k−1, a2k) which leaves no column unchanged); or

• n = 2k + 1 is odd and C ′ has a one-point fixed involution in its permutation group (i.e. a permutation of the form
(a1, a2) · · · (a2k−1, a2k) which leaves one column unchanged).

Then C ′ is permutation equivalent to a code C that has the reverse permutation R in its permutation group.

The lemma is proved simply by considering the permutation that sends column a2i−1 to column i and column a2i to column
n + 1 − i, for 1 ≤ i ≤ k (and a2k+1 to k + 1 if n is odd). The code C can be written as a disjoint union C = C0 ∪ C1 ∪ C2,
where C0 is the set of codewords fixed by R and C1, C2 are two sets that are interchanged by R. Either the set of codewords
C1 or the set C2 can be chosen as a code that satisfies the reverse constraint and the Hamming distance constraint for the
value of d prescribed for C ′. Gaborit and King also proved:

Lemma 2. Let n be even. For the codeC1 replace each of the first n/2 coordinates by itsWatson–Crick complement (A ↔ T , C ↔

G). The code C3 obtained satisfies the reverse-complement constraint and the Hamming distance constraint for the value of d
prescribed for C ′.

Note that the GC-content of codewords is unaffected by this operation on the code. For odd n the situation is slightly more
complicated, as the operation in Lemma 2 can reduce the Hamming distance between a codeword of C1 and the reverse-
complement of a codeword of C1 by 1.

Lemma 3. Let n = 2k + 1 be odd. For the code C1 replace each of the first ⌊n/2⌋ coordinates by its Watson–Crick complement
(A ↔ T , C ↔ G). The code obtained consists of four subcodes CA, CC , CG, CT in which the coordinate k + 1 is A,C,G and T
respectively. Then the two subcodes C3 = CA ∪ CC or C4 = CG ∪ CT both satisfy the reverse-complement constraint and the
Hamming distance constraint for the value of d prescribed for C ′.
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As |CA| + |CC | + |CG| + |CT | = |C1|, one of the two codes has at least half as many codewords as C1. If coordinate k + 1
takes a constant value then one of the codes C3 or C4 has the same number of codewords as C1.

The operations in the lemmas can be applied to any linear or additive codes. Given the code C3 (or C4) the GC-weight
enumerator can be calculated. The largest set of words of constant GC-weight then gives a code which is a candidate for
maxw(AGC,RC

4 (n, d, w)). Different involutions can give different sizes for this set of words, either because of different sizes
for |C0|, or from the nature of the construction when n is odd.

Note that there were no cases in [13] where a code gave a larger number of codeword using a linear code over the ring
Z4 than could be obtained from a linear code over GF(4) or an additive code. Thus linear codes over Z4 are not considered
further here. As in [13] all computations were carried out in Magma.1

3. Linear cyclic and extended cyclic codes over GF(4)

Ideally all generator polynomials (see [7]) should be examined (as in [13]), as well as all possible involutions (which are
easily generated by Magma). The methods of the previous section are then applied to give a cyclic (or extended cyclic) code
satisfying the Hamming distance constraint and the reverse-complement constraint. Then the largest set of codewords of
fixed GC-content is selected as a candidate for maxw(AGC,RC

4 (n, d, w)). This was done for n ≤ 18. For 19 ≤ n ≤ 30 this did
not prove feasible, and three restricted searches were used:

1. All polynomials were generated as in [13], but the involution search was truncated after a fixed period of time and the
best result obtained in this period was used.

2. The polynomial that gave the best result for maxw(AGC
4 (n, d, w)) in [13] was used, together with a search of all possible

involutions. This was possible when the permutation group of the code was small enough.
3. The polynomial that gave the best result for maxw(AGC

4 (n, d, w)) in [13] was also used when the permutation group was
too large for a complete search. The Magma command to generate representatives of conjugacy classes was used. Either
a suitable involution was found, or its nonexistence was shown (in which case no candidate code was generated).

4. Cosets of linear cyclic and extended cyclic codes over GF(4)

A coset of a cyclic or extended cyclic code satisfying the Hamming distance and reverse-complement constraints may
havemore codewords of fixed GC-content than the code itself. In order for the reverse-complement constraint to be satisfied
the coset leader selectedmust be reversible (fixed by R). The codeC1 is then replaced by the coset given by the selected coset
leader, before Lemma 2 or Lemma 3 is applied. The coset then satisfies the Hamming distance and reverse-complement
constraints and a GC-weight enumerator can be computed as before.

It only proved feasible to consider all generator polynomials and all involutions for n ≤ 18. In these cases between 30 and
40 random reversible coset leaders were selected (using the method in [5] to ensure the coset leaders are reversible). For
19 ≤ n ≤ 30 the polynomial that gave the best result for maxw(AGC

4 (n, d, w)) in [13] was used. For this single polynomial
there were two methods that could be applied:

1. For smaller permutation groups all involutionswere considered, togetherwith between 5 and 10 random reversible coset
leaders.

2. For larger permutation groups the Magma command to generate representatives of conjugacy classes was used. Either
a suitable single involution was found, or its nonexistence was shown. For this involution 10 random reversible cosets
were considered.

5. Additive cyclic and additive extended cyclic codes

Additive codes are additive subspaces of (GF(4))n. The following theorem describes all additive cyclic codes.

Theorem 4 ([3]). Let C be an (n, 2k) additive cyclic code of length n over GF(4) (with elements 0, 1, ω, ω2). Then C =

⟨ωp(x) + q(x), r(x)⟩ where p(x), r(x) are binary polynomials that divide (xn − 1)mod 2, r(x) divides q(x)(xn − 1)/p(x)mod 2,
and k = 2n − deg p − deg r.

Note that, if ⟨ωp(x) + q(x), r(x)⟩ and ⟨ωp′(x) + q′(x), r ′(x)⟩ are two representations of an additive cyclic code then
p′(x) = p(x), r ′(x) = r(x) and q′(x) ≡ q(x)mod r(x).

As described in [13] there are two distinct mappings from {0, 1, ω, ω2
} to {A, C, T ,G} that need to be considered for

additive codes, pairing 0 with 1 for G, C or pairing 0 with ω for G, C . The larger number of codewords taken over the two
cases is used.

Ideally all sets of three polynomials p(x), q(x), r(x) should be examined (as in [13]), as well as all possible involutions
(if any suitable involutions exist). The methods of the previous section can then be applied. This only proved feasible for

1 http://magma.maths.usyd.edu.au/magma/.

http://magma.maths.usyd.edu.au/magma/
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Table 3
New generator polynomials, coset leaders L and involutions for codes with at least 4 codewords, 27 < n ≤ 30.

n ≤ 10 and in some cases with 11 ≤ n ≤ 20, when the permutation group is small. For larger permutation groups just
a small number of involutions were selected. In other cases with 11 ≤ n ≤ 20 the set of polynomials {p(x), q(x), r(x)}
that gave the best result for maxw(AGC

4 (n, d, w)) in [13] was used. Then a search of all possible involutions was carried out
when the permutation group of the code was small enough; otherwise the Magma command to generate representatives of
conjugacy classes can be used, and either a suitable involution can be found, or its nonexistence shown.

6. Cosets of additive cyclic and additive extended cyclic codes

The method here follows that in Section 4, this time with 20 randomly selected reversible coset leaders. Otherwise the
searches are as in Section 5.

7. Shortening, puncturing and nonlinear shortening

Given an [n, k] linear code C and given i with 1 ≤ i ≤ n, the puncturing operation is to delete the i’th component from
each codeword of C. The shortening operation is to select all codewords with a 0 in the i’th component, and delete the i’th
component from all of these codewords. In each case a linear code of length n− 1 is obtained, a GC-weight enumerator can
be computed and a code of constant GC-weight can then be selected. However, this must be done in a way which ensures
that a reverse-complement constraint is satisfied. If any position is used for shortening or puncturing then there may be no
fixed point free involution (n even) or one-point fixed involution (n odd) in the permutation group of the code obtained. Long
chains of shortened or punctured codes are not obtained and the benefits of a particularly good code are not inherited by
shorter codes. A better approach is to proceed as follows. For a codeC3 of even length, shorten or puncture in positions i and
n− i+1 (i ∈ {1, 2, . . . , n/2}). The pair (i, n− i+1) is lost from the fixed point free involution of C3, but as the length of the
code reduces by two a fixed point free involution remains. For a code C3 of odd length there are two options. Either shorten
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Table 4
New generator polynomials, coset leaders L and involutions for codes with at least 4 codewords, 17 ≤ n ≤ 27.

or puncture once in position ⌊(n+1)/2⌋ or shorten or puncture twice in positions i and n−i+1 (i ∈ {1, 2, . . . , ⌊(n−1)/2⌋}).
In both cases a suitable involution remains.

As was noted in [13], a nonlinear shortening operation sometimes gives more codewords. Given a code C of constant
GC-content over {A, C,G, T}, compute the frequency of each letter A, C,G, T in each column i of the matrix of codewords.
Choose the letter and column of the most frequent occurrence and select all codewords with the chosen letter in the chosen
column. Delete this component from all selected codewords and a (normally nonlinear) code of constant GC-content is
obtained. As the operation in nonlinear, it is only feasible for smaller codes. Again, as for linear shortening, in order to
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Table 5
New generator polynomials, coset leaders L and involutions for codes with at least 4 codewords, 13 ≤ n ≤ 17.

preserve the reverse-complement constraint it is necessary to select position n/2 (n odd) or to apply the operation twice in
the positions i and n− i+1 (i ∈ {1, 2, . . . , ⌊n/2⌋}). If the operation is applied twice, the same lettermust be selected in both
positions.

Normally shortening gives an unchanged Hamming distance, and puncturing reduces the minimum distance by 1.
Sometimes, however, the minimum distance is greater than is anticipated. Thus it is necessary to assess shortenings and
puncturings of codes with two consecutive values of d (one position) or three consecutive values of d (two positions).
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Table 6
New generator polynomials, coset leaders L and involutions for codes with at least 4 codewords, 4 ≤ n ≤ 13.

8. Results

The results obtained by the methods described in Sections 2–7 are given in Tables 1 and 2. The labels in the tables have
the following meaning:
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Table 7
Involutions and shortening positions for codes obtained from best known linear codes.

Subscripts Superscripts
cf cyclic linear code over GF(4) co coset of code
ef extended cyclic linear code over GF(4)
ca cyclic additive code over GF(4) i position (or first
ea extended cyclic additive code over GF(4) position) for
sb linear shortening of the code below shortening or
st linear shortening twice of the code two positions below puncturing
pt linear puncturing twice of the code two positions below and two

positions to the right
Xi letter and position (or first position) for

nonlinear
pt1 linear puncturing twice of the code two positions below and one

position to the right
shortening

pr linear puncturing of the code below and one position to the right
nb nonlinear shortening of the code below
nt nonlinear shortening in two positions of the code two positions

below
st1 linear shortening twice of the code two positions below and one

position to the left

Entries that improve results in the online table of Gaborit and King2 for n ≤ 20 are marked in bold; entries that equal
these results aremarked in italic. For n ≥ 21 and d ≤ 12 the entries are all new bests and are notmarked. Files of codewords
for these codes (when the code is best known and the number of codewords does not exceed 50000) are maintained at two
web sites.3

The involutions used, the generator polynomials (where these differ from those used in the same case in [13]) and the
coset leaders for cosets of linear codes are given in Tables 3–6.

9. Codes with an all-ones codeword in the dual

Gaborit and King [5] recommend the use of linear codes with an all-ones vector in the dual. If this is the case the code has
only even GC-weights. This means that the set of all codewords is spread over a smaller number of possible weights. Thus,
a larger number of codewords for a give choice of GC-weight is likely.

Lemma 5 ([5]). Let C be a code over GF(4). If the all-ones vector belongs to C⊥, then the GC-weight enumerator of C is even (has
all even weights).

It is possible to apply this approach to all the codes constructed in the current paper by applying the following lemma to the
code C ′.

Lemma 6 ([5]). Let C be a linear code over GF(4) of length n. Suppose C⊥ has a vector c = (c1, . . . , cn) with no 0s. Then C is
equivalent to a code that has the all-ones vector in its dual.

The equivalent code is obtained as follows. First select the codewords in C ′⊥ that have no 0s. For every vector, each entry
that isω is replaced by 1 and the corresponding column of the generatormatrix of the codeC ′ is multiplied byω to leave the
inner product unchanged. Similarly, each entry that is ω2 is replaced by 1 and the corresponding column of the generator
matrix of the code C ′ is multiplied by ω2. Thus C ′ is replaced by an equivalent code that has the all-ones vector in its dual,
which therefore has an even GC-weight enumerator.

2 http://llama.med.harvard.edu/~king/dnacodes.html.
3 http://data.research.glam.ac.uk/projects/ ; http://www.idsia.ch/~roberto/DNA10.zip.

http://llama.med.harvard.edu/~king/dnacodes.html
http://data.research.glam.ac.uk/projects/
http://www.idsia.ch/~roberto/DNA10.zip
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The approach is capable of generating some improvements to the results in [13] when finding lower bounds for
maxw(AGC

4 (n, d, w)) [1]. However, when the reverse-complement constraint was added, as in the current paper, it was
found that eitherC ′⊥ had nowords with no 0s, or the permutation group of the equivalent form ofC ′ had no fixed point free
involution (n even) or no one-point fixed involution (n odd). Thus no improvements tomaxw(AGC,RC

4 (n, d, w))were obtained
beyond those available in Tables 1 and 2.

10. The Magma database of best linear codes

Magma contains a database of best linear codes, based on results in a web site previously maintained by Brouwer and
now superseded by aweb sitemaintained by Grassl [6]. Specifically, for a given length n andminimumHamming distance d,
Magma is able to return a linear code over GF(4)with the largest dimension known to be possible. Although not guaranteed
to give a good result, this is clearly a good candidate for the code C ′ provided a suitable involution exists. If an involution
does exist the techniques presented in this paper can be used directly.

10.1. Results

Six new best results for AGC,RC
4 (n, d, w) are given in Table 9 andmarked with a subscript L1. Two further new best results

(marked L2) are given by shortening the codes for n = 30, d = 14 and n = 30, d = 15 in positions 10 and 21. The involutions
used and shortening positions are given in Table 7.

11. The best known codes

The best known lower bounds formaxw(AGC,RC
4 (n, d, w)) are reported in Tables 8 and 9. Unmarked entries are those given

in Tables 1 and 2. In the case of entries in italics in Tables 1 and 2, the values have been published previously (often without
a specific construction) in [5] or elsewhere. Entries marked with a subscript gk are taken from [5] or the authors’ updated
online table4 where details of the individual constructions used can be found. Entries with subscript m1 are from [9] and
entries with subscriptm3 are from [11]. Entries with subscripts L1 and L2 are taken from Section 10. Files of codewords for
the codes markedm1 and m3 can be found at the authors’ web sites.5

Note that in some cases in Tables 1 and 2 a code of length n has more codewords than the code of length n + 1 with the
same d, or no code of length n + 1 exists for this d. In such cases a code of length n + 1 can be constructed by a process of
central extension. A new position with coordinate⌊(n + 3)/2⌋ is inserted, with the same value for every codeword. If n is
even then a code of length n+1with the same number of codewords as the code of length n is obtained, with the GC-content,
Hamming distance and reverse-complement constraints still satisfied. The same is true if n is odd and the original code of
length n was constructed using Lemmas 1 and 3. Entries in Tables 8 and 9 obtained from the entry above in this way are
shown with a subscript A.

12. Conclusion

Detailed attention to the options for constructing DNA codes from cyclic and extended cyclic codes, in combination
with the use of involutions pioneered by Gaborit and King, has produced many new best codes. These results complement
the results for maxw(AGC

4 (n, d, w)) (without a reverse-complement constraint) given in [13]. All of the codes in Tables 1
and 2 should be reproducible from the information given here. The entries marked L1 and L2 in Tables 8 and 9. should be
reproducible from the information given here unless the entry in the Magma database of best linear codes changes.

Note that entries in the tables are given for the actual values of n, d. Thus a better code can sometimes be obtained
corresponding to a value given in the table when d is increased.
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