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1. INTRODUCTION

The notions of F-regularity and F-purity for rings of characteristic p>0,
which are introduced by Hochster and Huneke [HH1] and Hochster and
Roberts [HR], respectively, are now studied not only ring-theoretically
but also via singularity theory. In [MS], Mehta and Srinivas studied two-
dimensional normal F-pure singularities and proved that such a singularity
is either (a) a simple elliptic singularity with an ordinary elliptic exceptional
curve, (b) a cusp singularity, or (c) a rational singularity. Moreover, they
showed that a singularity of type (a) or (b) is F-pure (see also [W1] for
the Gorenstein case). But being a rational singularity is not sufficient to be
F-pure.

The aim of this paper is to study two-dimensional F-regular and rational
F-pure singularities and to complete the classification of these singularities
in terms of the dual graph of the minimal resolution and characteristic p.
To do this we heavily use the result of Kei-ichi Watanabe [W3], which
tells us that F-regular (resp. F-pure) normal surface singularities are log
terminal (resp. log canonical). Then we can apply the classification of the
dual graphs of two-dimensional log terminal and log canonical singularities
[Wk], and a refinement of the method in [MS] enables us to reduce our
problem to the case of graded rings [W2].

Let (A, m) be a two-dimensional Noetherian normal local ring contain-
ing an algebraically closed field k of characteristic p>0 such that A�m=k.
Let ? : X � Y=Spec(A) be the minimal resolution of the singularity. (Note
that a surface singularity has a resolution even in positive characteristic
[Li2].) We call the dual graph of the exceptional divisor E=?&1(m)
simply the graph of the singularity of Y. If the graph is star-shaped with r
branches, then we can associate to a branch of length l a natural number
d such that (&1)l d is the determinant of the intersection matrix of the
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branch. The r-ple (d1 , d2 , ..., dr), d1�d2� } } } �dr , of these numbers is
called the type of the star-shaped graph.

Under this assumption and notation, our results are described as follows:

Theorem (1.1). A is F-regular if and only if Y=Spec(A) has only a
rational singularity and one of the following holds:

(1) The graph of the singularity is a chain.

(2) The graph is star-shaped and either
(i) of type (2, 2, d ), d�2 and p{2,

(ii) of type (2, 3, 3) or (2, 3, 4) and p>3, or
(iii) of type (2, 3, 5) and p>5.

Theorem (1.2). Assume that Y=Spec(A) has only a rational singularity.
If A is F-pure, then one of the following holds:

(1) A is F-regular.

(2) A is a rational double point, and either

(i$) the graph is Dn+2 , n�2, and p=2,

(ii$) the graph is E6 or E7 , and p=2 or 3, or
(iii$) the graph is E8 , and p=2, 3, or 5.

(3) The graph is star-shaped and either

(iv) of type (3, 3, 3) or (2, 3, 6), and p#1 (mod 3),

(v) of type (2, 4, 4), and p#1 (mod 4), or
(vi) of type (2, 2, 2, 2), p=2n+1 for some integer n, and if the

branches intersect the central curve E0 at points 0, �, &1, * (0, &1{* # k)
under some coordinate change of E0 $P1, then the coefficient of xn in the
expansion of (x+1)n (x&*)n is not zero.

(4) The graph is
*

D� n+3 , n�2 (see Fig. 1 in (4.6)), and p{2.

Conversely if (1), (3), or (4) holds, then A is F-pure.

Remark (1.3). (i) There are both of F-pure and non F-pure cases for
(i$), (ii$), and (iii$) of Theorem (1.2) (2). But Artin has completely classified
the defining equations of rational double points in characteristic p=2, 3, 5
[A3], and we can determine whether a rational double point with a given
defining equation is F-pure or not using Fedder's criterion for F-purity
[F1] (see also (2.2)). In this sense Theorem (1.2), together with the results
in [MS], gives a complete classification of F-pure normal surface singularities
in characteristic p>0.
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(ii) The graphs which appear in Theorem (1.1) (resp. Theorem (1.2))
exactly correspond to those of log terminal (resp. rational log canonical)
singularities. We list up these graphs in the Appendix following Kimio
Watanabe [Wk].

(iii) Srinivas gave a classification of normal surface singularities of
F-pure type in characteristic zero [Sr]. On the other hand, results in
characteristic p>0 are found in [MS, W1, W2].

(iv) There is another concept defined for rings of characteristic p>0,
namely, the notion of ``F-rational'' rings [FW]. F-rationality is the right
one which corresponds to rational singularity [F2, Sm, Ha2].

2. PRELIMINARIES

Let A be a Noetherian ring of characteristic p>0 and F : A � A be the
Frobenius map defined by F(a)=a p. We always use the letter q for a power
pe of p. The ring A viewed as an A-module via the map F e : A � A is
denoted by eA. For simplicity, we always assume that A is reduced and
F-finite, i.e., F : A � 1A is a finite ring extension. We can identify the map
F e : A � eA with the inclusion A/�A1�q.

Definition (2.1). (i) [HH2]. A is said to be strongly F-regular if for
any element c # A which is not contained in any minimal prime ideal of A,
there exists q= pe such that the A-linear map A � A1�q defined by a [ c1�qa
is a split injective map.

(ii) [HR]. A is said to be F-pure if for every A-module M, the map
1M �F : M=M�A A � M�A

1A is injective. In our assumption this is
equivalent to saying that F : A � 1A splits as an A-linear map.

The notion of strong F-regularity is easier to treat geometrically than
that of ``weak F-regularity,'' which is the original form defined by using the
notion of ``tight closure'' [HH1]. We know the implications ``regular O
strongly F-regular O weakly F-regular O F-pure'' and that strong and
weak F-regularities are exactly the same if the ring A is Gorenstein (we
hope that this is true in the absence of Gorensteinness). Recently Williams
[Wi] proved that strong F-regularity and weak F-regularity coincide for
two- and three-dimensional cases under some weak condition: The ring A
is an F-finite local domain which is a homomorphic image of a Gorenstein
ring. It turns out that for our Theorems (1.1) and (1.2) the two notions are
equivalent. In these cases we will say simply that the ring is F-regular if it
has the above equivalent properties.

For hypersurface singularities, the following criteria are known (cf.
[Ha1]).
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Proposition (2.2) [F1, G]. Let S be a regular local ring of charac-
teristic p>0 with maximal ideal m. We denote by m[q] the ideal of S
generated by the qth powers of the elements of m. Let f be a non-zero element
of S, and put A=S�( f ).

(i) The ring A is F-pure if and only if f p&1 � m[ p].

(ii) A is F-regular if and only if for every g # S"( f ), there exists q= pe

such that f q&1g � m[q].

(2.3) Next we will review the above notions from a geometrical
view point. Let X be a scheme over a perfect field k of characteristic p>0.
Again we will use the letter F to denote the absolute Frobenius morphism
X � X. F will also denote the associated map OX � F

*
OX etc., if there is no

fear of confusion. For an invertible sheaf L on X and for an integer n>0,
we denote by Ln (resp. L&n) the n-times tensor product (resp. the OX-dual
of the n-times tensor product) of L.

We say that X is Frobenius split, or F-split for short if the map F : OX �
F

*
OX is a split injective map of OX-modules (see [MR]). If X is a d-dimensional

Gorenstein variety with canonical sheaf |X , then we have an isomorphism
of OX -modules

HomOX
(F

*
OX , OX)$HomOX

(F
*

OX , |X)�|&1
X

$F
*

(|X) �|&1
X $F

*
(|1& p

X )X

by the adjunction formula. This isomorphism enables us to identify the
natural map HomOX (F

*
OX , OX) � OX with a map F

*
(|1& p

X ) � OX which
coincides with the one induced by the Cartier operator F

*
(|X) � |X on

the smooth locus of X [C, MR]. Thus X is F-split if and only if the map

H0(X, |1& p
X ) � H0(X, OX)

is surjective. By the duality it is equivalent to the injectivity of the
Frobenius map F : Hd (X, |X) � Hd (X, | p

X).
If Y/X is an effective Cartier divisor, then the maps considered above

and the adjunction map |X (Y ) � |Y give a commutative diagram

H 0(X, |X (Y)1& p)/�H 0(X, |1& p
X ) � H0(X, OX)

(2.3.1)

H0(Y, |1& p
Y ) H0(Y, OY).

Now let X be a d-dimensional normal projective variety over a field k of
characteristic p>0, and let KX be its canonical divisor (we use the words
``canonical divisor KX '' and ``canonical sheaf |X=OX (KX)'' interchangeably).
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In [W2], Watanabe gave interesting criteria for F-regularity and F-purity
for a normal graded ring R such that Proj(R)=X using its Demazure
representation. Taking it into account we define the following notions.

Definition (2.4). Let D be an effective Q-Weil divisor on X as above,
and let the coefficient of D in every irreducible component be less than 1.

(i) We say that the pair (X, D) is F-split if the Frobenius morphism,

F : Hd (X, OX (KX))=H d (X, OX (KX+D))

� Hd (X, OX ( p(KX+D))),

is injective. Even when X is not normal, we say that (X, D) satisfying this
condition is F-split if X is Gorenstein and each irreducible component of
D is a reduced Cartier divisor.

(ii) We say that (X, D) is strongly F-split if for every n>0 and for
every nonzero f # H0(X, OX (nH)), there exists e>0 such that the map

Hd (X, OX (KX)) w�F
e

Hd (X, OX (q(KX+D)))

w�f } Hd (X, OX (q(KX+D)+nH))

is injective, where H is an ample Cartier divisor on X. This definition
makes sense since the injectivity of the above map does not depend on the
choice of H (see [Ha1], Section 4).

Remark (2.5). (i) Definition (2.4) (i) is an extension of the notion of
F-splitting for X, i.e., X is F-split if and only if the pair (X, 0) is F-split.

(ii) Theorem 3.3 of [W2] asserts that if D is an ample Q-Cartier
divisor with the ``fractional part'' D$, then the normal graded ring R=
R(X, D) is F-pure (resp. strongly F-regular) if and only if (X, D$) is F-split
(resp. strongly F-split). In particular, F-purity (resp. strong F-regularity)
of R depends only on X and D$, and not on individual D.

Using these terminologies, we have the following restatement of the
classification of two-dimensional F-regular and F-pure normal graded rings
[W2], which is verified by computing C8 ech cohomology.

Proposition (2.6) [W2]. Let D$ be a Q-divisor on a nonsingular rational
curve P1 over an algebraically closed field k of characteristic p>0 of the
form

D$= :
r

i=1

di&1
di

Pi .
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We will denote D$ by (P1 , ..., Pr ; d1 , ..., dr) and if r�3, we will denote D$
simply by (d1 , ..., dr), since there is no need to distinguish the Pi 's except for
case (vi):

(1) (P1, D$) is strongly F-split if and only if r�2 or one of the following
holds:

(i) D$=(2, 2, d ), d�2, and p{2.

(ii) D$=(2, 3, 3) or (2, 3, 4) and p>3.

(iii) D$=(2, 3, 5) and p>5.

(2) (P1, D$) is F-split if and only if it is strongly F-split or one of the
following holds:

(iv) D$=(3, 3, 3) or (2,3,6) and p#1 (mod 3).

(v) D$=(2, 4, 4) and p#1 (mod 4).

(vi) D$=(�, 0, &1, * ; 2, 2, 2, 2) with * # k, *{0, &1, and
p=2n+1 such that the coefficient of xn in the expansion of (x+1)n (x&*)n

is not zero.

3. LEMMATA ON TWO-DIMENSIONAL SINGULARITIES

In this section we will review some elementary results on normal two-
dimensional singularities.

(3.1) Throughout this section we fix the notations as follows: Let
(A, m) be a two-dimensional Noetherian normal local ring containing an
algebraically closed field k of any characteristic such that A�m=k, and
(Y, y) be the associated singularity; i.e., y=m # Y=Spec(A). Let ? : X � Y
be the minimal resolution of the singularity in the sense that the excep-
tional set E=?&1( y) contains no exceptional curve of the first kind. Let
E=E1 _ } } } _ En be the decomposition into irreducible components. We
associate to the resolution ? a graph with vertices vi corresponding to
irreducible components Ei of E, and with edges joining vertices vi and vj

corresponding to intersection points of Ei and Ej . A vertex vi (resp. Ei) is
said to be a center (resp. a central curve) if either vi is joined with at least
three other vertices, or Ei is not a smooth rational curve. We say that the
graph is star-shaped if it has at most one center.

A Q-divisor on X is a linear combination D=� aiDi of prime divisors
with coefficients ai # Q. The integral part [D] and the roundup WDX of D
are defined by

[D]=: [ai] Di , WDX=: Wai X Di ,
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where [a] (resp. WaX) denotes the greatest integer smaller than or equal to
a (resp. the least integer greater than or equal to a).

We define a Q-divisor 2=&� aiEi by the equations

:
n

i=1

ai (Ei } Ej)=(KX } Ej) for j=1, ..., n. (3.1.1)

Then 2�0 since the resolution is minimal.

Definition (3.2) [Z]. A Zariski decomposition of a Q-divisor D on X
is a decomposition D=P+N satisfying the following properties:

(i) P is a Q-divisor such that P } Ei�0 for all i.
(ii) N is an effective Q-divisor supported in E.

(iii) If Ei is a component of N, then P } Ei=0.

An integral divisor on X has a unique Zariski decomposition [Fu, Sa].

Lemma (3.3) [Sa]. Let D be an integral divisor on X, and D=P+N be
a decomposition satisfying properties (i) and (ii) in (3.2). Then

R1?
*

OX (KX+D&[N])=0.

The proof of (3.3) can be found in [Sa, Theorem A.2], in which
D=P+N is assumed to be the Zariski decomposition, but condition (iii)
is unnecessary.

(3.4) Now for a divisor D on X we construct a ``computation
sequence'' of cycles 0=Y0<Y1< } } } <Y&< } } } as follows (cf. [La1]):

(a) Y0 :=0.

(b) If (D&Y& } Ei)<0 for some i, then set Y&+1=Y&+Ei .

(c) If (D&Y& } Ei)�0 for all i, then stop the process.

The choice of Ei in (b) may not be unique, but we can easily see that any
computation sequence terminates at the minimal integral effective cycle
Z=� ri Ei satisfying the property

(D&Z } Ei)�0 for all i.

We call Z the fundamental cycle for D and denote it by ZD .

Lemma (3.5). Let D be a divisor on X and ZD be the fundamental cycle
for D. If Z is an effective cycle such that Z�ZD , then

H0(X, OX (D&Z))$H 0(X, OX (D)).
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In particular, if D=P+N is the Zariski decomposition, then

H0(X, OX ([P]))$H0(X, OX (D)).

Proof. Let [Y&] be a computation sequence for D. If Y&<Z, then
degEi

OEi
(D&Y&)=(D&Y& } Ei)<0 and Y&+1=Y&+Ei for some i. Hence

by the exact sequence

0 � OX (D&Y&+1) � OX (D&Y&) � OEi
(D&Y&) � 0,

we have H0(X, OX (D&Y&+1))$H0(X, OX (D&Y&)). By induction on &, we
obtain H0(X, OX (D&ZD))$H 0(X, OX (D)). Now to prove H0(X, OX ([P]))
$H0(X, OX(D)), it is sufficient to show D&[P]�ZD . We write P&(D&ZD)
=ZD&N as 1+&1&, where both 1+ and 1& are effective Q-divisors
and have no common components. Then Supp(1&) � Supp(N ), and
(1+& 1& } Ei) =&(D & ZD } Ei) � 0 for any Ei � Supp(N ). Hence
(1+&1& } 1&)�0, so that 1 2

&=1+ } 1&&(1+&1& } 1&)�0. Since
the intersection matrix ((Ei } Ej)) is negative definite [M], we have 1&=0
and P�D&ZD . But D&ZD is an integral divisor, so that [P]�D&ZD

as required.

Corollary (3.6). Let 2 be the Q-divisor defined by (3.1.1). Then for
m�0, we have

H0(X, OX (&mKX))$H 0(X, OX (&mKX&Wm2X)).

Proof. Apply (3.5) to the Zariski decomposition &mKX=&m(KX+2)
+m2.

(3.7) Next we will recall some characterization of several classes of
singularities. Since our singularity (Y, y) is normal, we can consider its
canonical divisor KY .

We say that (Y, y) is rational if R1?
*

OX=0. If (Y, y) is rational,
then its graph is a tree, and each irreducible component Ei of E is a
smooth rational curve P1. Also, a rational (surface) singularity (Y, y) is
Q-Gorenstein; i.e., mKY is linearly equivalent to 0 for some nonzero
integer m. A rational double point (a rational singularity with multiplicity 2)
is characterized as follows [A2]:

(Y, y) is a rational double point

� (Y, y) is a Gorenstein rational singularity

� the Q-divisor 2 defined by (3.1.1) is 0

� Ei $P1 and E 2
i =&2 for all i.
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If (Y, y) is Q-Gorenstein, mKY t0 for a nonzero integer m, then

mKX=?*(mKY)&m2t&m2,

where t denotes the linear equivalence, and 2=&� aiEi is the Q-divisor
determined by (3.1.1). We usually write this equality as

KX=?*(KY)&2=?*(KY)+: aiEi . (3.7.1)

Now assume that ? is the minimal good resolution in the sense that
every Ei is smooth, E has only normal crossing. We say that (Y, y) is log
terminal (resp. log canonical ) if the following two conditions are satisfied
[KMM]:

(1) (Y, y) is Q-Gorenstein.

(2) In (3.7.1), ai>&1 (resp. ai�1) for all i.

A log terminal singularity is rational. In two-dimensional case, it is an
easy consequence of (3.3). Two-dimensional log terminal and log canonical
singularities are completely classified via graphs [Wk]. It is known that a
normal two-dimensional singularity is log terminal (resp. log canonical) if
and only if the graph associated to the minimal resolution is one of those
listed in Fig. (A.1) (resp. Fig. (A.1) and (A.2)) in Appendix. In particular,
every log terminal singularity has a star-shaped graph with at most three
branches, and the graph associated to a rational log canonical singularity
is star-shaped unless it is of type

*
D� n+3 (n�2) (Fig. 1).

(3.8) We briefly review the observation in [Wk], which will be
used in Section 4. Let ? : X � Y be the minimal resolution of a two-dimen-
sional rational singularity (Y, y), and assume that the graph associated to
? is star-shaped with irreducible components E0 and Eij as follows:

(3.8.1)

Note that E0 and Eij are smooth rational curves since the singularity is
rational.
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For the i th branch, we take a Q-divisor Di=�li
j=1

:ijEij on X deter-
mined by the equalities

&1&(K } Ei1)=(Di } Ei1),
(3.8.2)

&(K } Eij)=(Di } Eij) for j�2,

where K=KX is the canonical divisor of X. Then we set

D :=E0+:
i

Di .

Hereafter we employ the notation D in this sense. Note that this usage is
different from that in (3.1)�(3.5).

Lemma (3.9) [Wk]. In the above notation, let di be the natural number
such that (&1) li di is the determinant of the intersection matrix of the i th
branch. Then D is an effective Q-divisor of the form

D=E0+:
i

di&1
di

Ei1+(terms of Eij , j�2)

and

(K+D } E0)=:
i

di&1
di

&2,
(3.9.1)

(K+D } Eij)=0 for all i, j�1.

Moreover, if (Y, y) is log terminal (resp. log canonical), then (K+D } E0)<0
(resp. (K+D } E0)�0).

Proof. Set Di=�j :ijEij and &bij=E 2
ij . Applying the adjunction formula

to (3.8.2), we have

&bi1 1 :i1 1&bi1

1 &bi2 1 :i2 2&bi2\ 1 &bi3
. . . +\ :i3+=\ 2&bi3+ .

. . .
. . . 1 b b
1 &bi, li

:i, li
2&bi, li

Note that the determinant of the matrix on the right-hand side is (&1)li di .
Then by Cramer's formula, it follows that
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bi1 &1

&1 bi2 &1

:i1=
1
di

} } &1 bi3
. . . }=di&1

di
.

. . .
. . . &1

&1 &1 bi, li

To show D�0, we write Di =D+
i &D&

i , where D+
i and D&

i are effective
Q-divisors having no common components. As (K } Eij)=&2+bij�0, the
left-hand sides of equalities (3.8.2) are nonpositive, so that (Di } D&

i )�0.
Hence, (D&

i )2=(D+
i } D&

i )&(Di } D&
i )�0. Since the intersection matrix

((Eij } Eik))1� j, k�li
is negative definite [M], it follows that D&

i =0, and
D=E0+�i Di�0. Equalities (3.9.1) are easily checked by the adjunction
formula. Now let 2 be the Q-divisor defined by equalities (3.1.1) and sup-
pose (2&D } E0)=&(K+D } E0)�0 (resp. <0). Then 2&D is effective
since its intersection numbers with all irreducible components of E are non-
positive, and so the coefficient of E0 in 2 is not less than (resp. is greater
than) 1, which is the coefficient of E0 in D. This proves the last statement.

Remark (3.10). By (3.9), we can easily see that the graph of a log
terminal singularity is a chain, or star-shaped of type (2, 2, n) (n�0),
(2, 3, 3), (2, 3, 4), or (2, 3, 5). Also, if the graph of a rational log canonical
singularity is star-shaped, then it is one of those listed above, or of type
(3, 3, 3), (2, 4, 4), (2, 3, 6), or (2, 2, 2, 2). This recovers the classification of
graphs of those singularities (see the Appendix).

4. PROOF OF THEOREMS

To prove Theorems (1.1) and (1.2), we use the following results crucially:

(4.1) By [MS], a two-dimensional normal F-pure singularity is
rational or minimally elliptic, whence Q-Gorenstein [A2, Li1, La2]. But it
is shown by Watanabe [W3] that a strongly F-regular (resp. F-pure) normal
singularity is log terminal (resp. log canonical) provided it is Q-Gorenstein.
Thus, for two-dimensional normal singularities, we have the implications

F-regular O log terminal

and

F-pure O log canonical.

Here we used the word ``F-regular'' since strong and weak F-regularity
coincide in two-dimensional case [Wi].
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We divide the proofs of Theorems (1.1) and (1.2) into several steps.

Proof of Theorem (1.1). Since a log terminal singularity is rational with
a star-shaped graph, we will assume that the singularity (Y, y) associated
to A has the graph as (3.8.1). We use the notation in (3.8) and (3.9).

(4.2) We set D$=D&E0=�i Di and define a Q-divisor d$ on
E0 $P1 to be the restriction of the Q-divisor D$ on X to E0 . Then by (3.9),
d$ can be written as

d$=:
i

di&1
di

Pi ,

where Pi is the point of intersection of E0 and Ei1 . Our first assertion is the
following.

Proposition (4.3). If (E0 , d$) is strongly F-split, then A is F-regular.

Proof. Let c be any nonzero element of A. We will show that the
A-linear map A � A1�q defined by a [ c1�qa splits for some power q= pe

of p. Let a be an ample Cartier divisor on E0 with OE0
(a)=OX (&E0)�OE0

,
the conormal sheaf of E0 in X, and take n�0 such that c # H0(X, OX (&nE0))"
H0(X, OX (&(n+1)E0)) in A=H 0(X, OX). Then the image c� of c by the
restriction map H0(X, OX (&nE0)) � H0(E0 , OE0

(na)) is not zero, and we
have the following commutative diagram for each q= pe (cf. (2.3.1)),

H0(X, |X (E0)1&q (&[qD$]+nE0)) ww� H0(E0 , |1&q
E0

(&[qd$]&na))

H0(X, |1&q
X (nE0)) H 0(E0 , |1&q

E0
(&na))

c } c� }

H0(X, |1&q
X ) H0(E0 , |1&q

E0
)

A$H0(X, OX) A�m$H0(E0 , OE0
),

where the upper horizontal arrow is the adjunction map, and the
maps H 0(X, |1&q

X ) � H0(X, OX) and H 0(E0 , |1&q
E0

) � H 0(E0 , OE0
) are

naturally induced by H0(X, |1&q
X )$HomOX

(Fe

*
OX , OX) and H 0(E0 , |1&q

E0
)

$HomOE0
(Fe

*
OE0

, OE0
), respectively. Then it is sufficient to show that the

maps H 0(X, |X (E0)1&q (&[qD$]+nE0)) � H0(E0 , |1&q
E0

(&[qd$]&na))
and H0(E0 , |1&q

E0
(&[qd$]&na)) � H 0(E0 , OE0

) in the above diagram are
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surjective for some q= pe. Indeed, if so they are, then the composition map
H0(X, |1&q

X (nE0)) w�c } H0(X, |1&q
X ) � H0(X, OX) is also surjective, and

since this surjective map can be identified with the map

HomOX
(Fe

*
OX (&nE0), OX) w�c } HomOX

(Fe

*
OX , OX) � H 0(X, OX),

the OX-homomorphism

OX w�F
e

F e

*
OX w�c } F e

*
(OX (&nE0))

splits. Hence, by taking the sections H0(X&E, ), we obtain a desired splitting
of the map A w�c } A1�q.

Concerning the surjectivity of the first map, in view of the exact sequence

0 � |1&q
X (&[qD]+nE0) � |X (E0)1&q (&[qD$]+nE0)

� |1&q
E0

(&[qd$]&na) � 0,

it suffices to show H1(X, |1&q
X (&[qD]+nE0))=0. But by (3.9), inequalities

(q(K+D)&nE0 } E0)<0 and (q(K+D)&nE0 } Eij)�0 for all i, j hold if
q= pe is sufficiently large, so that by applying (3.3) to the decomposition

&qK=(&q(K+D)+nE0)+(qD&nE0),

we get R1?
*

OX ((1&q) K&[qD]+nE0)=H1(X, |1&q
X (&[qD]+nE0))=0.

To show the second surjectivity, we use the assumption that (E0 , d$) is
strongly F-split: There exists q= pe such that the map

H1(E0 , |E0
) w�F

e

H 1(E0 , |q
E0

(qd$)) w�c� } H1(E0 , |q
E0

(qd$+na))

is injective. Hence, the dual map

H0(E0 , |1&q
E0

(&[qd$]&na)) w�c� } H 0(E0 , |1&q
E0

(&[qd$])) � H 0(E0 , OE0
)

is surjective, proving the proposition.

(4.4) By (2.6), (E0 , d$) is strongly F-split if and only if one of
conditions (1) and (i), (ii), (iii) of (2) in (1.1) holds. Considering (4.1) and
Remark (3.10), it remains to show that A is not F-regular if the graph is
star-shaped with three branches and one of the following conditions holds:

(i$) (d1 , d2 , d3)=(2, 2, n), n�2, and p=2,

(ii$) (d1 , d2 , d3)=(2, 3, 3) or (2, 3, 4) and p=2 or 3, or

(iii$) (d1 , d2 , d3)=(2, 3, 5) and p=2, 3, or 5.
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Note that in the above cases, (E0 , d$) is not even F-split (2.6).
If (Y, y) is a rational double point, then it is a hypersurface singularity,

and its defining equation is completely classified in [A3]. By applying (2.2)
to each one of these defining equations, we see that all rational double
points satisfying (i$), (ii$), or (iii$) are not F-regular (but they may be
possibly F-pure and are listed in (1.2)).

Now suppose (Y, y) is not a rational double point and satisfies one of
(i$), (ii$), and (iii$). In this case we can show that A is not even F-pure. To
see this, we consider a commutative diagram,

H0(X, |X (E0)1& p (&[ pD$])) ww� H0(E0 , |1& p
E0

(&[ pd$]))

@

H0(X, |1& p
X ) H0(E0 , |1& p

E0
)

A$H0(X, OX) A�m$H 0(E0 , OE0
),

which is obtained by setting n=0 and q= p in the diagram used in the
proof (4.3). Then we have the following.

Claim (4.4.1). The inclusion map @ : H 0(X, |X (E0)1& p (&[ pD$])) �
H0(X, |1& p

X ) in the above diagram is an isomorphism.

Proof of Claim. Let Z be the fundamental cycle for (1& p) KX defined
in (3.4). Then by (3.5), it suffices to show the inequality ( p&1) E0+[ pD$]
�Z, the both sides of which are determined by the weighted dual graph
of the singularity (Y, y) and the characteristic p (cf. (3.4), (3.8.2)).

First we consider case (i$). Since we are assuming that (Y, y) is not a
rational double point, there is an irreducible component of E=?&1( y), say
Ei , such that E 2

i <&2. Then (3.4) tells us that the coefficient of Z in Ei is
at least 1. This implies that so are the coefficients of Z in the neighboring
components of Ei , and finally, it follows that all the coefficients of Z are
at least 1. On the other hand, as one can check easily, every coefficient of
D$ is strictly between 0 and 1. Therefore, all the coefficients of ( p&1) E0+
[ pD$]=E0+[2D$] is at most 1, whence the result.

For our remaining cases (ii$) and (iii$), we only need to consider finitely
many combinations of dual graphs (see Fig. (A.1) in Appendix) and
characteristics p=2, 3, 5. By Computing D$ and Z one by one for each of
these combinations, we can verify ( p&1) E0+[ pD$]�Z.

Note that if (Y, y) is a rational double point, then Z=0, and
Claim (4.4.1) does not hold.
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Now suppose A is F-pure. Then the open set U=X"E$Y"[ y] of X is
F-split, so that the map H0(U, |1& p

U )$HomOU
(F

*
OU , OU) � H 0(U, OU) is

surjective. On the other hand, we have H0(X, |1& p
X )$H0(U, |1& p

U ), since
the resolution ? is minimal [Sa, Lemma 1.6, MS]. Hence the composition
map H0(X, |1& p

X ) � H0(X, OX)/�H 0(U, OU) is surjective, and so is the
map H0(X, |1& p

X ) � H0(X, OX), too. This surjectivity, together with (4.4.1),
implies the surjectivity of the composition map H0(E0 , |1& p

E0
(&[ pd$])) �

H0(E0 , |1& p
E0

) � H0(E0 , OE0
) in the above diagram, which contradicts the

fact that (E0 , d$) is not F-split. Hence A is not F-pure.
Thus we have shown that A is not F-regular in cases (i$), (ii$), and (iii$),

which completes the proof of Theorem (1.1). Q.E.D

Remark (4.5). The proof of Theorem (1.1) implies that if (Y, y) is a log
terminal singularity which is not a rational double point, then A=OY, y is
F-regular if and only if it is F-pure. But this is not true for rational double
points. For example, if (Y, y) is a rational double point with dual graph E8

(this means that the graph is star-shaped of type (2, 3, 5)), and if p=5,
then by [A3], (Y, y) is isomorphic to a hypersurface singularity whose
defining equation is one of the following.

E 0
8: z2+x3+ y5,

E 1
8: z2+x3+ y5+xy4.

Both of the above singularities are not F-regular. But E 1
8 is F-pure while

E 0
8 is not F-pure. Similarly, by using Fedder's criteria (2.2), we can determine

whether each one of the rational double points in characteristic p=2, 3, 5
listed in [A3, Section 3] is F-pure (resp. F-regular) or not.

Proof of Theorem (1.2). By Remark (4.5), we only need to consider the
case that (Y, y) is log canonical, but is not log terminal. We keep this
condition throughout the proof.

(4.6) We define divisors 2, 20 , 2$, d$ as follows: 2 is the Q-divisor
on X defined by the equalities (3.1.1), so that it is effective, and satisfies the
equality

KX=?*(KY)&2.

We define 20=[2], 2$=2&20 . By the assumption, 20 is a nonzero
reduced integral divisor on X. We also define d$ to be the restriction 2$|20

of the Q-divisor 2$ to 20 .
Note that if the graph of the singularity (Y, y) is star-shaped, then 2, 20 ,

2$, d$ coincide with the divisors D, E0 , D$, d$ considered in the proof of
Theorem (1.1), respectively. If the graph is not star-shaped, then it is of
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Fig. 1. The graph
*

D� n+3.

type
*

D� n+3 , n�2, and the coefficients of the irreducible components in 2
(the numbers outside the circles) are given as Fig. 1.

We will prove the following.

Proposition (4.7). In our assumption, A is F-pure if and only if (20 , d$)
is F-split.

Proof. Recall the diagram in the proof of Theorem (1.1), and replace D,
E0 , D$, d$ by 2, 20 , 2$, d$:

H0(X, |X (20)1& p (&[ p2$])) ww�. H 0(20 , |1& p
20

(&[ pd$]))

@

H0(X, |1& p
X ) H 0(20 , |1& p

20
)

A$H0(X, OX) A�m$H 0(20 , O20
).

In this diagram, A is F-pure if and only if the map H0(X, |1& p
X ) �

H0(X, OX) is surjective, as we have seen in the proof of Theorem (1.1), and
(20 , d$) is F-split if and only if the composition map H0(20 , |1& p

20
(&[ pd$]))

/�H0(20 , |1& p
20

) � H0(20 , O20
) is surjective. For these two conditions to

coincide, it is sufficient to show that the map . : H0(X, |X (20)1& p (&[ p2$]))
� H0(20 , |1& p

20
(&[ pd$])) is surjective and that the inclusion map

@ : H0(X, |X (20)1& p (&[ p2$]))/�H 0(X, |1& p
X ) is an isomorphism.

Concerning the surjectivity of ., by the exact sequence

0 � |1& p
X (&[ p2]) � |X (20)1& p (&[ p2$]) � |1& p

20
(&[ pd$]) � 0,

it suffices to show H 1(X, |1& p
X (&[ p2]))=0. But by the definition of 2,

(K+2 } Ei)=0 for any irreducible component Ei of E, so that the desired
vanishing follows by applying (3.3) to the Zariski decomposition
&pK=&p(K+2)+ p2.

Concerning the surjectivity of @, we have H0(X, OX ((1& p)K))$H0(X,
OX ((1& p) K&W( p&1)2X)) by (3.6). Hence, it suffices to show the
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inequality ( p&1) 20+[ p2$]�W( p&1)2X. By taking the integral parts
of the both sides of [ p2$]&( p&1) 2$�p2$&( p&1) 2$=2$, we have
[ p2$]&W( p&1) 2$X�[2$]=0, which shows ( p&1) 20+[p2$]�( p&1) 20

+W( p&1) 2$X=W( p&1) 2X as required.

(4.8) Thus the F-purity of A is reduced to the F-splitting of (20 , d$).
If the graph is star-shaped, then 20 $P1 is the central curve, and d$ is a
Q-divisor on P1 of the form �i ((di&1)�di) Pi (3.9). In this case, the
statements in Theorem (1.2) immediately follow from (2.6).

To complete the proof, it remains to show the following.

Claim (4.8.1). If the graph is
*

D� n+3 and n�2, then (20 , d$) is F-split
if and only if p{2.

Proof. First note that the degree map Pic(20) � Zn is isomorphic (n
is the number of irreducible components of 20), since our singularity is
rational [A1].

If p=2, then the total degree of the invertible sheaf |1& p
20

(&[ pd$])=
|&1

20
(&[2d$]) is &2, whence H0(20 , |1& p

20
(&[ pd$]))=0, and (20 , d$)

cannot be F-split.
Now suppose p>2, and let E0 $P1 be one of the two central curves of

2. Then we have |1& p
20

(&[ pd$])$O20
, since the degree of the right-hand

side is (0, ..., 0) # Zn, so that the restriction map H 0(20 , |1& p
20

(&[ pd$])) �
H0(E0 , |1& p

20
(&[ pd$])�OE0

) is an isomorphism as well as H0(20 , O20
) �

H0(E0 , OE0
)=k. Hence the map H 0(20 , |1& p

20
(&[ pd$])) � H0(20 , O20

)
can be identified with

H0 \P1, |1& p
P \&_p \p&1

p
(�)+

1
2

(0)+
1
2

(&1)+&++� H 0(P1, OP ).

This map is surjective since (P1, (( p&1)�p)(�)+ 1
2 (0)+ 1

2 (&1)) is F-split
by (2.6).

Thus (20 , d$) is F-split if and only if p{2, and the proof of Theorem (1.2)
is complete. Q.E.D

As corollaries of Theorems (1.1) and (1.2), we have the following.

Corollary (4.9). Let A=OY, y be the local ring of a normal surface
singularity (Y, y) of characteristic p>5. Then A is F-regular if and only if
(Y, y) is log terminal.

Corollary (4.10). Let A=OY, y be the local ring of a normal surface
singularity (Y, y) of characteristic p>0 with a star-shaped graph, and let R
be a two-dimensional normal graded ring over a field of the same characteristic
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p such that the dual graph of the minimal resolution of Spec(R) is the same
as that of (Y, y). Then:

(1) A is F-regular if and only if so is R.

(2) If R is F-pure, then so is A. If A is not a rational double point, the
converse is also true.

APPENDIX: DUAL GRAPHS OF LOG TERMINAL
AND LOG CANONICAL SINGULARITIES

We will list up those which appear as the weighted dual graph of the
exceptional divisor E of the minimal resolution of a log terminal (resp.
log canonical) singularity (Fig. A.1) following [Wk]. In the figures below,

Fig. A.1. Log terminal singularities.
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a circle will mean a vertex of a dual graph which corresponds to an irreducible
component Ei $P1 of E, and a line joining vertices will mean normal crossing
intersection at one point. The number in the circle is the self-intersection
number E 2

i of Ei . A (&2)-curve is denoted by a blank circle. Also the
symbol * in a circle will mean any self-intersection number �&2 which
makes the intersection matrix ((Ei } Ej)) of E negative definite.

A surface singularity is log canonical (Fig. A.2) if and only if it is a
simple elliptic singularity, a cusp singularity, or a rational singularity and
its graph is one of the following.

Fig. A.2. Rational log canonical singularities.
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