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The third order nonlinear differential equation

xZ q a t xX q b t f x s 0 )Ž . Ž . Ž . Ž .

is considered. We present oscillation and nonoscillation criteria which extend and
improve previous results existing in the literature, in particular some results

Žrecently stated by M. Gregus and M. Gregus, Jr., J. Math. Anal. Appl. 181, 1994,ˇ ˇ
.575]585 . In addition, contributions to the classification of solutions are given. The

Ž .techniques used are based on a transformation which reduces ) to a suitable
disconjugate form. To this aim auxiliary results on the asymptotic behavior of

Ž .solutions of a second order linear differential equation associated to ) are stated.
They are presented in an independent form because they may be applied also to
simplify and improve other qualitative problems concerning differential equations
with quasiderivatives. Q 1997 Academic Press

INTRODUCTION

The aim of this paper is to study the oscillatory and nonoscillatory
behavior of the nonlinear differential equation

xZ q a t xX q b t f x s 0, 1Ž . Ž . Ž . Ž .

where

a, b g C J , J s 0, ` , b t ) 0 except at isolated points,Ž . . Ž .
f g C R , u ? f u ) 0 for u / 0.Ž . Ž .
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In some cases, concerning the nonlinearity, the following hypotheses will
Ž .be also assumed not necessarily all together :

< <f nondecreasing for u large enough; HŽ .1

f uŽ .
lim s u , 0 F u - `. HŽ .2uuª0

Ž .We recall that a nontrivial continuable solution of Eq. 1 is said to be
oscillatory if it has infinitely large zeros, nonoscillatory otherwise. Equation
Ž .1 is said to be nonoscillatory if all its solutions are nonoscillatory,

Ž .oscillatory otherwise. A prototype of Eq. 1 is the Emden]Fowler equation

Z X < < ax q a t x q b t x sgn x s 0 a ) 0 . 2Ž . Ž . Ž . Ž .

Ž . Ž .Oscillation and nonoscillation of Eq. 1 or 2 has been considered by
wmany authors with some additional assumptions on the function f 2]4,

x10, 11, 14]17, 21, 23]25 . By a suitable transformation preserving zeros of
Ž w x.solutions see, e.g., 27 , the complete equation

zZ q a t zY q a t zX q a t f z s 0 3Ž . Ž . Ž . Ž . Ž .1 2 3

Ž . Ž .may be written in the form of Eq. 1 . Hence Eq. 1 is not much less
Ž .general than Eq. 3 as regards the oscillation and nonoscillation.

A classical approach in the study of the qualitative behavior of solutions
Ž .of 1 is based on a suitable transformation, associated to a disconjugate

Ž .differential operator, which reduces 1 to an equation of the type

XX1 1
Xx q b t f x s 0, 4Ž . Ž . Ž .ž /ž /p t r tŽ . Ž .

1Ž . 2Ž . Ž . Ž .where p g C J , r g C J , p t ) 0, r t ) 0. If

` `

p t dt s r t dt s `, 5Ž . Ž . Ž .H H
t t0 0

Ž . w xthen 4 is said to be in the canonical form 28 . The divergence of the
integrals of the functions p and r plays an important role in the study of

Ž . Ž . Ž .nonoscillation of Eq. 4 . Indeed if 5 is satisfied, then Eq. 4 has very
interesting properties. For example it is possible to classify the nonoscilla-

Ž .tory solutions of 1 in a very simple way. In the linear case we can also
give necessary and sufficient criteria for the nonoscillation which are
useful in the study of the nonlinear oscillation via a linearization device. A
discussion on these topics is given at the beginning of Section 3.
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Ž . Ž .Equation 1 may be written in the disconjugate form 4 if the second
order comparison equation

yY q a t y s 0 6Ž . Ž .
Ž .is nonoscillatory. Nevertheless, the question whether 1 may be written in

w xthe canonical form is still open. A partial answer is given in 3 by
Ž .assuming, in addition to other assumptions, that lim a t s c - 0. Int ª`

Ž .this paper we give other sufficient conditions in order for 1 to be written
w xin the canonical form, which extend those quoted in 3 . Such a result is

employed to improve and generalize some recent oscillatory and nonoscil-
w x w xlatory results in 17 . Indeed in 17 Gregus and Gregus, using a techniqueˇ ˇ

w xalready employed in 4 , have given some oscillation and nonoscillation
Ž . Ž .results for Eqs. 1 and 2 . For example, the following results are proved:

w x Ž .THEOREM A 17, THEOREM 5 . Assume H and2

Ž . 1ŽŽ .. Ž . XŽ . ŽŽ .. Ž .i a g C 0, ` , a t G 0, a t F 0; b g C 0, ` , b t ) 0,
` Ž .H tb t dt s `;

Ž . Ž . Ž .ii the linear differential Eq. 6 is disconjugate on 0, ` , that is, e¨ery
Ž . Ž .nontrï ial solution of Eq. 6 has at most one zero on 0, ` .

Ž .Then e¨ery bounded continuable solution of Eq. 1 with a zero at some point
t ) 0 is oscillatory.1

w xTHEOREM B 17, THEOREM 3 . Assume

Ž . 1ŽŽ .. Ž . XŽ . ŽŽ .. Ž .i a g C 0, ` , a t G 0, a t F 0; b g C 0, ` , b t ) 0,
` 2w Ž . XŽ .xH t b t y a t dt - `;

Ž . Ž . Ž .ii the linear differential Eq. 6 is disconjugate on 0, ` .

Ž .Then each bounded continuable solution of Eq. 2 with a ) 1 is nonoscilla-
tory.

Ž . Ž .In this paper we consider Eqs. 1 and 2 without sign or monotonicity
w xor regularity conditions on the function a as assumed in 17 . We obtain

oscillatory and nonoscillatory criteria that extend and improve previous
w xones stated in 17 , in particular Theorems A and B quoted above. In

addition, contributions to the classification of solutions are given, which
w xare related with some results contained in the book 20 , as well as in the

w xpapers 2, 24, 26 . For a wide bibliography on this last argument we refer
w xthe reader in particular to the quoted paper 2 . Finally the obtained

Ž .results are extended to the nonlinear general equation 4 . We also note
that our results do not require that the perturbation f satisfies hypotheses
on superlinearity andror sublinearity in the whole domain R. Relation-

Ž w x.ships and comparisons with other known results in particular 2]4, 23
will be pointed out throughout the paper.
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The approach used is based on a suitable transformation and a lin-
Ž .earization device. In particular Eq. 1 is transformed into the equation

XX1
X X2h t x q h t b t f x s 0, 1Ž . Ž . Ž . Ž . Ž .ž /ž /h tŽ .

Ž .where h is a positive nonoscillatory solution of Eq. 6 satisfying

` `1
dt s `, h t dt s `, lim h t ) 0. 7Ž . Ž . Ž .H H t ª`2h tŽ .0 0

Ž .To prove the existence of such a solution of 6 , we need to state some
Ž .auxiliary results on the asymptotic behavior of solutions of Eq. 6 when

the function a does not exhibit fixed sign. Such results are given in Section
1. They are related to certain asymptotic properties of the principal

Ž .solutions of Eq. 6 , and are presented as independent results because, in
our opinion, they may be applied also to problems different from those
considered in this paper, in particular to ones concerning differential
equations with quasiderivatives.

1. NOTATION AND AUXILIARY RESULTS

In this section we present some preliminary results on second order
linear differential equations that we will use in the proof of the main
results. Consider the equation

X1
Xy q q t y s 0, 8Ž . Ž .ž /r tŽ .

1Ž . Ž . Ž .where r g C J , q g C J , r t ) 0. In the study of the nonoscillation of
Ž . Ž w x.Eq. 8 , an important role see, e.g., 18, 27 is played by principal

Ž . Ž .solutions at infinity , that is, by solutions y of Eq. 8 such that0

` r tŽ .
dt s `. 9Ž .H 2y tŽ .0

Ž . Ž . Ž .If Eq. 8 is nonoscillatory, then Eq. 8 has a solution y satisfying 90
Ž w x.which is uniquely determined up to a constant factor see, e.g., 18 . In

Ž .addition an arbitrary solution y of Eq. 8 , linearly independent of y ,1 0
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satisfies

` r tŽ .
dt - `,H 2y tŽ .1

Ž .and it is called nonprincipal at infinity . Henceforward, for sake of
w xsimplicity, we will denote by a principal nonprincipal solution a principal

w xnonprincipal solution at infinity.
Ž . Ž .We recall also that if Eq. 8 is nonoscillatory, then Eq. 8 is said to be

Ž .disconjugate on J if each nontrivial solution of Eq. 8 has at most one zero
Ž . Ž .on J. Moreover Eq. 8 is disconjugate on J if and only if Eq. 8 has a
Ž . Ž w x.positive solution on 0, ` see, e.g., again 18 .

Ž .Consider now the linear binomial differential equation 6 where a g
Ž . qŽ . � Ž . 4 yŽ . � Ž . 4C J , and let a t s max a t , 0 , a t s min a t , 0 . Clearlyt g J t g J
Ž . qŽ . yŽ .a t s a t q a t . The following holds:

PROPOSITION 1. Assume the following conditions

Ž . ` yŽ .i H ta t dt s yK ) y`;0

Ž .ii the equation

yY q ey2 Kaq t y s 0 10Ž . Ž .

is disconjugate on J.

Ž . Ž .Then Eq. 6 is disconjugate on J and there exists a principal solution h of
Ž . Ž . Ž .Eq. 6 , h t ) 0 on 0, ` , such that

` `1
dt s `, h t dt s `, lim h t ) 0. 7Ž . Ž . Ž .H H t ª`2h tŽ .0 0

If , in addition, the following

Ž . ` qŽ .iii H ta t dt - `,0

Ž .holds, then the principal solution h satisfying 7 is bounded on J.

Roughly speaking Proposition 1 guarantees the nonoscillatoriness of Eq.
Ž .6 when the negative part of a is small in some sense and the correspond-
ing equation associated to the positive part of a is nonoscillatory. The

Ž .crucial point of this proposition is the fact that Eq. 6 has principal
Ž . Ž .solutions which verify conditions 7 , and are bounded if iii is verified.

It is easy to give an example which illustrates the necessity of assump-
Ž . Ytion i . To this aim it is sufficient to consider the equation y y y s 0.

Ž . Ž .Clearly i is not satisfied, and there is no solution satisfying 7 since
Ž . yth t s e .
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Ž . Ž .Remark 1. Assumption iii of Proposition 1 implies that Eq. 10 is
w x Ž .eventually disconjugate. Indeed, from Theorem 1 in 5 , Eq. 10 is

w x Ž .nonoscillatory. Then, from a result in 8 , Eq. 10 is eventually disconju-
Ž . Ž .gate. We remark that assumption ii requires, in addition, that Eq. 10 be

disconjugate on the whole half real line.

The proof of Proposition 1 depends on the following lemmas concerning
Ž . Ž . Ž .Eq. 8 with ‘‘q t F 0 on J ’’ and ‘‘q t G 0 on J,’’ respectively. As it is well

Ž . Ž .known, ‘‘q t F 0 on J ’’ is sufficient for Eq. 8 to be disconjugate on J.
The following hold:

Ž . Ž .LEMMA 1. Consider Eq. 8 with q t F 0. If the following conditions

Ž . ` Ž .i H r t dt s `,0

Ž . ` < Ž . < t Ž .ii H q t H r s ds dt - `,0 0

Ž .are satisfied, then any positï e principal solution u of Eq. 8 is nonincreasing0
and such that

u ` s lim u t ) 0 11Ž . Ž . Ž .0 t ª` 0 1

`u 0Ž . t
< <F exp q t r s ds dt . 11Ž . Ž . Ž .H H 2ž /u `Ž . 0 00

w xProof. A classical result of Kneser 18, Exercise 6.7, p. 352 states the
Ž .existence of positive nonincreasing principal solutions u of Eq. 8 ap-0

proaching a nonzero limit as t ª `.
Ž Ž .. X Ž . ŽFor these solutions, it is easy to prove that lim 1rr t u t s 0 see,t ª` 0

w x. Ž . Ž .e.g., 22 . Hence integrating Eq. 8 in t, ` we obtain

`1
Xu t s q s u s ds;Ž . Ž . Ž .H0 0r tŽ . t

because u is a positive nonincreasing function, we get0

`
Xu t G r t u t q s ds.Ž . Ž . Ž . Ž .H0 0

t

Dividing by u and integrating again in J we obtain0

` ` `u `Ž . t0
log G r t q s ds dt s q t r s ds dt ) y`Ž . Ž . Ž . Ž .H H H Hu 0Ž . 0 t 0 00

Ž .which implies 11 .2



CECCHI AND MARINI412

Ž . Ž .LEMMA 2. Consider Eq. 8 with q t G 0. If the following conditions

Ž . ` Ž .i H r t dt s `,0

Ž . Ž .ii lim sup r t - `,t ª`

Ž . Ž .iii Eq. 8 is disconjugate on J,

Ž .are satisfied, then Eq. 8 has principal solutions ¨ satisfying0

¨ t ) 0, ¨ X t G 0 on 0, ` , 12Ž . Ž . Ž . Ž .0 0 1

` 1
dt s `. 12Ž .H 22¨ tŽ .0 0

If , in addition, the following

Ž . ` Ž . t Ž .iv H q t H r s ds dt - `,0 0

holds, then ¨ is bounded on J.0

Ž . Ž .Proof. With Eq. 8 being disconjugate on J, Eq. 8 has positive
Ž .solutions on 0, ` . Then the existence of a principal solution ¨ satisfying0

Ž . Ž w12 follows from two results of Hartman and Potter see, e.g., 18, Chap.1
x.XI, Corollary 6.3; 27, Theorem 2.39 . Hence

` r tŽ .
dt s `,H 2¨ tŽ .0 0

Ž . Ž .and, taking into account ii , also 12 is satisfied.2
Ž . Ž .In order to complete the proof it remains to show that if i ] iv holds,

Ž .then ¨ is bounded on J. Two cases are possible: a q is eventually0
Ž . � 4 Ž .positive; b there exists a sequence t , t ª `, such that q t s 0.k k k

Ž . w xCase a . The assertion follows from Proposition 2 in 5 .

Ž .Case b . In this case the assertion follows by using the Sturm Compar-
ison Theorem. Consider the linear perturbed equation

X1
Xy q q t q q t y s 0, 13Ž . Ž . Ž .Ž .1ž /r tŽ .

Ž . Ž . ` Ž . t Ž .where q g C J , q t ) 0 for t g J and H q t H r s ds dt - `. Thus Eq.1 1 0 1 0
Ž . Ž w13 is nonoscillatory and has bounded solutions ¨ see, e.g., again 5,b

x. w x Ž .Proposition 2 . In addition from the quoted result in 8 , Eq. 13 is also
Ž . Ž .eventually disconjugate. With Eq. 13 being a Sturm majorant of Eq. 8 ,

Ž wfrom a result of Hartman and Wintner see, e.g., 18, Chap. XI, Corollary
x.6.5 we have for t large enough

1 ¨ X t 1 ¨ X tŽ . Ž .0 bF
r t ¨ t r t ¨ tŽ . Ž . Ž . Ž .0 b
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or

¨ tŽ .0 0¨ t F ¨ t .Ž . Ž .0 b¨ tŽ .b 0

This implies that ¨ is bounded. The proof is now complete.0

Ž .We remark that as already noted in Remark 1, assumption iv of
Ž .Lemma 2 implies that Eq. 8 is eventually disconjugate.

Proof of Proposition 1. Consider the differential equation

yY q ay t y s 0. 14Ž . Ž .

Ž .From Lemma 1, Eq. 14 has a positive principal nonincreasing solution ũ0
satisfying

` 1 u 0Ž .˜0 yKu ` ) 0, dt s `, F e , 15Ž . Ž .˜ H0 2 u `u t Ž .Ž . ˜˜0 00

` yŽ . 2Ž . 2Ž .where K s yH ta t dt. Let m s u ` , M s u 0 , and consider the˜ ˜0 0 0
linear differential equation

XX qmy q Ma t y s 0 16Ž . Ž . Ž .1

or

M
Y qy q a t y s 0. 16Ž . Ž .2m

With Mrm - ey2 K, the Sturm Comparison Theorem implies that Eq.
Ž .16 is disconjugate on J. Consider now the linear differential equation2

XX2 2 qu t y q u t a t y s 0. 17Ž . Ž . Ž . Ž .˜ ˜Ž .0 0

2Ž .With M G u t @G m, again from the Sturm Comparison Theorem we get˜0
Ž . Ž . Ž . Ž .that Eq. 17 is disconjugate on J. Hence assumptions i , ii , iii of

Ž .Lemma 2 are satisfied and so Eq. 17 has a principal solution ¨ verifying˜0
Ž .on 0, `

` 1
X¨ t ) 0, ¨ t G 0, dt s `. 18Ž . Ž . Ž .˜ ˜ H0 0 2¨ tŽ .˜0 0

In order to complete the proof it is sufficient to consider the function h
given by

h t s u t ¨ t .Ž . Ž . Ž .˜ ˜0 0
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Ž .It is easy to show, by standard calculations, that h is a solution of Eq. 6 .
Ž . Ž .With h being positive on 0, ` Eq. 6 is then disconjugate on J. Taking

Ž . Ž . Ž .into account 15 and 18 , we obtain that h satisfies also conditions 7 .
Ž .Finally if also condition iii holds, then we have

` `1 Mt2 q qu t a t ds dt F ta t dt - `,Ž . Ž . Ž .˜H H H0 2 mu sŽ .˜0 0 00

Ž .which implies that condition iv of Lemma 2 is satisfied. Then, from
Lemma 2, ¨ is bounded on J. With u being positive nonincreasing, also˜ ˜0 0
h is bounded on J. This completes the proof of Proposition 1.

2. MAIN RESULTS

Ž .Consider the nonlinear differential Eq. 1 . If the second order linear
Ž . Ž .Eq. 6 is nonoscillatory, that is, Eq. 6 does not have oscillatory solutions,

Ž .then, by standard computations, Eq. 1 may be transformed, for t G t ) 0,0
in the disconjugate form

XX1
X X2h t x q h t b t f x s 0, 1Ž . Ž . Ž . Ž . Ž .ž /ž /h tŽ .

Ž .where h is a solution of Eq. 6 . This equation is a prototype of the more
Ž .general equation 4 . The divergence of the integrals of the functions p

Ž .and r plays an important role in the study of nonoscillation of Eq. 4 .
ˇw x ŽIndeed in 26 Svec, generalizing a Lemma of Kiguradze and Elias see,

w x.e.g., 8; 9; 20, Lemma 1.1, p. 2, Lemma 2.1, p. 43 states that if the
Ž . Ž .conditions 5 are satisfied, then every nonoscillatory solution x of Eq. 4

satisfies, for t large enough, either

< < w1x w2xx t ) 0, x t ? x t - 0, x t ? x t ) 0 19Ž . Ž . Ž . Ž . Ž . Ž .
or

< < w1x w2xx t ) 0, x t ? x t ) 0, x t ? x t ) 0, 20Ž . Ž . Ž . Ž . Ž . Ž .
w1x w2x w1xŽ . XŽ . Ž .where x , x are the quasiderï atï es of x, that is, x t s x t rr t ,

w2xŽ . Ž w1xŽ ..X Ž . Ž . wŽ .xx t s x t rp t . Solutions satisfying 19 20 are said to be solu-
w x Ž w x. Ž .tions of degree zero two see, e.g., 12 . Solutions satisfying 19 are known

Ž w x.also as Kneser solutions see, e.g., 20 .
Ž .If we denote by NN the set of all nonoscillatory solutions of Eq. 4 and by

w x w x Ž .NN NN the set of solutions of degree zero two , then 5 implies that0 2
NN s NN j NN . A simple consequence of Proposition 1 gives us sufficient0 2
conditions in order for the same classification of nonoscillatory solutions
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Ž X.to occur for Eq. 1 . The following holds:

PROPOSITION 2. Assume

Ž . ` yŽ .i H ta t dt s yK ) y`;0

Ž . Ž .ii Equation 10 is disconjugate on J.

Ž . Ž X.Then Eq. 1 can be written for t ) 0 in the disconjugate form 1 and e¨ery
Ž X.nonoscillatory solution of Eq. 1 is either in the class NN or in the class NN .0 2

Proof. The assertion follows immediately from Proposition 1 choosing
Ž .as function h a principal solution of Eq. 6 .

We can state now our theorems which improve the quoted results in
w x17 .

THEOREM 1. Assume

Ž . ` yŽ .i H ta t dt s yK ) y`;0

Ž . Ž .ii Equation 10 is disconjugate on J.

Ž .Then e¨ery bounded continuable solution of Eq. 1 with a zero at some point
t G 0 is oscillatory.1

Ž . Ž .Proof. Let x be a continuable solution of Eq. 1 such that x t s 0,1
Ž .t G 0. Without loss of generality we may suppose x t ) 0 for t large1

Ž .enough. From Proposition 2, Eq. 1 may be transformed, for t ) 0 into
Ž X. Ž .1 where h satisfies 7 . Assume x nonoscillatory. Then, from Proposition
2, x is either in the class NN or in the class NN .0 2

Ž . w1xŽ .Assume that x g NN . Without loss of generality suppose x t ) 0, x t0
w2xŽ .- 0, x t ) 0 for t ) T. We assert first that x does not have positive

maxima. Let t , t - t - T , be the last point of maximum for x. Then1 x 1
Ž . w2xx t ) 0 for t G t , which implies that the quasiderivative x is decreasing1

w .on t , ` . Hence we have1

X X1 1 1
X X Yw2x 2 2x t s h t x t - h t x t s x t F 0,Ž . Ž . Ž . Ž . Ž . Ž .1 1ž / ž /r t h t h tŽ . Ž . Ž .ts t 11

which is a contradiction. Then x does not have positive maxima, and so x
does not have zeros on its existence interval. This is again a contradiction

Ž .since x t s 0. Hence x f NN .1 0
Ž . w1xŽ . w2xŽ .Assume now that x g NN and x t ) 0, x t ) 0, x t ) 0 for t G T2

w1x XŽ .) t . With x being an increasing function, we have for t G T , x t )1
Ž .Ž XŽ . Ž .. Ž . Ž . Ž XŽ . Ž .. t Ž . ` Ž .h t x T rh T or x t ) x T q x T rh T H h s ds. Since H h t dtT

s ` we get that x is unbounded, which is a contradiction. The proof is
now complete.
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Remark 2. In the first part of the above proof we have shown that
Ž X.solutions of Eq. 1 in the class NN cannot have zeros on its existence0

w xinterval. An alternative proof of this assertion is given in 2 .

Remark 3. Theorem 1, as well as Theorems 2]4 below, requires the
Ž .continuability of solutions of Eq. 1 with a zero. On this topic we refer the

w x w xreader to the books 1, 20 and to the papers 2, 7, 19 .

Theorem 1 improves the quoted Theorem A. Observe that Theorem 1
does not require monotonicity and regularity assumptions on the function
a nor does it require hypotheses on the function f of superlinearity
andror sublinearity at zero or at infinity.

With an additional assumption on the nonlinearity in a neighborhood of
infinity, we may state the following result which guarantees the oscillatory
behavior of all continuable solutions, possibly unbounded, vanishing at
some point t G 0.1

Ž .THEOREM 2. Assume condition H and1

Ž . ` yŽ .i H ta t dt s yK ) y`;0

Ž . Ž .ii Equation 10 is disconjugate on J;
Ž . ` Ž . Ž . ` Ž . Ž . Ž .iii H f kt b t dt s yH f ykt b t ds s ` for e¨ery k g 0, 1 .0 0

Ž .Then e¨ery continuable solution of Eq. 1 with a zero at some point t G 0 is1
oscillatory.

Ž . Ž .Proof. Let x be a continuable solution of Eq. 1 such that x t s 0,1
Ž .t G 0. Without loss of generality we may suppose x t ) 0 for t large1

Ž .enough. From Proposition 2, Eq. 1 may be transformed, for t ) 0, into
Ž X. Ž .1 where h satisfies 7 . Assume x is nonoscillatory. From Proposition 2,
we have that x g NN j NN . Reasoning again as in the proof of Theorem 1,0 2
we get that x is not in the class NN .0

Ž . w1xŽ . w2xŽ .Suppose that x g NN and x t ) 0, x t ) 0, x t ) 0 for t G T ) t .2 1
Ž .Denote m s inf h t . With T ) 0, from Proposition 1 we get thath t gwT , `.
Ž . Ž .m ) 0. Integrating Eq. 1 in T , t , t ) T , we obtainh

tw2x w2xx t y x T q h s b s f x s ds s 0,Ž . Ž . Ž . Ž . Ž .Ž .H
T

which implies

tw2xx T ) h s b s f x s ds. 21Ž . Ž . Ž . Ž . Ž .Ž .H
T



OSCILLATION FOR DIFFERENTIAL EQUATIONS 417

With x w1x being a positive increasing function, we have for t G T

t tw1x w1xx t ) x T q x T h s ds ) x T h s dsŽ . Ž . Ž . Ž . Ž . Ž .H H
T T

) x w1x T ? m ? t y T . 22Ž . Ž . Ž .h

w w1xŽ . x Ž .Let k be a constant such that 0 - k - min 1, x T ? m . Then from 22h
Ž .we have for all t sufficiently large, x t ) k ? t. With f eventually increas-

Ž Ž .. Ž . Ž .ing, there exists T such that for t ) T , f x t ) f k ? t , and, from 21 ,1 1
we obtain

T t1w2xx T ) h s b s f x s ds q h s b s f k ? s dsŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H H
T T1

T t1G h s b s f x s ds q m b s f k ? s ds. 23Ž . Ž . Ž . Ž . Ž . Ž .Ž .H Hh
T T1

Ž . Ž .Taking into account iii , the right side of 23 tends to infinity as t ª `,
which is a contradiction. Then x is oscillatory and the proof is complete.

w xTheorem 1 and 2 are related to a result in 3, Corollary 1 in which the
qŽ . ` Ž .case a t ' 0, H a t dt s y`, is considered.0

Remark 4. When the perturbation f is superlinear at infinity, that is,
Ž Ž . . Ž .lim inf f u ru ) 0, condition iii of Theorem 2 is satisfied if< u < ª`

` Ž .H tb t dt s `. Moreover in this case it is easy to prove that monotonicity0
Ž .assumption H is unnecessary.1

Ž . Ž .For the Emden]Fowler equation N , assumption iii becomesa
` a Ž . Ž .H s b s ds s `. The following examples show that assumptions i and0
Ž .iii cannot be dropped without violating the validity of Theorem 2.

EXAMPLE 1. Consider the sublinear differential equation

3 3 1r2Z X < <x y t y 1 x q 2 t y 1 x sgn x s 0. EŽ . Ž . Ž .1

Ž . Ž .2 Ž .The function x given by x t s t y 1 is a solution of Eq. E with a1
Ž .zero at t s 1. For this equation the assumption i does not hold, since1

yŽ . Ž . Ž .3 Ž .a t s a t s y2 t y 1 , while condition iii is verified. As regards
Ž . Y y2 K qŽ .assumption ii , equation y q e a t y s 0 is not defined since K s `,

Ž . Ybut ii is satisfied for the ‘‘limit equation,’’ that is, for the equation y s 0.

EXAMPLE 2. Consider the sublinear differential equation

1
aZ < <x q x sgn x s 0 0 - a - 1. EŽ .23t q 1Ž .
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y q Ž . Ž . Ž .Since a ' a ' 0, the assumptions i and ii are satisfied, but iii does
` a Ž . Ž .not hold since H s b s ds - `. Moreover every solution of Eq. E is0 2

w xnonoscillatory as it follows from a result in 21, Corollary 5 .
Assuming that the function f is superlinear in a neighborhood of zero,

we can give nonoscillatory results which generalize some criteria obtained
w xin 4, 17 .

Ž .THEOREM 3. Assume H and2

Ž . ` yŽ .i H ta t dt s yK ) y`;0

Ž . ` qŽ .ii H ta t dt - `.0

` 2 Ž . Ž .Let c be a positï e function defined on J such that H t b t c t dt - `. If x0
Ž .is a continuable solution of Eq. 1 such that, for t large enough,

< < < <f x t F x t c t , 24Ž . Ž . Ž . Ž .Ž .
then x is nonoscillatory.

Ž .Proof. Assume there exists an oscillatory solution x of Eq. 1 , defined
w . Ž .on t , ` , t G 0, satisfying 24 for t G T ) t . Consider the linearizedx x x

equation
wZ q a t wX q b t F t w s 0 t G T , 25Ž . Ž . Ž . Ž . Ž .

where
¡f x tŽ .Ž .

if x t / 0Ž .~ x tF t s Ž .Ž . ¢u if x t s 0.Ž .
Ž .From Remark 1 we have that Eq. 10 is eventually disconjugate, that is,
Ž . Ž .there exists t G 0 such that Eq. 10 is disconjugate on t , ` . Hence,0 0

Ž .from Proposition 2, we have that Eq. 25 may be transformed, for
t G T ) t , into0

XX1
X2h t w q h t b t F t w s 0,Ž . Ž . Ž . Ž .ž /ž /h tŽ .

Ž .where h satisfies 7 . Define

m s inf h t , M s sup h t .Ž . Ž .h h
w .tg T , ` w .tg T , `

As already denoted in the proof of Theorem 2, because T ) 0, we have
m ) 0. With h bounded, we get also M - `. Thush h

` s 1t
h t b t F t h s dl ds dtŽ . Ž . Ž . Ž .H H H 2ž /ž /h lŽ .T T T

` 2F C b t F t t y T dt ,Ž . Ž . Ž .Hh
T
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Ž .Ž .2 Ž .where C s 1r2 M rm . Taking into account 24 , we obtainh h h

` s 1t
h t b t F t h s dl ds dtŽ . Ž . Ž . Ž .H H H 2ž /ž /h lŽ .T T T

` 2F C b t c t t y T dt - `.Ž . Ž . Ž .Hh
T

w xBy a slight modification of a result in 6, Theorem 5 we obtain that Eq.
Ž .25 is nonoscillatory, which is a contradiction because x is an oscillatory
solution.

Remark 5. It is easy to show that Theorem 3 improves Theorem B
w x Ž . Ž .given in 17 , for Eq. 2 with a ) 1. To this end choose a t G 0 and

c ' 1: it is sufficient to prove that the assumptions of Theorem B imply
` qŽ . ` Ž .H ta t dt s H ta t dt - `.0 0

t Ž . t Ž . Ž 2 . Ž .Assume lim H sa s ds s `. With H sa s ds s t r2 a t yt ª ` T T

Ž 2 . Ž . t 2 XŽ . Ž 2 . Ž .T r2 a T y H s a s ds, we obtain lim t r2 a t s `. Hence aT t ª`

Ž w x. Ž .classical result of Kneser see, e.g., 27, p. 45 implies that Eq. 6 is
oscillatory, which is a contradiction.

A suitable choice of c gives the following:

Ž . Ž .COROLLARY 1. Assume condition H and suppose that conditions i ,2
Ž . ` 2 Ž . Ž .ii of Theorem 3 hold. If H t b t dt - `, then Eq. 1 does not ha¨e0
bounded oscillatory solutions.

Ž .Proof. The assertion follows from Theorem 3 choosing c t s c, c
constant.

Ž .When Eq. 1 is sublinear in a neighborhood of infinity, we have the
Ž w x.following see also 4, Corollary 3; 13, Theorem 2 .

Ž .COROLLARY 2. Assume condition H and suppose that conditions2
Ž . Ž . ` 2 Ž .i , ii of Theorem 3 hold. If H t b t dt - ` and0

Ž . Ž Ž . .iii lim sup f u ru - `,< u < ª`

Ž .then Eq. 1 does not ha¨e oscillatory solutions.

Ž . Ž .Proof. Taking into account H and iii , there exists a constant k such2
Ž .that 0 F f u ru F k. Then the assertion follows by reasoning as in the

proof of Corollary 1.

We conclude this section with some applications of the previous results
to the nonlinear equation

Z X < < ax q a t x q b t x sgn x s 0 a ) 0 . 2Ž . Ž . Ž . Ž .
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The following holds:

Ž .THEOREM 4. A Assume

Ž . ` yŽ .i H ta t dt s yK ) y`;0

Ž . Ž .ii Equation 10 is disconjugate on J;
Ž . ` a Ž .iii H t b t dt s `.0

Ž .Then e¨ery continuable solution of Eq. 2 with a zero at some point t G 0 is1
oscillatory.

Ž . Ž . ` qŽ .B Let a G 1 and assume i , H ta t dt - ` and0
` nŽay1.q2 Ž . Ž .H t b t dt - `. Then Eq. 2 does not ha¨e continuable oscillatory0

< Ž . < n Ž . ` 2 a Ž .solutions x such that x t F t . In particular n s 2 if H t b t dt - `,0
Ž .then Eq. 2 does not ha¨e continuable oscillatory solutions x such that

< Ž . < 2x t F t .

Ž . Ž .Proof. Claim A follows from Theorem 2. Claim B follows from
nŽay1.Ž .Theorem 3 with c t s t .

Ž . w xTheorem 4 extends to Eq. 2 an analogous result stated in 4 for the
binomial equation

Z < < ax q b t x sgn x s 0 a ) 0 . 26Ž . Ž . Ž .
Ž . w xPart A of Theorem 4 is also related with some results in 23 , in which

Ž .the oscillation of solutions with a zero is considered. Part B of Theorem 4
w x w xis related with a problem settled in 11 . Indeed in 11 the authors

` 2 a Ž . Ž .conjecture that if H t b t dt - `, then the binomial Eq. 26 with a ) 10
Ž .does not have oscillatory solutions. Other conditions assuring that Eq. 26

w xdoes not have oscillatory solutions have been given recently in 7 .

3. SOME EXTENSIONS

Ž . Ž .Consider now Eq. 4 . It is easy to extend to Eq. 4 all results stated in
Ž .the previous section by assuming the condition 5 . For example the

following holds:

Ž .THEOREM 5. Assume condition 5 . Then e¨ery bounded continuable
Ž .solution of Eq. 4 with a zero is oscillatory.

Ž .Proof. Sketch . The argument is similar to that given in the proof of
Ž . w .Theorem 1. Let x be a continuable solution of Eq. 4 defined on t , ` ,x

Ž .t G 0, such that x t s 0, t G t . Assume x g NN, that is, x nonoscilla-x 1 1 x
w xtory. From the quoted result 26 , x is either in the class NN or in the class0

Ž .NN . The assertion follows by showing that: a solutions in NN cannot have2 0
Ž . ` Ž .zeros in their existence interval; b H r t dt s ` implies that solutions in0

NN are unbounded.2
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Ž . Ž .THEOREM 6. Assume conditions H , 5 , and1

` `t t
b t f k ? r s ds dt s y b t f yk ? r s ds dt s `Ž . Ž . Ž . Ž .H H H Hž / ž /0 0 0 0

for e¨ery k g 0, 1 . 27Ž . Ž .

Ž .Then e¨ery continuable solution of Eq. 4 with a zero is oscillatory.

Ž . Ž .THEOREM 7. Assume conditions H and 5 . Let c be a positï e2
function defined on J such that

` st
b t c t r s p l dl ds dt - `.Ž . Ž . Ž . Ž .H H H

0 0 0

Ž .If x is a continuable solution of Eq. 4 such that, for t large enough,

< < < <f x t F x t c t , 24Ž . Ž . Ž . Ž .Ž .

then x is nonoscillatory.

The proofs of Theorem 6 and 7 are similar to those of Theorems 2 and
3, respectively, and are omitted.

As already noted in Remark 4, when the perturbation f is superlinear at
Ž Ž . .infinity, that is, lim inf f u ru ) 0, if< u < ª`

` t
b t r s ds dt s `,Ž . Ž .H H

0 0

Ž . Ž .then 27 is satisfied. Also in this case the monotonicity assumption H is1
unnecessary. Finally, extensions of the above results to the equation

XX1 1
aX < <x q b t x sgn x s 0 a ) 0 .Ž . Ž .ž /ž /p t r tŽ . Ž .

are left to the reader.
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