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Elliptic operators A = x,,, Cm b,(x) D”. o a multi-index, with leading term 
positive and constant coefficient, and with lower order coefficients 
F”i;JT~ ;‘“,t: ’ (with (n/r,) + (aI < m) defined on 1” or a quotient space 

’ rt ‘” are considered. It is shown that the L”-spectrum of A is contained 
in a ‘:‘parabolic region” R of the complex plane enclosing the positive real axis. 
uniformly in p. Outside R, the kernel of the resolvent of A is shown to be uniformly 
bounded by an L’ radial convolution kernel. Some consequences are: A can be 
closed in all L” (1 <p < co), and is essentially self-adjoint in L’ if it is symmetric: 
A generates an analytic semigroup e -” in the right half plane. strongly L” and 
pointwise continuous at t= 0. A priori estimates relating the leading term and 
remainder are obtained, and summability Q(eA)J--*,:+” @(O)J with Q analytic. is 
proved for fe L”, with convergence in L” and on the Lebesgue set of J More 
comprehensive summability results are obtained when .4 has constant coefficients. 

We study a functional calculus (multipliers and summability) for a class 
of operators on IV”. By LP-multiplier of a pseudodifferential operator A we 
mean a function (o(L) of a real or complex variable 1 such that the operator 
q(A) is well defined and bounded on L p. Similarly one can define multipliers 
on Sobolev spaces L/z, Holder spaces, etc. 

A summability method is a family q,(d) f o multipliers depending on a real 
or complex parameter E such that the family of operators (p,(A)}, forms an 
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“approximate identity.” Typically o,(A) = q(&) are dilations of a function q 
(the “summation method”). 

One aims at proving convergence 

v,v u-(x> -+f(x), (1) 
as e -9 0 (or co) in norm (L p, Sobolev, Holder, etc.), or pointwise, for 
instance, a.e., or on the Lebesgue set off: Well-known examples of such 
families are modified resolvents (,I(A - A)-’ } and one-parameter semigroups 
(ePfA }. The convergence in (1) is important in the theory of semigroups of 
operators (cf. [3, 51). 

We consider a class of operators on Rn of the form A = A, + B whose 
leading term A, is a constant coefficient positive elliptic operator. The 
perturbation B = 2 ,a, < m b,(x) D” has coefficients in certain L’-spaces, 
b, E L’- (IR”). More generally, the coefficients b, can be defined according 
to a decomposition R” = U, @ V,, with 6, = b,(u,, va) independent of u,, 
and b, E (L’a + L”)(V,). Natural examples of such operators are 
Hamiltonians of atoms (see, e.g., [ 7, Chap. lo]) A = -A + (l/ix I), or 

N 
bij “, bi 

A=-A+ zj lxi-xjl +&l”i 

on R3N, where xi E R3 (i = I,..., N) and A is the Laplacian on R3N. 
The usual approach to functional calculus based on pseudodifferential 

operators and Fourier integrals (cf. [ 131) does not apply directly to such A. 
First, A is not necessarily self-adjoint (B # B* in general). Second, a ‘@DO- 
Fourier integral” approach requires certain smoothness conditions on the 
coefftcients b,(x), while we assume only b, E L’ t La. The best way to 
approach the problem is to combine two techniques, namely, to use 
pseudodifferential operator calculus for the “nice” leading part A, of A, and 
then to apply perturbation theory and the Dunford functional calculus for A 
itself. 

Let us describe this procedure in our setting. We start (Section 1) with a 
functional calculus for A,, taking multipliers (D in so-called symbol classes 
Sy,, and SC:. For the O-class the boundedness of ~(4,) in Lp (p > 1) and 
its weak (1, I)-type follow from Hormander’s well-known multiplier theorem 
[4]. We then use the following fact: for symbols of strictly negative order, 
a, E S;t (6 > 0), the kernel K(x, y) of an operator (D(x, D) is bounded by 
translations of a radial decreasing L’-function h(lxl), i.e., 

As in Hormander’s theorem, the L ‘norm of h is estimated by symbol class 
seminorms of o. 
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Motivated by this observation we introduce a class of integral operators 
on IR” whose kernels K(x, y) satisfy (2) for some L’ radial decreasing 
function h, and call this class [RB]. Natural examples of operators in [RB ] 
are convolutions K(f) = K *f with kernels 1 K(x)1 < h(lxl), and by well 
known results pseudodifferential operators of any negative order belong in 

IRBI. 
Obviously, operators in [RB ] are bounded in all LP-spaces (1 <p < co). 

Moreover. suitable families of operators (K,.,,,. in [ RB ] form nice “approx- 
imate identities” (Proposition 2), i.e., 

W,f)(x) ;tfW 

in LP-norm and on the Lebesgue set of fE Lp (1 <p < 00). In this way we 
obtain summability for constant coefficient elliptic operators and suitable 
“summation families” { cp,),, 0 c S ;,i . 

Some important examples of summation families are: 

(I) modified resolvents ([([ - A) ’ }. 

(II) one-parameter semigroups (eerA }, 

(III) fractional powers {A”) (Re s < 0), 

(IV) semigroups generated by fractional powers (e ‘I’}. 

Note that all of these belong to negative order symbol classes S,,:. The 
first family (resolvent) is essential for the next step, the perturbation 
(Section 2). Its starting point is the following identity between the resolvents 
ofA,andA=A,+B, 

(<-A)-‘-((i-AJ’=((-A”) ‘B(<-A) ’ (3) 

which leads to the formal series expansion 

We study (4) by two methods. First (Lemma l), we show that under suitable 
restriction on the L’-classes of its coefficients b,, the operator B is small 
relative to A,. Precisely, we estimate the norm of B(< -A,) ’ by certain 
negative powers of the “large parameter” [. 

As a corollary of Lemma 1 we get so-called “a priori estimates” for the 
pair (A,, B). Along with the Kato-Rellich theorem 15, Chap. 5 ] they imply 
essential self-adjointness of a formally symmetric operator A = A, + B in L I. 
Lemma 1 can also be used to obtain a variety of other results, including: 
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(1) uniform bounds on the spectrum of A in different Lp, 

(2) maximum decrease of the resolvent, 

(3) resolvent summability. 

See [9] for an alternative treatment of the a priori bounds in Section 2. 
TO study the kernel of the resolvent of A we examine each term of the 

perturbation series (4). We show (Theorem 2) that under the assumptions of 
Lemma 1 all of them, and consequently the resolvent ([-A)-‘, are in [RB]. 
Therefore, Proposition 2 applies to Q[- A)-’ to get “resolvent 
summability” for A in all L%paces (Theorem 3) as well as other results. 

Finally we proceed to a wider class of multipliers and summation methods 
using resolvent summability and Cauchy integration. We show, in particular, 
that families {epfA}Rel>o and {e-fAS}Rel>O (whenever the latter exists) can be 
obtained in this way, i.e., the operator A and its fractional powers AS (s E R) 
are generators of analytic semigroups in the right half plane. Moreover, 
e -‘“f(x) -f(x), as t + 0 uniformly in any sector 1 arg t I < 0 < z/2 in Lp- 
norm and on the Lebesgue set ofJ 

Let us note that our semigroups do not fall within the scope of 
“generalized heat-diffusion” semigroups, treated, for instance, in [ 121. They 
are neither self-adjoint (A #A *), nor positivity-preserving. However, in two 
points our results sharpen the general theory: 

(1) Semigroups {e-‘A } are shown to be analytic in the whole right half 
plane Re t > 0, independent of L%pace. 

(2) Pointwise convergence is proved on the Lebesgue set of fC Lp 
rather than a.e., as in general. 

1. CONSTANT COEFFICIENT ELLIPTIC OPERATORS 

We consider classical symbol classes Sy,O = S”, which consist of 
functions (D(x, r) on iR” X { IR”\O} N times differentiable in {E iR”\O and 
such that all seminorms 

(1.1) 

are finite. Here a = (a, ,..., a,,) is a multi-index on IR” and D” the 
corresponding partial derivative. Denote by I & the norm of v, in S”, 

Each symbol a, defines a pseudodifferential operator by the formula 

(1.2) 

9(x, D)f= j &, <) epix’f?(C> dt. (1.3) 
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Here j: denotes the Fourier transform off 

One can rewrite (3) as 

cpk o)f= j K(x, Y)./-(Y) 4 

with a distribution kernel 

(1.4) 

a superscript (2) indicates the Fourier transform in the second variable i:. 
Constant coefficient operators 9(D) correspond to symbols 9 which depend 
only on 5, i.e., K(x, y) is a convolution kernel K(x,J) = @(J> - x). 

In the study of certain naural convolution operators (e.g.. homogeneous 
ones (-A)‘, s 6Z !‘), appropriate symbols must be allowed singularities at the 
origin. For this purpose we introduce symbol classes Sy.;( which consist of 
functions 9(.x, 5) on Q” x 7”\0 such that for constants c,, . 

the corresponding local seminorms which measure the local (zero) 
singularity of symbols are 

The symbol class Sy.i contains S;I,,: the latter differs only in that its 
symbols are regular at the origin. An example of the above symbol class 
arises in symbols of the form 9 = li/ o a. where v/E S,,;:’ . and a(<) is 
homogeneous of degree m > 0. Using the chain rule 

it can be shown that 9 E S;,:““,“‘, i.e., 9 has negative order -mm’ at infinity 
and positive order m at 0. Symbols such as these will arise in Theorem 1. 

The kernels of classical pseudodifferential operators of nonpositive order 
have been studied quite thoroughly. It is well known. for example. that 
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pseudodifferential operators of 0 order (m = 0) are given by 
Calderon-Zygmund kernels (see [ 1,4]) K(x, y) satisfying 

1 1 K(x, Y) - K(x, Y,)l dx ,< c* 
Ix--Y01 >2lY-Yol 

Thus they are bounded in all Lp-spaces (1 <p < co) and are of (1, I)-weak 
type. 

For symbols of negative order at co and positive order at {O} we can say 
more about the “local” (near zero) and “global” (at co) singularities of the 
kernel K. They correspond to respectively “global” (1.1) and “local” (1.6) 
estimates of symbols. Let q E S;r3’, and 

K(z) = J‘ e”‘$(<) d{ (z=x-y) 

be its convolution kernel. We will analyze K(z) using standard methods to 
separate local and nonlocal behavior. Let ~(0 E C” satisfy 

x(4 = 1, 14 <fY 

= 0, ItI > 1, 

and write 

P(T) = xv1 + (1 - x> fP 
To handle the second term, we need 

PROPOSITION 1 (cf. [6]). 1fq1 E S”‘, then 

(1.8) 

h,,,(JzI) = IzJ-’ (-ln IzI ifs =O), I.? ,< 1, 
= JzJ-‘, lzl> 13 (1.9) 

where s = max(n - m, 0), t = N > n, and 

C=C’ c Id,, 
Id<N 

where C’ is independent of (0. 

The first term of (1.8) is singular near 0; we thus need 
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PROPOSITION 2. Let cp E Sy.i have compact support, with I> 0. Then 

(a) Q? is bounded near (0) and bounded by 1x1~ ’ for some t > n for 
large x. 

(b) moreover, 1j-q is homogeneous of degree 1 at (O}. i.e.. 

40 = 151’ w(C) x(1 4). (1.10) 

where 5’ = [/It;1 and ,y has compact support, then we may choose t = --II -~ 1. 

Both results are fairly standard in pseudodifferential operator calculus. 
especially the local singularity of the kernel. The global one can be studied in 
a similar fashion by writing the kernel K(z) as the Fourier transform of its 
symbol (1.4) and “cutting off’ a suitable small neighborhood of (O} in & 
space whose size depends on 1x1. For symbols homogeneous near (O), more 
precise asymptotics can be obtained by separating variables in polar coor- 
dinates and estimating the angular integral by the stationary phase method. 
We omit the details. We note the following consequence of Proposition 1, 
which will be needed for the proof of Lemma 1 in Section 2. Let Q(D) 
(q E SC:) be a constant coefficient pseudodifferential operator given by a 
convolution kernel K(x -.v), and R” decompose into the direct sum V (3 C’ 
(dim V = n’, dim U = n”). Then the LPS4-mixed norms of K 

/I K Il,,y = (j;, i!,. jK(x’ + x”)lp dx’ ) ” ’ d-u” ) ’ ’ 

are bounded for all p, 4 such that 

I I, 

n - m < JL + n, i.e.. $+-$<m ($= 1-L. i,l 
P 9 P’ 9’ 

Moreover. 

and in particular 

for all p such that n’/p’ < m. 
In applications, two important families of symbols are 

(1) cp,(<) = cp(4-““0> (& > O), 

(2) ~~(0 = eio/(eie - a(t)> (B # 0). 

(1.11) 

f]. (1.12) 

(1.13) 

Here a = a(<) E Sy,O is a positive elliptic symbol (a(r) > 0) of order m > 0 
and cpE S;,“’ for some m’ > 0. 
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Both of these appear in the summability theory of positive constant coef- 
ficient operators A = a(D). The first family corresponds to dilations 

1v)W)l,>O9 while the second appears in the study of “resolvent 
summability,” using ([(C-A))‘}. Recall that a symbol a E ST0 is called 
elliptic if a(r) is invertible for sufficiently large r and a-‘(<) = l/a(<) E SC: 
module a function with compact support. This means that for large <, a(r) is 
bounded from both sides by ) <I”, 

where 

We can now formulate summability results for constant coefficient elliptic 
operators. 

THEOREM 1. If A = u(D) is positive elliptic in S$‘, with m, I > 0, and if 
v, E SC;‘, then 

(a) v)(&A) is given by a convolution kernel K,(x - y) with radial bound 

K,(z) < CE -@‘hJc - I/m 1 z I), 

with c depending on the seminorms I a Is and Iv, Is, where s < n c t. 

(b) The resolvent (C-A))’ is given by a convolution kernel 
R,(x - y), such that 

IRs(4 G , sin&j,n+ 1 /f”“‘h,,,@““’ 14, (1.15) 

where [ = pe”. 

(c) (summubility) if f E Lp, 1 < p < 00, the family of operators 

{d&AA)f (x)L>o converges to p(O)f (x) in Lp- norm and on the Lebesgue set 
off Similarly, us ( [I --t co, (< - A) - ’ f -+ f, uniformly in each sector 

Proof Note that K,(z) = E-“‘~L~(cc”“’ z), where L, is the kernel of 
o,(T) = o(su(c-““r)), and R&z) = p”““R,&““’ z), where R,(z) is the inverse 
Fourier transform of we(c) E eiO/(eiO - a(<)). Accordingly, we study the 
families L,(z) and R,(z) in appropriate symbol classes. The symbol o,(l) 
may become singular at < = 0 as E approaches 0, so in a standard way we 
cut off the part of the symbol near 0, writing 
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where x E C” and 

x(0 = 1, ItI < $3 

= 0, ICI > 1. 

For / (1 > 1, the term (1 - x) cp, can be bounded uniformly in Sy:,,. so that 
an appropriate function ~h,~,,~(lx() bounds the corresponding kernel. 

To deal with the first term, we notice that the support of xp7, is in 
(Iti < 1 }, and for 5 in this region vck’ 0 a, is bounded. where a,(5) = 
&U(E ‘jrn 5). On the other hand, although a,(r) is not uniformly bounded in 

ST.03 it is in Sy,$, where k = min(m, I). Hence, according to the Leibniz rule. 
(1.5), and (1.7). 

where the norm /aBIn is taken in .S’.“: therefore x((o o a,) is uniformly 
bounded in S;:,k. Thus, by Proposition 2, rk(9 0 u,))(x) < ~~h,:.,~(lsJ). 
where sz < n < t,. We conclude that 

L,(z) < cMlz0 (s < n < t). 

uniformly for small E. 
To obtain a bound on R,(z), we note that we(<) E S,:(ni), with /ye iA, < 

l//sin (0/2)lk+ ‘, and then use arguments similar to those for the previous 
case to show (1.15). 

To prove (c). we need the following modification of a well-known result in 
Fourier analysis 110, Theorem 1.25 1. 

PROPOSITION 3. Let a family of kernels (L&x, y)}, be bounded by L ’ 
dilutions of an L’ radial decreasing function h, i.e.. 

IL,(x..v)l < &-“h(&p’/<y-J’(). (1.16) 

Assume also that the familv of functions 

(1.17) 
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as E + 0 in L%zorm. Then the operators 

as E -+ 0 in LP-norm (1 <p < co) and on the Lebesgue set of 
fELP(1 ,<p< 00). 

In [ 10, Chap. l] this result is stated for dilations of a convolution kernel 
L, = E-“L(E-‘(x -y)). A generalized version follows along the same lines. 
Note that for convolution kernels condition (1.17) means L:(O) + c as F 4 0. 

Theorem 1 follows easily now. Indeed, in the first case K,(O) = &&a(O)) ---t 
q(O); in the second 

wi,(O> = 1-t(o) 6-00’ l. 

Remark. It is possible to obtain bounds which are better than algebraic 
for the kernel of q(a(D)) and ([ - a(D)) i at infinity, if a and ~1 are assumed 
smooth at 0. Indeed, ([ + A)-’ has the convolution kernel 

K(X) = jrn (4nt)-“/* e-ix1*‘4fe1c dt; 
0 

some calculations show 

IK(x)l< cy+*’ Ix1 < 1 
C,lIm(i1/2)lIxl 

(XI> 1 
(n > 3). 

e 3 

An immediate corollary of Theorem 1 is 

COROLLARY 1. .4 positive (semibounded) constant coefJicient elliptic 
pseudodifferential operator A = a(D) of the class S;10 has the same spectrum 
in all LP-spaces (1 < p < CQ). 

2. RESOLVENT OF THE PERTURBED OPERATOR 

We consider a class of operators on Rn of the form A = A ,, + B, where the 
leading term A, is a constant coefficient homogeneous positive elliptic 
operator of order m, and a perturbation 

B= \’ b,(x)D” 
lUl<Vl 

has coefficients in certain L’Xasses. More generally, b, can be defined on 
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the quotient space V, = W”/U, and be in L’ + L J on V, (cf. example (2) of 
the Introduction). We want to study the resolvent of A using the perturbation 
series 

([-A)-’ = (&A”)-’ \“- [B(<--A,) ’ lh. (2.1) 
hEI) 

The convergence of (1) as well as other properties of (< -A) ’ are deter- 
mined by the operator norm of B([ - A,) ‘. Lemma I gives an estimate of 
// B(< - A,,) ’ )/ as a function of <. 

LEMMA 1. Let A, be a constant coefficient positive homogeneous elliptic 
operator of order m and B = 1 ial <m b,(x) D” hate coefficients 
b, E (L’c* t L’7‘)( Vn) (dim V, = II,). If the L’klasses of the coefficients b,, 
satisjjj 

(on (Ial < m), (2.2) 

the operator norm of B([ - A,,) ’ 
estimated as 

in all L”-spaces I <p < min {r, 1 is 

(2.3) 

where 6’ = arg [ # 0. 

ProoJ: Each coefficient b, is a sum of two terms b:, E L’s) and b,: E L ’ : 
it suffices to consider B = b,(x) D”, with b, E L’,l (r, < co). Notice that 
B(i-A,,) ’ = 6, D”(< - a(D)) - ’ is composed of two operators: a convo- 
lution with kernel 

K,(x) =, F ‘(t”(i - a(5)) ’ ) (2.4) 

and a multiplication by b, E L’n(!Q’,“) or b,, E L”,l(Vr,) (V, = ml?‘l/Un). Let us 
first study the kernel K,. Using the homogeneity of a(<) we can write 

where 

K,(x) = I iI ((nt’dl+IKH(l[l’ nf x), (2.5) 

8, = fpLl([) = (“(e” - a(<)) ‘. 

By the ellipticity of a(<), qe E S;,r+‘a’, so Proposition 1 applies to oH. In 
particular, for s = n - m + /a I < n and some t > n, K,(x) has a radial bound 

I K&)1 G C II ~‘e lls b h,., = Ix/ ‘. 1-q < 1. 
(2.6) 

=/xl ‘. IX > 1. 
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We have K, E Lq for all 1 < q < n/(n - m + Ial) and is also included in 
all mixed Lqg’ -classes with respect to a decomposition R” = V, + Ua, where 
q satisfies 

$+(n-nJ>n-m+lul (n, = dim I’,), 

i.e.. 

(2.7) 

(see Eq. (1.12)). Furthermore, the Lq(Lq”)-norm of K, is estimated as 

IlKellq G c, IlV,llS~ II~Uellq,, <c.: lI%l/s. (2.8) 

Let us note that by the lemma’s assumption ra = q’ satisfies (2.7). So K, 
and consequently K, is always in the dual class L’A(L’i*‘) to b,. By (2.5) 
the L’A,’ -norm of K, is equal to 

IIKsllr;,l = ICI (I/m)((n,/r,)+lal)-] llKellr;,,. (2.9) 

We use two basic interpolation inequalities for multiplication and con- 
volution, 

Ilbfll, G llbll, Ilfll, 

II~*fllr~ll~llqllfllp i ++$=++ 1) 

and write 

Ilb,K, *Al, G ll~,llr, ilKsllq llfll,,, 

when b, E L r~ on R *, and 

Ilk-J, *AI, G IlkAl,~ llfG1ls., llf lb,, 

when 6, E L’*( V,). In both cases 

1 -L-i+ 1-L. 
pN- p ra 4 

(2.10a) 

(2. lob) 

(2.11) 

As we mentioned, by the lemma’s assumption and (2.7), q can be taken 
equal to r;. Hence p” =p in (2.11) and (2.10b) takes the form 

IkJ, Q-II, G Ilk& IIKJlrh,, IV-II,. (2.12) 
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Of course, in order that this procedure make sense (i.e., the convolution with 
K, E L’A does not “push” the L%lass offout of the scale (L’: 1 < r < m \). 
we needp<r,. 

The right-hand side of (2.12) is estimated by (2.9) and (2.8). So WC get 

l/U, *fll,< W,l/&& lil(“m)((n~‘r~~‘+‘n” ’ llfli,,. 
Finally, the symbol class norm of qe is estimated as in the proof of 
Theorem 1. 

l’~ellss Isin(Bf2)l”+l X polynomial~ll4l,.,, IP! <n + 1; lI~~‘ll,s.,,l~ 

which completes the proof of Lemma 1. 

Remark 1. The above argument applies to more general pairs (A,,. B). 
Namely, A, = a(D) can be any positive elliptic pseudodifferential operator of 
order m > 0 and B = 2 bj(x) q](D) with qi(<) E S~J, (m; < m) and 
bj E L’!(Vj) such that (dim Vj)/rj + mi < m. 

As a corollary of Lemma 1 we get a priori estimates for the pair (A,,, B). 

COROLLARY 2. If a pair of operators A,, B satisfies the assumptions of 
Lemma 1, then for any E > 0 there exists I. = 1, > 0 such that 

IIWI, G F IlAofllp + 4 llfll, (1 SpGminr,) (2.13) 

for all f in the domain S?‘,(A,) of A, in Lp. 

Indeed, by Lemma 1, 

ll~~~-~,~-‘~/I,~~~~~Iil’d’“‘~’ //g/l,, 

where d = max(n,/r,) + 1 al) < m. Then for 2 > 0, c > 0 

,,B(eA, +A)-‘g,,,, < CC’ (;)‘“-m’-’ 1, g,,,,. (2.14) 

Taking /z sufficiently large we can make the scalar factor on the right-hand 
side of (2.14) less than 1. Then forf= (FA, + A) ’ g E Q’,,(A,) we get 

Il@fll, G E II&f Ilp + A llfll,. Q.E.D. 

Note that for all Lp (1 < p < co) the domain &!,,(A,) is the Sobolev space 
Y/‘“, = (1 - ,)-m’2 (Lp). Indeed, the operator (1 + A,)-’ (1 - d)m” is 
bounded and invertible on all Lp (1 <p < 00) (see [ 10, Chap. 61). 
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In the Hilbert space setting, a priori estimates (2.13) are used in order to 
prove essential self-adjointness of perturbations A = A, + B. The Kato- 
Rellich theorem (see [5, Chap. 51) states: if B is small relative to A,, i.e., 

for some a < 1, b > 0, then A = A, + B is essentially self-adjoint on @(A,,), 
or any essential domain of A,. Thus we get 

COROLLARY 3. A formally self-adjoin1 operator A = A, + B satisfying 
the assumptions of Lemma 1 and such that min ra > 2 is essentially self 
adjoint on g*(A,,) = ipi, or any essential domain of A,. 

Remark 2. Condition (2) of Lemma 1 can be sharpened by inclusion of 
the equality 

FfJui=m. 
a 

(2.2’) 

Most of the above results remain true in this case, with suitable modification. 
In this case the lemma takes the following form: for all 1 <p < min, { ru) 

(p # co), the operator B(c - A,)- ’ is LP-bounded, and its norm is estimated 
as 

(2.15) 

Notice the absence of the factor pdlm-‘. 
The proof of (2.15) follows along the same lines, with one important 

distinction. The convolution kernel K, = D”([ - A,)-’ is considered in the 
weak L%lass with the “sharp” value of q, q = n/(n - m + 1 al) and instead 
of Young’s inequality for convolutions with “strong” L9-kernels K, one 
applies the Hardy-Littlewood-Sobolev inequality for the weak classes LY,. 
(see [ 11, Chap. 2, Sect. 5). This excludes the limit value p = 1 and introduces 
the constant C, which depends on 1 <p < co. 

Now we indicate how the corollaries of Lemma 1 change in this case. 

COROLLARY 2’ (A priori estimates). As before the LP-&m& of B, 
GJJB) c g$,(A,) = 9: for all 1 <p < min,{r,} and for any f E ~9&4,) one 
has 

IlBf IIp G Y llA& + PY Ilf Ilp 

with p a constant and y = cP C I/b, I/. 

In order to have B “small relative to A,, ” it is no longer enough for the 
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coefficients of B to belong to suitable L’-classes; their norms must also be 
small. 

For instance, in order to apply the Kato-Rellich theorem (essential self- 
adjointness) it suffices that C2 Ca llkll < 1. In this case the 
operator A = A, + B is semibounded from below. Indeed, the geometric 
series, 

f R:,IO(BR’?,$ (10 > 0) 
0 

sums to the resolvent kernel of A, which is therefore L2 - (Lp -) bounded. 
The necessity to limit the coefficient norms in the perturbation B in order 

to have B “small relative to Ao” is not very unusual in itself. This is 
illustrated by the well-known example of the Schrodinger operator 
A =-A -(k/lx/*) in IR3 (see [7]). For k < k,, A is semibounded from 
below, whereas for k > k, the whole negative axis is included in its spectrum 
(k, = a in one dimension). In other words, passing a certain magnitude of the 
perturbation norm completely changes the nature of the operator. Whether 
such a phenomenon occurs more generally for the class of perturbations 
considered in this paper is not known, and will require more precise analysis. 

3. RADIAL BOUNDS FOR THE RESOLVENT 

In this section we shall establish radial bounds for the kernel of the 
resolvent (< - A) -’ of operators A = A, + B discussed in Section 2. Namely, 

THEOREM 2. Let A = A, + B satisfy the assumptions of Lemma 1. 
Denote 6) 

d=maxiT+~a~:~al<m(. ina 
* 

There exists a constant C > 0 depending on A such that the LP-resolvent set 
of A (1 < p < min r,) contains the domain 

Q= [=pei8: CP(dfm)-l < 
i 

n+ 1 
/ 
\ 

(3.1) 

and for each [E 0 the resolvent R, = (<-A) ’ is in the class IRB I 
Moreover, the kernel L&x, y) of the operator (< - A) ’ is estimated in f2 as 

lL,(x,~)l < rsin(oF2)“11 f 
wd’m) -~ ’ I 

1 - ,sin~o,2>,“+, I Pm’ ‘h,,,O?’ “’ 1-y -?I!). 

(3.2 
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where h,,, is an L’ radial decreasing bound of Section 1. In the remaining 
LP-spaces (p > min r,) the operator R, is a bounded left inverse of C - A for 
[EL? 

Recall that the radial bounds we are dealing with are functions 

h,,,(x) = /xl -‘) IxI< 1 

= Ix/-‘, 1x1 > 1 
(s < n, t > n). (3.3) 

We shall need two modifications of the notion of convolution on I?“. One 
of them (let us call it the p-convolution) is defined as 

f*pg=(lfIP*Idp)"p= jjlf(x-Y)g(y)l"dy)"' (1 <P < co)* (3.4) 

A more general notion is the so-called (p, q)-mixed convolution. We 
decompose IR ’ into a direct sum of subspaces VO U (dim V = n’, 
dim U = n”) and write (x’, x”) for the components of x E IR”. Then the 
(p, q)-mixed convolution of functions f and g is defined as 

If(y’+y”)g(x’+x’‘-y’-y”)IPdy’ 

The convolution f *p,q g is simply the Lp*q- mixed norm of the function 
F(y) = F( y’, y “) = f (y) g(x -v); this allows extension of the definition to 
infinite p or q. 

LEMMA 2. Let h,,, and h,,,,, be a pair of functions of the type (3). If t, 
t’ > n and s, s’ satisfy 

max(s,s’} <$+$, 

then the (p, q)-mixed convolution of h,,, and h,,,,, is bounded by ch,JC,lJC, 
where s” = min {s, s’ }, t” = min {t, t’}. 

The proof of Lemma 2 involves standard computational techniques: 
“dilations,” “ truncating integrals to balls,” etc., and we omit it. Notice that 
the condition of Lemma 2 is equivalent to finiteness of the (p, q)-mixed 
norms Ilh,,,II,,, < 00 and Ilh,~,,~ll,,, < 00. 

Lemma 2 extends by induction to a sequence of mixed convolutions. 

COROLLARY 4. Let F?” = Vi 0 Ui (i = l,..., k) be a sequence of partitions 
of iR”, dim Vi = ni, dim Ui = n; . If sequences of reals sO ,..., s,; t, ,..., t, ; 
PI -pk ; q1 y-.1 qk satisfy 
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ti > n; max{si; min(s ,,..., sip, )) < (Z+?) 
I 1 

(3.6) 

for 1 < i < k, then a sequence of mixed convolutions of {h,,,,,)f=O is estimated 
bJ> 

(h so,to * hs,.,,) * ‘.’ * hSk,lk 6 ckhw (3.7) 

where 

s’ = min (so,..., Sk), t’ = min (to ,.... t, }. 

The ith 4: in (3.7) means a (p,, q,)-mixed convolution with respect to the 
ith splitting IFi’ = Vi @ Ui. 

Proof of Theorem 2. Denote by RF and R, the resolvents (when they 
exist) of the unperturbed operator A, and the perturbation A = A,, + B. 
respectively. Recall that R, is given by a series 

R,= \“’ Rfl(BR;)k. 
k=O 

(3.8) 

We shall study each term L, = RF(BRF)k of the series (3.8) and show that L, 
is in [ RB 1. Furthermore we obtain an estimate on the radial bound h of 
L,(x,p) as a function of the large parameter < (cf. Lemma 1). 

As before denote by a(T) = Clrlzm b,<” the leading symbol of A (a 
homogeneous positive elliptic polynomial of degree m) and by o(r), cp,(c) the 
Fourier multipliers 

~(5) = (i - a(t)>-‘, v,(t)=t”(i-a(t)) ’ (Ial <ml. 

Let K = K,(x) and K,,,(x) be corresponding convolution kernels (inverse 
Fourier transforms of q and q,). Obviously R” is a convolution with K = K,, 
while L, = R”(BRo)k consists of combinations of convolutions and 
multiplications 

L, = \‘ L - o,...ni* (3.9) 

where 

L a,“‘nk f = K, * (b,(K, * ... :s (b,(K, :kf) . ..). 

For simplicity we write bi for bai, Ki for K,,, etc. The multi-indices 
aI ... ak in (3.9) vary over the set of all multi-indices which appear in B. If 
their number is N, there are Nk terms in (3.9). 
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It suffices to estimate each term L,,. . .ak of L,. Write the kernel 
L (l,. , ,,(x, y) as a multiple integral 

L (I,‘. .,,(4Y) = I,” *** ir;“KO(x -z1> b,(Zl) *** W/JK,(z, -Y) dz, **a dz, 

(3.10) 

for (zi E R”). Decomposing b, into the sum b, = b& + b; (b; E L’n; 
b,” E L”O) we can always assume that b, E L’* (1 < ra < 00). If each 
function b, belongs to L’a on all of R” we use a multiple Holder inequality 

(3.11) 

pj being the dual Holder index to rj ((l/pj) + (l/rj) = 1) and I( . . . lIPI., .pk a 
(p , . . . p,)-mixed norm 

IIF;llp,...p,= (jdzx (j&-,-a (jdz,lF(z, ...~$‘+~~‘~‘j -j”‘: (3.12) 

For I;= K,(x - zl) K,(z, - zz) ... K,(z, - y), (3.12) becomes a sequence of 
p-convolutions 

(-.. ((I&I *piIm *PzIm ***> *pkI&l’ 

with -y understood to be in the argument of K,. 
If the coefficients b, of B are defined on quotients V, = R”/U, 

(dim V, = n,), i.e., b, E L’*( V,), we apply the Holder inequality step by 
step in the variables of 6,. Let us illustrate this procedure for the first term 
L,(x, y) = K, * (b,K,)(x -y). We separate variables for b,, i.e., write 
Rn = V, @ U, (dim V, = n,), where x = (x’, x”), x’ E V,, x” E U,. Then 

L,(x, y) = jj Ko(x’ - z’; x” - z”) b,(z’) K,(z’ -y’; z” -y”) dz’dz”. 

Therefore 

IU~,YK~~&& (j (jlW-z’v”-4 

x K,(z’ -y’; z” (3.13) 
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which is by definition the (p,, 1)mixed convolution of K, and K,, . 
Repeating this procedure k times, we get an estimate similar to (3.11) 

with -;1’ in the argument of K,. 
The ith :ir in (3.14) means, of course, the (pi, 1).mixed convolution. but 

for notational convenience we omit the subscripts. As before bi denotes b,,,. 
ni= n and pi is the dual Holder index to yi. The functions K,%(x) were 
studieda’in Lemma 1 of Section 2. We showed that 

K,, = K,.,(x) = li~(“m”n+‘c”) ’ K,,,,,(l[l’ m XI. (3.15) 

where I?~,# = <“(eie - a(t))- ‘, and K,, e is estimated by the radial function 
h >.I’ 

I 

IK,.&>I G ,sin~c?c/2~l,,+, k,,(l-yl) (3.16) 

with t>n (one can take t=n+l) and s=n-(~-ICI). The constant c’ 
depends on s, n, m and the symbol-class seminorms of a(r) and a(r) ‘. 

We now make another simple observation concerning mixed convolutions 
of dilationsf,(x) =f(ex), 

.fc *Il.4 g, = & 
-((n’lP)~~(n”!q))(f:~p.Yg)r. 

Here Fi” = V@ U and dim V= n’, dim U = n”. Using (3.15) and the last 
remark we have 

(... ((4, * K,) * .*.) * Kk(X)= ICI ~nim~~l+!:,l~I~m~~lni-~n, r,)) II (3.17) 

x ((KO,@ :!: K,.,) :/: ... ::: KA,H)(I[~“‘7r,~): 

the summation is taken over the set (a,, a,,..., Us}. The sequence of 
convolutions in (3.17) is the same (p,, 1)mixed convolutions as in (3.14). 

Next we apply inequality (3.16) to each term on the right-hand side of 
(3.17) and estimate it by the function 

x (... (h,,.l * h,,,,) 2% . ..) *: h,J(i<l’ m x), (3.18) 

where d = max((n,/r,) + /II I), and h,,/., is a suitable radial bound of K;,,, 
(j = I,.... k). 
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Now we use Corollary 4 of Lemma 2 for the sequence of mixed 
convolutions (3.18). For this we have only to check conditions (3.6) of the 
corollary. Let us take exponentials s, = n - (m - 1 a I) according to (3.16). 
Then for a sequence {so, s, ,..., sk}, where (si = s,J min {so ,..., sip r} = sO and 
max{si;min{s, ,..., sip,}} =si (i> 1). 

If IR” = Vi @ Vi denotes the a,-splitting (dim Vi = n, = nai), then (3.6) is 
satisfied if 

n-(m-lail)< 
i 
~+n-ni . 

j 
(3.19) 

I 

Recalling that l/p, = 1 - (I/ri) (ri = ~,i), (3.19) becomes (ni/ri) + 1 ai( < m 
(the condition of the theorem). Thus Corollary 4 applies to {hSiti}:,,, i.e., 

where s = min sj = s,, 

IL,’ 

where 

Hence each term L,,. . .ak of L, in (9) is estimated as 

c” I Cl (n/m)-’ k 

Hl,k’x’ = / sin(e/2>I”+ 1 / sin~~‘~,,~+ 1 I ‘I’d’m’-’ ‘,,,(I ‘I”m I’I>. 

From here 

ILk(X,Y)I~~:L,,...,kl~ /\.l~b,l)k~~,k(lx-~l)’ 
a 

We denote by C a new constant max(c”(C, 116,1/), c”) which depends 
only on A, and B. The geometric series of bounds (C, ilb,il)k H,,, of the 
kernels {Lk(x, Y)}~ converges absolutely if 

this condition defines the domain R c C of the Theorem. Moreover, the sum 
is estimated by the sum of a geometric series 

C 
ILs(x’y)l ’ lsin(8/2)1”+’ c 

C -1 

’ - lsin(t9/2)[“+’ IF+’ 1 

x ICI (n’m)-’ h,,l(lq”m Ix-yl). 

Hence if c E 0, the operator R, defined by this kernel is in [RB]. 
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If 1 <p < min, ra and c E R then the series 

R,([-A)f=R; 2 (BR;)k([-A”-B)f 
k=O 

(3.20) 

is well defined by Lemma 1, and a cancellation may be performed on the 
right side of (3.20) to yield the identity times j Thus R,(i - A) = I on the 
domain of A, (i.e., S?“, if p # 1, co) and similarly ([-A) R, = I on L” for 
c E Q, so that R, is the resolvent of A. 

Ifp>minr,, iEn, and 

j-E G’(A) = n Q(b,D”) n Y(A,), 
I@l<m 

then (3.20) still holds, since the operators R, and Ri(BRF)k are in (RB] and 
hence bounded. However, in execution of the same cancellation there are 
steps wherein functions under consideration are no longer in the scale of L” 
spaces, but only in the sum L ’ + L”. The identities become distributional 
ones until the return to Lp before the final summation, which yields 
R,([ - A)f=J: This procedure shows that R, is a left inverse of [ - A, and 
the theorem is proved. 

Remark. The question of whether R, is the resolvent of A in L” for 
p > min r, is generally less than well defined, since such an operator may 
have trivial domain. This is the case for A = -A + V(x), where V E L’ is a 
function with the property V(x)i,, @ Lp for all open rectangles UC V”. 

We note that the remark subsequent to Lemma 1 applies also to 
Theorem 2. Some further corollaries of Theorem 2 and Lemma 1 are 

COROLLARY 5. The spectrum of the operator A = A, f B in I> ” 
(1 <p < min rn) is included in the set 

(a parabolic domain about positive real axis). The resolvent of A has 
maximum decrease in all nonzero directions, i.e., 

Vt?#O. 

The norm of the resolvent is easily bounded via the L’-norm of the kernel 
(3.2). 

COROLLARY 6. The operator A is closeable in Lp ( 1 < p < min r, ). 
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Another application of Theorem 2 is to resolvent summability for A. We 
will henceforth use the operators R, and ([-A)-’ interchangeably, even 
when p > min ra . 

THEOREM 3. If an operatorA = A, + B satisfies the assumptions of 
Lemma 1, then 

W - A > - ‘f(x) -+f(x) 

as C- co uniformly in each sector Q, = {c: larg (12 13 > O}, in LP-norm 
(1 <p < ti) and on the Lebesgue set off E Lp (1 <p < a). 

Proox By Proposition 2 we have only to check that the kernel I;L,(x, y) 
of @;R, satisfies g,(x) = l g&x, y) dy + 1 as [- co, uniformly in each sector 
Q,={C:jargCl>B} (8>0). 

We write 

/L,(x.y)dy= f jLk(w)dy= f x ?^L,,...&.y)dy. 
k=O k=O u,...ak 

By (3.10) 

i 
L,I...,X(X,L')d4'=Rk(0).XO*(b,(K,* ".(Kk-, *bk>>>"*>* (3.21) 

As before Kj stands for Kaj, bj = b,, (j = l,..., k) and a = a,j varies over the 
set of multi-indices which appear in B. Notice that 

kk(0)=<mk(i-a(t))-’ ll=o=03 if ak f 0, 

= c-1, if ak = 0. 

Thus the only nonvanishing terms in (3.21) are those which start and end 
with K,. With this observation we can write the integral of the difference 
between the kernels of R, and RF as 

I 
(L& Y> - Ko(x -Y)> dy 

I-? =- 
5 kk’ q.?a,-, K” * (b’(K’ 

* . . . (Kk-, * b,) s..)). (3.22) 

The argument of Theorem 2 yields for each term in (3.22) 

(IK, * (a.. (K,-, * bk) . ..)I]. ,< I#(d’m)-l)k jj llKo,,,sllp, Ilb,,llru,~ 
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where a0 = ak = 0. Hence 

with the constant cg = C,“=, IIK,l~,,eilPnillbn,llr,,. The uniform convergence 
g:,(x) + 1 as [- co in J2, is now clear. The theorem is proved. 

Finally, we can use Cauchy integration of R, over suitable contours I’ 
embracing 8’ to obtain a variety of other multipliers q(A) and summation 
methods (o,:(A)}. Indeed, in order that the Cauchy integral 

define an operator q(A) in the class IRB ] it suffices that cp be integrable over 
r with respect to the measure (here p = Iti) 

d/i = 
c 

p / sin(8/2)1” + ’ i 
1 - / ?$,l’;,,.’ , ] ’ &. 

sin 

Then the radial bound of q(A) is given by 

where h,,, is the radial bound of Theorem 1. 
We will mention one example of summation families obtained in this way, 

namely, the one-parameter semigroup (,~-I4 } generated by A. Here a 
contour r is formed by two rays {pe * ‘@ : p > po}, with small angle 0, and a 
finite arc {Poei@ : 1 I$ > 19) ; p0 must be sufficiently large so that l-c Q. Take 
the analytic function v = q,(c) = e lb and let t = / t ( e”“: < = 1 <I eiH. In order 
that q,(i) = em’{ E L’(T, dp) it suffices to have 

/y/+0( <$. (3.23) 

Since 8 can be chosen to be arbitrarily small it follows that for each t in the 
right half plane (Re f > 0) the operator e -” is in the class (RB I. Moreover. 
its kernel M,(x, y) satisfies 

A,(x) = & f e- ‘“z,(x) d[. 
-1 

Using the argument of Theorem 3 one can easily show that A,(x) ---) 1 as 
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t -+ 0 uniformly in each sector LIh = {t : ( arg t ( < 0 < 7r/2 }. Therefore 
Proposition 2 applies to the family {c’~ jRe I>0 and we obtain 

THEOREM 4. An operatorA of Lemma 1 is the generator of an analytic 
semigroup {e-tA}Ret,o in L” (1 < p ( min r,). Furthermore, for f E Lp we 
have Lp (1 <p < co) and Lebesgue (1 <p < co) convergence 

eetAf (4 -f C-4 

as t -+ 0 uniformly in each sector 9; = {t : ( arg t 1 < 13 < n/2}. 

A similar result holds for one-parameter semigroups generated by frac- 
tional powers AS (s E R), whenever the latter exist (for instance, if the 
spectrum of A is in the right half plane). The corresponding multiplier is 
q,,,(Q = e-‘<$ and condition (3.23) becomes 

which can always be satisfied for sufficiently small 8. 
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