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1. Introduction

Attachment of holomorphic discs to a prescribed real submanifold of a complex
ifold is a well-known and powerfull method of geometric complex analysis develope
many authors. Recently, in view of deep connections with symplectic geometry disco
by M. Gromov [4], this method found its way to the almost complex case. Authors us
consider the attachment of pseudoholomorphic discs to totally real submanifolds of a
complex manifolds, for instance, near points admitting a non-trivial holomorphic tan
space.

In the present paper we consider pseudoholomorphic discs (Bishop discs) attac
generic real submanifolds, of a positive complex dimension, of almost complex man
In Section 2 we prove the existence of Bishop discs for a generic submanifoldE of an
almost complex manifold(M,J ). We show that, roughly speaking, these discs can
parametrized quite similarly to the case of the standard complex structure. Our p
based on isotropic dilations of local coordinates in a similar way to Sikorav’s pro
the Nijenhuis–Woolf theorem on the existence of local pseudoholomorphic discs in
scribed direction [7].

Our main aim is to study the geometry of pseudoholomorphic Bishop discs in
of the Levi form of aCR-submanifold. We begin with the Levi flat case. In Section
we prove that each (sufficiently small) pseudoholomorphic Bishop disc attached to
hypersurface with identically vanishing Levi form lies in this hypersurface. Hence s
hypersurface contains pseudoholomorphic discs passing in an arbitrary prescribed c
tangent direction (Theorem 3.1). This gives an affirmative answer to a question rais
Ivashkovich and Rosay [6]. They also constructed in [6] an example of a real hypers
in an almost complex manifold of complex dimension 3 that has an identically vani
Levi form, but contains no complex hypersurfaces. In particular, this hypersurface is
imal in the sense of Tumanov [9]. Recall that the well-known result of Trépreau [8
Tumanov [9] claims that in the case of an integrable complex structure, Bishop disc
minimal hypersurface fill its one-sided neighborhood. Thus, Theorem 3.1 in combin
with the example of Ivashkovich–Rosay shows that the Trépreau–Tumanov theore
no straightforward generalisation to the almost complex case.

In Section 4 we consider the case of aCR-submanifoldE with Levi form distinct from
zero. We prove that in this case the corresponding Bishop discs sweep out a subm
containingE as an open piece of the boundary (Theorem 4.1). This is an almost co
analog of results due to Hill and Taiani [5] and Boggess [1], but our proof in the al
complex setting requires a new idea because the Nijenhuis tensor (the torsion) of an
complex structure has a strong influence on the geometry of the Levi form of a rea
manifold: it is not even always possible to take aCR-submanifold of the standard compl
space for a local model of aCR-submanifold of an almost complex space. To overco
arising difficulties, we use in Section 4 non-isotropic dilations in a suitable coordinate
tem (a similar idea is used in [3] in order to study boundary behavior of the Koba
metric in almost complex manifolds). It turns out that ifE has CR dimension 1, then th
non-isotropic dilations allow one to represent the pair(E,J ) as a small deformation o
the pair(E0, Jst), whereE0 is the quadric manifold inCn of which the Levi form with

respect toJst coincides with the Levi form ofE with respect toJ . This results in the exis-
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tence of pseudoholomorphic Bishop discs with a certain special geometry (Theorem
The general case could in principle be treated by considering a foliation ofE by subman-
ifolds of CR-dimension 1. However, we put forward a method allowing us to give a m
straightforward description of the Bishop discs involved in our construction in the ge
case.

We point out that our methods allow one to deal only with the first Levi form.
instance, suitable almost complex analogs of highly precise results of Trépreau [
Tumanov [9] require another approach.

2. Existence and local parametrization of Bishop discs

2.1. Almost complex manifolds

Let (M,J ) be an almost complex manifold with operator of complex structureJ . Let
D be the unit disc inC andJst the standard (operator of) complex structure onCn for
arbitraryn. Let f be a smooth map fromD into M . We say thatf is J -holomorphicif
df ◦ J ′ = J ◦ df . We call such a mapf a J -holomorphic disc and denote byOJ (D,M)

the set ofJ -holomorphic discsin M . We denote byO(D) the space of usual holomorph
functions onD.

The following lemma shows that an almost complex manifold(M,J ) can be locally
viewed as the unit ballB in C

n equipped with a small almost complex deformation ofJst.
We shall repeatedly use this observation in what follows.

Lemma 2.1. Let(M,J ) be an almost complex manifold. Then for eachp ∈ M , eachδ0 > 0,
and eachk � 0 there exist a neighborhoodU ofp and a smooth coordinate chartz :U → B

such thatz(p) = 0, dz(p) ◦ J (p) ◦ dz−1(0) = Jst, and the direct imagez∗(J ) := dz ◦ J ◦
dz−1 satisfies the inequality‖z∗(J ) − Jst‖Ck(B̄) � δ0.

Proof. There exists a diffeomorphismz from a neighborhoodU ′ of p ∈ M onto B such
thatz(p) = 0 anddz(p) ◦ J (p) ◦ dz−1(0) = Jst. For δ > 0 consider the isotropic dilatio
dδ : t �→ δ−1t in C

n and the compositezδ = dδ ◦ z. Then limδ→0 ‖(zδ)∗(J )−Jst‖Ck(B̄) = 0.

SettingU = z−1
δ (B) for sufficiently small positiveδ we obtain the required result.�

The operators∂J and ∂̄J . Let (M,J ) be an almost complex manifold. We denote
T M the real tangent bundle ofM and byTCM its complexification. Recall thatTCM =
T (1,0)M ⊕ T (0,1)M whereT (1,0)M := {X ∈ TCM: JX = iX} = {ζ − iJ ζ, ζ ∈ T M}, and
T (0,1)M := {X ∈ TCM: JX = −iX} = {ζ + iJ ζ, ζ ∈ T M}. Let T ∗M be the cotangen
bundle ofM . IdentifyingC⊗T ∗M with T ∗

C
M := Hom(TCM,C) we define the set of com

plex forms of type(1,0) on M asT(1,0)M = {w ∈ T ∗
C
M: w(X) = 0,∀X ∈ T (0,1)M} and

we denote the set of complex forms of type(0,1) onM by T(0,1)M = {w ∈ T ∗
C
M: w(X) =

0,∀X ∈ T (1,0)M}. ThenT ∗
C
M = T(1,0)M ⊕ T(0,1)M . This allows us to define the operato

∂J and∂̄J on the space of smooth functions onM : for a smooth complex functionu onM

we set∂J u = du(1,0) ∈ T(1,0)M and∂̄J u = du(0,1) ∈ T(0,1)M . As usual, differential forms

of any bidegree(p, q) on (M,J ) are defined by exterior multiplication.
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Plurisubharmonic functions. We say that an upper semicontinuous functionu on(M,J )

is J -plurisubharmonicon M if the compositionu ◦ f is subharmonic on∆ for every
f ∈OJ (D,M).

Let u be aC2 function onM , let p ∈ M andv ∈ TpM . The Levi formof u at p evalu-
ated onv is defined by the equalityLJ (u)(p)(v) := −d(J ∗du)(X,JX)(p) whereX is an
arbitrary vector field onT M such thatX(p) = v (of course, this definition is independe
of one’s choice ofX).

The following result is well known (see, for instance, [6]).

Proposition 2.2. Let u be aC2 real valued function onM , let p ∈ M andv ∈ TpM . Then
LJ (u)(p)(v) = ∆(u ◦ f )(0) wheref is an arbitraryJ -holomorphic disc inM such that
f (0) = p and df (0)(∂/∂ Reζ ) = v (hereζ is the standard complex coordinate variab
in C).

The Levi form is obviously invariant with respect to biholomorphisms. More
cisely, let u be a C2 real valued function onM , let p ∈ M and v ∈ TpM . If Φ is
a (J, J ′)-holomorphic diffeomorphism from(M,J ) into (M ′, J ′), thenLJ (u)(p)(v) =
LJ ′

(u ◦ Φ−1)(Φ(p))(dΦ(p)(v)).
Finally, it follows from Proposition 2.2 that aC2-smooth real functionu is J -

plurisubharmonic onM if and only if LJ (u)(p)(v) � 0 for all p ∈ M , v ∈ TpM . Thus,
similarly to the case of an integrable structure one arrives in a natural way to the fo
ing definition: aC2 real valued functionu on M is strictly J -plurisubharmonicon M if
LJ (u)(p)(v) is positive for everyp ∈ M , v ∈ TpM\{0}.

It follows easily from Lemma 2.1 that for every pointp ∈ (M,J ) there exists a neigh
borhoodU of p and a diffeomorphismz :U → B with center atp (in the sense tha
z(p) = 0) such that the function|z|2 is J -plurisubharmonic onU andz∗(J ) = Jst+O(|z|).

Let u be a C2 function in a neighborhood of a pointp of (M,J ) that is strictly
J -plurisubharmonic. Then there exists a neighborhoodU of p with local complex co-
ordinatesz :U → B such that the functionu − c|z|2 is J -plurisubharmonic onU for some
constantc > 0.

Real submanifolds in almost complex manifolds. Let E be a real submanifold of cod
mensionm in an almost complex manifold(M,J ) of complex dimensionn. For everyp
we denote byHJ

p (E) the maximal complex (with respect toJ (p)) subspace of the tange
spaceTp(E). Similarly to the integrable case,E is said to be a CR manifold if the (com
plex) dimension ofHJ

p (E) is independent onp; it is called the CR dimension ofE and is
denoted by CRdimE.

In complex analysis by agenericsubmanifold of a complex manifold one usually mea
a submanifoldE such that at every pointp ∈ E the complex linear span ofTp(E) coincides
with the tangent space of the ambient manifold. We think that the use of this te
precisely that sense outside the framework of complex analysis proper can someti
misleading. For this reason we shall provisionally call submanifolds with similar prope
of an almost complex manifoldM (that is, submanifolds such that the complex linear s
of Tp(E) at each point coincides withT M) generatingsubmanifolds. Of course, eve

generating submanifold is CR.
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If E is defined as the common zero level of functionsr1, . . . , rm, then after the standar
identification ofT M andT (1,0)M HJ

p (E) can be defined as the zero subspace of the fo
∂J r1, . . . , ∂J rm. In particular, letE be a smooth real hypersurface in an almost com
manifold (M,J ) defined by an equationr = 0. We say thatE is strictly pseudoconve
(for J ) if the Levi form of r is strictly positive definite on each holomorphic tangent sp
HJ

p (E), p ∈ Γ . Of course, this definition does not depend on one’s choice of the defi
function r . We shall require the following result, which is well-known in the case o
integrable structure.

Lemma 2.3. LetE be a strictly pseudoconvex hypersurface in an almost complex man
(M,J ). ThenE admits a strictly plurisubharmonic defining function in a neighborhoo
each its pointp.

The proof is quite similar to the case of the standard structure. Selecting suitable
coordinatesZ = (z,w1, . . . ,wn−1) in C

n we can assume thatM is a neighborhood of th
origin in C

n andp = 0; as usual, we assume thatJ (0) = Jst. Furthermore, we may suppo
thatr(Z) = z + z + O(|Z|2) and thereforeHJ

0 (E) = {z = 0}. ThenLJ
0 (r2)(v) = |v1|2 for

complex tangent vectorsv ∈ T0(M). SinceLJ
0 (r) is strictly positive definite onHJ

0 (E),
the Levi formLJ

0 (r + Cr2) is strictly positive onT0(M) for a sufficiently large positive
constantC.

2.2. Bishop discs and Bishop’s equation

Let (M,J ) be a smooth almost complex manifold of real dimension 2n andE a gen-
erating submanifold ofM of real codimensionm. A J -holomorphic discf :D → M

continuous onD is called aBishop discif f (bD) ⊂ E (wherebD denotes the bound
ary ofD). Our aim is to prove the existence and to describe certain classes of Bishop
attached toE.

Consider the case whereE is defined as the zero set of anR
m-valued functionr =

(r1, . . . , rm) on M . Then a smooth mapf defined onD and continuous onD is a Bishop
disc if and only if it satisfies the following non-linear boundary problem of the Riema
Hilbert type for the quasi-linear operator∂J :

(RH):

{
∂J f (ζ ) = 0, ζ ∈ D,

r(f )(ζ ) = 0, ζ ∈ bD.

To describe solutions of this problem we fix a chartU ⊂ M and a coordinate diffeomo
phismz :U → B

n whereB
n is the unit ball ofCn. IdentifyingM with B

n we may assume
that in these coordinatesJ = Jst + O(|z|) and the norm‖J − Jst‖Ck(Bn) is small enough
for some positive realk in accordance with Lemma 2.1. (Herek can be arbitrary, but w
assume it for convenience to be non-integer and fix it throughout what follows.)
precisely, using the notationZ = (z,w), z = (z1, . . . , zm), w = (w1, . . . ,wn−m) for the
standard coordinates inCn, we may also assume thatE ∩ U is described by the equation

r(Z) = Rez − h(Im z,w) = 0 (1)
with vector-valuedC∞-functionh :B → R
m such thath(0) = 0 and∇h(0) = 0.
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Similarly to the proof of Lemma 2.1 consider the isotropic dilationsdδ :Z �→ Z′ =
δ−1Z. In the newZ-variables (we drop the primes) the imageEδ = dδ(E) is defined by
the equationrδ(Z) := δ−1r(δZ) = 0. Since the functionrδ approaches Rez as δ → 0,
the manifoldsEδ approach the flat manifoldE0 = {Rez = 0}, which, of course, may b
identified with the real tangent space toE at the origin. Furthermore, as seen in the pr
of Lemma 2.1, the structuresJδ := (dδ)∗(J ) converge toJst in theCk-norm asδ → 0. This
allows us to find explicitly the∂J -operator in theZ variables.

Consider aJδ-holomorphic discf :D → (Bn, Jδ). The Jδ-holomorphy condition
Jδ(f ) ◦ f∗ = f∗ ◦ Jst can be written in the following form:

∂f

∂ζ
+ QJ,δ(f )

(
∂f

∂ζ

)
= 0, (2)

whereQJ,δ(Z) is the complexn × n matrix of an operator the composite of which w
complex conjugation is equal to the endomorphism−(Jst+Jδ(Z))−1(Jst−Jδ(Z)) (which
is an anti-linear operator with respect to the standard structureJst). Hence the entries o
the matrixQJ,δ(z) are smooth functions ofδ, z vanishing identically inz for δ = 0.

Using the Cauchy–Green transform

TCG(g) = 1

2πi

∫ ∫
D

g(τ)

ζ − τ
dτ ∧ dτ

we may write∂J -equation (2) as follows:

∂

∂ζ

(
f + TCG

(
QJ,δ(f )

(
∂f

∂ζ

)))
= 0.

According to classical results [10], the Cauchy–Green transform is a continuous
operator fromCk(D) into Ck+1(D) (recall thatk is non-integer). Hence the operator

ΦJ,δ :f → g = f + TCG

(
QJ,δ(f )

(
∂f

∂ζ

))

takes the spaceCk(D) into itself. Thus,f is Jδ-holomorphic if and only ifΦJ,δ(f ) is
holomorphic (in the usual sense) onD. For sufficiently small positiveδ this is an invertible
operator on a neighborhood of zero inCk(D) which establishes a one-to-one corresp
dence between the sets ofJδ-holomorphic and holomorphic discs inBn.

These considerations allow us to replace the non-linear Riemann–Hilbert problem
by generalized Bishop’s equation

rδ
(
Φ−1

J,δ(g)
)
(ζ ) = 0, ζ ∈ bD, (3)

for an unknownholomorphicfunctiong in the disc (with respect to the standard comp
structure).

If g is a solution of the boundary problem (3), thenf = Φ−1
J,δ(g) is a Bishop disc with

boundary attached toEδ . Since the manifoldEδ is biholomorphic via isotropic dilation
to the initial manifoldE, the solutions of Eq. (3) allow to describe Bishop’s discs attac
to E. Of course, this gives just the discs close enough (in theCk-norm) to the trivial solu-

tion f ≡ 0 of the problem (RH).
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2.3. Solution of generalized Bishop’s equation

Let U be a neighborhood of the origin inR, X′ a sufficiently small neighborhood of th
origin in the Banach space(O(D) ∩ Ck(D))m (with positive non-integerk), X′′ a neigh-
borhood of the origin in the Banach space(O(D) ∩ Ck(D))n−m, andY the Banach spac
(Ck(bD))m. If z ∈ X′, z : ζ �→ z(ζ ) andw ∈ X′′, w : ζ �→ w(ζ ) are holomorphic discs, the
we denote byZ the holomorphic discZ = (z,w). We may also assume thatJ is a C2k-
smooth real(2n × 2n)-matrix valued function and denote byW the Banach space of the
functions.

Consider the map of Banach spacesR :W × X′ × X′′ × U → Y defined as follows:

R : (J, z,w, δ) �→ rδ
(
Φ−1

J,δ(z,w)
)
(•)|bD.

Let φ be aC2k-map between two domains inRn andR
m; it determines a mapωφ act-

ing by composition onCk-smooth mapsg into the source domain:ωφ :g �→ φ(g). The
well-known fact is thatωφ is a Ck-smooth map between the corresponding space
Ck-maps. In our case this means that the mapR is of classCk . For a holomorphic disc
Z = (z,w) ∈ X′ × X′′ andJ ∈ W the tangent mapDX′R(J, z,w,0) :X′ → Y (the partial
derivative with respect to the spaceX′) is defined by the equalityDX′R(J, z,w,0)(q) =
(Req1, . . . ,Reqm). Clearly, it is surjective and has the kernel of real dimensionm con-
sisting of constant functionsh = i(c1, . . . , cm), cj ∈ R. (We point out that the mapDX′R
coincides with the tangent map arising after the linearization of Bishop’s equation
responding to the standard structureJst.) Therefore, by the implicit function theore
[11] there existsδ0 > 0, a neighborhoodV1 of the origin in X′, a neighborhoodV2
of the origin in X′′, a neighborhoodV3 of the origin in R

m, a neighborhoodW1 of
Jst in W and aCk-smooth mapG :W1 × V2 × V3 × [0, δ0] → V1 such that for every
(J,w, c, δ) ∈ W1 × V2 × V3 × [0, δ0] the functiong = (G(J,w, c, δ)(•),w(•)) is the
unique solution of generalized Bishop’s equation (3) belonging toV1 × V2.

Now, the pullbackf = Φ−1
J,δ(g) gives us aJδ-holomorphic disc attached toEδ . Thus,

the initial data consisting ofJ ∈ W1, and a set(c1, . . . , cm,w), cj ∈ R, w ∈ V2 define for
each smallδ a uniqueJδ-holomorphic discf attached toEδ . Since the almost comple
structuresJ andJδ are biholomorphic via isotropic dilations, we can give the follow
description of local solutions of Bishop’s equation (the problem (RH)).

Theorem 2.4. Let E be a smooth submanifold ofC
n defined as the zero set of a smoo

R
m-valued functionr of the form(1). Then there exists a neighborhoodU of the origin

in (Ck(D))n, a neighborhoodW1 of Jst in the spaceW , a neighborhoodV2 of the origin
in X′′, and a neighborhoodV3 of the origin inRm such that for eachJ ∈ W1 the set of
maps inU that are Bishop discs attached toE with respect toJ is a Banach submanifol
of classCk in U with local chart defined by a(smooth) map F :V2 × V3 → U , which
depends smoothly onJ .

The proof follows from the above analysis of the Bishop equation. One merely
some value ofδ, 0< δ � δ0, and observes that the families of Bishop discs correspon

to distinct values ofδ �= 0 are taken into one another by the corresponding dilations.
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One important consequence of this statement is as follows: ifE1 andE2 areC2k-close
submanifolds ofCn defined by equations of the form (1) andJ1 and J2 are C2k close
almost complex structures, then there exists a (locally defined) diffeomorphism be
the correspondingCk Banach submanifolds of Bishop discs that depends smoothly o
pairsEj , Jj , j = 1,2, and is the identity in the case of equal pairs.

3. Hypersurfaces with vanishing Levi form

Here we prove the following result.

Theorem 3.1. Let Γ be a real hypersurface in an almost complex manifold(M,J ) with
Levi form vanishing identically at the points ofΓ . Then at each pointp ∈ Γ and for each
direction v ∈ Hp(Γ ) there exists aJ -holomorphic discf :D → M such thatf (0) = p,
df (0)(∂/∂ Reζ ) = v andf (D) ⊂ Γ .

If M has real dimension 4, then this result can be proved in the same fashion
complex analysis, by the application of Frobenius’s theorem to complex tangent s
to Γ . However, this does not work in higher dimensions, when in the case of an a
complex structure distinct from the standard one the distribution of the planesHp(Γ ) is
not necessarily involutive. The idea of our proof is to show thateach(sufficiently small)
Bishop disc forΓ lies inΓ .

As before, passing to local coordinatesZ = (z,w1, . . . ,wn−1) we may assume thatΓ is
a real hypersurface in a neighborhoodΩ of the origin inC

n andJ (0) = Jst. Let r be a local
defining function ofΓ in Ω . Denote byΩ+ (resp.Ω−) the domain{Z ∈ Ω: r(Z) > 0}
(resp.{Z ∈ Ω: r(Z) < 0}).

A neighborhoodΩ is supposed to be small enough; in particular, we may assume
(a) the function|Z|2 is strictly J -plurisubharmonic onΩ and there exists a consta

ε0 > 0 such that the value of the Levi form (with respect toJ ) of the function|Z|2 on a
vectorv at a pointp ∈ Ω is minorated by(ε0/2)‖v‖2.

For a constantN > 1, which will be chosen later, and sufficiently smallε > 0 consider
the functionrε(Z) = r(Z)+ε|Z|2−ε/N and the hypersurfaceΓε := {Z ∈ Ω: rε(Z) = 0}.
Recall thatBn is the unit ball inC

n; we may assume that
(b) the ballBn lies inΩ .
We shall make our choice of a coordinate system more precise. Namely, after aC-linear

change of coordinates preserving the previous assumptions, we may assume that
(c) r(Z) = x − h(y,w) onΩ (as usual,z = x + iy andw = (w1, . . . ,wn−1)); in partic-

ularHJ
0 (Γ ) = {Z: z = 0}, and

(d) for everyZ ∈ Ω and forε < 1 the kernel of the form∂J rε(Z) is in a one-to-one
correspondence withHJ

0 (Γ ) via the projection(z,w) �→ (0,w).
Furthermore, there exists a constantc > 0 such that for everyz ∈ Ω one has

c−1 dist(Z,Γ ) � |r(Z)| � c dist(Z,Γ ) (where dist is the Euclidean distance). ForZ ∈
(1/2N)Bn ∩ Γε we have|r(Z)| = ε/N − ε|Z|2 so that∣ ∣
ε/2N � ∣r(Z)∣ � ε/N. (4)
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Throughout the rest of the proof we shall stay in(1/2N)Bn. Note that
(e) pieces of the hypersurfacesΓε andΓ−ε form a foliation of(1/2N)Bn.

Lemma 3.2. If N is a sufficiently large fixed constant, then for sufficiently smallε > 0 the
hypersurfaceΓε is strictlyJ -pseudoconvex at all its point lying in the ball(1/4N)Bn.

Proof. For everyZ ∈ Ω+ ∩ (1/2N)Bn there exists uniqueε = ε(Z) such thatZ ∈ Γε;
clearly, the functionZ �→ ε(Z) is smooth on(1/2N)Bn. Therefore for everyZ ∈ Γε ∩
(1/2N)Bn the value of the Levi formLJ

Z(r)(v) of r at Z at a vectorv ∈ HJ
Z (Γε) has the

estimate∣∣LJ
Z(r)(v)

∣∣ < c1(d1 + d2)‖v‖2, (5)

whered1 is the distance fromZ to the closest pointZ0 on the hypersurfaceΓ = Γ0 and
d2 is the distance betweenHJ

Z (Γε) andHJ
Z0

(Γ0) measured in some smooth metric on

corresponding Grassmanian. Indeed, since|LJ
Z(r)(v)| = |LJ

Z(r)(v/‖v‖)|‖v‖2, it is suffi-
cient to find an estimate of sup{|LJ

Z(r)(u)|: u ∈ HJ
Z (Γε),‖u‖ = 1}. Consider the real un

spheresS(Z) = {u ∈ HJ
Z (Γε): ‖u‖ = 1} andS(Z0) = {u′ ∈ HJ

Z0
(Γ ): ‖u′‖ = 1} in the tan-

gent spacesHJ
Z (Γε) andHJ

Z0
(Γ ) respectively. In what follows the Levi formsLJ

Z(r) and

LJ
Z0

(r) are viewed as quadratic forms onR
2n since the local coordinates are fixed; the t

gent spacesHJ
Z (Γε) andHJ

Z0
(Γ ) are identified with subspaces inR2n. Denote byL̂J

Z(r)

the polarization ofLJ
Z(r), that is, the corresponding bilinear form onR

2n.
For any vectoru ∈ S(Z) we have∣∣LJ

Z(r)(u)
∣∣ � inf

u′∈S(Z0)

(∣∣LJ
Z(r)(u′)

∣∣ + ∣∣LJ
Z(r)(u − u′)

∣∣ + 2
∣∣L̂J

Z(r)(u′, u − u′)
∣∣).

WhenZ ∈ Γ the formLJ
Z(r)(u′) vanishes for anyu′ ∈ HJ

Z (Γ ); so there exists a consta
c1 such that

sup
{∣∣LJ

Z(r)(u′)
∣∣: u′ ∈ S(Z0)

}
� Cd1.

Furthermore, there exist constantsc′
1 andc′

2 such that

sup
u∈S(Z)

(
inf

u′∈S(Z0)

∣∣LJ
Z(r)(u − u′)

∣∣) � c′
1 sup

u∈S(Z)

(
inf

u′∈S(Z0)
‖u − u′‖2) � c′

2d
2
2 .

In a similar way

sup
u∈S(Z)

(
inf

u′∈S(Z0)
2
∣∣L̂J

Z(r)(u′, u − u′)
∣∣) � c′′

1 sup
u∈S(Z)

(
inf

u′∈S(Z0)
‖u − u′‖) � c′′

2d2

for some positive constantsc′′
1 and c′′

2. Obviously,d1 ∼ |r|. Moreover, a direct estimat
from above of the quantities|∂rε/∂zk(Z) − ∂r/∂zk(Z0)| and|∂rε/∂zk(Z) − ∂r/∂zk(Z0)|
shows thatd2 < c2(d1 + ε|Z|).

Observing that ifZ ∈ Γε, thenε = r(Z)/( 1
N

− |Z|2), and also that|Z| < 1/2N we see
that ∣ ∣ ( )
∣LJ

Z(r)(v)∣ � c3ε(Z)/N ‖v‖2. (6)
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We point out that the constantc3 is independent ofε andN . Fix N � max{2,4c3/ε0}.
Then, in view of condition (a) and (6), the Levi form ofrε is strictly positive onHJ

Z (Γε)

which proves the lemma.�
By Theorem 2.4, in each sufficiently small neighborhood of the origin there exi

family of J -holomorphic Bishop discs with boundaries inΓ . Fix a such a neighborhoo
U ⊂ (1/2NB

n).

Lemma 3.3. Let f :D → U be aJ -holomorphic Bishop disc, that is, letf be a pseudo
holomorphic map continuous onD such thatf (bD) ⊂ Γ . Thenf (D) lies inΓ .

Proof. Assume by contradiction thatf (D) does not lie inΓ . Recall thatU+ := U ∩
{r > 0} is filled by strictly pseudoconvex hypersurfacesΓε, 0 � ε � ε0. We may assum
that there exists a connected open subsetG of D such thatf (G) lies inU+ (otherwise we
replacer by −r) andf (bG) ⊂ Γ . Consider the setA = {ε > 0: (rε ◦ f )|G < 0}. This set
is not empty if the discf is small enough. Letε1 = inf A. Thenε1 > 0, the hypersurfac
Γε1 is strictly pseudoconvex,(rε1 ◦ f )|bG < 0 andrε1 ◦ f |G � 0. Moreover, there exists a
interior pointζ ∈ G such thatrε1 ◦ f (ζ ) = 0.

On the other hand by Lemma 2.3 the hypersurfaceΓε1 admits a strictly plurisubhar
monic defining function in a neighborhood of the pointf (ζ ). This contradicts the max
mum principle and proves the lemma.�

We now can prove Theorem 3.1. Similarly to the previous sections consider the iso
dilations dδ :Z �→ Z′ = δ−1Z. The imageΓδ := (dδ)∗(Γ ) of the hypersurfaceΓ ap-
proaches the hyperplaneΓ0 = {Rez = 0} asδ → 0. LetUj , j = 1,2, be neighborhoods o
the origin inC

n−1 andU3 a neighborhood of the origin inR; we assume that these neig
borhoods aresufficiently small. Forp ∈ U1, v ∈ U2 andc ∈ U3 consider aJst-holomorphic
disc f (p, v, c)(ζ ) = (ic,p + vζ ) that is a Bishop disc lying in the hyperplaneΓ0. The
centersf (p, v, c)(0) of such discs fill a neighborhood of the origin inΓ0 and their tan-
gent vectors (at centers)df (p, v, c)(0)(∂/∂ Reζ ) fill a neighborhood of the origin in th
holomorphic tangent spaceHq(Γ0) for anyq ∈ Γ0 in a neighborhood of the origin. By The
orem 2.4 for anyδ > 0 there exists a family of discsF(δ,p, v, c)(•) smoothly depending
on parametersδ,p, v, c) such that

(a) every discF(δ,p, v, c)(•) is Jδ holomorphic (where as usualJδ denotes the direc
image(dδ)∗(J ));

(b) for every sufficiently small positiveδ every discF(δ,p, v, c)(•) is a Bishop disc for
Γδ , that is,F(δ,p, v, c)(bD) ⊂ Γδ ;

(c) we haveF(0,p, v, c)(•) = f (p, v, c)(•), so that the family{F(δ,p, v, c)(•)} of Jδ-
holomorphic discs is a small deformation of the family{f (p, v, c)(•)}.

By Lemma 3.3, for smallδ > 0 every discF(δ,p, v, c)(D) lies in Γδ . By standard
arguments their centers fill a neighborhoodU of the origin onΓδ and at every pointz ∈ U

their tangent vectors fill a neighborhood of the origin in the tangent spaceH
Jδ
z (Γδ). Since
the structuresJδ andJ are biholomorphic, the proof of the theorem is complete.
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4. Manifolds with non-trivial Levi form

In this section we prove the following result

Theorem 4.1. Let E = {r := (r1, . . . , rm) = 0, j = 1, . . . ,m} be a (germ of a) smooth
generating submanifold passing through a pointp in an almost complex manifold(M,J ).
Suppose that there existsj and a vectorv ∈ HJ

p (E) such that the Levi formLJ
p(rj )(v)

does not vanish. Then for fixed non-integerk > 2 there exists in a neighborhood ofp a
Ck smooth generating manifold̃E of dimensiondimE + 1 with boundary such that ever
point of Ẽ belongs to aJ -holomorphic disc with boundary onE andE is the boundary
of Ẽ.

Our proof is based on non-isotropic scaling. Isotropic dilations used in the previou
tion cannot be applied here since they do not give one the control over the Levi fo
E. The crucial technical point here is a choice of a suitable coordinate system “no
izing” an almost complex structure. Indeed, the following elementary example show
basic difficulty in dealing with the almost complex case if a coordinate system is not
enough. Consider inC2 the real hyperplaneΠ : Rez2 = 0, which is Levi flat in the stan
dard complex structureJst of C

2. (Throughout, we identify an almost complex structu
on a manifold with the corresponding field of operators on the tangent space.) Co
the diffeomorphismΦ : (z1, z2) �→ (z1, z2 − |z1|2). The imageΦ(Π) is the hypersurface
Γ : Rez2 + |z1|2 = 0 and the direct image of the standard structure is the almost com
structureJ (Φ(z)) = dΦ(z) ◦ J (z) ◦ dΦ−1(z). The structureJ coincides withJst at the
origin, so thatJ (z) = Jst + O(|z|) and the hypersurfaceΓ is strictly pseudoconvex with
respect toJst, but Levi flat with respect toJ !

4.1. The caseCRdimE = 1

We begin with this case since it is particularly convenient for non-isotropic dilat
Passing to suitable local coordinates (similarly to the previous section we use the n
Z = (z1, . . . , zn−1,w)) we may assume thatM is a neighborhood of the origin inCn andJ

is a smooth matrix valued function of the formJ = Jst+O(|Z|). Moreover, we may assum
that the holomorphic tangent spaceHJ

0 (E) coincides with the linel = (0, . . . ,0, ζ ), ζ ∈ C

andE = {rj (Z) = 0, j = 1, . . . , n − 1}, whererj = zj + zj + O(|Z|2).
Consider aJ -holomorphic disc tangent toHJ

0 (E) at the center. Performing if necessa
an appropriate diffeomorphism with linear part identity at the origin we can assum
this disc lies onl. Thus, we shall assume thatl is J -holomorphic.

Lemma 4.2. In the above variables, for everyj the Levi formLJ
0 (rj ) coincides onHJ

0 (E)

with the Levi formL
Jst
0 (rj ) with respect toJst.

Proof. This follows from Proposition 2.2 if in its setting we take the linel for a J -holo-

morphic discf . �
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For δ > 0 consider now thenon-isotropicdilationsΛδ : (z,w) �→ (δ−1z, δ−1/2w) and
the induced structuresJδ := (Λδ)∗(J ).

Lemma 4.3. For any positive realk one has‖Jδ − Jst‖Ck(K) → 0 asδ → 0 on each com-
pact subsetK of Cn.

Proof. Consider the Taylor expansion ofJ (Z) near the origin:J (Z) = Jst + L(Z) +
R(Z) where L(Z) is the linear part of the expansion andR(Z) = O(|Z|2). Clearly,
Λδ ◦ R(Λ−1

δ (Z)) ◦ Λ−1
δ converges to 0 asδ → 0. Denote byLδ

kj (Z) (respectively, by

Lkj (Z)) an entry of the real matrixΛδ ◦ L(Λ−1
δ (Z)) ◦ Λ−1

δ (respectively, ofL(Z)).
Then Lδ

kj (z,w) = Lkj (δz, δ
1/2w) → 0 for k, j = 1, . . . ,2n − 2 andk, j = 2n − 1,2n,

Lδ
kj (z,w) = δ1/2Lkj (δz, δ

1/2w) → 0 for k = 2n − 1,2n, j = 1, . . . ,2n − 2. For k =
1, . . . ,2n − 2 andj = 2n − 1,2n we haveJ δ

kj (z,w) = δ−1/2Lkj (δz, δ
1/2w) → Lkj (0,w).

However, in the coordinate system fixed above the linel is J -holomorphic, that is
J (l(ζ )) ◦ dl = dl ◦ Jst. This shows thatL(0,w) ≡ 0. Thus,Lδ

kj approaches 0 for allk, j .
This gives us the result of the lemma.�

We point out that this result fails for CRdimE > 1. For this reason we begin our co
struction with the case CRdimE = 1.

We may assume thatE is defined by equationsrj (z,w) = 0, j = 1, . . . , n − 1, with
rj (z,w) = 2 Rezj +2 ReQj(z,w)+Hj(z,w)+O(|Z|2). HereQj(Z) = ∑

q
j
ksZkZs and

Hj(Z) = ∑
ks h

j
ksZkZs are complex and Hermitian quadratic forms, respectively. T

the manifoldEδ := Λδ(E) is given by the equationsrj
δ (Z) := δ−1rj ((δ

1/2)z, δw) = 0 and

r
j
δ (Z) → r

j

0 (Z) := 2 Rezj + 2 ReQj(0,w) + Hj(0,w) (in the Ck norm for anyk) asδ

approaches 0. Since the quadratic map(
H 1(′0,w), . . . ,Hn−1(′0,w)

)
can be identified with the Levi form ofE at the origin, one of the formsHj(0,•) does not
vanish onC. Replacing the functionsrj by their linear combinations if necessary one c
assume thatHj(0,w) ≡ 0, j = 1, . . . , n − 2, andHj(0,w) = −|w|2.

Consider the limit manifoldE0 = {rj (Z) = 0, j = 1, . . . ,m}. After a biholomorphic
(with respect toJst) change of the variables(z,w) �→ (z′,w′) = (z + Q(0,w),w) (here
Q = (Q1, . . . ,Qn−1)) we obtain a manifoldE′

0 defined by the equations Rezj = 0, j =
1, . . . , n − 2, 2 Rezn−1 = |w|2 (we drop the primes).

Following Boggess and Pitts [2] we consider now the familyf : ζ �→ (z(ζ ),w(ζ ) of
holomorphic Bishop discs attached toE′

0 and defined by the formulae

zj (ζ ) = iyj , j = 1, . . . , n − 2,

zn−1(ζ ) = (1/2)

(
cc + t2

(1+ λ)2
(λ2 + 1)

)
+ tλ

1+ λ
c + iyn−1(

tc t2λ
)

+
1+ λ

+
(1+ λ)2

ζ,
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w(ζ ) = c + t (λ + ζ )

1+ λ
.

This family depends on parametersy = (y1, . . . , yn−1) ranging in some neighborhoo
of the origin inR

n−1, real parameterst > 0 andλ ∈ [0,1], and a complex parameterc

ranging in a neighborhood of the origin inC. We shall writef (t, λ, y, c)(•) for discs
in this family. We are interested in the mapsf (t, λ, y, c)(−λ). They have the following
properties:

(a) for anyt > 0 one has limλ→1 f (t, λ, y, c)(−λ) = (iy1, . . . , iyn−2, (1/2)cc+ iyn−1, c),
so that the pointsf (t,1, y, c)(−1) fill a neighborhood of the origin inE′

0 as (y, c)

ranges over a neighborhood of the origin inR
n−1 × C and the corresponding map is

diffeomorphism;
(b) for any fixedt > 0 the differential of the map(λ, y, c) �→ f (t, λ, y, c)(−λ) evaluated

at (1,0,0) has the maximum possible rankn + 2.

Now fix sufficiently small positivet = t0 > 0. By Theorem 2.4 for smallδ > 0 there
existJδ-holomorphic discsFδ(λ, y,ω)(•) Ck-smoothly depending onδ, y,λ,ω such that
Fδ(λ, y,ω)(bD) ⊂ Eδ andF0(λ, y,ω) = f (t0, λ, y,ω). It follows by continuity from (a)
and (b) that the rangẽEδ of the map(λ, y,ω) �→ Fδ(λ, y,ω)(−λ) considered forλ close to
1 is ann+2-manifold with boundary that is the range of the map(y,ω) �→ Fδ(1, y,ω)(−1)

and therefore lies inEδ . Since this map is close tof (t,1, y,ω)(−1) and so has the max
mum possible rankn + 1, its range is entireEδ .

Remark. Our proof allows one to ‘control’ in a certain measure the direction in wh
the manifoldẼ is attached toE. Indeed, differentiating the mapf (t, λ, y,ω)(−λ) with
respect toλ at the point(t,1,0,0) we see that the tangent space toẼ0 at the origin is
spanned byT0(E

′
0) and the vectorν = (0, . . . ,1,0). Hence the tangent space tõE at the

origin is spanned byT0(E) and a vector close toν.

4.2. The caseCRdimE > 1

Let E be a generating submanifold in an almost complex manifold(M,J ). In this
section we are particularly interesting in the case CRdimE > 1, but our consideration
are also meaningful for CRdimE = 1. As before, we assume thatM is a neighbor-
hood of the origin inC

n, J is a smooth matrix valued function,J = Jst + O(|Z|), and
E = {rj (Z) = 0, j = 1, . . . ,m}, whererj = zj + zj + O(|Z|2), Z = (z,w) ∈ C

m ×C
n−m.

Let v ∈ HJ
0 (E) be a vector such that the Levi form ofrm does not vanish onv. Consider

a J -holomorphic disc tangent tov at the center. After a suitable diffeomorphism w
linear part at the origin that isC-linear this disc coincides with the linel = (0, . . . ,0, ζ ),
ζ ∈ C; pushing forwardJ , we still obtain an almost complex structure coinciding with
standard one at the origin. Thus, we may assume thatl isJ -holomorphic in our coordinates
Similarly to the previous section, for every defining functionrj the value of the Levi form
LJ

0 (rj )(v) coincides with that of the Levi formLJst
0 (rj )(v) with respect toJst in the above
coordinates.
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Forδ > 0 consider the dilationsΛδ : (z,w) �→ (δ−1z, δ−1/2w) and the induced structur
Jδ := (Λδ)∗(J ). As we shall see, if the CR dimension ofE is > 1, then the structuresJδ

do not converge toJst in general. Consider the Taylor expansion of the matrix functionJ :

J (Z) = Jst + L(Z) + O
(|Z|2),

whereL(Z) is the linear part. We observe thatL is an endomorphism ofR2n anti-linear
with respect to the standard complex structure. We regardL(Z) as a complexn×n-matrix
with entriesLqj (Z) that areR-linear (C-valued) functions ofZ. The following result can
be proved by direct computation.

Lemma 4.4. On hasJδ → J0 asδ → 0, whereJ0 = Jst + L0(w) and the matrixL0(w) (in
the complex notation) has entriesL0

qj described as follows: L0
qj = 0, for q = 1, . . . , n, j =

1, . . . ,m and for q = n − m + 1, . . . , n, j = 1, . . . , n; for q = 1, . . . ,m, j = n − m +
1, . . . , n one hasL0

qj (w) = Lqj (0,w).

Moreover, the above condition of theJ -holomorphy of the linel implies thatLq,n−m

does not depend onwn−m, that is,L0
q,n−m = L0

q,n−m(0,w1, . . . ,wn−m−1).
Consider the manifoldsEδ := Λδ(E) defined by the equations

rJ
δ (z,w) := δ−1rj (δz, δ1/2w) = 0, j = 1, . . . ,m.

Consider the Taylor expansionrj (z,w) = zj + zj + 2 ReQj(z,w)+Hj(z,w)+ O(|Z|2),
whereQj is the complex quadratic part andHj the Hermitian part of the expansion. A

δ → 0, we haverj → r
j

0 := zj + zj + 2 ReQj(0,w) + Hj(0,w). We point out that the
biholomorphic (with respect toJst) change of the variables(z,w) �→ (z + Q(0,w),w)

(whereQ = (Q1, . . . ,Qm)) does not change the linel, therefore we can execute it befo
the dilation. This allows us to assume thatQj(0,w) ≡ 0. Thus, the functionsrj

δ converge
to zj + zj + Hj(0,w) as δ → 0. In this sense we view the manifoldE0 = {zj + zj +
Hj(0,w) = 0, j = 1, . . . ,m} as the limit ofEδ asδ → 0.

Our next aim is the description ofJ0-holomorphic Bishop discs (with values in a suf
ciently small neighborhoodU of the origin) with boundaries attached toE0. Letf :D → U

be a smooth map. To simplify the notations, we will denote byfζ the partial derivative∂f
∂ζ

.
Recall that theJ0-holomorphy condition forf can be written in the following form:

fζ + Q(f )fζ = 0,

whereQ(Z) is the complexn × n matrix of an operator the composite of which w
complex conjugation is equal to the endomorphism−(Jst+Jδ(Z))−1(Jst−Jδ(Z)) (which
is an anti-linear operator with respect to the standard structureJst). If f has the form
f (ζ ) = (z(ζ ),w(ζ )), then after direct computations of the matrixQ we obtain the equa
tions of theJ0-holomorphy off :

(zj )ζ = −(i/2)

(
n−m∑
q=1

L0
jq(w)(wj )ζ

)
, j = 1, . . . ,m, (7)

and
(wj )ζ = 0, j = 1, . . . , n − m.
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This gives one a direct description of allJ0-holomorphic discs. Fix a functionw ∈
(O(D))n−m × (Ck(D))n−m for some fixed non-integerk > 0. Then integration of the abov
system (7) shows that

zj (ζ ) = −TCG

(
(i/2)

n−m∑
q=1

L0
jq(w)(wq)ζ

)
(ζ ) + φj (ζ ), j = 1, . . . ,m,

where, as before,TCG is the Cauchy–Green transform andφj is a holomorphic function o
the classCk(D).

Forw ∈ (O(D))n−m × (Ck(D))n−m let Ψj (w)(•) be the function

−TCG

(
(i/2)

n−m∑
q=1

L0
jq(w)(wq)ζ

)
.

If w is fixed, then the boundary condition(z,w)(bD) ⊂ E0 holds if and only if

zj (ζ ) = (
Ψj (w) − IS

(
ReΨj (w)

))
(ζ ) − (1/2)IS

(
Hj(0,w)

)
(ζ ) + iyj , j = 1, . . . ,m,

whereyj ∈ R andIS is the Schwarz integral in the unit disc:

IS(h)(ζ ) = 1

2π

2π∫
0

h(eiτ )
eiτ + ζ

eiτ − ζ
dτ. (8)

This gives us a complete description of Bishop discs attached toE0. In particular, we have
the following result.

Lemma 4.5. A map(z,w) : ζ �→ (z(ζ ),w(ζ )) is a J0-holomorphic Bishop disc forE0 if
and only if(z − Ψj (w) + IS(ReΨj (w)),w) is aJst-holomorphic Bishop disc forE0.

Similarly to the previous subsection, consider the mapw :D → C
n−m of the following

form:

w1 = c1,

. . .

wn−m−1 = cn−m−1,

wn−m(ζ ) = cn−m + t (λ + ζ )

1+ λ
,

where thecj are complex constants,t > 0 and λ ∈ [0,1]. Then (wk)ζ = 0 for k =
1, . . . , n − m − 1. On the other hand, by our constructionL0

jn−m(0, . . . ,0, ζ ) ≡ 0. Re-

call here that theL0
jk participate in the linear partL(Z) of the Taylor expansion ofJ at the

origin and areR-linear inw. Hence theR-linear functionL0
jn−m is independent ofwn−m

and
∑n−m

k=1 L0
jk(w)(wk)ζ = L0

jn−m(c1, . . . , cn−m−1)t/(1 + λ) is constant with respect t
the variableζ .

Let aj (c1, . . . , cn−m−1) = −(i/2)L0
jn−m(c1, . . . , cn−m−1)t/(1 + λ). Then it follows
from Eqs. (7) thatzj (ζ ) = aj ζ + φj (ζ ) with holomorphicφj . We setφj = −aj ζ +
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Φj . Then the inclusion(z,w)(bD) ⊂ E0 is equivalent to the relation ReΦj(ζ ) =
−(1/2)Hj (0,w(ζ )) for ζ ∈ bD meaning that(Φ,w) is a Bishop disc forE0 with respect
to Jst. In view of the conditionζ ζ = 1, the right-hand side represents a real poly
mial of degree 1 inζ , so that theΦj are complex polynomials of degree at most 1 a
can easily be explicitly written; since the Hermitian quadratic formHm(0,w) does not
vanish on the linel = (0, . . . ,0, ζ ), it contains the term with negative coefficient, a
without loss of generality we can assume that this coefficient is−1, other terms of the
form Hm(0,w) are independent ofwn−m, and the other formsHj(0,w) contain no term
|wn−m|2. Then we obtain a formula forzn−m similar to the one forzn−1 in the previous
section and explicit expressions for thez-component of aJ0-holomorphic Bishop disc
(z,w)(c1, . . . , cn−m, t, λ, y1, . . . , ym)(•) determined by the parameterscj , t , λ, yk :

zj (ζ ) = iyj + aj (c)ζ − aj (c)ζ − 1

2
Hj

(
0, c1, . . . , cn−m−1, cn−m + tλ

1+ λ

)

− t

1+ λ
ζ lj (c), j = 1, . . . ,m − 1,

zn−m(ζ ) = 1

2

(
cn−mcn−m + t2

(1+ λ)2
(λ2 + 1)

)
+ tλ

1+ λ
cn−m + iyn−1

+
(

tcn−m

1+ λ
+ t2λ

(1+ λ)2

)
ζ + am(c)ζ − am(c)ζ

− 1

2
Hn−m(0, c1, . . . , cn−m−1,0),

where theaj (c) are defined above and thelj are homogeneous linear forms ofc1, . . . ,

cn−m−1. As pointed out already, forcj = 0, j = 1, . . . , n − m + 1, these are justJst-
holomorphic Bishop discs.

Finally, it is easy to see (by computing the rank of the corresponding map; cf. the
vious subsection) that the constructed family ofJ0-holomorphic Bishop discs sweeps o
a manifold with boundaryE0. So we may use the implicit function theorem to constr
a perturbed family ofJδ-holomorphic Bishop discs sweeping out a manifold with bou
aryEδ .
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