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1. Introduction

Attachment of holomorphic discs to a prescribed real submanifold of a complex man-
ifold is a well-known and powerfull method of geometric complex analysis developed by
many authors. Recently, in view of deep connections with symplectic geometry discovered
by M. Gromov [4], this method found its way to the almost complex case. Authors usually
consider the attachment of pseudoholomorphic discs to totally real submanifolds of almost
complex manifolds, for instance, near points admitting a non-trivial holomorphic tangent
space.

In the present paper we consider pseudoholomorphic discs (Bishop discs) attached to
generic real submanifolds, of a positive complex dimension, of almost complex manifolds.
In Section 2 we prove the existence of Bishop discs for a generic submatifofdan
almost complex manifoldM, J). We show that, roughly speaking, these discs can be
parametrized quite similarly to the case of the standard complex structure. Our proof is
based on isotropic dilations of local coordinates in a similar way to Sikorav’s proof of
the Nijenhuis—Woolf theorem on the existence of local pseudoholomorphic discs in a pre-
scribed direction [7].

Our main aim is to study the geometry of pseudoholomorphic Bishop discs in terms
of the Levi form of aCR-submanifold. We begin with the Levi flat case. In Section 3
we prove that each (sufficiently small) pseudoholomorphic Bishop disc attached to a real
hypersurface with identically vanishing Levi form lies in this hypersurface. Hence such a
hypersurface contains pseudoholomorphic discs passing in an arbitrary prescribed complex
tangent direction (Theorem 3.1). This gives an affirmative answer to a question raised by
Ivashkovich and Rosay [6]. They also constructed in [6] an example of a real hypersurface
in an almost complex manifold of complex dimension 3 that has an identically vanishing
Levi form, but contains no complex hypersurfaces. In particular, this hypersurface is min-
imal in the sense of Tumanov [9]. Recall that the well-known result of Trépreau [8] and
Tumanov [9] claims that in the case of an integrable complex structure, Bishop discs of a
minimal hypersurface fill its one-sided neighborhood. Thus, Theorem 3.1 in combination
with the example of lvashkovich—Rosay shows that the Trépreau—Tumanov theorem has
no straightforward generalisation to the almost complex case.

In Section 4 we consider the case dCR-submanifoldE with Levi form distinct from
zero. We prove that in this case the corresponding Bishop discs sweep out a submanifold
containingE as an open piece of the boundary (Theorem 4.1). This is an almost complex
analog of results due to Hill and Taiani [5] and Boggess [1], but our proof in the almost
complex setting requires a new idea because the Nijenhuis tensor (the torsion) of an almost
complex structure has a strong influence on the geometry of the Levi form of a real sub-
manifold: it is not even always possible to tak€B-submanifold of the standard complex
space for a local model of @R-submanifold of an almost complex space. To overcome
arising difficulties, we use in Section 4 non-isotropic dilations in a suitable coordinate sys-
tem (a similar idea is used in [3] in order to study boundary behavior of the Kobayashi
metric in almost complex manifolds). It turns out thaiEifhas CR dimension 1, then the
non-isotropic dilations allow one to represent the gair J) as a small deformation of
the pair(Eo, Jst), Where Eg is the quadric manifold irC" of which the Levi form with
respect ta/s; coincides with the Levi form o with respect ta/. This results in the exis-
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tence of pseudoholomorphic Bishop discs with a certain special geometry (Theorem 4.1).
The general case could in principle be treated by considering a foliati@nbgf subman-
ifolds of CR-dimension 1. However, we put forward a method allowing us to give a more
straightforward description of the Bishop discs involved in our construction in the general
case.

We point out that our methods allow one to deal only with the first Levi form. For
instance, suitable almost complex analogs of highly precise results of Trépreau [8] and
Tumanov [9] require another approach.

2. Existence and local parametrization of Bishop discs
2.1. Almost complex manifolds

Let (M, J) be an almost complex manifold with operator of complex structureet
D be the unit disc inC and Jg; the standard (operator of) complex structure@hfor
arbitraryn. Let f be a smooth map fron® into M. We say thatf is J-holomorphicif
df oJ = J odf.We call such a mag a J-holomorphic disc and denote iy, (D, M)
the set of/-holomorphic discsn M. We denote by (D) the space of usual holomorphic
functions onD.

The following lemma shows that an almost complex manif@ifl, J) can be locally
viewed as the unit balk in C" equipped with a small almost complex deformatior/gf
We shall repeatedly use this observation in what follows.

Lemma2.l. Let(M, J) be an almost complex manifold. Then for each M, eachsg > O,
and eachk > Othere exist a neighborhodd of p and a smooth coordinate chasrtU — B
such thatz(p) =0, dz(p) o J(p) o dz~1(0) = Jst, and the direct image,(J) :==dzo J o
dz 1 satisfies the inequalityz, (J) — Jstllox @) < do.

Proof. There exists a diffeomorphismfrom a neighborhood/’ of p € M ontoB such
thatz(p) =0 anddz(p) o J(p) o dz71(0) = Jg. Fors > 0 consider the isotropic dilation
ds 1t — 81 in C" and the composites = ds o z. Then limy_.o || (zs)«(J) — Istllcr ) = 0.

SettingU = zgl(IB%) for sufficiently small positivéd we obtain the required result.c

The operatorsh; and d;. Let (M, J) be an almost complex manifold. We denote by
T M the real tangent bundle @ and byTcM its complexification. Recall thafc M =
TAEON & TOD N whereTTOM .= (X e TcM: JX =iX}={c —iJ¢, L € TM}, and
TOUM . ={X eTcM: JX =—iX}={¢ +iJt,; € TM}. Let T*M be the cotangent
bundle ofM. IdentifyingC® 7*M with T*M := Hom(Tc M, C) we define the set of com-
plex forms of type(1,0) on M asT oM = {w € TEM: w(X)=0,VX e T®Y M} and
we denote the set of complex forms of ty@e 1) on M by ToyM = {w € TEM: w(X) =
0,VX € TEOM}. ThenTiM = T(1,0M & T0,1) M. This allows us to define the operators
d; andd; on the space of smooth functions df for a smooth complex functiom on M
we setd;ju =duc,0 € Ta,oM andd u = du,1) € To,1))M. As usual, differential forms
of any bidegreép, q) on (M, J) are defined by exterior multiplication.
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Plurisubharmonic functiondVe say that an upper semicontinuous functiam (M, J)
is J-plurisubharmonicon M if the compositionu o f is subharmonic oA for every
feO;D,M).

Let u be aC? function onM, let p € M andv € T,M. The Levi formof u at p evalu-
ated onw is defined by the equality’ (1) (p) (v) := —d (J*du)(X, J X)(p) whereX is an
arbitrary vector field of’ M such thatX (p) = v (of course, this definition is independent
of one’s choice ofX).

The following result is well known (see, for instance, [6]).

Proposition 2.2. Letu be aC? real valued function o, let p € M andv € T, M. Then
L’ (u)(p)(v) = A(u o £)(0) where f is an arbitrary J-holomorphic disc in such that
f() = panddf(0)(d/dRe¢) = v (here¢ is the standard complex coordinate variable
in C).

The Levi form is obviously invariant with respect to biholomorphisms. More pre-
cisely, letu be aC? real valued function on¥, let p e M andv € T,M. If & is
a (J, J')-holomorphic diffeomorphism froniM, J) into (M’, J'), then L' (u)(p)(v) =
L7 (uo @) (@ (p)dP(p)(v)).

Finally, it follows from Proposition 2.2 that &2-smooth real functioru is J-
plurisubharmonic onV if and only if L7 (u)(p)(v) >0 forall pe M, v e T,M. Thus,
similarly to the case of an integrable structure one arrives in a natural way to the follow-
ing definition: aC? real valued function: on M is strictly J-plurisubharmonicon M if
L (u)(p)(v) is positive for everyp € M, v e T, M\{0}.

It follows easily from Lemma 2.1 that for every poipte (M, J) there exists a neigh-
borhoodU of p and a diffeomorphisny: U — B with center atp (in the sense that
z(p) = 0) such that the functiopz|2 is J -plurisubharmonic otV andz,.(J) = Jst+O(|z]).

Let u be aC? function in a neighborhood of a poini of (M, J) that is strictly
J-plurisubharmonic. Then there exists a neighborhoodf p with local complex co-
ordinates;: U — B such that the function — c|z|? is J-plurisubharmonic o/ for some
constant > 0.

Real submanifolds in almost complex manifoldst £ be a real submanifold of codi-
mensionm in an almost complex manifold), J) of complex dimensiom. For everyp
we denote by-II{(E) the maximal complex (with respect i p)) subspace of the tangent
spaceT, (E). Similarly to the integrable casé, is said to be a CR manifold if the (com-
plex) dimension oiHI{(E) is independent op; it is called the CR dimension df and is
denoted by CRdink .

In complex analysis by genericsubmanifold of a complex manifold one usually means
a submanifold such that at every point € E the complex linear span @f, (E) coincides
with the tangent space of the ambient manifold. We think that the use of this term in
precisely that sense outside the framework of complex analysis proper can sometimes be
misleading. For this reason we shall provisionally call submanifolds with similar properties
of an almost complex manifoltf (that is, submanifolds such that the complex linear span
of T,(E) at each point coincides witli M) generatingsubmanifolds. Of course, every
generating submanifold is CR.
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If E is defined as the common zero level of functiens . ., r,,, then after the standard
identification of7 M and7 %9 pm HI{(E) can be defined as the zero subspace of the forms
ajri, ..., 0 ry. In particular, letE be a smooth real hypersurface in an almost complex
manifold (M, J) defined by an equation= 0. We say thatf is strictly pseudoconvex
(for J) if the Levi form of r is strictly positive definite on each holomorphic tangent space
HI{(E), p € I'. Of course, this definition does not depend on one’s choice of the defining
function r. We shall require the following result, which is well-known in the case of an
integrable structure.

Lemma2.3. Let E be a strictly pseudoconvex hypersurface in an almost complex manifold
(M, J). ThenE admits a strictly plurisubharmonic defining function in a neighborhood of
each its pointp.

The proof is quite similar to the case of the standard structure. Selecting suitable local
coordinatesZ = (z, wy, ..., w,—1) in C" we can assume thaf is a neighborhood of the
origin inC" andp = 0; as usual, we assume thig0) = Jsi. Furthermore, we may suppose
thatr(Z) = z + z + O(|Z|?) and therefore{ (E) = {z = 0}. ThenL} (+?)(v) = |v1|? for
complex tangent vectorns € To(M). SinceL{)(r) is strictly positive definite orHOJ(E),
the Levi form Lé(r + Cr?) is strictly positive onTo(M) for a sufficiently large positive
constaniC.

2.2. Bishop discs and Bishop’s equation

Let (M, J) be a smooth almost complex manifold of real dimensiera@d E a gen-
erating submanifold off of real codimensionn. A J-holomorphic discf:D — M
continuous orD is called aBishop discif f(bD) Cc E (wherebD denotes the bound-
ary of D). Our aim is to prove the existence and to describe certain classes of Bishop discs
attached tct.

Consider the case whete is defined as the zero set of &i'-valued functionr =
(1, ...,r™) on M. Then a smooth may defined oD and continuous o is a Bishop
disc if and only if it satisfies the following non-linear boundary problem of the Riemann—
Hilbert type for the quasi-linear operatdy:

(RH): { 9,f()=0, ¢eD,
r(f)(¢)=0, ¢ ebD.

To describe solutions of this problem we fix a chdrC M and a coordinate diffeomor-
phismz:U — B" whereB” is the unit ball ofC". Identifying M with B" we may assume
that in these coordinates= Jst + O(|z|) and the norm|J — Istll ok n) is small enough
for some positive reat in accordance with Lemma 2.1. (Hetecan be arbitrary, but we
assume it for convenience to be non-integer and fix it throughout what follows.) More
precisely, using the notatio#d = (z, w), z = (21, ---,Zm), W = (w1, ..., wy_y) for the
standard coordinates {@", we may also assume thatN U is described by the equations

r(Z)=Rez — h(Imz,w) =0 (1)
with vector-valuedC*°-function : B — R such that:(0) = 0 andVA4(0) = 0.
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Similarly to the proof of Lemma 2.1 consider the isotropic dilatiegsZ +— Z' =
8=1Z. In the newZ-variables (we drop the primes) the imafjg = d;(E) is defined by
the equations(Z) := 8§~ 1r(8Z) = 0. Since the function; approaches Reass — 0,
the manifoldsEs approach the flat manifoldy = {Rez = 0}, which, of course, may be
identified with the real tangent space£oat the origin. Furthermore, as seen in the proof
of Lemma 2.1, the structure := (ds).(J) converge tals; in the C*-norm ass — 0. This
allows us to find explicitly the ;-operator in theZ variables.

Consider aJs-holomorphic discf:D — (B", Js). The Js-holomorphy condition
Js(f) o fx = f+ o Jst can be written in the following form:

f

af 9,
85+Qm(f)<82> 0, 2)
where Q; s(z) is the complex: x n matrix of an operator the composite of which with
complex conjugation is equal to the endomorphistdsi+ J5(2)) "1 (Jst— J5(Z)) (Which
is an anti-linear operator with respect to the standard strudigdreHence the entries of
the matrixQ  s(z) are smooth functions d, z vanishing identically ir; for § = 0.
Using the Cauchy—Green transform

1
Teo(g) = 2—7”// é‘_g(_r)rdr AdT
D

we may writed ;-equation (2) as follows:

9 3\
P (f + TCG(QJ,a(f)<§>)) =0.

According to classical results [10], the Cauchy—Green transform is a continuous linear
operator fromC*(D) into C*¥*1(D) (recall thatk is non-integer). Hence the operator

Pysif—>g=f+ TCG(QJ,&(f)(%))
takes the spac€* (D) into itself. Thus, f is Js-holomorphic if and only if®; 5(f) is
holomorphic (in the usual sense) Bn For sufficiently small positivé this is an invertible
operator on a neighborhood of zerodt (D) which establishes a one-to-one correspon-
dence between the sets.ffholomorphic and holomorphic discs Y.
These considerations allow us to replace the non-linear Riemann—Hilbert problem (RH)
by generalized Bishop’s equation

rs(®73(2))(©) =0, ¢ ebD, 3)

for an unknowrholomorphicfunctiong in the disc (with respect to the standard complex
structure).

If g is a solution of the boundary problem (3), thén= Qﬁj_é(g) is a Bishop disc with
boundary attached t&s. Since the manifoldts is biholomorphic via isotropic dilations
to the initial manifoldE, the solutions of Eq. (3) allow to describe Bishop’s discs attached
to E. Of course, this gives just the discs close enough (incth@orm) to the trivial solu-
tion f = 0 of the problem (RH).
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2.3. Solution of generalized Bishop’s equation

LetU/ be a neighborhood of the origin I, X’ a sufficiently small neighborhood of the
origin in the Banach spaa@ (D) N C¥(D))™ (with positive non-integek), X” a neigh-
borhood of the origin in the Banach spa@@(D) N C¥(D))*~™, andY the Banach space
(CkBD)Y"™ . If ze X', z: 0+ z(¢) andw € X, w: ¢ — w(¢) are holomorphic discs, then
we denote byZ the holomorphic dis& = (z, w). We may also assume thatis a C%-
smooth real2n x 2n)-matrix valued function and denote by the Banach space of these
functions.

Consider the map of Banach spadesW x X’ x X" x U — Y defined as follows:

R:(J.2.w,8) > r5(P §(z. w)) (#)[bD.

Let ¢ be aCc%-map between two domains ' andR"™; it determines a map, act-
ing by composition orC*¥-smooth mapg into the source domainwg : g — ¢(g). The
well-known fact is thatwy is a C*-smooth map between the corresponding spaces of
Ck-maps. In our case this means that the niajs of classC¥. For a holomorphic disc
Z=(z,w) € X' x X" andJ € W the tangent mapy R(J, z, w,0): X' — Y (the partial
derivative with respect to the spa&g) is defined by the equalitpy' R(J, z, w, 0)(¢) =
(Reqa, ..., Reqy,,). Clearly, it is surjective and has the kernel of real dimensionon-
sisting of constant functions=i(cy, ..., cn), cj € R. (We point out that the mapx' R
coincides with the tangent map arising after the linearization of Bishop’s equation cor-
responding to the standard structufg.) Therefore, by the implicit function theorem
[11] there existssg > 0, a neighborhood/; of the origin in X’, a neighborhoodV,
of the origin in X”, a neighborhoodvz of the origin in R™, a neighborhood¥; of
Jst in W and aC*-smooth mapG: W1 x Vo x Vs x [0, 80] — Vi such that for every
(J,w,c,8) € W1 x Vo x V3 x [0, 8] the functiong = (G(J, w, c, 8)(e), w(e)) is the
unique solution of generalized Bishop’s equation (3) belongingite V.

Now, the pullbackf = @;%(g) gives us aJs-holomorphic disc attached t65. Thus,
the initial data consisting af € W1, and a setcy, ..., cm, w), ¢; € R, w € V>, define for
each small a uniqueJs-holomorphic discf attached taEs. Since the almost complex
structures/ and Js are biholomorphic via isotropic dilations, we can give the following
description of local solutions of Bishop’s equation (the problem (RH)).

Theorem 2.4. Let E be a smooth submanifold @f* defined as the zero set of a smooth
R™-valued functionr of the form(1). Then there exists a neighborhoddof the origin

in (CK(D))", a neighborhood¥; of Jst in the spaceW, a neighborhood/s of the origin

in X”, and a neighborhood’; of the origin inR™ such that for eacly € Wy the set of
maps inU that are Bishop discs attached fwith respect ta/ is a Banach submanifold
of classC¥ in U with local chart defined by &mooth map F:V, x V3 — U, which
depends smoothly ah.

The proof follows from the above analysis of the Bishop equation. One merely fixes
some value 08, 0 < § < §p, and observes that the families of Bishop discs corresponding
to distinct values o8 # 0 are taken into one another by the corresponding dilations.
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One important consequence of this statement is as follows; #nd £, are C%*-close
submanifolds ofC” defined by equations of the form (1) adg and J> are C% close
almost complex structures, then there exists a (locally defined) diffeomorphism between
the corresponding* Banach submanifolds of Bishop discs that depends smoothly on the
pairskEj;, J;, j =1, 2, and is the identity in the case of equal pairs.

3. Hypersurfaceswith vanishing Levi form
Here we prove the following result.

Theorem 3.1. Let I be a real hypersurface in an almost complex manif@ifl J) with

Levi form vanishing identically at the points bf. Then at each poing € I and for each
directionv € H,(I") there exists a/-holomorphic discf :ID — M such thatf (0) = p,

df(0)(d/dRet) =v and f(D) C I.

If M has real dimension 4, then this result can be proved in the same fashion as in
complex analysis, by the application of Frobenius’s theorem to complex tangent spaces
to I". However, this does not work in higher dimensions, when in the case of an almost
complex structure distinct from the standard one the distribution of the plpés) is
not necessarily involutive. The idea of our proof is to show tsth(sufficiently small)
Bishop disc forl” liesinI".

As before, passing to local coordinatés= (z, wi, ..., w,—1) We may assume thdt is
a real hypersurface in a neighborha@df the origin inC" andJ (0) = Js;. Letr be a local
defining function ofI" in 2. Denote by2™ (resp.£2~) the domain{Z € 2: r(Z) > 0}
(respf{Z € 2: r(Z) <Q}).

A neighborhood? is supposed to be small enough; in particular, we may assume that

(a) the function|Z|? is strictly J-plurisubharmonic orf2 and there exists a constant
g0 > 0 such that the value of the Levi form (with respect/ipof the function|Z|2 on a
vectorv at a pointp € £2 is minorated by(go/2) ||v||2.

For a constantV > 1, which will be chosen later, and sufficiently smal- O consider
the functionr,(Z) = r(Z) +¢|Z|? —¢/N and the hypersurfack. := {Z € 2: r.(Z) = 0}.
Recall thatB” is the unit ball inC"; we may assume that

(b) the ballB” lies in £2.

We shall make our choice of a coordinate system more precise. Namely, @fiarear
change of coordinates preserving the previous assumptions, we may assume that

(©)r(2)=x—h(y,w)on$2 (as usualz = x +iy andw = (w1, ..., wy—1)); in partic-
ular Hy (I') ={Z: z=0}, and

(d) for everyZ € £2 and fore < 1 the kernel of the fornd;r.(Z) is in a one-to-one
correspondence witHc{(F) via the projectionz, w) — (0, w).

Furthermore, there exists a constant- O such that for every; € £2 one has
c~Ydist(Z, I') < |r(Z)| < e dist(Z, I') (where dist is the Euclidean distance). Bore
(1/2N)B" N I'; we havelr(Z)| =e/N — ¢|Z|? so that

/2N < |r(Z)| <e/N. (4)
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Throughout the rest of the proof we shall stay 12N )B". Note that
(e) pieces of the hypersurfac€s andI"_, form a foliation of (1/2N)B".

Lemma 3.2. If N is a sufficiently large fixed constant, then for sufficiently smallO the
hypersurfacd is strictly J-pseudoconvex at all its point lying in the b&ll/4N)B".

Proof. For everyZ € 2 N (1/2N)B" there exists unique = (Z) such thatZ e Iy;
clearly, the functionZ — ¢(Z) is smooth on(1/2N)B". Therefore for everyzZ € I, N
(1/2N)B" the value of the Levi fornL?,(r)(v) of r at Z at a vecton € Hj (I) has the
estimate

L ()| < ca(dr+do) ]2, (5)
whered; is the distance fron to the closest poinZg on the hypersurfacé = I'p and
d> is the distance betweeﬁg(l“g) and HZJO(FO) measured in some smooth metric on the
corresponding Grassmanian. Indeed, sitic;é(r)(vﬂ = |L§(r)(v/||v||)|||v||2, it is suffi-
cient to find an estimate of SUL . (r)(u)|: u € HJ (%), lull = 1}. Consider the real unit
spheresS(Z) ={u € HZ](FS): lull =1} andS(Zp) = {u’ € HZJO(F): ll#’|| = 1} in the tan-
gent spaces/; () and HZJO(F) respectively. In what follows the Levi forms? (r) and
Léo(r) are viewed as quadratic forms ®%" since the local coordinates are fixed; the tan-
gent space#l; (I,) and HJ (I') are identified with subspaces R?". Denote byL? (r)

the polarization of.? 7(1), that is, the corresponding bilinear form B4".
For any vectoi € S(Z) we have

L] < inf (|LL @) + |LL ) —u)| + 2|LL )W u — u)]).
u'€S(Zo)
WhenZ € I' the form Lé(r)(u’) vanishes for any’ € Hg (I'); so there exists a constant
c1 such that
sup{|Ly(r)|: u' € S(Zo)} < Cdh.
Furthermore, there exist constan{sandc;, such that

sup (inf |LLr)(u—u") ¢ sup (inf Jlu—u'||?) < chd>.
uES(Z)(“ 'eS(Zo) | z ’) luES(Z)(u 'eS(Zo) ) R

In a similar way

su inf ZLJ(r)(u u—u")|) <cf su inf Jju—u'|) <chdo
ueS(g)(u 'eS(Zo) | )<e ues(g)(u 1€S(Z0) )<
for some positive constantgy andcj. Obviously,d; ~ |r|. Moreover, a direct estimate
from above of the quantitig®r, /07, (Z) — dr/dzx(Zo)| and|dr, /0Zx(Z) — dr/3Zx(Zo)|
shows thatly < c2(d1 + ¢| Z)).
Observing that ifZ € I, thene = r(Z)/(% —1Z)?), and also thatZ| < 1/2N we see
that

|L (1) ()| < (c3e(Z)/N)|Iv]2. (6)
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We point out that the constant is independent of and N. Fix N > maxX2, 4c3/so}.
Then, in view of condition (a) and (6), the Levi form af is strictly positive oan(Fg)
which proves the lemma. O

By Theorem 2.4, in each sufficiently small neighborhood of the origin there exists a
family of J-holomorphic Bishop discs with boundariesiih Fix a such a neighborhood
U C (1/2NB").

Lemma 3.3. Let f:ID — U be aJ-holomorphic Bishop disc, that is, lgt be a pseudo-
holomorphic map continuous dh such thatf (bD) C I". Thenf (D) liesin I".

Proof. Assume by contradiction thaf(D) does not lie inI". Recall thatU™ := U N
{r > 0} is filled by strictly pseudoconvex hypersurfacEs 0 < ¢ < gg. We may assume
that there exists a connected open suldsef D such thatf (G) lies in U™ (otherwise we
replacer by —r) and f(bG) C I'. Consider the set = {¢ > 0: (7. o f)|g < 0}. This set
is not empty if the dis¢f is small enough. Let; =inf A. Thene; > 0, the hypersurface
I, is strictly pseudoconvexr, o f)lsc < 0 andrg, o f|g < 0. Moreover, there exists an
interior pointz € G such that,, o f(¢) =0.

On the other hand by Lemma 2.3 the hypersurfageadmits a strictly plurisubhar-
monic defining function in a neighborhood of the pojfiiz). This contradicts the maxi-
mum principle and proves the lemman

We now can prove Theorem 3.1. Similarly to the previous sections consider the isotropic
dilations ds: Z — Z' = §~1Z. The imagerl} := (ds).(I") of the hypersurfacd™ ap-
proaches the hyperplarig = {Rez =0} asé — 0. LetU;, j =1, 2, be neighborhoods of
the origin inC"~! and U3 a neighborhood of the origin iR; we assume that these neigh-
borhoods arsufficiently smallFor p € Uy, v € U2 andc € U3 consider a/s;-holomorphic
disc f(p,v,c)(¢) = (ic, p + v¢) that is a Bishop disc lying in the hyperplat@. The
centersf (p, v, ¢)(0) of such discs fill a neighborhood of the origin Ity and their tan-
gent vectors (at centerg)f (p, v, ¢)(0)(3/9 Re¢) fill a neighborhood of the origin in the
holomorphic tangent spadé, (o) for anyq € Iy in a neighborhood of the origin. By The-
orem 2.4 for any > 0 there exists a family of discB (6, p, v, ¢)(e) smoothly depending
on parameters, p, v, ¢) such that

(a) every discF (8, p, v, c)(e) is Js holomorphic (where as usud} denotes the direct
image(ds)«(J));

(b) for every sufficiently small positivé every discF (8, p, v, ¢)(e) is a Bishop disc for
Is, thatis,F (3, p, v, c)(bD) C Iy;

(c) we haveF (0, p,v,c)(e) = f(p,v,c)(e), SO that the family{ F (3, p, v, c)(e)} Of Js-
holomorphic discs is a small deformation of the fan{ii(p, v, ¢)(e)}.

By Lemma 3.3, for smalb > 0 every discF (8, p, v, c)(D) lies in I'y. By standard
arguments their centers fill a neighborhd@df the origin onls and at every point € U
their tangent vectors fill a neighborhood of the origin in the tangent spdee). Since
the structureds andJ are biholomorphic, the proof of the theorem is complete.
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4. Manifoldswith non-trivial Levi form
In this section we prove the following result

Theorem 4.1. Let E = {r :=(/1,...,/™) =0,j =1,...,m} be a(germ of § smooth
generating submanifold passing through a pgirin an almost complex manifolaV, J).
Suppose that there exisfsand a vectorv € H (E) such that the Levi forni.” (/)(v)
does not vanish. Then for fixed non-integet 2 there exists in a neighborhood pfa
Ck smooth generating manifoldl of dimensiordim E + 1 with boundary such that every
point of E belongs to a/-holomorphic disc with boundary off and E is the boundary
of E.

Our proof is based on non-isotropic scaling. Isotropic dilations used in the previous sec-
tion cannot be applied here since they do not give one the control over the Levi form of
E. The crucial technical point here is a choice of a suitable coordinate system “normal-
izing” an almost complex structure. Indeed, the following elementary example shows the
basic difficulty in dealing with the almost complex case if a coordinate system is not good
enough. Consider ift? the real hyperplandl : Rez, = 0, which is Levi flat in the stan-
dard complex structurds; of C2. (Throughout, we identify an almost complex structure
on a manifold with the corresponding field of operators on the tangent space.) Consider
the diffeomorphism® : (z1, z2) — (z1, z2 — |z1/%). The image® (I7) is the hypersurface
I':Rezs + |z1/%2 = 0 and the direct image of the standard structure is the almost complex
structureJ (@ (z)) = d®(z) o J(z) o d®~1(z). The structure/ coincides withJg at the
origin, so that/(z) = Jst + O(|z|) and the hypersurfacf is strictly pseudoconvex with
respect ta/g;, but Levi flat with respect to'!

4.1. The cas€RdimE =1

We begin with this case since it is particularly convenient for non-isotropic dilations.
Passing to suitable local coordinates (similarly to the previous section we use the notation
Z=(z1,-...,Zn-1, w)) We may assume thaf is a neighborhood of the origin ii"” andJ
is a smooth matrix valued function of the fotm= Jst+O(|Z|). Moreover, we may assume
that the holomorphic tangent spaHg’(E) coincides with the liné = (0, ...,0,¢),¢ € C
andE ={r/(Z2)=0,j=1,...,n— 1}, wherer/ =z; +7; + O(|Z|?).

Consider &/ -holomorphic disc tangent tHOJ(E) at the center. Performing if necessary
an appropriate diffeomorphism with linear part identity at the origin we can assume that
this disc lies orl. Thus, we shall assume thais J-holomorphic.

Lemma4.2. In the above variables, for evelythe Levi formL({(r/') coincides onHO’(E)
with the Levi formLéS‘(r-/) with respect ta/s;.

Proof. This follows from Proposition 2.2 if in its setting we take the linfor a J-holo-
morphic discf. O
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For § > 0 consider now the@on-isotropicdilations As : (z, w) — (8~1z, 8~ Y2w) and
the induced structureg := (As)+(J).

Lemma 4.3. For any positive reak one has|Js — Jstl ok x) — 0 asé — 0 on each com-
pact subsek of C".

Proof. Consider the Taylor expansion df(Z) near the origin:J(Z) = Jst+ L(Z) +

R(Z) where L(Z) is the linear part of the expansion am{Z) = O(|Z|?). Clearly,
Ags o R(Agl(Z)) o Agl converges to 0 a8 — 0. Denote byLil.(Z) (respectively, by
Lij(Z)) an entry of the real matrixis o L(A;(2)) o Ayt (respectively, ofL(Z)).

Then L,ij(z, w) = Lij(8z,8Y2w) - 0 fork, j =1,...,2n — 2 andk, j = 2n — 1,21,

LY (z,w) = 8Y2Ly;(8z,8%%w) - 0 for k =2n — 1,20, j=1,...,2n — 2. Fork =

1,....,2n—2andj=2n—1,2n we haveJ,fj(z, w) =8"Y2L4;(8z, 8Y%w) — Ly; (0, w).

However, in the coordinate system fixed above the linis J-holomorphic, that is,
J((2)) odl =dl o Jg. This shows thaL (0, w) =0. Thus,Lij approaches O for ad, ;.

This gives us the result of the lemmax

We point out that this result fails for CRdif> 1. For this reason we begin our con-
struction with the case CRdifi = 1. _

We may assume thd is defined by equations/ (z, w) =0, j =1,...,n — 1, with
ri(z, w) = 2Rez; +2ReQ/ (z, w) + HI (z,w) + O(|Z|2). HereQ/ (Z) = Y ¢} 74 Z, and
HI(Z) =Y, hiszkzx are complex and Hermitian quadratic forms, respectively. Then
the manifoldE; := A;(E) is given by the equations (2) := 8~ 1r;((8/2)z, sw) = 0 and
r({(Z) — r({(Z) :=2Rez; + 2ReQ/ (0, w) + H/ (0, w) (in the C* norm for anyk) asé
approaches 0. Since the quadratic map

(HY(O,w),..., H"1(0,w))

can be identified with the Levi form of at the origin, one of the form&/ (0, e) does not
vanish onC. Replacing the functions’ by their linear combinations if necessary one can
assume that// (0, w) =0, j =1,...,n — 2, andH; (0, w) = —|w|?.

Consider the limit manifoldEg = {r/(Z) =0, j = 1, ..., m}. After a biholomorphic
(with respect toJsy) change of the variableg, w) — (z/, w’) = (z + Q(0, w), w) (here
Q = (Q1...., Qy,—1)) We obtain a manifoldz defined by the equations Rg=0, j =
1,...,n—2, 2Rez,_1 = |w|? (we drop the primes).

Following Boggess and Pitts [2] we consider now the famfilyc — (z(¢), w(¢) of
holomorphic Bishop discs attached&g and defined by the formulae

zj(@)=iy;, j=1...,n-2
t2

1+ 1)2

N te N 2
1+1  (1+2)2 &

A
zn-1(8) = (1/2) (cE + (A2 + 1)) + 1t+ €t iyt
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1+ D)
wi)=c+ i1
This family depends on parameters= (y1, ..., y»—1) ranging in some neighborhood

of the origin inR”~1, real parameters > 0 and € [0, 1], and a complex parameter
ranging in a neighborhood of the origin i@. We shall write f(z, A, y, ¢)(e) for discs
in this family. We are interested in the map$t, A, y, ¢)(—A). They have the following
properties:

(a) foranyr > 0onehaslim,1 f(t, A, y,c)(—A) = (@iy1, ..., V-2, (1/2cC+iy,_1,c),
so that the pointsf(z, 1, y, ¢)(—1) fill a neighborhood of the origin irEj as (y, ¢)
ranges over a neighborhood of the origirRifi-! x C and the corresponding map is a
diffeomorphism;

(b) for any fixedr > O the differential of the magh, y,c) — f(¢, A, v, c)(—A) evaluated
at (1, 0, 0) has the maximum possible rankt- 2.

Now fix sufficiently small positive = 1o > 0. By Theorem 2.4 for small > O there
exist Js-holomorphic discsFs (A, y, w)(e) C¥-smoothly depending o8, y, A, » such that
Fs(A,y,w)(bD) C Es and Fo(A, y, w) = f(to, A, ¥, w). It follows by continuity from (a)
and (b) that the rangEs of the map(, y, ) — Fs(A, y, w)(—A) considered fok close to
1is ann +2-manifold with boundary that is the range of the niapw) — Fs(1, y, w)(—1)
and therefore lies itEs. Since this map is close t6(¢, 1, y, w)(—1) and so has the maxi-
mum possible rank + 1, its range is entir&;.

Remark. Our proof allows one to ‘control’ in a certain measure the direction in which
the manifoldE is attached tcE. Indeed, differentiating the map(z, A, y, w)(—21) with
respect tox at the point(z, 1,0, 0) we see that the tangent spaceHg at the origin is
spanned bylp(E) and the vectop = (0, ..., 1,0). Hence the tangent spaceﬁoat the
origin is spanned by¥p(E) and a vector close to.

4.2. The cas€RdimE > 1

Let £ be a generating submanifold in an almost complex manifaid J). In this
section we are particularly interesting in the case CREim 1, but our considerations
are also meaningful for CRdim = 1. As before, we assume thaf is a neighbor-
hood of the origin inC", J is a smooth matrix valued functiorf, = Js; + O(|Z]), and
E={r/(Z)=0,j=1,...,m},wherer/ =z; +7;+0(|Z|?), Z = (z, w) € C" x C"~™.

Letv e HO](E) be a vector such that the Levi form©*? does not vanish on. Consider
a J-holomorphic disc tangent to at the center. After a suitable diffeomorphism with
linear part at the origin that i€-linear this disc coincides with the line= (0, ..., 0, ¢),
¢ € C; pushing forward/, we still obtain an almost complex structure coinciding with the
standard one at the origin. Thus, we may assumé that-holomorphic in our coordinates.
Similarly to the previous section, for every defining functidrthe value of the Levi form
L (/) (v) coincides with that of the Levi form{)sr(r-/')(v) with respect talg; in the above
coordinates.
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Fors§ > 0 consider the dilationds : (z, w) — (8~ 1z, §"¥/2w) and the induced structure
Js := (As)«(J). As we shall see, if the CR dimension Bfis > 1, then the structures;
do not converge tdst in general. Consider the Taylor expansion of the matrix funcfion

J(Z) = Jsi+ L(Z) + O(I1Z]?),

whereL(Z) is the linear part. We observe thatis an endomorphism d&?* anti-linear
with respect to the standard complex structure. We refjé#j as a complex x n-matrix

with entriesL,; (Z) that areR-linear (C-valued) functions ofZ. The following result can
be proved by direct computation.

Lemma4.4. On hasJ; — Jg asé — 0, whereJy = Jst+ Lo(w) and the matrixLg(w) (in
the complex notatigrhas entriesLSj described as folIowsLSj =0,forg=1,...,n,j=
1,....mandforg=n—-m+1,...,n, j=1,...,n;forg=1,...,m, j=n—m+
1,...,no0ne hang,.(w) =L, (0, w).

Moreover, the above condition of the-holomorphy of the lind implies thatZL, ,—
does not depend om,, _,, thatis,L0 ,_,, =L, (0. w1, ..., Wy m-1).
Consider the manifold&s := A;(E) defined by the equations

ri(z,w) =871 (8z,6Y2w)=0, j=1,....m.

Consider the Taylor expansief(z, w) =z, +7; + 2ReQ(z, w) + H;(z, w) + O(Z|?),
where Q; is the complex quadratic part arfdl; the Hermitian part of the expansion. As
8 — 0, we haver/ — r§ :=z; + z; + 2ReQ;(0, w) + H;(0, w). We point out that the
biholomorphic (with respect tds;) change of the variableg, w) — (z + Q(0, w), w)
(whereQ = (01, ..., Q,)) does not change the lidetherefore we can execute it before
the dilation. This allows us to assume ti@yf(0, w) = 0. Thus, the functions{{ converge
toz; +z; + H;(0, w) asé — 0. In this sense we view the manifoley = {z; + z; +
H;0,w)=0, j=1,...,m} as the limit of 5 asé — 0.
Our next aim is the description d-holomorphic Bishop discs (with values in a suffi-
ciently small neighborhoodf of the origin) with boundaries attachedfg. Let f: D — U
be a smooth map. To simplify the notations, we will denotefbyhe partial derivativ@;i.
Recall that the/p-holomorphy condition forf can be written in the following form:

fi+ QN T =0,

where Q(Z) is the complex: x n matrix of an operator the composite of which with
complex conjugation is equal to the endomorphistdsi+ J5(2)) "1 (Jst— J5(Z)) (Which

is an anti-linear operator with respect to the standard struckyyelf f has the form
(&) = (z(2), w(?)), then after direct computations of the matgxwe obtain the equa-
tions of theJp-holomorphy of f:

(Zj)g=—(i/2)<z L‘}q<w>(w,-);>, j=1....m, (7)
q=1

and

(wpz=0, j=1....n—m.
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This gives one a direct description of alb-holomorphic discs. Fix a functiom €
(OM))*™ x (C*(D))*~™ for some fixed non-integér> 0. Then integration of the above
system (7) shows that

z2j(©) = —TCG<(i/2) > L‘}q(w)(qu)(z) +¢i(0), j=1....m,

q=1
where, as befordlcg is the Cauchy—Green transform agigis a holomorphic function of

the clas<Ck (D). B
Forw e (O(D))"™™ x (CK(D))"~™ let ¥;(w)(e) be the function

—TCG<(i/2) > Lg?q(w)@).
q=1
If w is fixed, then the boundary conditign, w)(bD) C Eg holds if and only if

2j(§) = (¥j(w) — Is(Re¥;(w))) (¢) — (1/2)Is(H; (0, w)) (§) +iy;. j=1.....m,
wherey; € R and/y is the Schwarz integral in the unit disc:

2 .
1 . @r
Is(h)(§) = Z/h(e”)eir i_g dr. (8)
0

This gives us a complete description of Bishop discs attachéd.ttn particular, we have
the following result.

Lemma 4.5. A map(z, w):¢ — (z(¢), w(¢)) is a Jo-holomorphic Bishop disc foEj if
and only if(z — ¥;(w) + Is(Re¥;(w)), w) is a Jsr-holomorphic Bishop disc foEg.

Similarly to the previous subsection, consider the maf® — C"~ of the following
form:

w1 =1,

Wn—m—-1=Cn—m—1,
t(A+2)
1+

where thec; are complex constants,> 0 and X € [0, 1]. Then (wy); =0 for k =
1,...,n —m — 1. On the other hand, by our constructiﬁfjn_m(o,...,o, ¢) =0. Re-

call here that theL?k participate in the linear paft(Z) of the Taylor expansion af at the
origin and areR-linear inw. Hence therR-linear functionL?n_m is independent ofv,,_,

and Y 71—t L?k(w)(wk); = L?nfm (c1,...,cn_m—1)t/(1+ 1) is constant with respect to
the variabler.
Let aj(ct, ..., eam—1) = —(/2LY, _, (c1, ..., ca—m—1)1/(L + 1). Then it follows

from Egs. (7) thatz;(¢) = ajE + ¢;(¢) with holomorphicg;. We set¢; = —a;¢ +

3

Wy (§) =cCpem +
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@;. Then the inclusion(z, w)(bD) C Ep is equivalent to the relation Re;(¢) =
—(1/2)H; (0, w(¢)) for ¢ € bD meaning that®, w) is a Bishop disc fotEg with respect

to Jst. In view of the conditionz¢ = 1, the right-hand side represents a real polyno-
mial of degree 1 ir;, so that thed; are complex polynomials of degree at most 1 and
can easily be explicitly written; since the Hermitian quadratic fai#p(0, w) does not
vanish on the lind = (0, ...,0,¢), it contains the term with negative coefficient, and
without loss of generality we can assume that this coefficientls other terms of the
form H, (0, w) are independent ab,_,,, and the other form#/; (0, w) contain no term
|wp—m|2. Then we obtain a formula far,_,, similar to the one for,_1 in the previous
section and explicit expressions for thecomponent of ajp-holomorphic Bishop disc
(z,w)(cL, ..., Chmms t, X, Y1, ..., ym) (o) determined by the parameters ¢, A, y:

- 1 A
2j(@)=iyj+a;(c)t —aj(c) — EHj(O’ Cl"”’cn_m_l’cn_m+_1+A>

t .
—milj(c), j=1...,m—1,
2

2
1+ /\)2(A

t .
+ 1)) + mcn—m +iyn-1

)= ! Cn—m +
Zn-m (& —E Cn—mCn—m

1+x  (A+1)?2 ¢ +am(c)s —am(c)

1
- EHn—m (Oa ¢, .-, Ch—m—1, O)v

where thea;(c) are defined above and tlig are homogeneous linear forms @f, .. .,
cn—m—1. As pointed out already, for; =0, j =1,...,n —m + 1, these are jusfis+-
holomorphic Bishop discs.

Finally, it is easy to see (by computing the rank of the corresponding map; cf. the pre-
vious subsection) that the constructed family/efholomorphic Bishop discs sweeps out
a manifold with boundan£y. So we may use the implicit function theorem to construct
a perturbed family of/s-holomorphic Bishop discs sweeping out a manifold with bound-
ary Es.
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