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We study the asymptotic behavior for solutions to nonlocal diffusion models of the form
ut(x, t) = J ∗u(x, t)−u(x, t) = ∫

Rd J (x− y)u(y, t)dy −u(x, t) in the whole R
d with an initial

condition u(x,0) = u0(x). Under suitable hypotheses on J (involving its Fourier transform)
and u0, it is proved an expansion of the form∥∥∥∥u(x, t) −

∑
|α|�k

(−1)|α|

α!
(∫

u0(x)xα dx

)
∂α Kt

∥∥∥∥
Lq(Rd)

� Ct−A,

where Kt is the regular part of the fundamental solution and the exponent A depends on
J , q, k and the dimension d. Moreover, we can obtain bounds for the difference between
the terms in this expansion and the corresponding ones for the expansion of vt(x, t) =
−(−�)

s
2 v(x, t). Here we deal with the case 1 � q � 2. The case 2 � q � ∞ was treated

previously, by other methods, in L.I. Ignat and J.D. Rossi (2008) [11].
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study the asymptotic behavior as t → ∞ of solutions to the nonlocal evolution problem{
ut(x, t) = J ∗ u − u(x, t), t > 0, x ∈ R

d,

u(x,0) = u0(x), x ∈ R
d,

(1.1)

where J ∗ u is the usual convolution in the space variable given by

( J ∗ u)(x, t) =
∫
Rd

J (x − y)u(y, t)dy.

Here the kernel J : R
d → R is nonnegative and verifies

∫
Rd J (x)dx = 1.

For the heat equation, vt = �v , a precise asymptotic expansion in terms of the fundamental solution and its derivatives
was found in [8]. In fact, if Gt denotes the fundamental solution of the heat equation, namely, Gt(x) = (4πt)−d/2e−|x|2/(4t) ,
under adequate assumptions on the initial condition, we have
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∥∥∥∥u(x, t) −
∑

|α|�k

(−1)|α|

α!
( ∫

Rd

u0(x)xα

)
∂αGt

∥∥∥∥
Lq(Rd)

� Ct−A (1.2)

with A = ( d
2 )(

(k+1)
d + (1 − 1

q )). As pointed out by the authors in [8], the same asymptotic expansion can be done in a more

general setting, dealing with the equation ut = −(−�)
s
2 u, s > 0.

Our main objective here is to study if an expansion analogous to (1.2) holds for the nonlocal problem (1.1). In this paper,
that can be viewed as a natural extension of [11], we deal with the case 1 � q � 2. The cases 2 � q � ∞ are derived from
Hausdorff–Young’s inequality and Plancherel’s identity, see [11]. The cases analyzed here, 1 � q � 2, are more tricky. They
are reduced to L2-estimates on the momenta of ∂α Kt and therefore more restrictive assumptions on J have to be imposed.

Now we need to introduce some notation. We will denote by f ∼ g as ξ ∼ 0 if | f (ξ) − g(ξ)| = o(g(ξ)) when ξ → 0
and f � g if there exists a constant c independent of the relevant quantities such that f � cg . We also use the standard
notation Ĵ for the Fourier transform of a function J that is given by

Ĵ (ξ) = 1

(2π)d/2

∫
Rd

e−i〈x,ξ 〉 J (x)dx.

Concerning the first term in the expansion (1.2), in [4] it is proved that if J verifies Ĵ (ξ) − 1 ∼ −|ξ |s as ξ ∼ 0, then the
asymptotic behavior can be described as follows,

lim
t→+∞

∥∥∥∥t
d
s u

(
yt

1
s , t

) −
( ∫

Rd

u0

)
Gs(y)

∥∥∥∥
L∞(Rd)

= 0,

where Gs(y) satisfies Ĝs(ξ) = e−|ξ |s . Also, it is proved in [4] that the fundamental solution w(x, t) of problem (1.1)
satisfies w(x, t) = e−tδ0(x) + Kt(x), where the function Kt (the regular part of the fundamental solution) is given by
K̂t(ξ) = e−t(et Ĵ (ξ) − 1).

Here we find a complete expansion for u(x, t), a solution to (1.1), in terms of the derivatives of the regular part of the
fundamental solution, Kt .

Theorem 1.1. Assume that J satisfies

Ĵ (ξ) − 1 ∼ −|ξ |s, ξ ∼ 0 (1.3)

with [s] > d/2 and that for any m � 0 and α there exists c(m,α) such that

∣∣∂α Ĵ (ξ)
∣∣ � c(m,α)

|ξ |m , |ξ | → ∞. (1.4)

Then for any 1 � q � 2, we have the asymptotic expansion∥∥∥∥u(x, t) −
∑

|α|�k

(−1)|α|

α!
( ∫

Rd

u0(x)xα

)
∂α Kt

∥∥∥∥
Lq(Rd)

� Ct−A, (1.5)

for all u0 ∈ L1(Rd,1 + |x|k+1). Here A = (k+1)
s + d

s (1 − 1
q ).

Here we denoted by L1(Rd,1 + |x|k+1) the space of functions

L1(
R

d,1 + |x|k+1) =
{

f : R
d 	→ R:

∫
Rd

| f |(x)
(
1 + |x|k+1)dx < ∞

}

endowed with the norm

‖ f ‖L1(Rd, |x|k+1) =
∫
Rd

| f |(x)
(
1 + |x|k+1)dx.

Note that, when J has an expansion of the form Ĵ (ξ) − 1 ∼ −|ξ |2 as ξ ∼ 0 (this happens for example if J is compactly
supported), then the decay rate in L∞(Rd) of the solutions to the nonlocal problem (1.1) and the heat equation coincide (in

both cases they decay as t− d
2 ). Moreover, the first order term also coincide (in both cases it is a Gaussian).

Our next aim is to study if the higher order terms of the asymptotic expansion that we have found in Theorem 1.1 have
some relation with the corresponding ones for the heat equation. Our next results say that the difference between them is
of lower order.
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Theorem 1.2. Let J be as in Theorem (1.1) and assume in addition that there exists r > 0 such that

Ĵ (ξ) − (
1 − |ξ |s) ∼ |ξ |s+r, ξ ∼ 0. (1.6)

We also assume that all the derivatives of Ĵ decay at infinity faster as any polinomial:∣∣∂α Ĵ (ξ)
∣∣ � c(m,α)

|ξ |m , ξ → ∞.

Then for any 1 � q � 2 and any multi-index α = (α1, . . . ,αd), there exists a positive constant C = C(q,d, s, r) such that the following
holds ∥∥∂α Kt − ∂αGs

t

∥∥
Lq(Rd)

� Ct− d
s (1− 1

q )t− |α|+r
s , (1.7)

where Gs
t is defined by its Fourier transform Ĝs

t (ξ) = exp(−t|ξ |s).

Note that these results do not imply that the asymptotic expansion
∑

|α|�k
(−1)|α|

α! (
∫

u0(x)xα)∂α Kt coincides with the

expansion that holds for the equation ut = −(−�)
s
2 u:

∑
|α|�k

(−1)|α|
α! (

∫
u0(x)xα)∂αGs

t (see [8]). They only say that the cor-
responding terms agree up to a better order. When J is compactly supported or rapidly decaying at infinity, then s = 2 and
we obtain an expansion analogous to the one that holds for the heat equation.

To end this introduction let us comment briefly on some of the available literature.
Equations like (1.1) and variations of it, have been recently widely used to model diffusion processes, for example, in

biology, dislocations dynamics, etc. See, for example, [2,3,5–7,9,10,13,14]. As stated in [9], if u(x, t) is thought of as the
density of a single population at the point x at time t , and J (x − y) is thought of as the probability distribution of jumping
from location y to location x, then ( J ∗ u)(x, t) = ∫

RN J (y − x)u(y, t)dy is the rate at which individuals are arriving to
position x from all other places and −u(x, t) = − ∫

RN J (y − x)u(x, t)dy is the rate at which they are leaving location x to
travel to all other sites. This consideration, in the absence of external or internal sources, leads immediately to the fact that
the density u satisfies Eq. (1.1). Eq. (1.1) is called nonlocal diffusion equation since the diffusion of the density u at a point x
and time t does not only depend on u(x, t), but on all the values of u in a neighborhood of x through the convolution
term J ∗ u.

2. Proofs of the results

2.1. Preliminaries

First, let us obtain a representation of the solution using Fourier variables. A proof of existence and uniqueness of
solutions using the Fourier transform (see [12]) is given in [4] (see also [11]). We repeat the main arguments here for the
sake of completeness.

Theorem 2.1. Let u0 ∈ L1(Rd) such that û0 ∈ L1(Rd). There exists a unique solution u ∈ C0([0,∞); L1(Rd)) of (1.1), and it is given
by

û(ξ, t) = e(̂ J (ξ)−1)t û0(ξ).

Proof. We have

ut(x, t) = J ∗ u − u(x, t) =
∫
Rd

J (x − y)u(y, t)dy − u(x, t).

Applying the Fourier transform we obtain ût(ξ, t) = û(ξ, t)(̂ J (ξ) − 1). Hence, û(ξ, t) = e(̂ J (ξ)−1)t û0(ξ). Since û0 ∈ L1(Rd) and
e(̂ J (ξ)−1)t is continuous and bounded, the result follows by taking the inverse of the Fourier transform. �

Now we prove a lemma concerning the fundamental solution of (1.1).

Lemma 2.1. Let J ∈ S(Rd), the space of rapidly decreasing functions. The fundamental solution of (1.1), that is the solution of (1.1)
with initial condition u0 = δ0 , can be decomposed as

w(x, t) = e−tδ0(x) + Kt(x), (2.8)

where the function Kt is smooth and given by K̂t(ξ) = e−t(et Ĵ (ξ) − 1). Moreover, if u is a solution of (1.1) it can be written as

u(x, t) = (w ∗ u0)(x, t) =
∫
Rd

w(x − z, t)u0(z)dz.
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Proof. By the previous result we have ŵt(ξ, t) = ŵ(ξ, t)(̂ J (ξ) − 1). Hence, as the initial datum verifies û0 = δ̂0 = 1,

ŵ(ξ, t) = e(̂ J(ξ)−1)t = e−t + e−t(e Ĵ (ξ)t − 1
)
.

The first part of the lemma follows applying the inverse Fourier transform in S(Rd).
To finish the proof we just observe that w ∗ u0 is a solution of (1.1) (just use Fubini’s theorem) with (w ∗ u0)(x,0) =

u0(x). �
Remark 2.1. The above proof together with the fact that Ĵ (ξ) → 0 (since J ∈ L1(Rd)) shows that if Ĵ ∈ L1(Rd) then the
same decomposition (2.8) holds and the result also applies.

To prove our result we need some estimates on the kernel Kt .

2.2. Estimates on Kt

In this subsection we obtain the long time behavior of the kernel Kt and its derivatives.
As we have mentioned in the introduction, in [11] the authors study the behavior of Lq(Rd)-norms with 2 � q � ∞.

They use Hausdorff–Young’s inequality in the case q = ∞ and Plancherel’s identity for q = 2.
However the case 1 � q � 2 is more tricky. In order to evaluate the L1(Rd)-norm of the kernel Kt we use the following

inequality

‖ f ‖L1(Rd) � ‖ f ‖1− d
2n

L2(Rd)

∥∥|x|n f
∥∥ d

2n

L2(Rd)
, (2.9)

which holds for n > d/2 and which is frequently attributed to Carlson (see for instance [1]). The use of the above inequality
with f = Kt imposes that |x|n∂α Kt belongs to L2(Rd). To guarantee that property and to obtain the decay rate for the
L2(Rd)-norm of |x|n∂α Kt we need to impose the hypotheses (1.3) and (1.4) in Theorem 1.1.

Lemma 2.2. Assume that J verifies (1.4) and

Ĵ (ξ) − 1 ∼ −|ξ |s, ξ ∼ 0

with [s] > d/2. Then for any index α = (α1, . . . ,αd),∥∥∂α Kt
∥∥

L1(Rd)
� t− |α|

s . (2.10)

Moreover, for 1 < q < 2 we have∥∥∂α Kt
∥∥

Lq(Rd)
� t− d

s (1− 1
q )− |α|

s

for large t.

Remark 2.2. There is no restriction on s if J is such that∣∣∂α Ĵ (ξ)
∣∣ � min

{|ξ |s−|α|,1
}
, |ξ | � 1.

This happens if s is a positive integer and Ĵ (ξ) = 1 − |ξ |s in a neighborhood of the origin.

Remark 2.3. The case α = (0, . . . ,0) can be easily treated when J is nonnegative. As a consequence of the mass conservation
(just integrate the equation and use Fubini’s theorem, see [4]),

∫
Rd w(x, t) = 1, we obtain

∫
Rd |Kt | � 1 and therefore (2.10)

follows with α = (0, . . . ,0).

Remark 2.4. The condition (1.4) imposed on J is satisfied, for example, for any smooth, compactly supported function J .

Proof of Lemma 2.2. The estimates for 1 < q < 2 follow from the cases q = 1 and q = 2 by interpolation.
The case q = 2 was analyzed in [11], we refer to that paper for details but include here the main argument for the

reader’s convenience.
By Plancherel’s identity we have∥∥∂α Kt

∥∥2
L2(Rd)

� e−2t
∫
Rd

∣∣et Ĵ(ξ) − 1
∣∣2|ξ |2|α| dξ.

Now, let us choose R > 0 such that∣∣̂ J (ξ)
∣∣ � 1 − |ξ |s

for all |ξ | � R. (2.11)

2
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Putting out the exponentially small terms, it remains to estimate∫
|ξ |�R

∣∣et(̂ J (ξ)−1)
∣∣2|ξ |2|α| dξ,

where R is given by (2.11). The behavior of Ĵ near zero gives∫
|ξ |�R

∣∣et(̂ J (ξ)−1)
∣∣2|ξ |2|α| dξ �

∫
|ξ |�R

e−t|ξ |s |ξ |2|α| dξ � t− d
s − 2|α|

s .

To deal with q = 1, we use inequality (2.9) with f = ∂α Kt and n such that [s] � n > d/2. We get∥∥∂α Kt
∥∥

L1(Rd)
�

∥∥∂α Kt
∥∥1− d

2n

L2(Rd)

∥∥|x|n∂α Kt
∥∥ d

2n

L2(Rd)
.

The condition n � [s] guarantees that ∂n
ξ j

Ĵ makes sense near ξ = 0 and thus the derivatives ∂n
ξ j

K̂t , j = 1, . . . ,d, exist. Observe

that the moment of order n of Kt imposes the existence of the partial derivatives ∂n
ξ j

K̂t , j = 1, . . . ,d.

We have, using the decay in L2 that we have proved previously,∥∥∂α Kt
∥∥

L1(Rd)
� t−( d

2s + |α|
s )(1− d

2n )
∥∥|x|n∂α Kt

∥∥ d
2n

L2(Rd)
.

Thus it is sufficient to prove that∥∥|x|n∂α Kt
∥∥

L2(Rd)
� t

n
s − d

2s − |α|
s

for all sufficiently large t . Observe that by Plancherel’s theorem

∫
Rd

|x|2n
∣∣∂α Kt(x)

∣∣2
dx � c(n)

∫
Rd

(
x2n

1 + · · · + x2n
d

)∣∣∂α Kt(x)
∣∣2

dx = c(n)

d∑
j=1

∫
Rd

∣∣∂n
ξ j

(
ξα K̂t

)∣∣2
dξ

where ξα = ξ
α1
1 . . . ξ

αd
d . Therefore, it remains to prove that for any j = 1, . . . ,d, it holds∫

Rd

∣∣∂n
ξ j

(
ξα K̂t

)∣∣2
dξ � t

2n
s − d

s − 2|α|
s , for t large. (2.12)

We analyze the case j = 1, the others follow by the same arguments. Leibnitz’s rule gives

∂n
ξ1

(
ξα K̂t

)
(ξ) = ξ

α2
2 . . . ξ

αd
d

n∑
k=0

(
n

k

)
∂k
ξ1

(
ξ
α1
1

)
∂n−k
ξ1

(K̂t)(ξ)

and guarantees that

∣∣∂n
ξ1

(
ξα K̂t

)
(ξ)

∣∣2 � ξ
2α2
2 . . . ξ

2αd
d

n∑
k=0

∣∣∂k
ξ1

(
ξ
α1
1

)∣∣2∣∣∂n−k
ξ1

K̂t(ξ)
∣∣2

� ξ
2α2
2 . . . ξ

2αd
d

min{n,α1}∑
k=0

ξ
2(α1−k)
1

∣∣∂n−k
ξ1

K̂t(ξ)
∣∣2

.

The last inequality reduces (2.12) to the following one:∫
Rd

ξ
2(α1−k)
1 ξ

2α2
2 . . . ξ

2αd
d

∣∣∂n−k
ξ1

K̂t(ξ)
∣∣2

dξ � t
2n
s − d

s − 2|α|
s

for all 0 � k � min{α1,n}. Using the elementary inequality (it follows from the convexity of the log function)

ξ
2(α1−k)
1 ξ

2α2
2 . . . ξ

2αd
d �

(
ξ2

1 + · · · + ξ2
d

)α1−k+α2+···+αd = |ξ |2(|α|−k)

it remains to prove that for any r nonnegative and any m such that n − min{α1,n} � m � n, the following inequality is valid,

I(r,m, t) =
∫

d

|ξ |2r
∣∣∂m

ξ1
K̂t

∣∣2
dξ � t− d

s + 2
s (m−r). (2.13)
R
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First we analyze the case m = 0. In this case

I(r,0, t) =
∫
Rd

|ξ |2r
∣∣et(̂ J (ξ)−1) − e−t

∣∣2
dξ = e−2t

∫
Rd

|ξ |2r
∣∣et Ĵ (ξ) − 1

∣∣2
dξ.

Using that |e y − 1| � 2|y| for |y| small, say |y| � c0, we obtain that

∣∣et Ĵ (ξ) − 1
∣∣ � 2t

∣∣̂ J (ξ)
∣∣ � 2t

|ξ |m

for all |ξ | � h(t) = (c0t)
1
m . Then

e−2t
∫

|ξ |�h(t)

|ξ |2r
∣∣et Ĵ(ξ) − 1

∣∣2
dξ � t2e−2t

∫
|ξ |�h(t)

|ξ |2r

|ξ |m dξ � te−tc(m − 2r)

provided that 2r < m − d.
It remains to estimate

e−2t
∫

|ξ |�h(t)

|ξ |2r
∣∣et Ĵ(ξ) − 1

∣∣2
dξ.

We observe that the term e−2t
∫
|ξ |�h(t) |ξ |2r dξ is exponentially small, so we concentrate on

I(t) = e−2t
∫

|ξ |�h(t)

∣∣et Ĵ(ξ)
∣∣2|ξ |2r dξ.

Now, let us choose R > 0 such that

∣∣̂ J (ξ)
∣∣ � 1 − |ξ |s

2
for all |ξ | � R. (2.14)

Once R is fixed, there exists δ > 0 with∣∣̂ J (ξ)
∣∣ � 1 − δ for all |ξ | � R. (2.15)

Then

∣∣I(t)
∣∣ � e−2t

∫
|ξ |�R

∣∣et Ĵ (ξ)
∣∣2|ξ |2r dξ + e−2t

∫
R�|ξ |�h(t)

∣∣et Ĵ (ξ)
∣∣2|ξ |2r dξ

�
∫

|ξ |�R

e2t(|̂ J (ξ)|−1)|ξ |2r dξ + e−2tδ
∫

R�|ξ |�h(t)

|ξ |2r dξ

�
∫

|ξ |�R

e−t|ξ |s |ξ |2r + e.s.

= t− 2r
s − d

s

∫
|η|�Rt

1
s

e−|η|s |η|2r + e.s.

� t− 2r
s − d

s .

Observe that under hypothesis (1.4) no restriction on r is needed.
In what follows we analyze the case m � 1. First, we recall the following elementary identity

∂m
ξ1

(
eg) = eg

∑
i1+2i2+···+mim=m

ai1,...,im

(
∂1
ξ1

g
)i1

(
∂2
ξ1

g
)i2

. . .
(
∂m
ξ1

g
)im

where ai1,...,im are universal constants independent of g . Tacking into account that K̂t(ξ) = et(̂ J (ξ)−1) − e−t , we obtain for
any m � 1 that



196 L.I. Ignat, J.D. Rossi / J. Math. Anal. Appl. 362 (2010) 190–199
∂m
ξ1

K̂t(ξ) = et(̂ J (ξ)−1)
∑

i1+2i2+···+mim=m

ai1,...,im ti1+···+im

m∏
j=1

[
∂

j
ξ1

Ĵ (ξ)
]i j

and hence

∣∣∂m
ξ1

K̂t(ξ)
∣∣2 � e2t |̂ J(ξ)−1| ∑

i1+2i2+···+mim=m

t2(i1+···+im)
m∏

j=1

[
∂

j
ξ1

Ĵ (ξ)
]2i j

.

Using that all the partial derivatives of Ĵ decay, as |ξ | → ∞, faster than any polinomial in |ξ |, we obtain that∫
|ξ |>R

|ξ |2r
∣∣∂m

ξ1
K̂t(ξ)

∣∣2
dξ � e−δtt2m

where R and δ are chosen as in (2.14) and (2.15). Tacking into account that n � [s] and that |̂ J (ξ) − 1 + |ξ |s| � o(|ξ |s) as
|ξ | → 0, we obtain∣∣∂ j

ξ1
Ĵ (ξ)

∣∣ � |ξ |s− j, j = 1, . . . ,n

for all |ξ | � R . Then for any m � n and for all |ξ | � R the following holds

∣∣∂m
ξ1

K̂t(ξ)
∣∣2 � e−t|ξ |s ∑

i1+2i2+···+mim=m

t2(i1+···+im)

m∏
j=1

|ξ |2(s− j)i j

� e−t|ξ |s ∑
i1+2i2+···+mim=m

t2(i1+···+im)|ξ |
∑m

j=1 2(s− j)i j .

Using that for any l � 0,∫
Rd

e−t|ξ |s |ξ |l dξ � t− d
s − l

s ,

we obtain∫
|ξ |�R

|ξ |2r
∣∣∂m

ξ1
Kt(ξ)

∣∣2
dξ � t− d

s
∑

i1+2i2+···+mim=m

t2p(i1,...,id)− 2r
s

where

p(i1, . . . , im) = (i1 + · · · + im) − 1

s

m∑
j=1

(s − j)i j = 1

s

m∑
j=1

j i j = m

s
.

This completes the proof. �
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Following [8] we obtain that the initial condition u0 ∈ L1(Rd,1 + |x|k+1) has the following decompo-
sition

u0 =
∑

|α|�k

(−1)|α|

α!
( ∫

u0xα dx

)
Dαδ0 +

∑
|α|=k+1

Dα Fα

where

‖Fα‖L1(Rd) � ‖u0‖L1(Rd, |x|k+1)

for all multi-indexes α with |α| = k + 1.
In view of (2.8) the solution u of (1.1) satisfies

u(x, t) = e−t u0(x) + (Kt ∗ u0)(x).

The first term being exponentially small it suffices to analyze the long time behavior of Kt ∗ u0. Using the above decom-
position and Lemma 2.2, we get
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∥∥∥∥Kt ∗ u0 −
∑

|α|�k

(−1)|α|

α!
( ∫

u0(x)xαdx

)
∂α Kt

∥∥∥∥
Lq(Rd)

�
∑

|α|=k+1

∥∥∂α Kt ∗ Fα

∥∥
Lq(Rd)

�
∑

|α|=k+1

∥∥∂α Kt
∥∥

Lq(Rd)
‖Fα‖L1(Rd)

� t− d
s (1− 1

q )t− (k+1)
s ‖u0‖L1(Rd,|x|k+1).

This ends the proof. �
2.3. Asymptotics for the higher order terms

In this subsection we prove Theorem 1.2 (recall that 1 � q � 2).

Proof of Theorem 1.2. Using the same ideas as in the proof of Lemma 2.2 it remains to prove that for some d/2 < n � [s]
the following holds∥∥|x|n(∂α Kt − ∂αGs

t

)∥∥
L2(Rd)

� t− d
2s + n−(|α|+r)

s .

Applying Plancherel’s identity the proof of the last inequality is reduced to the proof of the following one∫
Rd

∣∣∂n
ξ j

[
ξα

(
K̂t − Ĝs

t

)]∣∣2
dξ � t− d

2s + n−(|α|+r)
s , j = 1, . . . ,d,

provided that all the above terms make sense. This means that all the partial derivatives ∂k
ξ j

K̂t and ∂k
ξ j

Ĝ s
t , j = 1, . . . ,d,

k = 0, . . . ,n have to be defined. Thus, we need n � [s].
We consider the case j = 1 the other cases being similar. Applying again Leibnitz’s rule, we get

∣∣∂n
ξ1

[
ξα

(
K̂t − Ĝs

t

)]∣∣2 � ξ
2α2
2 . . . ξ

2αd
d

min{n,α1}∑
k=0

ξ
2(α1−k)
1

∣∣∂n−k
ξ1

(
K̂t − Ĝs

t

)∣∣2

�
min{n,α1}∑

k=0

|ξ |2(|α|−k)
∣∣∂n−k

ξ1

(
K̂t − Ĝs

t

)∣∣2
.

In the following we prove that∫
Rd

|ξ |2m1
∣∣∂m

ξ1

(
K̂t − Ĝs

t

)∣∣2
dξ � t− d

s + 2(m−m1−r)
s

for all |α| − min{n,α1} � m1 � |α| and n − min{n,α1} � m � n.
Using that the integral outside of a ball of radius R decay exponentially, it remains to analyze the decay of the following

integral∫
|ξ |�R

|ξ |2m1
∣∣∂m

ξ1

(
K̂t − Ĝs

t

)∣∣2
dξ

where R is as before. Using the definition of K̂t and Gs
t , we obtain that

∂m
ξ1

K̂t(ξ) = et(̂ J (ξ)−1)
∑

i1+2i2+···+mim=m

ai1,...,im ti1+···+im

m∏
j=1

[
∂

j
ξ1

Ĵ (ξ)
]i j

and

∂m
ξ1

Ĝs
t (ξ) = etps(ξ)

∑
i1+2i2+···+mim=m

ai1,...,im ti1+···+im

m∏
j=1

[
∂

j
ξ1

ps(ξ)
]i j

where ps(ξ) = −|ξ |s . Then∣∣∂m
ξ K̂t(ξ) − ∂m

ξ Ĝs
t (ξ)

∣∣2 � I1(ξ, t) + I2(ξ, t)

1 1
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where

I1(ξ, t) = ∣∣et(̂ J (ξ)−1) − etps(ξ)
∣∣2 ∑

i1+2i2+···+mim=m

t2(i1+···+im)

m∏
j=1

∣∣∂ j
ξ1

ps(ξ)
∣∣2i j

and

I2(ξ, t) = e2tps(ξ)
∑

i1+2i2+···+mim=m

t2(i1+···+im)

∣∣∣∣∣
m∏

j=1

[
∂

j
ξ1

Ĵ (ξ)
]i j −

m∏
j=1

[
∂

j
ξ1

ps(ξ)
]i j

∣∣∣∣∣
2

.

First, let us analyze I1(ξ, t).
Tacking into account that |∂ j

ξ1
ps(ξ)| � |ξ |s− j for all j � m � [s], |ξ | � R , and that∣∣et(̂ J (ξ)−1) − etps(ξ)

∣∣2 = e−2t|ξ |s ∣∣et(̂ J (ξ)−1+|ξ |s) − 1
∣∣2

� e−2t|ξ |s ∣∣t(̂ J (ξ) − 1 + |ξ |s)∣∣2

� t2e−2t|ξ |s |ξ |2(r+s)

the same arguments as in the proof of Lemma 2.2 give us the right decay.
It remains to analyze I2(ξ, t). We make use of the following elementary inequality∣∣∣∣∣

m∏
j=1

a j −
m∏

j=1

b j

∣∣∣∣∣ �
m∑

j=1

|b1 . . .b j−1||a j − b j||a j+1 . . .am|.

Then by Cauchy’s inequality we also have∣∣∣∣∣
m∏

j=1

a j −
m∏

j=1

b j

∣∣∣∣∣
2

�
m∑

j=1

b2
1 . . .b2

j−1(a j − b j)
2a2

j+1 . . .a2
m.

Applying the last inequality with a j = ∂
j
ξ1

Ĵ (ξ) and b j = ∂
j
ξ1

ps(ξ) we obtain

I2(ξ, t) � e2tps(ξ)
∑

i1+2i2+···+mim=m

t2(i1+···+im) g(i1, . . . , im, ξ)

where

g(i, ξ) =
m∑

j=1

j−1∏
k=1

∣∣∂k
ξ1

ps(ξ)
∣∣2ik

([
∂k
ξ1

Ĵ (ξ)
]ik − [

∂k
ξ1

ps(ξ)
]ik

)2
n∏

k= j+1

[
∂k
ξ1

Ĵ (ξ)
]2ik

and i = (i1, . . . , im).
Choosing eventually a smaller R we can guarantee that for |ξ | � R and k � [s] the following inequalities hold:∣∣∂k

ξ1
Ĵ (ξ) − ∂k

ξ1
ps(ξ)

∣∣ � |ξ |s+r−k,
∣∣∂k

ξ1
Ĵ (ξ)

∣∣ � |ξ |s−k,
∣∣∂k

ξ1
ps(ξ)

∣∣ � |ξ |s−k.

Hence, we get

∣∣[∂k
ξ1

Ĵ (ξ)
]ik − [

∂k
ξ1

ps(ξ)
]ik

∣∣ �
∣∣∂k

ξ1
Ĵ (ξ) − ∂k

ξ1
ps(ξ)

∣∣ ik−1∑
l=0

[
∂k
ξ1

Ĵ (ξ)
]l[

∂k
ξ1

ps(ξ)
]ik−l−1

� |ξ |s+r−k|ξ |(ik−1)(s−k)

= |ξ |r |ξ |ik(s−k).

This yields the following estimate on the function g(i1, . . . , im, ξ):

g(i1, . . . , im, ξ) � |ξ |2r |ξ |2
∑m

j=1 ik(s−k)
,

and consequently∫
Rd

I2(t, ξ)dξ �
∫
Rd

e−2t|ξ |s ∑
i1+2i2+···+mim=m

t2(i1+···+im)|ξ |2r+2
∑m

j=1 ik(s−k) dξ.

Making a change of variable and using similar arguments as in the proof of Lemma 2.2, we obtain the desired result. �
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