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Abstract

Making use of the fundamental solution of the heat equation we find the solution and prove the stability
theorem of the quadratic Jensen type functional equation
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in the spaces of Schwartz tempered distributions and Fourier hyperfunctions.
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1. Introduction

The concept of stability for a functional equation arises when we replace the functional equa-
tion by an inequality which acts as a perturbation of the equation. We usually say that the
functional equation E1(F ) = E2(F ) has the Hyers–Ulam–Rassias stability if for an approxi-
mate solution f of this equation, i.e., for a function f with d(E1(f ),E2(f )) � φ holds with a
given function φ, there exists a function g such that E1(g) = E2(g) and d(f,g) � Φ for some
fixed function Φ [7,13,16].
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Trif [15] solved the following Jensen type functional equation:
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and investigated the Hyers–Ulam–Rassias stability of this equation. (1) has been considered for
the first time by Popoviciu [12] in connection with the following inequality: If I is a nonempty
interval and f : I → R is a convex function, then it holds that
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for all x, y, z ∈ I . Today this inequality is commonly known as the Popoviciu inequality.
Lee [9] introduced a quadratic Jensen type functional equation
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which is somewhat different from Eq. (1). The solutions of (1) and (2) are different and further-
more the methods of the proving their stability theorems are also different, even though the two
of them are much alike.

In this paper we reformulate and prove the stability theorem of Eq. (2) in the spaces of some
generalized functions such as the space S ′ of Schwartz tempered distributions which is the dual
space of the Schwartz space S of rapidly decreasing functions and the space F ′ of Fourier hyper-
functions which is the dual space of the Sato space F of analytic functions of exponential decay.
Note that the above Eq. (2) and the related inequality∣∣∣∣9f
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themselves make no sense in the spaces of generalized functions. Making use of the pullbacks
of generalized functions as in [1,2,4,6,10] we extend (2) and (3) to the spaces of generalized
functions. Let L, P1, P2, P3, Q1, Q2 and Q3 be the functions defined by

L(x, y, z) = x + y + z,

P1(x, y, z) = x, P2(x, y, z) = y, P3(x, y, z) = z,

Q1(x, y, z) = x + y, Q2(x, y, z) = y + z, Q3(x, y, z) = z + x

for all x, y, z ∈ Rn. Then (2) and (3) can be naturally extended as follows:

9u ◦ L

3
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]
, (4)

∥∥∥∥9u ◦ L + u ◦ P1 + u ◦ P2 + u ◦ P3 − 4u ◦ Q1 − 4u ◦ Q2 − 4u ◦ Q3
∥∥∥∥ � ε. (5)
3 2 2 2
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Here ◦ means the pullback of generalized functions and ‖v‖ � ε means that |〈v,ϕ〉| � ε‖ϕ‖L1

for all test functions ϕ.
In order to solve Eq. (4) we employ the n-dimensional heat kernel, that is, the fundamental

solution E(x, t) of the heat operator ∂t − �x in Rn
x × R+

t given by

Et(x) = E(x, t) =
{

(4πt)−n/2 exp(−|x|2/4t), t > 0,

0, t � 0.

Since for each t > 0, E(·, t) belongs to the Schwartz space S and the Sato space F , the convo-
lution

Gu(x, t) = (u ∗ E)(x, t) = uy

(
E(x − y, t)

)
, x ∈ Rn, t > 0, (6)

is well defined for each u ∈ S ′ or u ∈ F ′, which is called the Gauss transform of u. By virtue
of the useful semigroup property (Es ∗ Et)(x) = Es+t (x) of the heat kernel, Eq. (4) will be
converted into the classical functional equation of the Gauss transforms.

2. Preliminaries

We first introduce briefly spaces of some generalized functions such as tempered distribu-
tions and Fourier hyperfunctions. Here we use the multi-index notations, |α| = α1 + · · · + αn,
α! = α1! · · ·αn!, xα = x

α1
1 · · ·xαn

n and ∂α = ∂
α1
1 · · · ∂αn

n , for x = (x1, . . . , xn) ∈ Rn, α =
(α1, . . . , αn) ∈ Nn

0, where N0 is the set of nonnegative integers and ∂j = ∂/∂xj .

Definition 2.1. [5,14] We denote by S or S(Rn) the Schwartz space of all infinitely differentiable
functions ϕ in Rn satisfying

‖ϕ‖α,β = sup
x∈Rn

∣∣xα∂βϕ(x)
∣∣ < ∞ (7)

for all α, β ∈ Nn
0, equipped with the topology defined by the seminorms ‖ · ‖α,β . A linear form u

on S is said to be tempered distribution if there is a constant C � 0 and a nonnegative integer N

such that∣∣〈u,ϕ〉∣∣ � C
∑

|α|,|β|�N

sup
x∈Rn

∣∣xα∂βϕ
∣∣

for all ϕ ∈ S . The set of all tempered distributions is denoted by S ′.

Imposing growth conditions on ‖ · ‖α,β in (7) Sato and Kawai introduced the space F of test
functions for the Fourier hyperfunctions as follows.

Definition 2.2. [3] We denote by F or F(Rn) the Sato space of all infinitely differentiable func-
tion ϕ in Rn such that

‖ϕ‖A,B = sup
x,α,β

|xα∂βϕ(x)|
A|α|B |β|α!β! < ∞ (8)

for some positive constants A,B .
We say that ϕj → 0 as j → ∞ if ‖ϕj‖A,B → 0 as j → ∞ for some A,B > 0, and denote by

F ′ the strong dual of F and call its elements Fourier hyperfunctions.
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It can be verified that the semi-norms (8) are equivalent to

‖ϕ‖h,k = sup
x∈Rn,α∈N

n
0

|∂αϕ(x)| exp k|x|
h|α|α! < ∞

for some constants h, k > 0. It is easy to see the following topological inclusion:

F ↪→ S, S ′ ↪→F ′.

From now on a test function means an element in the Schwartz space S or the Sato space F and
a generalized function means a tempered distribution or Fourier hyperfunction.

We briefly introduced the heat kernel method, which represents generalized functions as the
initial values of solutions of the heat equation.

Theorem 2.3. [11] Let u ∈ S ′(Rn). Then its Gauss transform Gu(x, t) in (6) is a C∞-solution
of the heat equation satisfying:

(i) there exist positive constants C,M and N such that
∣∣Gu(x, t)

∣∣ � Ct−M
(
1 + |x|)N

in Rn × (0, δ); (9)

(ii) Gu(x, t) → u as t → 0+ in the following sense; for every ϕ ∈ S

〈u,ϕ〉 = lim
t→0+

∫
Gu(x, t)ϕ(x) dx.

Conversely, every C∞-solution U(x, t) of the heat equation satisfying the growth condition (9)
can be expressed as U(x, t) = Gu(x, t) for some u ∈ S ′.

Similarly, we can represent Fourier hyperfunctions as initial values of solutions of the heat
equation as a special case of the results in [8]. In this case, estimate (9) is replaced by the follow-
ing: For every ε > 0 there exists a positive constant Cε such that∣∣Gu(x, t)

∣∣ � Cε exp
(
ε
(|x| + 1/t

))
in Rn × (0, δ).

Convolving Er(x) · Es(y) · Et(z) in both sides of (4) we have the following functional equation:

9Gu
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4

)]
(10)

for all x, y, z ∈ Rn, r, s, t > 0. Thus (4) is converted into the classical functional equation in the
smooth functions.

3. Main results

In this section we find the solution of the functional equation (4) and prove the stability theo-
rem in the spaces of generalized functions.
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Lemma 3.1. A function f : Rn × (0,∞) → C satisfies Eq. (10), f (−x, t) = f (x, t) and
f (0, t) = 0 for all x, y, z ∈ Rn, r, s, t > 0 if and only if there exists a quadratic function
Q : Rn → C such that

f (x, t) = Q(x)

for all x ∈ Rn, t > 0.

Proof. Necessity: This is obvious.
Sufficiency: Putting y = −x, z = 0, r = s = t in (10) yields

f (x, t) = 4f

(
x

2
,
t

2

)
(11)

for all x ∈ Rn, t > 0. Putting y = z = 0, r = s = t in (10) and using (11) we get

9f

(
x

3
,
t

3

)
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for all x ∈ Rn, t > 0. Thus (10) is converted into
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(
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for all x, y, z ∈ Rn, r, s, t > 0. Putting z = −x, r = s = t in (12) yields

2f (x, t) + 2f (y, t) = f (x + y, t) + f (x − y, t) (13)

for all x, y ∈ Rn, t > 0. Putting y = −x, z = 0 in (12) yields

f (x, r) + f (x, s) = f

(
x,

s + t

2

)
+ f

(
x,

t + r

2

)
(14)

for all x ∈ Rn, r, s, t > 0. Putting s = r in (14) yields

f (x, r) = f

(
x,

r + t

2

)

for all x ∈ Rn, r, t > 0. Thus f (x, t) is independent of t > 0 and we may write Q(x) = f (x,1) =
f (x, t). Since f satisfies (13), Q(x) satisfies the quadratic functional equation

2Q(x) + 2Q(y) = Q(x + y) + Q(x − y)

for all x, y ∈ Rn. �
Lemma 3.2. A function f : Rn × (0,∞) → C satisfies Eq. (10) and f (−x, t) = −f (x, t) for all
x, y, z ∈ Rn, r, s, t > 0 if and only if there exists an additive function A : Rn → C such that

f (x, t) = A(x)

for all x ∈ Rn, t > 0.
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Proof. Necessity: This is obvious.
Sufficiency: Putting y = z = 0 and r = s = t in (10) yields

9f
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3
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)
+ f (x, t) = 8f
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x

2
,
t
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(15)

for all x ∈ Rn, t > 0. Putting z = −y, r = s = t in (10) yields

9f

(
x

3
,
t

3

)
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2
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for all x, y ∈ Rn, t > 0. It follows from (15) and (16) that we obtain

2f (x, t) = f (x + y, t) + f (x − y, t) (17)

for all x, y ∈ Rn, t > 0. Putting y = x in (17) we get

2f (x, t) = f (2x, t) (18)

for all x ∈ Rn, t > 0. Putting x = x+y
2 , y = x−y

2 in (17) and using (18) we have

f (x + y, t) = f (x, t) + f (y, t) (19)

for all x, y ∈ Rn, t > 0. Putting y = 2x in (19) and using (18) we obtain

f (3x, t) = 3f (x, t) (20)

for all x ∈ Rn, t > 0. It follows from (18) and (20) that (10) is converted into
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(21)

for all x, y, z ∈ Rn, r, s, t > 0. Putting y = −x, z = 0 in (21) yields
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for all x ∈ Rn, r, s, t > 0. Putting t = 3r in (22) yields
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for all x ∈ Rn, r, s > 0. It follows from (23) and (24) that

f (x, s + 3r) = f (x,3s + r)

for all x ∈ Rn, r, s > 0. Thus f (x, r) = f (x, s) for all (r, s) ∈ R, where

R =
{
(r, s):

1

3
r < s < 3r, r > 0

}
.

Now it suffices to show that f (x, r) = f (x, s) for all (r, s) /∈ R. Let (r, s) /∈ R. Then we can take
t > 0 so large that (r + t, s + t) ∈ R. It follows from (22) that

f (x, r) − f (x, s) = f (x, r + t) − f (x, s + t) = 0.

Therefore f (x, t) is independent of t > 0 and we may write A(x) = f (x,1) = f (x, t). Since f

satisfies (19), A(x) satisfies

A(x + y) = A(x) + A(y)

for all x, y ∈ Rn. �
Theorem 3.3. Every solution u in S ′ or F ′ of Eq. (4) has the form

u =
∑

1�i�j�n

aij xixj + b · x + c,

where b ∈ Rn and c ∈ C.

Proof. Convolving the tensor product Er(x) · Es(y) · Et(z) of n-dimensional heat kernels in
both sides of (4) we have the following classical functional equation in the upper half space
Rn × (0,∞):

9Gu

(
x + y + z

3
,
r + s + t

9

)
+ Gu(x, r) + Gu(y, s) + Gu(z, t)

= 4

[
Gu

(
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2
,
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4

)
+ Gu

(
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2
,
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4

)
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(
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2
,
t + r

4

)]
(25)

for all x, y, z ∈ Rn, r, s, t > 0.
Let f1 : Rn × (0,∞) → C be the function defined by f1(x, t) = (Gu(x, t) + Gu(−x, t))/2 −

Gu(0, t) for all x ∈ Rn, t > 0. Then f1(0, t) = 0, f1(x, t) = f1(−x, t) and

9f1

(
x + y + z

3
,
r + s + t

9

)
+ f1(x, r) + f1(y, s) + f1(z, t)

= 4

[
f1

(
x + y

2
,
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4

)
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(
y + z

2
,
s + t

4

)
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(
z + x

2
,
t + r

4

)]

for all x, y, z ∈ Rn, r, s, t > 0. By Lemma 3.1, there exists a quadratic function Q : Rn → C such
that f1(x, t) = Q(x) for all x ∈ Rn, t > 0.

Let f2 : Rn × (0,∞) → C be the function defined by f2(x, t) = (Gu(x, t) − Gu(−x, t))/2
for all x ∈ Rn, t > 0. Then f2(0, t) = 0, f2(−x, t) = −f2(x, t) and

9f2
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2 4 2 4 2 4
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for all x, y, z ∈ Rn, r, s, t > 0. By Lemma 3.2, there exists an additive function A : Rn → C such
that f2(x, t) = A(x) for all x ∈ Rn, t > 0.

Since Gu(x, t) = f1(x, t) + f2(x, t) + Gu(0, t), we have

Gu(x, t) = Q(x) + A(x) + Gu(0, t)

for all x ∈ Rn, t > 0. Note that the Gauss transform Gu is a smooth function. Thus as in [2]
Gu(x, t) is of the form

Gu(x, t) =
∑

1�i�j�n

aij xixj + b · x + Gu(0, t).

Moreover, Gu(0, t) := g(t) satisfies

9g

(
r + s + t

9

)
+ g(r) + g(s) + g(t) = 4

[
g

(
r + s

4

)
+ g

(
s + t

4

)
+ g

(
t + r

4

)]
(26)

for all r, s, t > 0. By differentiating (26) with respect to r , we find that

g′
(

r + s + t

9

)
+ g′(r) = g′

(
r + s

4

)
+ g′

(
t + r

4

)
(27)

for all r, s, t > 0. Similarly, differentiation of (26) with respect to s yields

g′
(

r + s + t

9

)
+ g′(s) = g′

(
r + s

4

)
+ g′

(
s + t

4

)
(28)

for all r, s, t > 0. It follows from (27) and (28) that

g′(r) − g′(s) = g′
(

t + r

4

)
− g′

(
s + t

4

)
(29)

for all r, s, t > 0. Putting t = 3s in (29) we have

g′(r) = g′
(

3s + r

4

)
(30)

for all r, s, t > 0. Thus g(t) = Gu(0, t) is of the form

Gu(0, t) = ct + d

for some c, d ∈ C. Therefore the solution Gu(x, t) of Eq. (25) is of the form

Gu(x, t) =
∑

1�i�j�n

aij xixj + b · x + ct + d (31)

for some b ∈ Rn, c, d ∈ C. Letting t → 0 in (31) we have the conclusion. �
Now, we are going to prove the stability theorem of Eq. (4) in the spaces of generalized

functions.

Theorem 3.4. Let u be a tempered distribution or a Fourier hyperfunction in Rn satisfying (5).
Then there exists unique quadratic form

Q(x) =
∑

aij xixj ,
1�i�j�n
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b ∈ Rn and c ∈ C, such that

∥∥u − Q(x) − b · x − c
∥∥ � 2

3
ε.

Proof. Convolving the tensor product Er(x) ·Es(y) ·Et(z) of n-dimensional heat kernels in both
sides of (5) we have the following classical functional inequality∣∣∣∣9Gu

(
x + y + z

3
,
r + s + t

9

)
+ Gu(x, r) + Gu(y, s) + Gu(z, t)

− 4Gu

(
x + y

2
,
r + s

4

)
− 4Gu

(
y + z

2
,
s + t

4

)
− 4Gu

(
z + x

2
,
t + r

4

)∣∣∣∣ � ε

for all x, y, z ∈ Rn, r, s, t > 0.
Let f1 : Rn × (0,∞) → C be the function defined by f1(x, t) = (Gu(x, t) + Gu(−x, t))/2 −

Gu(0, t) for all x ∈ Rn, t > 0. Then f1(0, t) = 0, f1(−x, t) = f1(x, t) and∣∣∣∣9f1

(
x + y + z

3
,
r + s + t

9

)
+ f1(x, r) + f1(y, s) + f1(z, t)

− 4f1

(
x + y

2
,
r + s

4

)
− 4f1

(
y + z

2
,
s + t

4

)
− 4f1

(
z + x

2
,
t + r

4

)∣∣∣∣ � ε (32)

for all x, y, z ∈ Rn, r, s, t > 0. Putting y = −x, z = 0 and r = s = t in (32) and dividing by 2
yields∣∣∣∣f1(x, t) − 4f1

(
x

2
,
t

2

)∣∣∣∣ � ε

2

for all x ∈ Rn, t > 0. Replacing x, t by 2x, 2t , respectively, and dividing by 4 yields∣∣∣∣f1(2x,2t)

4
− f1(x, t)

∣∣∣∣ � ε

8

for all x ∈ Rn, t > 0. Making use of the induction argument and triangle inequality it follows that∣∣∣∣f1(2nx,2nt)

4n
− f1(x, t)

∣∣∣∣ � ε

6
(33)

for all x ∈ Rn, t > 0. Replacing x, t by 2mx, 2mt , respectively, and dividing the result by 4m we
obtain∣∣∣∣f1(2m+nx,2m+nt)

4m+n
− f1(2mx,2mt)

4m

∣∣∣∣ � ε

6 · 4m

for all m,n ∈ N, x ∈ Rn, t > 0. We can see that gn(x, t) := f1(2nx,2nt)
4n is a Cauchy sequence

which converges uniformly. Hence g1(x, t) := limn→∞ f1(2nx,2nt)
4n exists. In view of (32) we

have

9g1

(
x + y + z

3
,
r + s + t

9

)
+ g1(x, r) + g1(y, s) + g1(z, t)

= 4

[
g1

(
x + y

,
r + s

)
+ g1

(
y + z

,
s + t

)
+ g1

(
z + x

,
t + r

)]

2 4 2 4 2 4
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for all x, y, z ∈ Rn, r, s, t > 0. Since f1(0, t) = 0 and f1(−x, t) = f1(x, t), we have g1(0, t) = 0
and g1(−x, t) = g1(x, t) for all x ∈ Rn, t > 0. By Lemma 3.1, there exists a quadratic function
Q : Rn → C such that

g1(x, t) = Q(x)

for all x ∈ Rn, t > 0. On the other hand, the function Q inherits its measurability from f1. Thus,
as in [2], Q(x) is of the form

Q(x) =
∑

1�i�j�n

aij xixj .

Letting n → ∞ in (33) we have
∣∣Q(x) − f1(x, t)

∣∣ � ε

6
(34)

for all x ∈ Rn, t > 0. Suppose that another quadratic function H : Rn → C satisfies (34), then

r2
∣∣H(x) − Q(x)

∣∣ = ∣∣H(rx) − Q(rx)
∣∣

�
∣∣H(rx) − f1(rx, t)

∣∣ + ∣∣f1(rx, t) − Q(rx)
∣∣ � ε

3

for all r ∈ Q, x ∈ Rn, t > 0. Letting r → ∞ we must have H = Q.
Let f2 : Rn × (0,∞) → C be the function defined by f2(x, t) = (Gu(x, t) − Gu(−x, t))/2

for all x ∈ Rn, t > 0. Then f2(0, t) = 0, f2(−x, t) = −f2(x, t) and∣∣∣∣9f2

(
x + y + z

3
,
r + s + t

9

)
+ f2(x, r) + f2(y, s) + f2(z, t)

− 4f2

(
x + y

2
,
r + s

4

)
− 4f2

(
y + z

2
,
s + t

4

)
− 4f2

(
z + x

2
,
t + r

4

)∣∣∣∣ � ε (35)

for all x, y, z ∈ Rn, r, s, t > 0. Putting y = z = 0 and r = s = t in (35) yields∣∣∣∣9f2

(
x

3
,
t

3

)
+ f2(x, t) − 8f2

(
x

2
,
t

2

)∣∣∣∣ � ε (36)

for all x ∈ Rn, t > 0. Putting z = −y and r = s = t in (35) yields∣∣∣∣9f2

(
x

3
,
t

3

)
+ f2(x, t) − 4f2

(
x + y

2
,
t

2

)
− 4f2

(
x − y

2
,
t

2

)∣∣∣∣ � ε (37)

for all x, y ∈ Rn, t > 0. Putting y = x in (37) yields∣∣∣∣9f2

(
x

3
,
t

3

)
+ f2(x, t) − 4f2

(
x,

t

2

)∣∣∣∣ � ε (38)

for all x ∈ Rn, t > 0. It follows from (36) and (38) that∣∣∣∣8f2

(
x

2
,
t

2

)
− 4f2

(
x,

t

2

)∣∣∣∣ � 2ε

for all x ∈ Rn, t > 0. Replacing x, t by 2x, 2t , respectively, and dividing by 8 yields∣∣∣∣f2(x, t) − f2(2x, t)
∣∣∣∣ � ε
2 4
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for all x ∈ Rn, t > 0. Making use of the induction argument and triangle inequality it follows that∣∣∣∣f2(x, t) − f2(2nx, t)

2n

∣∣∣∣ � ε

2
(39)

for all x ∈ Rn, t > 0. Replacing x by 2mx and dividing the result by 2m we obtain∣∣∣∣f2(2mx, t)

2m
− f2(2m+nx, t)

2m+n

∣∣∣∣ � ε

2m+1

for all m,n ∈ N, x ∈ Rn, t > 0. Hence f2(2nx,t)
2n is a Cauchy sequence. Let g2(x, t) :=

limn→∞ f2(2nx,t)
2n . It follows from (35) that g2 satisfies

9g2

(
x + y + z

3
,
r + s + t

9

)
+ g2(x, r) + g1(y, s) + g2(z, t)

= 4

[
g2

(
x + y

2
,
r + s

4

)
+ g2

(
y + z

2
,
s + t

4

)
+ g2

(
z + x

2
,
t + r

4

)]

for all x, y, z ∈ Rn, r, s, t > 0. Since f2(0, t) = 0 and f2(−x, t) = −f2(x, t), we have
g2(0, t) = 0 and g2(−x, t) = −g2(x, t) for all x ∈ Rn, t > 0. By Lemma 3.2, there exists an
additive function A : Rn → C such that

g2(x, t) = A(x)

for all x ∈ Rn, t > 0. Also the function A inherits its measurability from f2 and it is well known
that A(x) is of the form

A(x) = b · x.

Letting n → ∞ in (39) we have
∣∣f2(x, t) − A(x)

∣∣ � ε

2
(40)

for all x ∈ Rn, t > 0. Suppose that another additive function K : Rn → C satisfies (40), then

r
∣∣K(x) − A(x)

∣∣ = ∣∣K(rx) − A(rx)
∣∣

�
∣∣K(rx) − f2(rx, t)

∣∣ + ∣∣f2(rx, t) − A(rx)
∣∣ � ε

for all r ∈ Q, x ∈ Rn, t > 0. Letting r → ∞ we must have K = A.
Since Gu(x, t) = f1(x, t) + f2(x, t) + Gu(0, t), we have

∣∣Gu(x, t) − Q(x) − A(x) − Gu(0, t)
∣∣

�
∣∣f1(x, t) − Q(x)

∣∣ + ∣∣f2(x, t) − A(x)
∣∣ � 2

3
ε. (41)

Letting t → 0+ in (41) we have the conclusion. �
Acknowledgments

Authors thank the referees for their suggestions and Professor J. Chung for discussions.



1406 Y.-S. Lee, S.-Y. Chung / J. Math. Anal. Appl. 324 (2006) 1395–1406
References

[1] J.A. Baker, Distributional methods for functional equations, Aequationes Math. 62 (2001) 136–142.
[2] J. Chung, Stability of functional equations in the space of distributions and hyperfunctions, J. Math. Anal. Appl. 286

(2003) 177–186.
[3] J. Chung, S.-Y. Chung, D. Kim, A characterization for Fourier hyperfunctions, Publ. Res. Inst. Math. Sci. 30 (1994)

203–208.
[4] J. Chung, S.-Y. Chung, D. Kim, The stability of Cauchy equations in the space of Schwartz distributions, J. Math.

Anal. Appl. 295 (2004) 107–114.
[5] J. Chung, S.-Y. Chung, D. Kim, Une caractérisation de l’espace de Schwartz, C. R. Acad. Sci. Paris Sér. I Math. 316

(1993) 23–25.
[6] S.-Y. Chung, Reformulation of some functional equations in the space of Gevrey distributions and regularity of

solutions, Aequationes Math. 59 (2000) 108–123.
[7] D.H. Hyers, On the stability of the linear functional equations, Proc. Natl. Acad. Sci. USA 27 (1941) 222–224.
[8] K.H. Kim, S.-Y. Chung, D. Kim, Fourier hyperfunctions as the boundary values of smooth solutions of heat equa-

tions, Publ. Res. Inst. Math. Sci. 29 (1993) 289–300.
[9] Y.H. Lee, On the stability of a quadratic Jensen type functional equation, J. Math. Anal. Appl. 270 (2002) 590–601.

[10] L. Lee, J. Chung, Stability of Jensen equations in the spaces of generalized functions, J. Math. Anal. Appl. 299
(2004) 578–586.

[11] T. Matsuzawa, A calculus approach to hyperfunctions III, Nagoya Math. J. 118 (1990) 133–153.
[12] T. Popoviciu, Sur certaines inégalités qui caractérisent les fonctions convexes, An. Ştiint. Univ. Al. I. Cuza Iaşi Secţ.
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