
PERGAMON

An Intemational Joumal

computers &
mathematics
with appllcsUons

Computers and Mathematics with Applications 42 (2001) 91-100
www.elsevier.nl/locate/camwa

A Comparison of Different
Finite Fields for

Elliptic Curve Cryptosystems

N. P. SMART
Computer Science Department

University of Bristol
Woodland Road, Bristol BS8 1UB, UK

nigel©cs, bris. ac. uk

(Received June 2000; revised and accepted November 2000)

A b s t r a c t - - W e examine the relative efficiency of four methods for finite field representation in the
context of elliptic curve cryptography (ECC). We conclude that a set of fields called the optimized
extension fields (OEFs) give greater performance, even when used with a2fine coordinates, when
compared against the type of fields recommended in the emerging ECC standards. Although this
performance advantage is only marginal, and hence, there is probably no need to change the current
standards to allow OEF fields in standards compliant implementations. © 2001 Elsevier Science
Ltd. All rights reserved.

Keywords - -F in i t e fields, Elliptic curves, Cryptography.

1. I N T R O D U C T I O N

The efficient implementation of arithmetic in finite fields is crucial for the high performance of
various cryptographic algorithms, such as those based on the difficulty of the discrete logarithm

problem in finite fields, elliptic curves or hyperelliptic curves. In all of these schemes, the efficiency
of the underlying finite field operations is the dominant performance constraint, any effort spent

optimising the field operations is well spent. This has led a number of special choices of field to

be used, each with its own performance characteristics. Due to different engineering constraints

such as processor type, memory requirements, etc., there is no correct answer to the question:
which field should one use?

In this paper, we look in more detail at the choice of finite fields in the case of elliptic curve
based systems. It is important, when comparing one parameter choice against another, that we

use real world parameter choices and we look not only at the performance of the underlying field

arithmetic but also at the performance of the overall cryptographic protocols. This is important

since some cryptographic algorithms do not make use of general arithmetic but only require

careful optimisation of crucial parts. This is particularly true of modular exponentiation based
systems where it makes more sense to spend a lot of time optimising the squaring operation

0898-1221/01/$ - see front matter (~) 2001 Elsevier Science Ltd. All rights reserved. Typeset by .AA,~-TEX
PII: S0898-1221 (01)00133-X

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82369298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

92 N.P. SMART

as opposed to the general multiplication operation. A similar situation holds for elliptic curves,
where one needs to optimise the point doubling operation more than the general point addition
operation.

In this paper, we will concentrate on the choice of finite field and not consider the use of
special curves, such as the so-called Koblitz curves, which can provide performance advantages.
Hence, our conclusions will not be affected by security considerations as long as the overwhelming
majority of curves over the given fields are considered to be secure.

It is also important to compare like for like, for example if one system uses machine code
for the main arithmetics whilst the one being compared against uses no machine code then the
comparison is not really fair. In addition, one should only compare algorithms using a single
computer. Even comparisons on almost identical processors can lead to different conclusions.
For example, in fields of characteristic two arithmetic is often implemented via lookup tables,
hence, algorithms will behave differently on two processors which are identical bar the fact that
one has a faster access time for its cache. Also, comparing two systems which are programmed
by different people one could be comparing programming ability rather than actual performance.

Often these considerations are ignored, since complexity theory tells us that implementation
details should not mat ter and that it is the complexity of the algorithm itself which should
determine the relative merits. But complexity arguments only hold in the limit, which may
not be applicable at the problem size under consideration. For example, when multiplying two
integers, complexity theory tells us that Fourier transform techniques or Karatsuba multiplication
will work faster than school book multiplication, but when multiplying 200 bit numbers it is often
far more efficient in practice to use a school book multiplication algorithm.

Various other authors have compared implementation details for elliptic curve systems, but we
would contend that such comparisons are to be taken with a pinch of salt. For example Bailey
and Paar [1] compare their OEF based elliptic curve implementation against other peoples im-
plementations of characteristic two fields of composite degrees. This is bad practice for a number
of reasons. First, composite fields of characteristic two are not recommended for use in crypto-
graphic standards (a view which has been reinforced by recent work in [2]). Second, the authors
of [1] have a reason to prefer OEF fields since they are putting them forward as a replacement for
standard implementations, although in our comparison we give independent verification of their
conclusion that OEF fields offer significant advantages. Third, the comparison was performed
on 64 bit architectures, which although these are now common in high end workstations, are not
likely to be common in the small devices which are the target for elliptic curve based systems.
Our comparison on a 32 bit R/SC system is likely to be more indicative since such processors,
like the StrongArm, are likely to be used in a number of such devices in the coming years. A
comparison of various elliptic curve algorithms on an 8 bit smartcard without coprocessor was
given in [3], although this paper concentrated mainly on OEF fields. For those interested in
constrained environments we recommend that the current paper is read in conjunction with [3].

In another comparison, in [4] the authors give a comparison between even characteristic fields
and odd characteristic fields, the later being implemented using Barret t reduction. This is slightly
flawed since standards compliant elliptic curve systems in odd characteristic are more likely to
be implemented over fields defined by a Generalised Mersenne prime which provide different
performance characteristics than general primes.

The main reason for our interest was to compare the new idea of OEF fields with the fields
defined by GM-primes which occur in the standards documents. Hence, all our implementations
were coded from scratch and shared many core subprocedures. A similar length of time was
spent optimising each implementation, and so, the relative differences in performance should be
indicative of completely optimised implementations. Although the resulting comparisons are not
completely scientific, we do hope that they are on a better foundation than previous ones. Hence,
hopefully they can be used to make further commercial considerations as to which fields are to
be preferred.

Elliptic Curve Cryptosystems 93

2. M E T H O D O L O G Y

In this section, we outline the rough methodology we used to compare the running t imes of the
various field choices. This is done to enable others to compare their own timings against ours, or
our design decisions with their own.

First, we decided to compare on two processor types, one a RISC processor and one a CISC
processor. These were an Ultra Sparc IIi running at 440 Mhz with the Solaris operat ing system,
the other was a Pentium Pro running at 166 Mhz with the Linux operat ing system. Although
both processors support a limited amount of special purpose 64 bit registers, for example the
MMX instructions on the Pentium can use 64 bit data, we decided our implementat ion should

concentrate on the 32 bit core. This decision was also done to aid interoperability, since it is
easier to write portable C ÷ + code which uses 32 bit data rather than 64 bit data. In addition,
since elliptic curves are more likely to be used in constrained environments, it is more likely tha t
they will be implemented on 32 bit processors rather than 64 bit processors.

The programming language used was C + + and the compiler was the GNU g ÷ + compiler,
version 2.95.1. The GNU compiler enables a quite powerful inline assembly option. We decided
to only implement three small routines in assembler, mainly adding functionality present on

most modern processors to the C + ÷ language. These three pieces of assembler implemented the
following (inlined) functions, the entities on the left denote the output which depends on the
input on the right,

(C, a) --a+b+c

(c, a) =a-b- c

(h, 1)--a*b+t+c

where c denotes a one bit value and (h, l) denotes the 64 bit quantity h232 ÷ I. The multiplication

used may seem a little strange at first, but it turns out to be very useful. Since we only imple-
mented a small amount in assembler our code was highly portable, on the other hand the code
could be made considerably more efficient using greater use of assembler.

The code was implemented using as much common shared code between the various field
representations as possible, hence, the comparison would be of the fields and not the different
implementat ions of other nonimportant functions.

The code was also designed to work with any number of field sizes, hence, al though special
tricks were used for each field type these were coded in as general a way as possible. One could

argue tha t this is unlikely to be the case in real life, since one may wish to hardwire a field into
a particular application. This would result in even greater efficiency gains, since the exact field
would be decided at compile time. However, one could also argue tha t some applications would
need to keep the size of field open until run time, since tha t way one maintains greater chances of
being interoperable with other applications. Since we tried to keep the code general and did not
use a great deal of machine code this meant aggressive optimisations such as software pipelining
would only be available via the compiler 's own optimisation routines.

Using C ÷ ÷ also allowed us to direct a number of 'optimisation hints' to t h e compiler, by
for example hinting as to when a function should be inlined or when a passed argument should
be considered a constant for the function call. However, it is widely believed tha t object code
produced from C source is more efficient than that produced from C ÷ ÷ source. We did not
consider this a problem since we were mainly interested in the relative performance of the various
arithmetics.

To avoid the influence of programming ability on the performance of different field types, all
code was implemented from scratch by the author with no routines 'borrowed' from existing
pieces of software.

We end this section by stressing tha t the absolute run times we give below could clearly be
improved. However, we believe the relative run times should be indicative of what should hold
in any reasonable implementation.

94 N.P. SMART

3. T H E C H O I C E S F O R F I E L D S

Currently, there are a number of field choices for elliptic curve systems that are mentioned in
the literature. These can be divided into two classes.

3 . 1 . P r i m e F i e l d s

Fields of large prime characteristic, Fp, are very popular since they can be efficiently imple-
mented using techniques borrowed from other finite field based cryptographic systems such as
DSA and RSA. However, using standard modular arithmetic is not very efficient since multi-
precision remaindering operations are very expensive. Hence, when used in elliptic curve systems
there are various choices that are often made.

G e n e r a l P r i m e s

For general primes the most efficient implementation technique is almost always to use Mont-
gomery arithmetic, [5]. Although the authors of [4] use Barrett reduction, the timing difference
between Montgomery arithmetic and Barrett reduction is usually negligible.

Montgomery arithmetic uses a special representation to perform efficient arithmetic, the divi-
sion and remaindering essentially being performed by bit, or word, shifting. We do not cover this
arithmetic here since it is covered in a number of text books, e.g., [6,7]. In [8] various ways of
implementing Montgomery arithmetic are described. We tried both the FIOS and CIOS methods
and decided that in our situation the FIOS method gave the greatest efficiency.

Field inversion was performed using a standard modification of the binary extended Euclidean
algorithm for Montgomery arithmetic.

G e n e r a l i z e d M e r s e n n e P r i m e s

Certain primes are highly suited for efficient reduction techniques, the most simple form of
such primes being the Mersenne primes, which are primes of the form p -- 2 k - 1. However, the
number of Mersenne primes of the correct size for cryptography is limited. This has led a number
of authors to propose generalisations on the Mersenne primes.

Crandall [9] proposed the use of primes of the form p = 2 k - c where c is a small integer, which
is usually chosen to fit into a single word. Primes of the form p --- 2 k + c for a small value of c
(in comparison to 2 k) are often called pseudo-Mersenne primes.

In another direction, Solinas [10] introduced the concept of generalized Mersenne primes (GM-
primes) which are primes of the form

p = ,f (2k) ,

where f is a polynomial of small degree and weight and k is a multiple of the computer word
s ize .

The use of GM-primes has become popular due to the adoption of these primes .in the recom-
mend curves in standards from such bodies as ANSI [11], NIST [12], SECG [13], and WAP [14].
As an example we take the following example from Solinas' paper

f (t) = t 3 - t - 1 .

Then we obtain the 192 bit prime

p ----- 2192 -- 264 -- 1 = f (264) .

Reducing the result of a multiprecision multiplication is then a simple matter: after performing
the multiprecision multiplication (via school book methods) of two 192 bit integers we obtain a
number of the form

N = (AsIIA411A31IA211A~IIAo),

Elliptic Curve Cryptosystems 95

where Ai is a 64 bit integer. The value of N modulo p can then be computed with three additions
modulo p,

N - T + S I + S 2 + S 3 (mod p),

where

T = (A 2] I A I l I A o) , S 1 = (011A311A3),

$2 = (A4[tAaII0), $3 = (A s I I A s I I A ~) .

Inversion was again performed using a variant of the binary extended Euclidean algorithm.

3.2. N o n p r i m e F i e l d s

Again there are a number of choices here for the fields Fq with q = p n . These are usually
implemented via a polynomial basis where

Fq - F p [z]

f(z)
and f (x) is an irreducible polynomial of degree n over Fp.

C h a r a c t e r i s t i c T w o

In this case, due to work described in [2], we need to choose n to be prime. One chooses f (x)

to be a tr inomial or pentanomial for efficiency. In other words, we choose either

y (z) = x ~ + z k + 1

or

f (x) = x n + x k + x I + x m + 1.

These have been a popular choice in standards bodies and for implementors due to the advantages

tha t they offer in hardware and on some RISC processors. The li terature on these is quite
extensive so we just refer the reader to [6] or [15] for more mathemat ical details. Normal bases
can be used, but these are more usual when considering hardware implementations of fields in
characteristic two, hence, we shall not consider normal bases further here.

To implement characteristic two arithmetic a 256 × 256 look up table was computed which gave

the 16 bit result of multiplying two 8 bit quantities, when one considered the integers representing
a binary polynomial. Using this look up table, an inlined function was created to multiply two
32 bit quantities and return a 64 bit result. Then the multiplication of two n bit polynomials was
reduced to various calls of the 32 bit multiplication routines using Kara t suba style techniques.

Squaring an n bit polynomial is particularly easy since there are no 'cross terms ' in characteristic
two. Hence, all tha t one needs to do is divide the n bit input into 8 bit chunks and then compute
the 16 bit square using the previously mentioned lookup table.

After having squared an n bit polynomial, or multiplied two n bit polynomials, we obtain a
2n bit result. This needs to be reduced to an n bit final answer by taking the remainder on
division by f . This is done using a word-oriented version of [6, Algorithm II.9].

Field inversion was performed using a variant of the binary Euclidean algorithm.

O p t i m i z e d E x t e n s i o n F i e l d s

These fields have been proposed by Bailey and Paar in [1,16]. They appear to offer a number
of advantages which we shall outline below. An optimized extension field (OEF) is one of the
form

• p -- 2 k :t: c is a pseudo-Mersenne prime with log 2 c _< k / 2 and such tha t p fits into a
computer word,

• f (x) = x "~ - w is irreducible.

For efficiency reasons it is often sensible to insist tha t w -- 2.

96 N.P. SMART

In OEF fields, addition of elements in Fq is relatively simple and can be accomplished without
carries propagating, since elements of Fq are implemented as polynomials modulo f (x) . Multi-

plication is also very simple since reduction of a polynomial modulo f (x) is particular simple.
Multiplication can also be simplified using Karatsuba multiplication, which provides a perfor-

mance advantage for polynomial multiplication for very small degree polynomials.

Finally, inversion is particularly easy in OEF fields since one can use a technique due to Itoh and

Tsujii [17] combined with an efficient method to compute the action of the Frobenius mapping,

see [16] for more details on this.

I t should be noted that the technique of Weil descent which is described in [2] could be applied

to curves defined over OEFs, since n is typically small. However, the resulting curve does not seem

to have the nice properties that one observes in the even characteristic case. This is because the

function field extensions are not Artin-Schreier in nature. Hence, to the best current knowledge

there are no security concerns with using OEFs. However, this could change given the rapid

progress made in studying the EC-DLP in recent years.

As stated in the introduction, there has been no comprehensive comparison of the above choices

of finite fields in the literature. Since the use of Montgomery arithmetic and even characteristic

finite fields are quite standard [4] these are not the most interesting cases.

However, the comparison of OEFs against GM-prime fields has not to our knowledge been

carried out. But this is the most important comparison to make, since GM-prime fields are those

which are being used by various standards bodies, e.g., ANSI, NIST, and SECG.

4. F I E L D O P E R A T I O N S

The fields we used for comparison where the following.
K1 = Fp, where p = 2 1 9 2 - 264 - 1. This was used for the GM-prime implementation and the

Montgomery implementation.
K~. = Fp,, = F,,[z]/(z 6 - 2), where p = 231 - 19. This was used for the OEF implementation.

= F,o --F;izi/(z191 + : + 1).
Notice that roughly the same bitlength was used for all fields, namely 192 and 186. Tables 1

and 2 describe the timings we obtained for our two different processors.

Table 1. Field operation timings on the Sparc.

Field Type Addition Multiplication Square Inversion I / M

Montgomery 0.72 jz s 6.06 # s 6.04 ms 0.16 ms 26.40

GM-prime 0.76 ~s 4.56~s 4.44 ms 0.16ms 35.09

OEF 0.84 ~ s 4.08 # s 4.04 ms 0.02 ms 4.90

F2191 0.16~us 11.20#s 1.36 ms 0.14ms 12.50

Table 2. Field operation timings on the Pentium.

Field Type Addition Multiplication Square Inversion I / M

Montgomery 2.25 ~ s 11.40 ~ s 11.36 ms 0.60 ms 52.63
GM-prime 2.25]z s 11.40 ~ s 11.24 ms 0.58 ms 50.88
OEF 1.72/~s 9.36/~ s 8.Sms 0.08 ms 8.54
F21~1 0.40/~s 20.88#s 5.40ms 0.42 ms 20.11

Notice that the even characteristic case appears to be the worst since multiplication is almost
twice as slow as the next slowest field type, namely the Montgomery representation. However,
this does not translate into a 100% increase in the required CPU time for the final cryptographic
operation since for fields of even characteristic the squaring operation comes almost for free. In
addition, elliptic curve point doubling formulae in characteristic two are simpler than those in
the odd characteristic case.

Elliptic Curve Cryptosystems 97

The use of multiplication is slightly faster for the OEF field compared to the GM-prime field.
But the most striking improvement is in the time required to perform an inversion in the field.
As we shall comment later, this leads to important decisions on how one actually implements an
elliptic curve cryptographic system. It is important to look at the ratio, r = I /M, of the t ime
needed to perform an inversion, I, to the time to compute a multiplication, M. This figure is
given in the last column of the previous tables.

5. C U R V E O P E R A T I O N S

The basic elliptic curve operation required in cryptography is point multiplication. Tha t is
given P • E(Fq) and k • n [1 , . . . , #E(Fq) - 1] compute [k]P. There are various techniques to
perform this which are described in [6,7].

A first observation is that if P is a fixed point which is required to be multiplied by a large
number of values, k, then one can use a great deal of precomputation, see [7, Algorithm 14.109].
Such a point, P , is often the generator of the group #E(Fq) , and is hence, called a base point.

However, sometimes we do not know the value of P in advance and so different optimisations
need to be performed, in such a situation we call P a general point. In this case, we used the
signed window method, see [6, Algorithm IV.7].

In standard implementations for the EC-DH protocol, each party needs to perform one mul-
tiplication of a general point and one multiplication of the fixed base point. In the EC-DSA
protocol, the signer needs to perform one multiplication of the base point and the verifier needs
to perform a multiplication of the base point and a multiplication of a general point.

A second observation is that multiplication, of both a general point and of the base point,
can be done in either a/fine or 'mixed' coordinates. 'Mixed' coordinates refers to the fact that
although we may use a projective representation of the points, we take into account that some of
the intermediate points may be in affine representation. Mixed coordinates are to be preferred
when the ratio, r, of inversion to multiplication is large, since one is trading off inversions for a
larger number of multiplications. On the other hand, affine coordinates require 33% less storage.

For our timings we used the following curves which are suitably strong for cryptographic use:
E(K1). We used the curve labelled P - 192 by NIST, [12]. This is the curve secp192rl in SECG
and prime192v1 in ANSI X9.62. This curve is given by

E1 : y2 : X 3 _ 3X + b,

where
b = 2455155546008943817740293915197451784769108058161191238065.

This curve has group order

6277101735386680763835789423176059013767194773182842284081,

which is a prime. The use of a curve with a coefficient of - 3 for the X term in the equation
provides a certain performance advantage, whilst a curve of prime group order is clearly a security
advantage.
E(K2). In this case, we needed to generate our own curve so we took the curve given by

E2 : y2 _- X 3 _ 3X + 131072z s.

This curve has group order

98079709408817419107904759865224139567261719261401444244,

which is four times a prime. Again notice the coefficient of X in the curve equation is minus
three.

98 N . P . SMART

E(K.~). In th is case, we use the curve in E x a m p l e 16 [6, p. 187]. Th is is given by

E3 : y 2 + X Y = X 3 + X 2 + b,

where
b = 7 B C 8 6 E 2 1 0 2 9 0 2 E C 4 D 5 8 9 0 E 8 B 6 B 4 9 8 1 F F 2 7 E O 4 8 2 7 5 0 F E F C 0 3 .

This curve has g roup o rde r

2 x 1569275433846670190958947355834614995815261150867795429199,

which is two t imes a pr ime. Here we have chosen a curve wi th coefficient of X 2 equal to one,

th is gives g rea te r pe r fo rmance in charac te r i s t i c two. In addi t ion , for charac te r i s t i c two fields t he

bes t t y p e of g roup o rde r we can use is one which is twice a pr ime. Hence, th is curve is t yp i ca l of

ones used in real life sys tems, a l though NIST does not have a curve in charac te r i s t i c two a t th i s

level of securi ty.
In Tab les 3 and 4, we see t h a t for O E F fields we ob t a in a i m p r o v e m e n t when using affine

coord ina tes . We also reduce the amoun t of m e m o r y requi red for t he t ab le s when using only

affine coord ina te s in the window mul t ip l i ca t ion methods , since we no longer need to s tore t he

z -coord ina tes .

Table 3. Curve operation timings on the Sparc.

Operation Montgomery GM-prime OEF F2191

Addition: Affine 212/~ s 179/~s 40#s 179#s

Addition: Mixed 114~s 81#s 74~s 168]~ s

Doubling: Affine 212/~s 191#s 48Ds 174~s

Doubling: Mixed 69~s 48#s 40#s 67~s

Base Point Mult.: Affine 13 ms 12 ms 3 ms 12 ms

Base Point Mult.: Mixed 7 ms 5 ms 4 ms 9 ms

General Point Mult.: Affine 48ms 43ms 10ms 40ms

General Point Mult.: Mixed 18ms 12ms 10ms 19ms

Table 4. Curve operation timings on the Pentium.

Operation Montgomery GM-prime OEF F2191

Addition: Affine 650#s 635/z s 104#s 490/~s

Addition: Mixed 234#s 221/~s 179#s 414/~s

Doubling: Affine 700#s 665/zs 128#s 488/~ s

Doubling: Mixed 146/~s 134/~ s 108/z s 164#s

Base Point Mult.: Affine 44ms 43ms 7ms 33ms

Base Point Mult.: Mixed 14ms 14ms 11 ms 23ms

General Point Mult.: Affine 160 ms 151 ms 28 ms 111 ms

General Point Mult.: Mixed 37ms 35ms 27ms 46ms

We also not ice t h a t for genera l po in t mul t ip l ica t ions t he pe r fo rmance of curves over fields of

even charac te r i s t i c is not as bad as one would be led to bel ieve from ju s t looking a t t he t imings

for t he field a r i thmet ic . In some smal l sys tems, to avoid a t t acks like D P A [18] one of ten a l te rs t h e

base po in t on every run of the protocol . Hence, one never ac tua l ly uses the specia l op t im i sa t i ons

for mu l t i p ly ing a base po in t and all po in t mul t ip l ica t ions become genera l ones.

6. C R Y P T O G R A P H I C O P E R A T I O N S

Final ly , we t i m e d th ree basic c ryp tog raph ic ope ra t ions which are popu l a r using E C C n a m e l y

uns igned Diff ie-Hel lman (EC-DH) , the EC var iant of the d ig i ta l s igna tu re a lgo r i thm (E C - D S A) ,

Elliptic Curve Cryptosystems

Table 5. Cryptographic operation times on the Sparc.

Operation Montgomery GM-prime OEF F2191

EC-DSA Sign 6ms 4ms 3ms 10ms

EC-DSA Verify 27 ms 18 ms 12 ms 29 ms

EC-DH 24ms 15ms 13ms 29ms

EC-MQV 34 ms 23 ms 19 ms 39 ms

Table 6. Cryptographic operation times on the Pentium.

Operation Montgomery GM-prime OEF F21g~

EC-DSA 'Sign 16 ms 16 ms 9 ms 22 ms

EC-DSA Verify 52 ms 49 ms 35 ms 70 ms

EC-DH 53 ms 50 ms 40 ms 72 ms

EC-MQV 73 ms 70 ms 50 ms 97 ms

99

and the EC variant of the MQV primitive (EC-MQV). The timings we given in Tables 5 and 6
for our four specimen fields. The times for EC-DH and EC-MQV are the times required by one
of the parties to perform their calculations. We assumed that any base point multiplication was
done using the optimisations alluded to above.

7. C O N C L U S I O N

We have shown that OEF fields appear to offer performance advantages over other field rep-
resentations used in ECC. This is not only in terms of overall performance but also in terms of
storage memory requirements. The present author has no vested interests in any of the four field
types under consideration and hopefully the results can be taken as completely independent of
commercial bias or the use of aggressive optimisation techniques applied to one of the cases only.

On the other hand, it should be noted that the performance difference between OEF fields
and fields based on generalized Mersenne numbers is probably not large enough to warrant
additions to the various standards since addition of OEF fields would degrade attempts to obtain
interoperability between various implementations.

R E F E R E N C E S
1. D.V. Bailey and C. Paar, Optirrml extension fields for fast ari thmetic in public-key algorithms, In Advances

in Cryptology-CRYPTO 98, pp. 472-485, Springer-Verlag LNCS 1462, (1998).
2. P. Gaudry, F. Hess and N.P. Smart, Constructive and destructive facets of Weil descent on elliptic curves,

Preprint , (2000).
3. A.D. Woodbury, D.V. Bailey and C. Paar, Elliptic curve cryptography on smart cards without coprocessors,

In Smart Card and Advanced Applications, CARDIS PO00, pp. 71-92, Kluwer, (2000).
4. E. De Win, S. Mister, B. Preneel and M. Wiener, On the performance of signature schemes based on elliptic

curves, In Algorithmic Number Theory-ANTS-III, pp. 252-266, Springer-Verlag LNCS 423, (1998).
5. P.L. Montgomery, Modular multiplication without trial division, Math. Comp. 44, 519-521, (1985).
6. I.F. Blake, G. Serouesi and N.P. Smart, Elliptic Curves in Cryptography, Cambridge University Press, (1999).
7. A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, (1996).
8. C.K. Koc, T. Acer and B.S. Kaliski, Jr., Analyzing and comparing Montgomery multiplication algorithm,

IEEE Micro 16, 26-33, (June 1996).
9. R. Crandail, Method and apparatus for public key exchange in a cryptographic system, U.S. Pa tent Number

5159632, (1992).
10. J.A. Solinas, Generalised Mersenne Numbers, Preprint, (1999).
11. ANSI, xg.6P: Public Key Cryptography For The Financial Services Industry: The Elliptic Curve Digital

Signature Algorithm (ECDSA), American National Standards Institute, (1999).
12. NIST, FIPS PUB 186-P: Digital Signature Standard (DSS), National Inst i tute for Standards and Technology,

(2000).
13. SECG, SEC P: Recommended Elliptic Curve Domain Parameters, Standards for Efficient Cryptography

Group, (1999).
14. WAP, WTLS: Wireless Transport Layer Security Specification, Wireless Application Forum Ltd, (1999).

100 N . P . SMART

15. R. Lidl and H. Niederreiter, Finite fields, In Encyclopedia of Mathematics and Its Applications, (Edited by
G.-C. Rota), Addison-Wesley, (1983).

16. D.V. Bailey and C. Paar, Efficient arithmetic in finite field extensions with applications in elliptic curve
cryptography, J. Cryptology (to appear).

17. T. Itoh and S. Tsujii, A fast algorithm for computing multiplicative inverses in GF(2 m) using normal bases,
Information and Computation 78, 171-177, (1988).

18. P. Kocher, J. Jaffe and B. Jun, Differential power analysis, In Advances in Cryptology, CRYPTO '99,
pp. 388-397, Springer LNCS 1666, (1999).

