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ABSTRACT

Suppression of antigen-induced late airway 
obstruction associated with neutrophilic inflammation 
by selective and non-selective phosphodiesterase 

(PDE) inhibitors was investigated in mice. Respiratory 
resistance (Rrs) increased in sensitized BDF1 mice 4-6 
h after antigen provocation, whereas no obvious 
immediate reaction was observed. This reaction was 
associated with marked airway neutrophilia without 
significant infiltration of eosinophils. A selective PDE IV
inhibitor, T-440 (10-30mg/kg), and a non-selective 
PDE inhibitor, theophylline (10mg/kg), significantly 
inhibited airway obstruction and neutrophilia when 

administered orally. An anti-allergic drug, ketotifen (1 
mg/kg), caused slight inhibition of airway obstruction, 
whereas it did not affect airway neutrophilia. These 
results suggest that neutrophilic inflammation plays a 
role in the airway obstructive reaction and that PDE 
has a regulatory role in obstructive airway disease 
associated with airway inflammation.
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INTRODUCTION

Accumulation of neutrophils in the tissue is a charac-
teristic feature of inflammatory disease. In some 
obstructive airway diseases associated with airway 
inflammation, such as asthma and chronic obstructive 

pulmonary disease (COPD), large numbers of 
neutrophils can be detected in the bronchial mucosa or 
washings.1-4 Therefore, a possible regulatory role of 
neutrophilic inflammation in obstructive airway disease is 
suggested.
 Nevertheless, especially in asthma, locally accumu-

lated and activated eosinophils play a central role in late-

phase airway obstruction. Antigen provocation in 
asthmatic patients increases the number of eosinophils in 
bronchoalveolar lavage fluid (BALF),5'6 sputum and 

peripheral blood.8 The concentration of eosinophil 
granule protein in the sputum of asthmatic patients was 
correlated with the degree of airway obstruction.9 
Eosinophils produce eicosanoids derived from the 5- and 
15-lipoxygenase pathways, especially leukotriene (LT) 
C4/LTD4, which shows potent bronchoconstrictor 
activity.10,11

 Many animal models have been developed to confirm 

the role of eosinophils in producing antigen-induced 

late-phase airway obstruction. In sheep and rabbits, 

antigen challenge caused early and late broncho-

constriction, the latter event being associated with the 

influx of eosinophils into the bronchial lumen.12,13 In 

guinea pigs, antigen challenge produced a late
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bronchoconstrictor response with prominent infiltration of 

eosinophils into the airways.14,15 However, results from 

most current models are not sufficient to confirm whether 

ate airway obstruction is mediated by eosinophils alone, 

because other inflammatory cells, especially neutrophils, 

are also observed in the airway lumen at the time of late 

airway obstruction. As eosinophils undoubtedly play a 

central role in inducing late airway obstruction, the 

question remains as to whether neutrophil infiltration 
contributes to obstruction of the airway or not.

 The animal model we developed and used in the 

present study may answer this question. Antigen 

provocation in sensitized mice produced delayed airway 
obstruction associated with marked infiltration of 

neutrophils, but not eosinophils, into the airway.

 

It has been reported that neutrophil functions are 
modulated by the intracellular cyclic nucleotide level. An 
increase in intracellular cAMP levels in neutrophils is 
associated with a decrease in several neutrophil 
functions, including chemotaxis, respiratory burst and 
lysosoma enzyme release.16-18 Intracellular cAMP levels 
of neutrophils are regulated by enzyme phospho-
diesterases (PDE). Currently, at least seven different PDE 
isozyme gene families are recognized in many types of 
cells.19-21 In particular, the PDE isozyme responsible for 
hydrolyzing cAMP in neutrophils has been reported to be 

predominantly of the cAMP-specific type (PDE IV) and the 
neutrophil respiratory burst was inhibited by the PDE IV 
inhibitors rolipram and Ro 20-1724.22
 Therefore, the present study was performed to define 

the role of neutrophils in the development of airway 
obstruction by means of pharmacological modulation 
using a selective PDE IV inhibitor (T-440) and a non-
selective PDE inhibitor (theophylline). The effect of the 
anti-allergic drug ketotifen, which has been reported to 

prevent late airway obstruction in guinea pigs23 and 
rats,24 was also investigated.

METHODS 

Materials

Ova bumin (Sigma Chemical Co., St Louis, MO, USA), 
sodium pentobarbital (Dainabot, North Chicago, IL, 
USA), complete Freund's adjuvant (CFA; Difco, Detroit, 
MI, USA), Tween 80 (Nacalai Tesque, Kyoto, Japan), 
theophylline (Sigma Chemical Co.), ketotifen (Sandoz 
Pharmaceutical Co., Tokyo, Japan), Diffu-genTM RID plate 

(Tago, Burlingame, CA, USA) and a mouse IgE enzyme

immunoassay (EIA) kit (Yamasa, Tokyo, Japan) were 

purchased. T-440 was synthesized by the Lead 
Optimization Research Laboratory, Tanabe Seiyaku Co. 

(Osaka, Japan).

Sensitization

BDF 1 mice (25-35g, Japan KBL) were immunized by
iniecting 10μg ovolbumin emulsified with 200μL CFA

(50%) four times every other week. The tirst injection was 

given into both sides of the foot pad and the other 
injections were given intraperitoneally. Ten days after the 

last immunization, total IgE, IgG,, IgG2a and IgG2b levels 
in the serum were measured using the mouse IgE [IA kit 

and the Diffu-genTM RID plates according to the 

manufacturers' directions. In a separate experiment, 

these animals were challenged with inhaled antigen.

Drug administration and antigen challenge

All test compounds were dissolved or suspended in 
distilled water with 1% Tween 80. Vehicle and these drugs 
were orally administered twice, at 30min before and at 
2h after the antigen challenge. Saline or ovalbumin 
solution (10%) were aerosolized with a pressure nebulizer 

(Pulmo-Aide 5650D; Devilbiss, PA, USA) which generates
anoerosol wifh Q median diameter of 5μm. The output

of the nebulizer was 16L/min. Aerosol from the nebulizer

was directed into an animal chamber (30x30x30
cm). Animals were challenged by exposure to the aerosol 
for 20min_

Measurement of respiratory function

To analyze the pulmonary mechanics, Rrs was measured 

by a forced oscillation technique according to the 
method described by lijima et al.25 and Arima et al.26 In 

brief, the mouse was placed inside a body box and a 30 
Hz sine wave oscillation (peak to peak, 2cmH2O) was 

applied to its body surface. Oscillating pressure was 
obtained with a 10cm loudspeaker driven by a sine wave 

generator and a power amplifier. Body box pressure was 
measured by a flow-resistant tube (TV-241T; Nihon 
Koden, Tokyo, Japan) and a differential pressure 
transducer (TP-602T; Nihon Koden). A plastic mask 

connected to the flow-resistant tube was snugly applied 
to the face. The respiratory volume of each animal was 
monitored with the same transducer. The Rrs was 

calculated as the ratio of body box pressure to respiratory 
volume and was expressed as the mean of four
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continuous respirations. Measurements of Rrs were made 

before and after administration of drugs and 5min and 

2, 4, 5, 6 and 24h after antigen challenge. The peak late 

increase in Rrs was defined as the maximum percentage 

increase in Rrs between 4 and 6h after challenge for 

each animal.

Bronchoalveolar lavage and histologic 

examination

Saline- or ovalbumin-challenged mice were killed by 
intraperitoneal administration of an excess dose of 
sodium pentobarbital 6h after challenge. The trachea 
was cannulated with a polyethylene tube through which 
the lungs were lavaged with 0.5mL Hank's balanced salt 
solution (HBSS) four times (2mL total). Bronchoalveolar 
lavage fluid was centrifuged at 500g for 5min. The

pellet obtained was immediately suspended in 250μL

HBSS and the total cell number in BALF was counted by 
an automatic cell counter (Celltac MEK-5158; Nihon 
Koden). Differentiation of the cells was conducted by 
microscopy using centrifuged preparations stained with 
May-Giemsa, counting 200 cells in each animal. For 
histopathologic examination, the lungs of other mice 
were fixed by intratracheal instillation of10% neutral-
buffered formalin at a distending pressure of 15cmH2O 
followed by external fixation in 10% neutral-buffered 
formalin for 1 week. After that, tissues were embedded in

paraffin,sectioned at 4-5μm and stained with

hematoxylin-eosin (H & E).

Statistics

All data are presented as the mean±SEM. Statistical 

analysis was performed by the Student's t-test for 

comparison between two groups and by one-way 

analysis of variance and Bonferroni's method for three

groups or more. Values of P<0.05 were considered to

be statistically significant.

RESULTS

Time course of airway obstruction after 

antigen challenge

In the sensitization group, all the serum levels of IgE, 
IgG1, IgG2a and IgG2b were significantly elevated (Table 
1). There was no significant difference in baseline Rrs
between the groups challenged with saline(210±14

cmH2O/L per s;n=8)and ovalbumin(230±17

cmH2O/L per s; n=14). The percentage changes in Rrs 
following challenge with saline or ovalbumin are shown 
in Fig. 1. Although Rrs did not change at all 5min after 
challenge, an obvious increase in Rrs was observed at 
2h. This reaction reached a maximum and was 
statistically significant at 4-6h. When Rrs increased, mice 
exhibited apparent signs of dyspnea, such as labored 
respiration, panting and a decrease in body temperature. 
The Rrs returned to baseline levels by 24h after challenge 

(Fig. 1).

Histologic examination

A representative photomicrograph of the lung from a 

control mouse is shown in Fig. 2a. The bronchial 

mucosal surface remained smooth and neither smooth

Fig. 1 Antigen-induced late airway obstruction in sensitized

mice.

Table 1. Serum levels of IgG, IgG,, IgG2a and IgG2b in 
ovalbumin-sensitized mice
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Fig. 2 Antigen-induced airway neutrophilia in sensitized mice.

muscle contraction nor inflammatory cell infiltration were 
observed. In contrast, submucosal and peribronchial 
edema and marked hemorrhage were noted 6h after 
challenge (Fig. 2b,c). There was no obvious bronchial 
smooth muscle contraction, while the bronchial lumen 
was plugged with exudate and red blood cells. A large 
number of neutrophils infiltrated the bronchial wall and 

peribronchial tissue, whereas eosinophils were not 
observed in any of the tissues (Fig. 2b,c). These 
histopathologic findings coincided with the findings of 
BAL examination (Table 1).

Effects of test compounds

The effects of T-440, theophylline and ketotifen on 

antigen-induced airway obstruction and infiltration of 
inflammatory cells in sensitized mice were examined. 
Administration of these compounds did not affect 
baseline Rrs (data not shown). A marked increase in Rrs 
was observed in control mice 4-6h after challenge as 
described above (Table 1). T-440 (10-30mg/kg) and 
theophylline (10mg/kg) significantly inhibited late airway 

obstruction. Slight but not significant inhibition of this 
reaction was obtained by the administration of ketotifen 

at 1mg/kq (Table 2).
 As shown in Table 2, the number of total cells and 

neutrophils in BALF significantly increased 6h after 

challenge. The neutrophil accumulation was a specific 

reaction as no obvious infiltration of eosinophils was 

observed and the number of mononuclear cells 

significantly decreased at that time. This reaction was 

accompanied by a significant increase in BALF red blood

cellbs(1.51±0.22×108vs0.28±0.05×108/BALF in

saline-challenged control; P<0.01). Oral 
administration of T-440 dose-dependently (10-30 

mg/kg) inhibited the increase in total cells and 
neutrophils in BALE Theophylline also suppressed the 
number of total cells and neutrophils at 10mg/kg. 
Ketotifen did not show any inhibition at 1mg/kg. None of 
the test compounds affected the eosinophil and 

mononuclear cell number (Table 2).

DISCUSSION

The present study clearly demonstrates that late airway 

obstruction accompanied by marked infiltration of 

neutrophils is induced by antigen provocation in 

sensitized mice. It is surprising that eosinophils, being 

scarcely observed in the airway when Rrs increased, did
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Table 2. Effects of T-440, theophylline and ketotifen on antigen-induced inflammatory cell infiltration in bronchoalveolar lavage 
fluid and late airway obstruction in sensitized mice

not seem to have much effect on airway obstruction. 

Therefore, our model seems to be very convenient for 

analyzing the role of neutrophils in airway obstruction 

associated with inflammation.

 In the present study we used CFA as an adjuvant for 

sensitization. It has been reported that the predominant 

immunoglobulin synthesized in such animals is IgG 

rather than IgE.27 However, the serum IgE level was 

clearly elevated along with obvious increases in IgG,, 

IgG2a and IgG2b in our model. Repeated long-term 
sensitization may induce IgE synthesis. Kurup et al. have 

reported that the serum level of IgE, as well as IgG,, was 

significantly elevated when mice were sensitized with 

alum.28 These facts suggest that the humoral reactions 
that occurred in mice after antigen provocation were 

essentially the same in both models. However, potent 

eosinophilic inflammation was observed in the lung after 

antigen provocation in alum-sensitized mice.28'29 The 

reason for the discrepancy is not yet clear, but some 

possibilities are as follows:

(1) It was reported that depletion of CD4+ T cells 
completely abrogated eosinophilic inflammation,30'3' 
indicating that eosinophil inflammation was essentially 
dependent on CD4+ T cells. Complete Freund's adjuvant 
has been reported to direct the Thl type reaction, 
whereas alum potentiated the Th2 reaction.32 Th2-type 
cytokines, such as interleukin (IL)-4 and IL-5, were key 
factors in the development of eosinophilic inflamma-
tion.3,33,34 Thus, the lack of eosinophil accumulation in 
our model may be due to the absence of a Th2 response. 

(2) Kennedy et al. have reported that eosinophil 
infiltration in the airway was a reaction with a slow onset, 
being detected from 24h after antigen challenge and 

peaking at 72h, whereas the peak of neutrophils was at

6-24h.29 Therefore, even in our model, eosinophil 

recruitment may be detected at 24h or later. Taken 

together, the eosinophils, which did not exist in the airway 

when Rrs increased, do not seem to have much effect on 

airway obstruction in this model.

 Lung neutrophilia was accompanied by submucosal 

and peribronchial edema and marked hemorrhage, 
suggesting the occurrence of inflammation and tissue 

damage. Neutrophils are associated with tissue injury in 

many inflammatory conditions.35 Some inflammatory 

diseases related to immune complexes showed antigen-

specific chemotaxis and activation of neutrophils.36 Irvin 

et al. have observed complement-dependent airway 

hyperreactivity and marked neutrophilia in rabbits.37 In 

addition, contributions of neutrophil-derived oxygen 

metabolites, proteases and cationic materials to tissue 

injury were also suggested.35 Therefore, these mecha-

nisms may play a role in antigen-induced airway 

neutrophilia and injury. Further investigation will be 

required, for example to determine the effects of anti-

inflammatory drugs on the antigen-induced increase in 

BALF red blood cells.

 Immediately after challenge, no significant change in 

Rrs was observed. It was reported that the airway smooth 

muscle layer of the mouse is thinner and less sensitive to 

many types of spasmogen than that of the rat, hamster, 

guinea pig and rabbit.38 Additionally, mice do not have 
respiratory bronchioles, which play an important role in 

airway obstruction.39 Therefore, mast cell-derived 

mediators such as histamine, prostaglandins and 

leukotrienes do not seem to produce any potent airway 

smooth muscle contraction in sensitized mice, although 

mast cells in the bronchial mucosa may be degranulated 

by antigen challenge through the IgE signaling pathway.
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 A significant increase in Rrs occurred at 4-6 h after 

challenge. In chronic airway inflammation, mucosal and 

submucosal edema and mucus hypersecretion as well as 

airway smooth muscle contraction can contribute to 

airway obstruction.40 In the present study, submucosal 

edema and occlusion of the bronchial lumen with 

exudate but no obvious airway smooth muscle 

contraction were recognized in the lung in accordance 

with airway obstruction. Therefore, this edematous and 

exudative change seems to be related to airway 

obstruction. Examination of the effect of a typical drug 

causing relaxation of bronchial smooth muscle, such as a

β2-adrenoceptor agonist, may be an effective method for

further delineation and this investigation is currently 

underway.

 We have previously reported that T-440 inhibited PDE 

IV purified from guinea pig lung with an IC50 of 0.057

μmol/L, but it did not inhibit PDEI, II,III and V, even at 10

μmol/L.41 The effects of T-440 and its struc†urally related

compounds on PDE IV activity correlated closely with the 

inhibition of antigen- and chemical mediator-induced 

bronchoconstriction in vivo.42 The bioavailability of T-440 

in mice is unknown. However, in the present study this 

drug inhibited airway obstruction and neutrophil 

infiltration, suggesting that T-440 exerts inhibitory activity 

on PDE IV at the time when both reactions occurred. A 

non-selective PDE inhibitor, theophylline, also inhibited 

airway obstruction and neutrophil infiltration. Phospho-

diesterase IV is responsible for hydrolyzing cAMP in 

neutrophils.22 In fact, a PDE IV inhibitor22 and 

theophylline43 have been reported to inhibit the activation 

of neutrophils. Therefore, inhibition of PDE IV activity by 

T-440 and theophylline may be involved in the

suppression of airway neutrophilia. The effects of both 

drugs on airway obstruction were essentially the same as 

those on airway neutrophilia, suggesting a possible 

relationship between airway obstruction and neutrophilic 

inflammation. As mononuclear cells decreased after 

antigen challenge, this change was not affected by treat-

ment with any drug. Therefore, the direct role of 

mononuclear cells in the development of airway 

obstruction appears to be negligible. 

 Submucosal edema may contribute to this airway 

obstruction, as described earlier. Vascular permeability is 

regulated by cAMP44 and selective and non-selective PDE 

inhibitors are reported to inhibit airway microvascular 

leakage.45 These facts suggest that the inhibition of 

airway obstruction by T-440 and theophylline is mediated 

by additive effects on neutrophil infiltration and

submucosal edema. For further analysis of the relation-

ship between neutrophilic inflammation and airway 

obstruction, additional investigations will be needed, for 

example to determine the time course of airway 

edematous change by morphometric analysis.

 The suppressive effects of ketotifen on late airway 

obstruction using guinea pigs23 and rats24 have been 

reported. Our present findings, that ketotifen slightly 

inhibited late airway obstruction, are consistent with 

previous reports. In addition, this drug has a potent 
antagonistic action against histamine H1-receptors.46 

Histamine is reported to modulate airway vascular 

permeability,47 suggesting the possible contribution of 
histamine to airway obstruction. Ketotifen may attenuate 

airway obstruction via suppression of histamine-

mediated airway submucosal edema. The lack of effect 

of ketotifen on airway neutrophilia suggests that hista-

mine is not the main mediator of this reaction.

  In conclusion, we have developed a unique animal 

model of late airway obstruction associated with neutro-

philic inflammation in mice. T-440 and theophylline 
inhibited airway obstruction, as well as neutrophil 

infiltration, suggesting a possible relationship between 

neutrophilic inflammation and airway obstruction. These 

results also implicate the possible regulatory role of PDE 

in obstructive airway disease associated with airway 

inflammation.
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