
Information and Computation 157, 52�83 (2000)

Equality between Functionals in
the Presence of Coproducts

Daniel J. Dougherty and Ramesh Subrahmanyam1

Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459

We consider the lambda calculus obtained from the simply typed
calculus by adding products, coproducts, and a terminal type. We prove
the following theorem: The equations provable in this calculus are
precisely those true in any set-theoretic model with an infinite base
type.] 2000 Academic Press

1. INTRODUCTION

The model theory of the simply typed lambda calculus, *�, has been well
developed in the past two decades. For the most part, techniques and results
generalize readily to the calculus when product types are added. Indeed, a categori-
cal treatment goes more smoothly in the presence of products. But very little is
known about the model theory of the simply typed lambda calculus with
coproducts for two chief reasons. First, techniques in the model theory of *� often
rely heavily on the strong syntactic properties of the calculus; many of these proper-
ties fail in the presence of coproducts. Second, the natural generalizations of several
key theorems in the model theory of *� fail in the setting with coproducts (see
Section 3). We conclude that new techniques must be developed to study the model
theory of the lambda calculus with coproducts; this paper makes a start.

There is a natural candidate for an axiomatization of this calculus, obtained from
*� by adding type constructors for binary products and sums and a unit type, and
term constants suggested by the (equational) axiomatization of the theory of bi-
Cartesian categories. The presence of an initial type leads to severe difficulties in the
syntactic analysis, and we will in this paper omit a treatment of the system with an
initial type. We denote the resulting theory by ABC (almost bi-Cartesian closed);
the defining equations are given in Table 2.

The structure we are primarily interested in is the set-theoretic type hierarchy
Set, the family [Set{ | { # Types] obtained by taking Set@ to be any infinite set and
interpreting the type constructors � , _, +, and 1, respectively, as full function
space, Cartesian product, disjoint sum, and a singleton set. Of course, this is a

doi:10.1006�inco.1999.2833, available online at http:��www.idealibrary.com on

520890-5401�00 �35.00
Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.

1 Supported by the National Science Foundation through Grant CCR-9406202.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82369252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

model for the theory; it may be viewed as the intended model when the lambda
calculus is considered as a theory of functions.

Our main result is a strong completeness theorem to the effect that an equation
is true in the set-theoretic model Set if and only if it is provable in the equational
theory presented by the axioms ABC described above.

This generalizes the corresponding result for the *�-calculus, obtained by Friedman
in the seminal [Fri75]: it is proved there that equality between simply typed lambda
terms in the full function-type hierarchy over an infinite set is completely axiomatized
by ; and '.

There does not appear to be an equational presentation of the theory which sup-
ports a confluent rewrite system (cf. Section 3), but the main technical result arising
out of our proof analysis is the demonstration of a certain consequence
(Theorem 7.13) of confluence in better behaved calculi; this lemma leads to a
method for encoding the negation of equations in the calculus (Proposition 8.1)
which is the key to the completeness proof.

An important aspect of our approach is the use of a proof system consisting of
the usual rules of equational reasoning extended by an explicit rule for reasoning
by cases. This extension is shown to be sound in Section 5. The presence of such a
rule means that reasoning with non logical axioms is an essential part of our
approach, and techniques from the theory of (first-order) term rewriting play
an important role in the development. A central role is played by the method of
rewriting modulo an equivalence relation [Hue8O]; more about this in Section 7.
Modifications to the standard theory are required in the presence of abstraction
and ;-conversion.

Related work. The syntactic properties of the *-calculus with coproduct (and�or
weak coproduct) types have received a lot of attention recently. The systems typi-
cally studied have been variants of the equational theory of bi-Cartesian-closed
categories (see [LS86] for the relationship between equationally defined *-calculi
and Cartesian-closed categories (cccs)). Both [DK93] and [Dou93] show that a
theory axiomatizing weak coproducts and primitive recursive functionals at higher
types is strongly normalizing and confluent; the latter paper additionally shows
strong normalization for a theory with true coproducts. Okada and Scott [OS91]
have presented a similar result for bi-cccs with a weak natural numbers object. We
should also mention the work of C8 ubric� [Cub92], who adapted Friedman's
completeness theorem to show that there is a faithful ccc-functor from any free
Cartesian-closed category into the category of Sets.

Organization. The paper is organized as follows. The syntax of our language is
described in Section 2. Section 3 gives empirical evidence for the need for new
techniques for addressing the problem at hand. Section 4 outlines the proof of the
main theorem, by way of motivating some of the technical notions to be developed
in the body of the paper. Section 5 shows that the system for reasoning by cases is
equivalent to the ABC theory. Sections 6 and 7 are devoted to an analysis of
derivations. Section 8 gives the proof of the completeness theorem. The proofs of
some technical results in Sections 5 and 6 are relegated to appendices.

53FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

2. SYNTAX

We require a somewhat delicate syntactic apparatus. We work with closed terms
and so will postulate constants of each type, but we also need, for purely technical
reasons, to maintain specific relationships between certain constants at the meta-
level. For example, if c is a constant of product type _1__2 , then we want to have
constants c1 and c2 of types _1 and _2 named pr1c and pr2 c, where the pri are the
canonical projection functions. A similar (but subtler) situation arises with sum
types. Since, of course, the _i types above might themselves be products or sums,
some machinery is needed to do the bookkeeping.

Types and terms. The base types are 1 and @. The set of types is the closure of
the set of base types under the constructions (__{), (_+{), and (_ � {).

For each type _ let Vars_ be an infinite set of variables; we assume that the Var_

are pairwise disjoint and set Vars to be �[Vars_ | _ a type].
Similarly, let 7 be a set of constants with infinitely many constants of each type.

The set of raw extended constants is a set of pairs (c, \) where c # 7, and \ is a
sequence of 1s and 2s. Instead of the more cumbersome pair notation, we write c\ .
We associate types with some of the raw extended constants as follows. The type
of c() is the type of c in 7. The type of c\i

is &1 � } } } � &k � {i if the type of c\

is &1 � } } } � &k � {1+{2 . Clearly, not all raw extended constants receive types; the
set of extended constants with type _ is denoted 7*_ . Then the set of all typable
extended constants is denoted 7*. There is an obvious injection from 7 to 7*,
namely c [c() ; in the following we will identify c # 7 with c() # 7*. Lower case
letters at the beginning of the English alphabet will usually be used to represent
constants. If c # 7* then c#d\ , for some d # 7 and sequence of 1s and 2s \; then
ci , for instance, will denote the constant d\i .

In addition to these symbols, we also have several type-indexed families of
interpreted constants, namely,

v (} , }) _1, _2: _1 � _2 � _1__2 ,

v pr_1, _2
1 : _1__2 � _1 and pr_1, _2

2 : _1 __2 � _2 ,

v in_1 , _2
1 : _1 � (_1+_2) and in_1 , _2

2 : _2 � (_1+_2),

v case_1, _2, {: (_1+_2) � (_1 � {) � (_2 � {) � {, and

v V : 1.

In the rest of this paper, unless otherwise restricted, a constant will mean an
element of the set 7* _ [pri , ini , case, V , (} , })]. We also have an infinite set of
variables disjoint from the set of constants.

The raw terms of our calculus will consist of constants, variables, applications
(M N), and lambda abstractions *x{ .M, where M and N are raw terms. Closed
terms will refer to terms with no occurrences of free variables; note that such terms
may contain symbols from 7*. In the concrete syntax, parentheses will be sup-
pressed whenever possible (under the usual conventions that the function�space
constructor associates right and term application associates left), terms will be
considered identical if they differ only by renaming of bound variables, and type

54 DOUGHERTY AND SUBRAHMANYAM

TABLE 1

Terms

x_ # Vars_

x : _
c # 7*_
c : _

M : {
*x_ .M : _ � {

M : _ � { N : _
(M N) : {

information will be omitted if it can be easily inferred. Often type superscripts for
*-bound variables as well as the interpreted constants above will be omitted when
they can be inferred from the context. The application (} , }) M N will be
abbreviated (M, N) . We use M#N to indicate that M and N are syntactically
identical.

Terms containing no constants from 7 or 7* will be called pure terms.
The constants pri and case have a different character from the others in that they

trigger reductions, as described below in Definition 6.2. Accordingly we refer to the
constants among the ini , (} , }) , V , and the sets 7 and 7* as passive constants.

Certain raw terms are well typed according to the usual typing rules for simple
typed lambda calculus; in the paper unless explicitly specified, a term will always
mean a typable term (see Table 1).

It will often be convenient to use a vector notation for terms, in the following
sense: if F is a term of type _1 � } } } � _n � { then FA9 denotes the term of type {
obtained by applying terms A1 , ..., An of appropriate type.

The substitution of term A for variable x in B is denoted B[A�x].

Definition 2.1. A closed term is an introduction term if it is of one of following
forms:

ini (M), (M, N) , V , *x .N.

A term is resolved if each of its closed subterms is an introduction term.

A closed term of sum or product type is rigid if it is of the form hA1 } } } An with
h # 7* and each Ai is resolved.

An equation is a pair of terms of the same type.

The theory ABC is the equational theory presented by the axioms of Table 2.

TABLE 2

The Equational Theory ABC

(;) (*x .B) A =B[A�x]
(_) pri(A1 , A2) =Ai , i # [1, 2]
(case) (case iniA F1 F2) =FiA, i # [1, 2]
(') F =*x .Fx x not free in F
(+!) h =*x.(case x *y .h(in1 (y)) *z .h(in2 (z)))
(1!) U = V
(_!) P =(pr1P, pr2 P)

55FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

A set 1 of sentences is consistent if 1 does not entail, under ABC, the equation
x= y.

The ABC equations for the sum ensure that the meaning of a term G of type
(_1+_2) � { is determined by its action on terms from _2 and from _2 . This is the
sense in which the sum type is categorical; a similar remark applies for product
type.

3. COPRODUCTS CONSIDERED DIFFICULT

Here we give some indications of the ways that the calculus with coproducts
differs from the simpler arrow-and product-type systems.

Strong Extensionality

The set-theoretic model for function types over an infinite base set satisfies the
following strong extensionality property: If [f1 , ..., fn] is any finite set of *-definable
functions of the same type then there is a single element a which distinguishes them,
that is, the elements f1 (a), ..., fn (a) are distinct. This may be seen by examining
Friedman's proof of his completeness theorem.

This strong extensionality property fails in Set (as a model for the calculus with
coproducts).

Define:

G=*xyz . (case x *u .y *u .z)

F1=*xyz .y,

F2=*xyz .z.

Then G differs from each of F1 and F2 in Set but no single input vector distinguishes
all three of them.

To see the technical significance of this observation note that any open term
model for a set of equations will be strongly extensional: if [F1 , ..., Fn] is any finite
set of terms which are pairwise not equal in the model, then any equivalence class
containing a variable serves as a uniform witness to their inequality. But the reader
familiar with logical relations will see that if Friedman's proof technique were trans-
ferable directly to a *-calculus with coproducts, strong extensionality for Set would
follow.

Confluence and Decidability

For the *-calculus with function and product types, reduction is confluent and
strongly normalizing. Decidability follows.

But all of the usual axiomatizations of coproducts fail to be confluent. (Weak
coproduct calculi, which omit the (+!)-rule of ABC tend to be confluent, as in
[DK93] and [Dou93].) Strong normalization holds, but a confluent rewrite
system which is uniform in the sense of being closed under substitution seems

56 DOUGHERTY AND SUBRAHMANYAM

elusive. Indeed, we conjecture that no such system exists. A partial result along
these lines is shown in [Dou93]: there cannot exist a left-linear rewrite system com-
plete for an equational theory of coproducts with even modest expressive power (a
system is left-linear if there are no repeated variables on the left-hand sides of rules.)

This suggests that showing decidability for coproduct theories, such as ABC and
the theory of bi-ccc's, is difficult.

Statman's 1-Section Theorem

Let C be a class of models of the simply typed lambda calculus *�. Statman
[Sta82] has shown that the equations valid in this class are completely axiomatized
by ; and ' iff the free algebra of binary trees can be fully and faithfully embedded
in some countable direct product of models in C. This is known as the 1-section
theorem.

Equivalently, consider the signature 7 with a constant c of base type and a con-
stant p of type @ � @ � @; closed base-type terms over this signature can be naturally
identified with binary trees. The 1-section theorem states that the equations true in
C are axiomatized by ; and ' if for each natural number d, there is a model A # C

and an expansion of A to the language 7 such that all closed base-type terms
whose depth (as trees) is bounded by d have distinct interpretations.

A corollary of the theorem is the finite model theorem: if an equation is true in
all finite models then it is true in all models.

The proof of the 1-section theorem relies on the following technical lemma: If two
pure *�-terms S and T are not equal under ;' then there is a context C[] of base
type containing only first-order constants such that C[S] and C[T] are not equal
under ; and '. Indeed, it suffices to have a single constant of base type and a single
constant of type @ � @ � @.

As the following lemma shows, for the theory of Set the lemma fails, even if we
relax ``first-order'' to read ``hereditary Harrop.'' Harrop types are types of the form
{1 � {2 } } } � @. These types are those corresponding to Harrop formulas of proposi-
tional logic under the well-known propositions-as-types analogy. Hereditary
Harrop types are those that have no occurrence of +.

Lemma 3.1. There are terms M and N such that Set <% M=N but for any
context C[] of base type whose free constants are of hereditary Harrop type
Set < C[M]=C[N].

Proof. Let test be the term

*xyuv.(case x (case y u v)(case y v u))

of type (@+@) � (@+@) � @ � @ � @. This denotes the four-arguments function which
returns the third argument if its first two arguments are either both injected from
the left or both injected from the right; otherwise it returns the fourth argument.
Consider the terms M#*fxyuv . test (f x) (f y) u v and N#*fxyuv .u, of type
{#(@ � (@+@)) � @ � @ � @ � @ � @. These two terms are not equal in Set.

57FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

The reduction relation obtained by orienting ; and (case) from left to right is
confluent and strongly normalizing. We will show by induction on the size of con-
texts C[], which are in normal form with respect to this reduction, that Set <
C[M]=C[N].

Let C[] be a normal-form context of base type with hole of type { and in which
every free constant is of hereditary Harrop type. Analysis of the structure of C[]
reveals that it must be of the form ([] F[] X[] Y[] U1[] U2[]) for normal-
form contexts F[], X[], Y[], U1[], and U2[]. It is easy to see that normal
forms of terms of type @ � (@+@), all of whose free constants are of Harrop types,
have the shape *x . ini A where i # [1, 2]. Noting that [] is of Harrop type, and
applying this observation to F[], we conclude that F[]#*x . ini F $[], for some
i # [1, 2] and for some context F $[]. Thus, Set < C[M]=Ui[M] and Set <
C[N]=Ui[N]. Ui[] is a smaller context and, so, using the induction hypothesis
Set < Ui[M]=Ui[N] we get Set<C[M]=C[N]. K

The natural generalization of the 1-section theorem to the calculus with coproducts
also fails. The failure of the 1-section theorem and the key technical lemma indicates
that a new proof technique must be explored.

4. THE DISJUNCTION PROPERTY

A typed applicative structure, henceforth simply structure, is a family A of non
empty sets A{ indexed by the types, with binary operations playing the role of
application operators. A model is a combinatorially complete extensional
applicative structure. See [Bar84] for a detailed treatment in the untyped case. Of
course Set is a model in a natural way.

The usual term-model construction yields an abstract completeness theorem: 2
has a model iff 2 is consistent. Indeed, the set of terms T may be considered as a
structure, with juxtaposition as application. If 2 is set of closed equations then the
relation 2 |&M=N induces a congruence relation on terms and in the usual
manner induces a quotient structure T2 . When the language has infinitely many
constants of each type, then T2 is a model satisfying all of the equations in 2, the
term model for 2.

Friedman's proof of the completeness theorem for *� may be described as
follows: Let T be the closed term model for the empty theory in a language with
infinitely many constants of each type. If we define an arbitrary injective function
from the base type of T to the base type of Set� (recall that Set� refers to the
function hierarchy over an infinite base set) then this function lifts uniquely to a
total injective logical relation [Mit90] from T to Set. Since logical relations are
guaranteed to relate the meanings of terms, we conclude that equations true in
Set� are provable.

This argument does not generalize easily to the setting with coproducts; in this
section we isolate the key obstacle. Here is a natural definition of logical relation
in our setting:

Definition 4.1. Let M and N be models. A logical relation R from M to N

is a family of relations R_�N_ indexed by types, satisfying:

58 DOUGHERTY AND SUBRAHMANYAM

v R_1 � _2 (m, n) iff for every a and b such that R_1 (a, b) we have R_2 (ma, nb);

v R_1__2 (m, n) iff R_i (prim, pri n), for i=1, 2;

v R1 holds between the respective (single) elements at type 1;

v R_1+_2 (m, n) iff there exists i such that m=ini a, n=in ib, and R_i (a, b).

The fundamental theorem of logical relations is the following

Theorem 4.2. If R is a logical relation between models M and N, then for any
pure closed lambda term T, R relates the meanings of T in the two models.

Proof. The proof is an easy modification of the standard proof for the *�

calculus (see, for example, [Mit90]) and is omitted here. K

In attempting to prove the completeness theorem for the coproduct calculus, we
are thus led to try to construct an appropriate logical relation from the term model
(for the empty theory) to Set. But one gets stuck; we see that a special property of
models is required to make the construction go through:

Definition 4.3. A model A has the disjunction property if for each type {1+{2

and each element a # A{1+{2 there is an i and an ai such that a=iniai in A.

We will refer to such an A as a d.p. model.

Proposition 4.4. Suppose M and N are pure closed terms and that Set < M=N.
Then M=N holds in all d.p. models with countable base types.

Proof. Let D be a d.p. model with D@ countable. Let R0 be a (total) injective
function from D@ to Set@; this uniquely extends to a logical relation. Argue
simultaneously by induction on types that each R_ has domain all of D_ and is
injective. Showing that it is injective at _ will use the fact that it is total at lower
types, and proving that it is total at sum types will require the disjunction property.

The theorem follows from the fundamental theorem on logical relations. K

So it suffices to establish a refinement of the standard abstract completeness
theorem, as follows.

If |&% M=N then there is a d.p. model A with A@ countable in which M=N
fails.

Now, it is not hard to see that when the set 7 of constants is empty, then every
closed term of sum type already reduces, under (;), ('), and (case), to a term of the
form ini X. So it is tempting to work with the structure of closed terms modulo (;),
('), and (case)-provability, but this is not extensional unless there are enough con-
stants and so is not, in general, a model.

Our first step is to build 7 so that it has infinitely many constants of each type.
Now when constants at sum types are added the disjunction property for closed
terms is obviously lost: a constants c of type _1+_2 is not provably equal to any
term of the form ini T. We will build our d.p. model as a term model for a set of
equations which collectively will entail that each closed term of sum type is equal
to a term which is resolved in the sense of Definition 2.1.

59FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

But then extensionality is problematic again: we must ensure that if the new
equations arrange that two arrow-type terms agree on all arguments then they are
declared equal in the theory. So we somehow need to add constants to resolve
terms, while ensuring extensionality as we go. The construction will occupy the
coming sections.

As a consequence of our construction we are led to work with what should be
considered a syntactic version of Kripke-style logical relations [Plo80, MM91].
The similarity with techniques from intuitionistic semantics is striking.

5. THE THEORIES ABC AND BCT

As discussed in the previous section, the axioms of ABC will not imply that all
elements inhabiting a sum type must in fact be of the form in ix. For example, the
(open) term model for the axioms has variables of type _1+_2 . But, perhaps sur-
prisingly, the equations above do support a principle of reasoning by cases by
which we may infer an equation by proving it under the additional hypothesis that
a given term of sum type is of the form in ixi , for i=1 and 2.

The most straightforward formalization of this idea is a sequent calculus for
deriving equations under hypotheses, with rules involving assumption equations of
the form Q=inici for closed terms Q and fresh constants ci . It is convenient,
though, to go a step further. The terms of sum type which will not be provably
equal to any ini X will be, as it turns out, those of the form fA9 for some
f : _� � ({1+{2). Now, when all types are inhabited there are definable functions
outi : ({1+{2) � {i :

out1 #*x{1+{2 . (case x (*y{1.y) T)

out2#*x{1+{2 . (case x T (*y{2. y)),

where in each case T is some fixed term of the appropriate type. If an element of
type _1+_2 is of the form ini X then outi will extract the X. So in the above situa-
tion, outi composed with f is a map from _� to {i , and so to postulate that fA9 is
in the range of ini is to say that it is precisely ini (outi (fA9)). The technical develop-
ment below is smoothed by associating specific constants f1 and f2 to play the roles
of the *x� .outi (f x�). This is supported by the structure imposed on constants
described in the paragraph beginning this section.

This should motivate the rules of the sequent calculus BCT, the By Cases Theory
given in the next definition. In Table 3 we use the vector notation described earlier:
in rule (_!), the terms A9 are of types such that f (A9) has product type, and in rule
ByCases, the terms P9 are of types such that (hP9) has sum type.

Definition 5.1. A sequent is a triple, 70 ; 2i e, where 70 �7, 2 is a finite set
of equations, and e is an equation, such that if c\ appears in 2 or in e then c # 70 .

The calculus BCT is the system for deriving sequents which is described in
Table 3. A side condition applying to every rule is that the premises and conclusions

60 DOUGHERTY AND SUBRAHMANYAM

TABLE 3

The Sequent Calculus BCT

Axioms

(;) (*x .B) A=B[A�x] (?) pri (M1 , M2) =Mi

(case) (case ini A F1 F2)=(Fi A)
(') F=(*x .Fx), x not free in F
(_!) (fA9)=(f1 A9 , f2 A9) , f # 7* (1!) M=V

Rules

e # 2 or e is an axiom
70 ; 2 i e 70 ; 2 i M=M

70 ; 2 i M=N
70 ; 2 i N=M

70 ; 2 i M=N 70 ; 2 i N=P
70 ; 2 i M=P

70 ; 2 i F=F$ 70 ; 2 i A=A$
70 ; 2 i FA=F A

(!)
70 _ [c]; 2 i U[c�x]=V[c�x]

70 ; 2 i *x .U=*x .V
c # 7&70

(ByCases)
70

+; 2, hP9 =in1 (h1P9) i M=N 70
+; 2, hP9 =in2 (h2 P9) i M=N

70
+; 2 i M=N

In ByCases, 70
+ is 70 _ [c # 7 | c appears in hP9]

are sequents; specifically, in 70 ; 2i e, 70 contains all the constants that appear in
2 and e.

We write 2 |& BCT M=N if there is a proof of the sequent 70 ; 2i M=N for
some 70 .

As suggested above, the intuition behind the ByCases rule is as follows. Suppose
we want to derive an equation M=N under certain hypotheses, and suppose that
hP9 is some term of sum type. In BCT, we may conclude M=N if we can derive it
under the additional hypothesis that hP9 is an injection from the left and also under
the hypothesis that hP9 is an injection from the right.

The reader will observe that the standard surjective pairing axiom (_!) is
postulated only for terms with an extended constant at the head. This convention
smooths the rewriting-style technical development to come; it is a consequence of
the main completeness theorem that this is no restriction on the proof theory.

In this section we show that BCT is equivalent to the theory ABC when the set
of hypotheses is empty. This is shown as follows: we first define a variant of BCT
called WBCT, the weak By Cases theory, and prove that WBCT proves all pure
equations that BCT does. We next show that ABC is as strong as WBCT. It is clear
that ABC is sound, as all of its equations are true in Set; since BCT will be shown by
the completeness theorem to be complete for Set, we conclude that all three systems have
the same proof strength with respect to equations between pure closed terms.

5.1. The Theory WBCT

Definition 5.2. We now examine a slightly different proof system called
WBCT. This is obtained by making the following changes to the language and rules

61FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

of BCT. First, 7* is dispensed with, and thus the only constants under considera-
tion are 7 and the interpreted constants. Hypotheses are of the form Q=ini (c),
where Q is a term of sum type, and c # 7.

Second, the ByCases rule of BCT is replaced by the following rule,

70
l; 1, Q=in1 (c)i M=N 70

r; 1, Q=in2 (c$)i M=N
70 ; 1i M=N

,

where c, c$ # 7 do not occur in the left and right premises, respectively, 70
l=70 _

[c] _ [c | c appears in Q] and 70
r=70 _ [c | c appears in Q].

Finally, the axiom (_!) is replaced with the usual surjective pairing equation,
M=(pr1M, pr2M) .

In this subsection we show an interpretation of BCT in WBCT. Given a sequent
to translate, choose C�7 such that the constants in C do not appear in the
sequent, and let d # 7 be a fresh constant of type @. Using d we may define a collec-
tion of terms T_ for each type _. The function E is defined on 7* as follows:

E(f)=f if f # C,

E(f\i)={*x� . (pri (E(f\) x�))
*x� . (out i (E(f\) x�))

f : {1 � } } } � (&1_&2)
f : {1 � } } } � (&1+&2)

.

The function can be extended to terms by treating it as a substitution. Thus E(M)
is obtained by replacing, for each f\ # 7*, every instance of f\ by E(f\).

For set of hypotheses 2, define

E(2)=[E(f\M9)=ini (cf\M9) | f\M9 =in i (f\iM9) # 2].

E may now be extended to sequents; E(70 ; 2i M=N) is 70
+; E(2)i E(M)=

E(N), where 70
+ is 7 expanded to include all the constants that appear in E(2).

Theorem 5.3. If 70 ; 2i M=N is provable in BCT then its translation
E(70 ; 2i M=N) is provable in WBCT.

Proof. The proof proceeds by induction on the structure of derivations and is
routine. Two representative cases are described.

v The last step in the deduction is an instance of the !-rule.

70 _ [d]; 2i M[d�x]=N[d�x]
70 ; 2i *x .M=*x .N

d # 7&70

By induction hypothesis, 70
+ _ [d]; E(2)i E(M[d�x])=E(N[d�x]) is derivable

in WBCT. Since d # 7 but d � 7*, E(M[d�x])#E(M)[d�x]. By a use of the !-rule
in WBCT, conclude E(70 ; 2i *x .M=*x .N).

v 70 ; 2i M=N since M=N # 2. Suppose M= f\M9 and N=ini (f\iM9).
Then

62 DOUGHERTY AND SUBRAHMANYAM

E(N)#ini (E(f\i E(M9)))

=ini (outi (E(f\) E(M9)))

=ini (outi (ini (cf\i E(M9))))

=(ini (cf\i E(M9)))

=E(M).

Note the two uses of the axiom E(f\M9)=ini (c(f\ M9)) # E(2) in the above
proof. K

5.2. WBCT and ABC

In this subsection we give a translation of sequents from WBCT to closed con-
stant-free equations over the language defined so far. In particular, when M and N
are pure the translation will map the judgment <: <i M=N to the equation
M=N. We will show that the translation maps derivable sequents in WBCT to
equations provable in the theory ABC.

Say that a list 2 of hypotheses is proper if each hypothesis of the form t1=
in$1

a1 , ..., is closed (perhaps containing constants) and finally, for every j, aj does
not appear in any of the first j&1 equations. In a proof of an equation in the
ByCases theory, if the hypotheses are maintained as lists and the ByCases rule is
written as follows,

(ByCases)
70

l; 2, Q=in1 (a1)i M=N 70
r; 2, Q=in2 (a2)i M=N

70 ; 2i M=N
,

then it is easy to see that all hypotheses lists that appear in a proof of an equation
starting with empty hypotheses are proper.

With every proper hypotheses list 2 and sequence (of *-terms of the same
length we can associate a context 2� ([] defined as follows:

[] if 2=[]

2� ([]={case t1 *a1 .(2&@ (&[]) ((0) where 2=(t1=in1 (a1)) } 2&, (=((0) } (&

case t1 ((0) *b1 .(2&@ (&[]) where 2=(t1=in2 (b1)) } 2&, (=((0) } (&.

The terms above, of course, will not be well typed for arbitrary (. However, in the
lemmas and proofs below, we will assume that the (is always chosen so that the
terms mentioned in the context are type correct. So, when a proposition asserts for
all (..., it should be understood that the quantification is always over those (for
which the terms involved type check.

The following facts are proved in Appendix A.

Lemma A.2. If for every (, 2� ([M]= ABC 2� ([N] and for every (, 2� ([P]
= ABC 2� ([Q] then for every (, 2� ([M P]= ABC 2� ([N Q].

63FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

Lemma A.4. If for every (, 2� ([M]=ABC 2� ([N] then for every (, 2� ([*x .M x
c]

= ABC 2� ([N x
c], provided c, x � 2 and x is not free in M and N.

Lemma A.5. Let 21=2 . (t=in1 (a)) and 22=2.(t=in2 (b)). If for every (1 ,

21@([M]= ABC 21@(1
[N] and for every (2 , 22@(2

[M]= ABC 22@(2
[N], and a, b � M, N

then for every (, 2� ([M]= ABC 2� ([N].

Lemma A.6. Let 2=t1=in$1
(a1), ..., tj=in$j

(aj), ..., tn=in$n
(an). Then, for any

(and any context C[],

2� ([C[tj]]= ABC 2� ([C[in$j
(aj)]].

Theorem 5.4. 2 |&BCT M=N iff |&ABC 2� ([M]=2� ([N].

Proof. Let 2 |&M=N in the reasoning-by-cases system. We will induct on the
height of the proof tree. There are three cases corresponding to height=1.

v M#N. In this case 2� ([M]#2� ([N].

v M#tj , N#in$j
(a j), and t j=in$j

(aj) is in 2. With C[]=[] apply
Lemma A.6.

v M=N is an axiom in WBCT and hence in ABC

When h>1, the last rule in the proof could be any of the following.

v Symmetry. By induction hypothesis 2� ([N]=2� ([M] is provable. There-
fore, by symmetry 2� ([M]=2� ([N] is provable.

v Transitivity. By IH, 2� ([M]=2� ([P] and 2� ([P]=2� ([N] are provable.
Use transitivity.

v Congruence with respect to applications. Let M#(P Q) and N#(R S), and
2 |&P=R and 2 |&Q=S. By IH, 2� ([P]=2� ([R] and 2� ([Q]=2� ([S], for every
(. Now use Lemma A.2.

v !-rule. Say M#*x .U, N#*x .V, and 2 |&U c
x=V c

x , where c is fresh with
respect to 2, M, and N. By IH, 2� ([U c

x]=2� ([V c
x] is provable, for every (. Invoke

Lemma A.4.

v ByCases rule. By IH, 21#2, t=in1 (a) |&M=N and 22#2, t=in2 (b) |&

M=N. By IH, for every (, 21@([M]=21@([N] and 22@([M]=22@([N] are
provable in the empty theory. Apply Lemma A.5. K

6. VALUATIONS AND REDUCTIONS

Definition 6.1. A resolution equation is an equation of the form

hA1 } } } An=ini (hi A1 } } } An)

with a rigid left-hand side.

64 DOUGHERTY AND SUBRAHMANYAM

A valuation is a set of resolution equations in which no two equations have the
same left-hand sides.

Definition 6.2. 1. Weak reduction, denoted w�w , is the reduction relation
obtained by orienting the ABC equations (;), ('), (_), (1!), and (case) from left
to right, subject to the following provisions:

v In (')-reduction, the redex F is not already of the form *x .B and further-
more does not occur in a context (FA);

v In (1!)-reduction, the redex is not the term V .

2. Let 1 be a valuation. 1-reduction, denoted w�1 , is the reduction obtained
by orienting the following equations from left to right,

fA1 } } } An=(f1A1 } } } An , f2 A1 } } } An) ,

whenever fA1 } } } An has product type, and f # 7*, and

fA1 } } } An=ini (f iA1 } } } An), i # [1, 2],

when this equation is in 1. Here, of course, fA1 } } } An has sum type, and f # 7*.

Let ww�1w denote (w�1 _ w�w).
Before proving the key properties of 1-reduction it is convenient to define the

following notion of reduction; it will be useful below in analyzing syntactic behavior
of terms. A perusal of the rules of the BCT calculus with an eye toward backward-
proof search also should motivate these rules.

We use explicit contexts to define this relation since, in contrast to traditional
reduction relations, the rules may not be applied in arbitrary contexts.

Definition 6.3. Let O be the reduction relation obtained by adding the
following rules to those for weak reduction.

v C[fA9] O C[ini (fi A9)], where f # 7*, i # [1, 2], C[] is a context, and fA9 is
a closed term of sum type.

v C[fA9] O C[(f1A9 , f2A9)], where f # 7*, i # [1, 2], C[] is a context, and
fA9 is a closed term of product type.

v Add arguments. A term *x .M of arrow type may be replaced by M[x :=d]
where d # 7 is of the appropriate type.

v Selection. A term hA1 } } } An , with h any constant excepting pr1 and pr2 ,
may be replaced by one of the Ai .

Observe that the latter two rules for O -reduction must be applied at the top-
level only, since they change the types of terms.

Theorem 6.4. The reduction O is strongly normalizing.

Proof. See Appendix B. K

Theorem 6.5. For any valuation 1, the reduction ww�1w is strongly normalizing
and confluent.

65FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

Proof. Strong normalization for ww�1w follows from the fact that ww�1w is con-
tained in O . Confluence then follows from local confluence, which is easily
verified. K

So it makes sense to refer to the ww�1w -normal form of a term M, which we will
denote M1 . The notion of valuations turns out to be a key concept enjoying a
number of important properties that cannot be expected from arbitrary sets of
hypothesis. It will become clear, through Theorems 7.13 and 8.3, that valuations are
tame hypotheses.

Say that a valuation 1 is full if for every closed sum-type term Q, Q1 is resolved.
If 1 is a valuation we will say that 1* is a full extension of 1 if 1* is a valuation,
1�1*, and 1* is full.

We must note that provability in BCT, say from hypotheses 1, is not captured
by 1w-convertibility because of the presence of the ByCases rule. The next step is
to ameliorate this situation.

Definition 6.6. Let 1 be a finite valuation. A bar for 1 is a set B of finite
valuations that are supersets of 1 such that for each full valuation 1*$1 there is
a 1 $ # B with 1 $�1*.

The binary relation P on bars for a fixed valuation is defined as follows:
B1 PB2 if and only if \1 # B2 , _1 $ # B1 .1 $�1.

Observe that a bar, just as any set of sentences, may or may not be consistent:
we will typically need to take some care that bars we construct are consistent.

Lemma 6.7. v The relation P is a preorder with finite meets and joins. If B1

and B2 are bars for a valuation 1, then their meet B1 @ B2 is B1 _ B2 and their join
B1 ? B2 is [11 _ 12 | 11 # B1 , 12 # B2 , and there exists a full valuation 1� , with
11 _ 12 �1�].

v If B1 and B2 are bars for a valuation 1, resolving terms M1 and M2 , respec-
tively, then B1 ? B2 is a bar for 1 resolving both M1 and M2 . Furthermore, if
1 $=11 _ 12 is a consistent element of B1 ? B2 , then (Mi)1 $ #(Mi)1i

Proof. The first fact follows easily from the definition of P . To see the second
fact, first note that if 1 resolves a term so does any superset of 1, and if the two
valuations are each consistent then they reduce the term to the same normal form;
the rest follows by recalling that any element in B1 ? B2 is greater than some
element in B1 , and this element is given to resolve M and N. K

7. ANALYZING PROVABILITY

This section contains the main technical development supporting the proof of the
completeness theorem. In case the reader would like to skip the details on a first
reading, we summarize: The discussion through Definition 7.1 is essential, Nota-
tion 7.5 is used frequently, and Theorem 7.11 is the major result concerning the
analysis of derivations themselves. Theorem 7.13 is the key result needed for the
completeness proof.

66 DOUGHERTY AND SUBRAHMANYAM

7.1. A Normal Form for Derivations

Perhaps the first thing that occurs to someone considering a system with a rule
like our ByCases is to analyze terms by expanding all the cases at the start: that
is, test an equation by considering all the sum-type subterms appearing (say in the
w-normal form of the terms) and building a tree of possibilities for the assumptions
that these subterms denote elements injected from the left or the right, respectively.
This amounts to pushing occurrences of the ByCases rule down to the bottom of
a proof-tree. Indeed, the completeness of such a strategy is easy to verify with the
following exception: Instances of ByCases cannot, in general, be permuted below
the !-rule.

So without loss of generality we may see derivations as being stratified into layers
separated by !-instances, with each layer having all instances of ByCases at the
bottom (i.e., at the beginning of a backward proof-search), and so lending itself to
a rewriting-style analysis. Of course the set of hypotheses defining the rewrite
system is different in each layer.

It is convenient to distinguish derivations according to the number of levels
occurring, that is, the depth of nesting of (!)-inferences in a derivation. So write

1 |&n M=N

if there is a derivation of the sequent 70 ; 10 i M=N with no more than n uses
of (!) for some 10 �1 and 70 �7.

The next relation is, intuitively, that which holds between terms at the boundary
between the layers.

Definition 7.1. When 1 is a valuation we define the family of relations Mt
1
n

N for n # N inductively as follows.

Mt
1
n N, if 1 is inconsistent

Mt
1
n M

Ft
1
n F $ At

1
n A$

FAt
1
n F A

10 |&n&1 U[c�x]=V[c�x]
*x .Ut

1
n *x .V

, if 10 �1 and c does not occur in 10 .

Lemma 7.2. 1. If Mt
1
n N and 1�1 $ then Mt

1 $
n N.

2. If Mt
1
n N and 1 is consistent then 1 |&n&1 M=N.

3. If Mt
1
n N then for any P and variable x, M[P�x]t

1
n N[P�x].

4. Assume 1 is consistent.

v If FAt
1
n N holds, then N must be of the form F A, with Ft

1
n F $ and

At
1
n A$.

v If *x .Bt
1
n N holds, then N must be of the form *x .B$, with 1 |&n&1

B[d�x]=B$[d�x] for all constants d.

67FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

Proof. These are all easy inductions over the definition of t-relation. K

Lemma 7.3. For any 1 the relation t
1 is transitive.

Proof. An easy induction over the definition of t
1, using Lemma 7.2. K

Lemma 7.4. Let 1 be a valuation.

1. 1 |&M=N iff there exists a bar B for 1 such that for every 1 $ # B,
1 $ |&M=N.

2. For any n, if 1 |&n M=N then there is a bar B for 1 such that for every
consistent 1 $ # B

M(�w�1 $w
_ t

1 $
n) N.

Proof. 1. The ``only if '' direction is trivial; take B=[10], where 10 is any
finite subset of 1 such that 10 |&n M=N. For the other direction: if 1 |&% n M=N,
the ByCases rule allows us to successively extend 1 to valuations resolving
arbitrary rigid terms, while maintaining the nonprovability of M=N. This
precludes the construction of an appropriate bar.

2. This is a routine proof by induction on the structure of the derivation of
1 |&n M=N. K

7.2. The Relation between Reduction and t

We have seen that ww�1w -reduction is Church�Rosser, but that it is not enough
to capture provability. Lemma 7.4 suggests that we analyze the interaction between
the relations �w�1w and t

1. The natural property to hope for is that ww�1w be
Church�Rosser modulo t

1. This property, investigated by Huet in [Hue8O],
ensures that for a reduction relation � and an equivalence relation t , if t1 and
t2 are in the equivalence relation generated by (� _ t) then in fact there are s1

and s2 such that t1 ��s1 , t2 ��s2 , and s1 ts2 .
Of course we are interested in the situation with the reduction relation being

ww�1w and the equivalence relation t
1, especially in light of Lemma 7.4.

There are well-known necessary and sufficient conditions (given in [Hue8O]) for
a reduction to be Church�Rosser modulo a relation; these generalize the classical
tests for confluence and, if the reduction is strongly normalizing, local confluence.
But these techniques are difficult to apply directly to the present calculus, essen-
tially due to the presence of ;-reduction.

For readers familiar with Huet's paper, we note that the second condition there
in the definition of local confluence modulo an equivalence relation fails in the pre-
sent situation. For example, we have that (*x .x) at

< (*x . (case x in1 in2)) a since
the two abstraction terms are provably equal. Huet's local confluence modulo t

<

would require, for example, that (*x .x) a and (case a in1 in2) have reducts which
are t

<-related. But this is easily seen to fail.
So indeed, it is false that ww�1w is Church�Rosser modulo t

1 for arbitrary 1. But
when M(�w�1w _ t

1)* N and 1 is sufficiently full for M and N, in the sense that

68 DOUGHERTY AND SUBRAHMANYAM

it resolves M and N, then we can find a common reduct for M and N modulo t
1.

This will be enough for our purposes.

Notation 7.5. Let B be a bar. Write

U - B V

to mean that for every consistent 1 # B, U1 t
1 V1 .

Definition 7.6. Let 1 be a finite valuation. C1 is a type-indexed family
[C_

1 | _ # Types] of relations on closed terms defined as follows by induction on
types:

1. At base types {, C{
1 (M, N) if there is a bar B for 1 resolving M and N,

such that M - B N.

2. C_1__2 (M, N) if for i=1, 2, C_i
1 (pri M, pr iN).

3. C_1+_2
1 (M, N) if there is a bar B for 1 resolving M and N, such that for

every consistent 1 $ # B, there is an index i and terms X and Y such that
M1 $ #in iX, N1 $ #in i Y, and C_i

1 $
(X, Y).

4. C_ � {
1 (M, N) if for every valuation 1 $$1, C_

1 $ (A, B) implies
C{

1 $ (MA, NB).

If B is a bar for some valuation 1, CB (M, N) asserts that C1 $ (M, N) for every
1 $ # B.

The following are elementary properties of the logical relation.

Lemma 7.7. Let M and N be closed and _ be any type.

1. 1 is a valuation, B1 PB2 are bars for 1, B1 is full for M and N and
M - B1 N then M - B2 N.

2. If B1 PB2 are bars for finite valuation 1 and CB1
(M, N), then CB2

(M, N).

3. If C_
1 (M, N) and 1�1+ then C_

1+ (M, N).

4. If C_
1 (M, N) and M �w�1w M$ then C_

1 (M$, N).

5. C_
1 is a partial equivalence relation on closed terms.

6. C_
1 (M, N) iff there is a bar B for 1 satisfying C_

B (M, N).

Proof. 1. An easy consequence of the definitions.

2. Choose 1+ # B2 ; by definition _1 # B1 such that 1�1+. We know
C1 (M, N). C1+ (M, N) is shown induction over types. At base types {: let B be the
bar witnessing C{

1(M, N), and let 1�1 +. Since B is also a bar for 1+ we simply
observe that M1+ #M1 N1+ #N1 , and the relation t

1 is contained in t
1+

.
At sum types, we may again use the same bar as given by the hypothesis and use

the induction hypothesis.
At product types an easy application of the induction hypothesis suffices.
At arrow types _=_1 � _2 , let 1 $$1 and suppose C_1

1 $
(A, B). We require

C_2
1 $

(MA, NB), but this follows directly from the induction hypothesis since
C_2

1 (MA, NB).

69FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

3. An easy corollary of the previous part noting that [1]P[1+].

4. An easy induction over types, using, at base and sum types, the fact that
ww�1w is Church�Rosser.

5. Symmetry follows from the symmetry of -B.

To see transitivity at base types: suppose C1 (M, N) and C1 (N, P) are witnessed
by bars B1 and B2 , respectively, that is, M - B1 N and N - B2 P. By part (1),
M - B1 ? B2 N and N - B1 ? B2 P. Now use transitivity of - B1 ? B2. The proof for sum
types is similar; the case of product types is an easy application of induction.

For an arrow type _1 � _2 : suppose C1 (M, N) and C1 (N, P). Choose 1 $$1 and
suppose C1 $ (A, B); we seek C1 $ (MA, PB). Note that C1 $ (A, A) by symmetry and
transitivity of C_1

1 $
; so C1 $ (MA, NA). Since C1 $ (NA, PB) we can apply transitivity

of C_2
1 $.

6. For the left-to-right direction we may take the bar B to be [1].

The converse proceeds by induction on types. At base types we have that for each
1 $ # B there is a bar B1 $ which resolves M and N, and further for each 1" # B1 $,
M1" t

1" N1" . Now just observe that �[B1 $ | 1 $ # B] is a bar for 1 which resolves
M and N.

The argument for sum types is similar. For product types the result follows by
an appeal to the inductive hypothesis.

At arrow types: given 1 and B such that C1 $ (M, N) at each 1 $ # B, choose 1+
$

1 C1+ -related (A, B); we seek C1+ (MA, NB). There are two cases: if there exists
1 $ # B with 1 $ # 1+, then C1+ (M, N) (using (1) above) so that C1+ (MA, NB)
immediately. Otherwise we consider the following bar for 1+: B+=B & [2 | 1+�
2]. For each 2$ # B+ we have C2$ (MA, NB); now use the induction hypothesis.

Lemma 7.8. Let 1 be consistent. For each type _,

(1_) If C_
1 (M, N) then there is a bar B for 1 resolving M and N such that

M - B N.

(2_) C_
1 (c, c) for constants c # 7.

Proof. By induction on types. Note that the truth of (1_) implies that if
C_

1 (M, N) then 1 |&M=N.
At base types. (1) holds by definition, and (2) follows from the fact that ct

1 c
for all c.

At sum types. For (1) suppose C_1+_2
1 (M, N) and let B be the bar witnessing this.

Build the collection B* of bars as follows: if 1 $ # B is inconsistent, let B1 $ be [1 $].
Otherwise we have M w��G$w in iX, N w��1 $w in iY and C_i

1 $
(X, Y); let B1 $ be the bar

obtained by the induction hypothesis at C_i
1 $

(X, Y). Then �B* is a bar and satisfies
our requirements.

For (2) we must show that C1 (c, c). If c=ini (ci) # 1 then c1=in i (c i), by induc-
tion hypothesis ci 1c i , and it follows that [1] is the desired bar. Otherwise, for
i=1, 2 define 1i to be 1, c=ini ci . This forms a bar, and it is easy to check (using
the induction hypothesis for the ci) that it witnesses C1 (c, c).

At product types. For (1), suppose that C_1__2
1 (M, N). Then for i=1, 2,

C_i
1 (priM, pri N).

70 DOUGHERTY AND SUBRAHMANYAM

By induction hypothesis, there are bars Bi for 1 resolving M and N such that
pri M - Bi pr iN. Let B=B1 ? B2 ; we know by Lemma 7.7 that pr i M - B pr i (N).

Let 1 $ # B be consistent. We may write M1 $ #(M1 , M2) and N1 $ #(N1 , N2) .
Since (pr i (M))1 #M i and (pr i (N))1 #Ni , and Mi t

1 $ Ni . Therefore (M1 , M2)
t

1 $ (N1 , N2) , and thus C1 $ (M, N).
For (2), to conclude C_1__2

1 (c, c) it suffices, by Lemma 7.7.4, to show
C_1__2

1 ((c1 , c2) , (c1 , c2)). For this it suffices to show C_i
1 (c i , ci) for i=1, 2. But

these follow by induction.
At function types. For (1), suppose C1 (F, G). Construct a bar B for 1 resolving

F and G. At arbitrary consistent 1 $ # B suppose F1 $ #*x .U and G1 $ #*x .V; to
conclude F1 $ t

1 $ G1 $ it suffices to show that 1 $ |&U[c�x]=V[c�x] for a fresh con-
stant c. But for such a c the induction hypothesis yields C1 $ (c, c) and so
C1 $ ((*x .U) c, (*x .V) c). This suffices, since 1 $ |&(*x .U) c=(*x .V) c. By induction
and the observation at the start of the proof.

For (2) suppose A9 and B9 are such that cA9 and cB9 are of nonarrow type {; by
monotonicity we may take 2 to be a valuation such that for each i, C2 (A i , Bi). We
seek to establish C{

2 (cA9 , cB9).
If { is a base type, apply the induction hypothesis to each Ai # A9 and Bi # B9 and

combine the resulting bars using the ? -construction. We arrive a bar B for 2 such
for each i, Ai a B Bi . We conclude that for any 2$ # B, (cA9)2$ t

2$ (cB9)2$ since no
reductions occur at the root of the term. This establishes C{

2 (cA9 , cB9).
If {={1 _{2 , then by induction hypothesis C2(c1 A9 , c1B9) and C2 (c2A9 , c2B9).

Noting that pr i (cA9) w��w ciA9 and pr i (cB9) w��w c iB9 , and using Lemma 7.7(2), it
follows that C2 (pri (cA9), pr i (cB)).

If {={1+{2 , then let 2ij for i, j=1, 2, be obtained by adding to 2 the equations
cA9 =ini (ci A9) if 2 does not already resolve cA9 , and cB9 =inj (ciB9) if 2 does not
resolve cB9 . This defines a bar for 2. When i{ j 2ij is inconsistent. To see this note
that Ai - 2$ Bi , for any 2$ # B, and hence 2$ |&cA9 =cB9 . By Lemma 7.4,
2 |&cA9 =cB9 .

When i= j, C{
2ij

(in i (c i), inj (cj)) by induction hypothesis. This then establishes
C{

2 (cA9 , cB9). K

We have observed that C_
1 is a partial equivalence relation in Lemma 7.7.3, but

we can now prove reflexivity as well, using Lemma 7.8.

Lemma 7.9. C1 is an equivalence relation on closed terms.

Proof. We need only show reflexivity.
If %1 and %2 are substitutions, write C1 (%1 , %2) if for all x in the domain of either

substitution, C1 (%1 (x), %2 (x)). Now define the relation C*1 on open terms by
C*1 (M, N) if whenever C1 (%1 , %2) and %1M and %2N are closed, then C1 (%1M, %2).

It suffices to prove that for all M, C*1 (M, M); we do so by induction on M. When
M is a variable this is immediate; when M is an application this is an easy applica-
tion of the induction hypothesis. When M is *x .B: let appropriate %1 and %2 be
given; we may assume that x is not in the domain of either, so that we want to
show C1 (*x .%1 B, *x .%2B). So suppose C1 (A, A$); we claim that C1 ((*x .%1B) A,

71FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

(*x .%2B) A$). By Lemma 4 is suffices to show C1 (%1B)[A�x], (%2 B)[A$�x]. But
these terms are of the form %$1B and %$2 B, respectively, with C1 (%$1 , %$2).

It remains to show that for any constant c, C1 (c, c). For c # 7 this is Lemma 7.8.
The remaining cases are pri , in i , and case. Verification for the pri and in i is
straightforward. For case, choose A9 , B9 , and 2 just as in the proof of Lemma 7.8.
Since C2 (A1 , B1) there is a bar B for 2 such that for consistent 2$ # B, there are
i, X, and Y with Ai w��2$w iniX, Bi w��2$w iniX, and C2$ (X, Y). It will suffice to show
that C2$ ((case A1 A2 A3 } } } An), (case B1 B2 B3 } } } Bn)) at these 2$. Moreover it
suffices to reduce and show C2$ ((A iX } } } An), (BiY } } } Bn)). But this follows from the
fact that the relevant Ak and Bk are C2 -related. K

Lemma 7.10. If M �w�1w N then C1 (M, N).

Proof. Use Lemma 7.7.2, the Church�Rosser property for �w�1w , and reflexivity
of C1 .

Theorem 7.11. Suppose 1 is a finite valuation and M and N are closed. If
1 |&M=N there is a bar B for 1 resolving M and N such that M - B N.

Proof. It suffices to show that if 1 |&M=N then C1 (M, N).
We show simultaneously by induction on n:

1n . For all 1, Mt
1
n N implies C1 (M, N).

2n . For all 1 1 |&n M=N implies C1 (M, N).

We first show that at each n, (1n) implies (2n). So suppose 1 |&n M=N. By
Lemma 7.4 there is a bar B for 1 such that for every 1 $ # B

M(�w�1 $w
_ t

1 $)* N.

Under (1n), C1 $ contains t
1
n . By Lemma 7.10, C1 $ contains �w�1 $w . Now apply

Lemma 7.9.
So at each n we address ourselves to (1n) only and will assume (2k) for k<n. We

use a subinduction on the definition of Mt
1
n N.

Note that if M#N then C1 (M, N) since C1 is reflexive��this already takes care
of the case when n=0.

If Mt
1
n N is derived via

Ft
1
n F $ At

1
n A$

(FA)t
1
n (F A)

C1 (FA, F A) by two easy applications of the induction hypothesis and the defini-
tion of logical relation.

Suppose

1 |& n&1 U[c�x]=V[c�x]
M#*x .Ut

1
n *x .V#N

c not occurring in 1.

72 DOUGHERTY AND SUBRAHMANYAM

Let 1 $, P, and Q be such that 1�1 $ and C1 $ (P, Q); we seek C1 $ (MP, NQ); it
suffices to show C1 $ (U[P�x], V[Q�x]). We show that C1 $ (U[P�x], V[P�x]) and
C1 $ (V[P�x], V[Q�x]) and invoke transitivity.

To see that C1 $ (V[P�x], V[Q�x]) holds, note that C1 $ (*x .V, *x .V) and so
C1 $ ((*x .V) P, (*x .V) Q), now reduce.

To see that C1 $ (U[P�x], V[P�x]), note that G |& n&1 U[P�x]=V[P�x] since
c � 1; now apply the global induction hypothesis to conclude C1(U[P�x], V[P�x])
and by Lemma 7.7.1 C1 $ (U[P�x], V[P�x]) as well. K

Recall that we refer to the constants among the ini , (} , }) , V , and the sets 7
and 7* as passive constants.

Lemma 7.12. Let 1 be a consistent valuation, and suppose (hA1 } } } An)1 t
1

(hA1 } } } An) where the two terms are of nonarrow type and h and h$ are passive.
Furthermore, suppose that 1 resolves these two terms. Then h#h$, n=n$, and for
1�i�n, Ai t

1 A$i .

Proof. By induction on types. The lemma is clear when either h or h$ is in
[(} , }) , in i , V].

Let h, h$ # 7*. Suppose the terms above have base type. Then

(hA1 } } } An)1 #(h(A1)1 } } } (An)1)

and similarly for (hA1 } } } An). The result follows immediately from the definition
from t

1.
If the terms have sum types, then since 1 resolves the terms in question we have

(hA9)1 #ini ((hi A9)1)

(h$A9 $)1#ini $ ((h$i $ A9 $)1).

Note that by the definition of t, (h iA9)1 t
1 (h$i $A9 $)1 . By induction hypothesis,

i=i $ and hi #h$i , and so h#h$.
The case for product types is similar. K

Theorem 7.13. Let 1 be a consistent valuation. If 1 |&hA1 } } } An=hA1 } } } An

with h and h$ passive constants, then h#h$, n=n$, and for 1�i�n, 1 |&Ai=A$i .

Proof. If the terms are not of arrow type, we may choose fresh constants from
7 that drive the terms to nonarrow type. So without loss of generality assume that
the equation is not of arrow type.

Suppose 1 |&hA1 } } } An=hA1 } } } An and let B be a bar as provided by
Theorem 7.11. For each consistent 1 $ # B,

(hA1 } } } An)$1 t
1$ (hA1 } } } An)$1 .

Note that since 1 is consistent, it follows from Lemma 7.4 that any bar for 1 con-
tains a consistent valuation, say 1 $. So Lemma 7.12 can be applied to yield that
h#h$ and n=n$. Now the fact that Ai t

1 $ A$i $, and therefore 1 $ |&Ai=A$i for all
consistent 1 $ in B, is enough by Lemma 7.4.1 to yield 1 |&Ai=A$i . K

73FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

It has taken a lot of work to establish the above decomposition property, but it
is crucial to the construction in the proof of Proposition 8.1 below, which is in turn
the key to ensuring extensionality in the term model we construct for the complete-
ness theorem.

Some observations concerning the decomposition property: it is surprising at first
glance that the result holds not just for the case < |&hA1 } } } An=hA1 } } } An, but
under an arbitrary valuation. This would not be true if we were to take an arbitrary
set of hypotheses instead of a valuation. This is evidence that the use of valuation
equations as hypotheses is closer in spirit to reasoning in a pure calculus than in
one with nonlogical axioms.

In the absence of hypotheses, the decomposition property is easy to demonstrate
when (in contrast to the present situation) provability is completely captured by a
confluent rewriting system. But one should not necessarily expect it for arbitrary
typed lambda calculi. For example, consider the full type hierarchy over a two ele-
ment base type, @, and only function types. Let f and x be variables of type @ � @,
respectively. The terms (f (f (f x))) and (f x) are equal in this model, while
(f (f x)) and x are not. For another example, consider the continuous type
hierarchy over a flat CPO; extend the simply typed lambda calculus with a constant
0. Let 0 denote the least element in the flat CPO. Then the equation (f (f 0))=
(f 0) is true in the model but (f 0)=0 is not. The decomposition property also
fails if we consider the equational theory of the call-by-value lambda calculus inter-
preted over the strict continuous hierarchy over a flat CPO, as well as the lazy
lambda calculus interpreted over the type hierarchy over a flat CPO with arrow
types interpreted by lifted continuous function spaces.

8. COMPLETENESS

We recall the discussion at the end of Section 4, in which we noted that working
with infinite sets of equations causes problems in trying to ensure extensionality for
the corresponding term structure.

The solution is to encode negation, in the following sense.

Notation. Write 1 < M{N to mean that for every consistent 1 $$1,
1 $ |&% M=N.

Proposition 8.1. Let 1 be a finite valuation such that 1 |&% M=N. Then there
exists a consistent finite valuation 1+ extending 1 such that 1+<M{N.

Proof. Since O is terminating, so, is its multiset extension O m [DM79]. We
will prove the theorem by Noetherian induction (well-founded induction over the
converse of a terminating relation [Coh81]), in this case over O m applied to the
pair (M, N).

v If at least one of M and N is w�1w -reducible, then 1 |&% M1=N1 and the
multiset [M1 , N1] is O m-related to [M, N]; invoke the induction hypothesis.

74 DOUGHERTY AND SUBRAHMANYAM

v Otherwise, if the type of M and N is an arrow type, then M#*x .U and
N#*x .V; choose a fresh constant c, note that 1 |&% U[c�x]=V[c�x] and that these
terms are obtained by Add-argument, so induction applies.

v If M#cA9 and N#cB9 , then there must be an i such that 1 |&% A i=Bi ; these
are Select-reducts of M and N, and hence [Ai , Bi] is lower in the multiset ordering.
By induction hypothesis there is 1+

$1 such that 1+<Ai {Bi . By Theorem 7.13
1+<M{N

v If M#cA9 and N#dB9 , with c, d passive then again by Theorem 7.13, we
conclude that in fact 1 < M{N (no consistent valuation can equate two terms
with different heads).

v The only other possibility is that M (say) is of the form (case R F G) with
R rigid��that is to say, M is not resolved. Let B be a bar resolving M and N; by
Lemma 7.4 we may select 1 $ # B, 1�1 $, 1 $ |&% M=N (for the latter see
Lemma 7.4). Note that M ��1 $ M1 $ but not M#M1 $, so the induction hypothesis
applies. K

Proposition 8.2. Let 1 be a finite valuation. If 1 |&% M=N then there is a coun-
table d.p. model for 1 in which M=N fails.

Proof. We will construct a consistent valuation 1� such that

v 1� is full;

v for any F and G, if 1� |&% F=G: _ � { then there is a term A such that
1� |&% FA=GA : {; and

v 1� |&% M=N.

The closed term structure for 1� will be the desired model.
We build 1� as the union of a chain of valuations 1n . List all closed terms of

sum type as Q2k+1 , k # |, and list all closed equations F=G between term of arrow
type as e2k+2 , k # |. Define 10 $1 as in Lemma 8.1 so that 10 <M{N. Let 12k+1

extend 12k and resolve Q2k+1 . To define 12k+2 , consider e2k+2 #F=G: _ � { and
consider two cases. If 12k+1 |&F=G then set 12k+2 #12k+1 . Otherwise, choose
c # 7 not occuring in 12k+1 , and, noting 12k+1 |&% Fc=Gc, let 12k+2 be as in
Lemma 8.1, extending 12k+1 and such that 12k+2<Fc{Gc.

The set 1� #�[1n | n # |] is easily seen to satisfy the three conditions
above. K

Theorem 8.3 (Completeness). For any M and N, |&M=N iff Set < M=N.

Proof. By Propositions 4.4 and 8.2. K

9. CONCLUSION

We have established a fundamental model-theoretic property of the simply typed
*-calculus with coproducts; this can be thought of as laying a foundation for a
model theory of the calculus. But many questions remain.

One would like a characterization of those classes C of models for which validity
in C implies provability (say, in the proof system given in this paper). This seems

75FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

to be difficult: as we saw above, the 1-section theorem, which settles this question
for the simply typed lambda calculus, fails dramatically in the presence of
coproducts.

Similarly one can ask whether a finite model theorem holds, as for the classical
case [Sta82]. We conjecture that it does; that is, if an equation holds in every full
type hierarchy with a finite base set, then it holds in Set.

APPENDIX A

Proofs of Lemmas in Section 5

In the following the sign =, unless indicated otherwise, will mean provability in
theory ABC.

Congruence with Respect to Application

Lemma A.1. Define f (()(i)] *xi .*y . ((i) x i . For terms M and P, and
hypotheses list 2, if the terms in the following equation type check then the equation
holds.

(2� f ((1)[M] 2� (2
[P])=2� (1

[M P]

Note that the type of the bound variable y in the definition of f must be the same as
the type of P in 2.

Proof. The following equation is provable from empty hypotheses in ABC.

case t (*a .M) (*b .N)(case t (*a .M$) (*b .N$))

=case t (*a .M M$) (*b .N N$)

The lemma follows by induction on the length of 2. K

Lemma A.2. If for every (2� ([M]=2� ([N] and for every (2� ([P]=2� ([Q]
then for every (2� ([M P]=2� ([N Q].

Proof. By hypothesis, for every (1 and (2 ,

2� f ((1)[M]=2� f ((1)[N]

2� (2
[P]=2� (2

[Q].

Rewriting both terms in this equation using the equation in the previous lemma
gives us the desired equation. K

The !-Rule

For \i .x{xi with x not free in Ui , define gx(()(i)] *x i . ((1) xi x.

76 DOUGHERTY AND SUBRAHMANYAM

Lemma A.3. *x .2� gx(()[M]=2� ([*x .M], where x is neither free nor bound in
2� ([].

Proof. If 2#[] the 2� gx(()[M]#M#2� ([M]; the claim follows trivially.
If 2#(t1=in1 (a1)) :: 2&, then

*x .2� gx(()[M]

#*x .case t1 (*a1 .2&@ gx((&)[M]) (*x1 . ((1) xi x)

=case t1 (*a1 .*x .2&@ gx((&)[M]) (*x1 .*x . ((1) xi x)

since x � fv(t1)

=case t1 (*a1 .2&@ (&[*x .M]) (*x1 .*x . ((1) x i x) by induction

=case t1 (*a1 .2&@ (&[*x .M]) (*x1 . ((1) x i)

=case t1 (*a1 .2&@ (&[*x .M]) (((1))

#2� ([*x .M]. K

Lemma A.4. If for every (, 2� ([M]=2� ([N] then for every (, 2� ([*x .M x
c]=

2� ([N x
c], provided c, x � 2 and x is not free in M and N.

Proof. Applying the !-rule to the hypothesis,

*x .2� gx(()[M x
c]=*x .2� gx(()[N x

c].

Clearly x does not appear in 2� ([]. Applying the previous lemma to the two terms
in this equation, the claim follows. K

The ByCases Rule

Lemma A.5. Let 21=2 . (t=in1 (a)) and 22=2 . (t=in2 (b)). If \(1 .21@(1
[M]

=21@ (1
[N] and \ (2 .22@ (2

[M]=22@ (2
[N], and a, b � M, N then \ (2� ([M]=

2� ([N].

Proof. Let t have type {1+{2 in 2. For any given (define (1= (} *y .M and
(2= (} *x .N, where x : {1 and y : {2 are free in neither M nor N. Recall that

21@ (1
[]#2� ([case t (*a.[]) (*x .)]

22@ (1
[]#2� ([case t (*x .N) (*b.[])].

Note that

2� ([M]=2� ([case t (*a .M) (*y .M)]

=21@ (1
[M]

=21@ (1
[N]

=2� ([case t (*a .N) (*y .M)]

77FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

=22@ (2
[M]

=22@ (2
[N]

=2� ([case t (*x .N) (*b .N)]

=2� ([N].

In the first and last steps above we use the facts that none of a, b, x, or y are free
in M or in N. K

Using Hypotheses

Lemma A.6. Let 2=(t1=in$1
(a1)), ..., (t j=in$j

(aj)), ..., (tn=in$n
(an))

20

, where

$j=1. Then,

2� ([C[tj]]=2� ([C[in1 (aj)]].

Proof. For ease of notation, assume $j=1. Define context D[] and sequence
(0 so that

2� ([]#D[case tj (*aj .20@ (0
[]) (((j))].

So,

2� ([C[tj]]=D[case tj (*a .20@ (0
[C[t j]]) (((j))]

=D[case tj (X) (Y)]

=D[case tj (*aj .20@ (0
[C[in1 (aj)]]) (*b$j . ((j) b$j)]

=D[case tj (*aj .20@ (0
[C[in1 (aj)]]) (((j))]

=2� ([C[in1 (a j)]],

where in the second line

X#*a$j .case in1 (a$j) (*aj .20@ (0
[C[in1 (a$j)]]) (((j))

Y#*b$j .case in2 (b$j) (*aj .20@ (0
[C[in2 (b$j)]]) (((j)),

where the variable b$j in the term Y is fresh. K

APPENDIX B

Strong Normalization of O

This section contains the proof of strong normalization for O restricted to
closed terms. The restriction to closed terms only comes into play in the final

78 DOUGHERTY AND SUBRAHMANYAM

theorem; up to that point the word terms will mean terms possibly containing free
variables.

Notation B.1. Write O
&

for the reduction relation determined by O without the
rules for Add-argument and Select. Note that these are precisely the rules which
preserve types and so can be applied to any subterm of a term.

Write SN for the set of terms which are strongly normalizing with respect to
O -reduction.

Some preliminary observations about SN will be convenient:

Lemma B.2. 1. If SN(P) then SN(iniP).

2. If SN(P1) and SN(P2), then SN((P1 , P2)).

3. If SN(B[c�x]) for all c # 7 then SN(*x .B).

Proof. 1. Any reduction sequence out of ini P looks like

ini P OO
&

iniP$ OO
&

} } } ,

where P OO P$, or perhaps

ini P OO
&

in iP$ OO P$ OO } } } .

In each case the reduction is finite by hypothesis on P.

2. The proof is similar to the previous case.

3. Any reduction sequence out of *x .B looks like

*x .B OO
& *x .B$ OO

&
} } } ,

where B OO
& B$, or perhaps

*x .B OO
& *x .B$ OO B$[c�x] OO } } } .

For the sake of contradiction suppose such a reduction to be infinite. In the first
case we have an infinite O

&
reduction out of B; letting c be any constant yields an

infinite reduction out of B[c�x]. In the second case we may rearrange the reduction
to do the Add-argument step first and again obtain an infinite reduction out of
B[c�x]. This is a contradiction in each case. K

Definition B.3. The type-indexed family of relations S_�4_
7 is defined by

induction on types as follows:

1. For _ # [@, 1], S_=SN_.

2. S_1+_2 (M) iff SN_1+_2 (M) and furthermore if M OO
&

in i (N) then S_i (N)
(i=1, 2).

3. S_1__2 (M) iff SN_1__2 (M) and furthermore if M OO
& (M1 , M2) then

S_1 (M1) and S_2 (M2).

4. S_1 � _2 (M) iff for every N: _1 , S_1 (N) implies S_2 (M N)

79FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

Lemma B.4. If S_ (M) and M O
& M$ then S_ (M$).

Proof. By induction over types; the statement is clear at non-arrow types.
When _=_1 � _2 . Let N be given such that S_1 (N); we seek to establish

S_ (M$). But S_2 (MN), and MN O
& M$N. By induction hypothesis S_2 (M$N). K

Lemma B.5. 1. If S(P) and SN(P) then S(iniP).

2. If S(P1), S(P2), SN(P1) and SN(P2), then S((P1 , P2)).

Proof. In each case strong normalization follows from Lemma B.2. The second
condition for membership in S follows similar lines, using the fact that S is closed
under O

&
. K

Recall that an introduction term is a term of the form V , ini (M), (M1 , M2) , or
*x .M.

Lemma B.6. Let M be a nonintroduction term of nonarrow type {. If every
one-step O -reduct of M is strongly normalizing and in S then S(M).

Proof. M is strongly normalizing if its one-step reducts are; the second condi-
tion on membership in S is clear since M is not an introduction. K

Lemma B.7. (1_) S_�SN_.

(2_) 7_�S_ (f).

Proof. We prove these jointly by induction on the length of the type _.

(1_) If _ is a base type, a sum type, or a product type then (1) holds by
definition.

Suppose _=_1 � _2 , and S_ (F). Suppose, by way of contradiction, an infinite
sequence

F#F0 O F1 O F2 } } } .

Note that for any d # 7_1, S_1 (d) by induction hypotheses (2_1
), and so S_2 (Fd).

Then by induction hypothesis (1_2
), SN_1 (Fd). Now there are two cases to

consider.

�� The reduction sequence contains no Select, Add argument, or '-expan-
sion step applied to the root. Pick d # 7_. Then, Fd#F0d O F1 d O F2d } } } is an
infinite reduction sequence, a contradiction.

�� Otherwise let n be the smallest number such that Fn O Fn+1 is a Select,
Add-argument, or '-expansion step.

V If Fn O Fn+1 is a Select step, i.e., Fn=hA9 and Fn+1 #Ai then pick
d # 7_, and note that the infinite reduction sequence Fd O F1d O } } } Fn d O Fn+1 } } }
contradicts SN_2 (Fd).

V If Fn O Fn+1 #*x .Fnx is an '-expansion, then since F OO
& Fn , Fn is in

S, so that for each d, Fn d # S, so the hypothesis of Lemma B.2 (part 3) is satisfied
for Fn . This contradicts the assumption that the above reduction is infinite.

80 DOUGHERTY AND SUBRAHMANYAM

V If Fn O Fn+1 is an Add-argument step, i.e., Fn=*x .P, and Fn+1=Pc
x ,

for some c # 7_1, then Fc O F1d O } } } Fn c w�; Fn+1 O } } } is an infinite reduction
sequence, again a contradiction.

(2_) If f: _ is of base type then f has no O -reduct, hence is trivially SN,
and hence S(f).

For f: _1 __2 we invoke Lemma B.6 and check the one-step O -reducts of f. The
only such reduct of f is (f1 , f2) , and by induction hypothesis (2_i

), S_i (fi); by
induction hypothesis (1_i

) SN_i (fi). We now use Lemma B.5.
For f: _1+_2 the argument is similar: note that the only one-step O -reducts of

f are of the form ini (fi).
If _=_0 � } } } � _n � {, for nonarrow type {, choose M9 satisfying S_i (Mi).

By induction hypothesis (1_i
), SN_i (Mi). We show, by noetherian induction over

O -reduction over the multiset of the Mi , that all one step reducts of fM9 are in
SN and in S. Lemma B.6 will then yield fM9 # S S as desired. The one-step
reducts of fM9 are

�� Mi , which is in S by assumption, and are in SN by induction
hypothesis (1_i

).

�� fM1 } } } Mi&1M$iMi } } } Mn , where Mi O
& M$i . Apply induction.

�� ini (f iM9), if {={1+{2 . But the type of fi is shorter than _, hence S(fi),
therefore S(fi M9), so by (1{) SN{i (f iM9), and by Lemma B.5 S(ini (f i M9)). Now
use Lemma B.5

�� (f1M9 , f2 M9) , which is treated similar to the previous case. K

Observe as a corollary to part (1) of the previous Lemma that the SN

hypothesis in Lemma B.5 is now redundant.

Lemma B.8. All constants are in S.

Proof. This has already been shown for constants in 7. For in i and (} , }) we
invoke Lemma B.5. For V , we need only observe that it is irreducible, hence SN.
The constants pri and case are treated similarly: we outline the argument for case.

Suppose Q, F1 , F2 , X1 , ..., Xn , (n�0) are in S and that M#(case Q (F1) (F2))
X9 has nonarrow type; we wish to see that M # S. As in the previous Lemma, we
argue by Noetherian induction over O that the one-step reducts of M are in S

(but now strong normalization comes for free). The only interesting case is when
Q#ini X and a root-reduction occurs:

M#(case in iX (F1) (F2)) X9 O Fi X#M$.

But certainly in iX # S implies X # S and so M$ # S. K

Lemma B.9. For types _1 and _2 , and term M assume that S(M), and that for
every N # S, S(M[N�x]) holds. Then S_1 � _2 (*x .M).

Proof. Let _2={0 � } } } {k , where {k is not an arrow type. It suffices to show
that for any M0 , M1 , ..., Mk such that S{i (M i) for each i, S{k ((*x .M) M0 } } } Mk).
The form of the argument is by now familiar. We examine the one-step reducts and

81FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

note that the only situation which does not submit to the induction hypothesis is
that of a head-; reduction. But such a reduction yields (M[M0 �x]) M1 } } } Mk . But
this is in S by our hypothesis on M. K

Theorem B.10. The relation O restricted to closed terms is strongly normalizing.

Proof. For any term M, we will prove the following claim by induction over its
structure.

For any % such that M% is closed and such that for every x in the domain of %,
S(%(x)), S(M%).

If M is a variable, this is immediate. The cases where M is a constant is Lemma
B.8. If M is an application (P Q), then by induction hypothesis S(P%) and S(Q%),
whence S((PQ) %). If M#*x .P then by the previous lemma it suffices to show that
for any Q satisfying S(Q) we have S(P%Q

x). This is obvious by induction hypo-
thesis applied to P. This completes the proof of the claim.

Now if M is any closed term, take % to be the empty substitution; by the above
claim S(M). By Lemma B.7(1) SN(M). K

Theorem B.11. The reduction O is strongly normalizing.

Proof. Any infinite reduction sequence from an open term trivially ``lifts'' to an
infinite reduction sequence from the closed term obtained by replacing each free
variable by a constant throughout the sequence. K

Final manuscript received March 1, 1999

REFERENCES

[Bar84] Barendregt, H. P. (1981), ``The Lambda Calculus: Its Syntax and Semantics,'' Studies in
Logic and the Foundations of Mathematics, Vol. 103, North-Holland, Amsterdam. Revised
edition.

[Coh81] Cohn, P. M. (1981), ``Universal Algebra,'' 2nd ed., Reidel, Dordrecht.

[Cub92] C8 ubric� , D. (1992), Embedding of a free cartesian closed category into the category of sets,
manuscript, McGill University.

[DK93] Di Cosmo, R., and Kesner, D. (1993), A confluent reduction system for the extensional
*-calculus with pairs, sums, recursion and terminal object, Proc. ICALP.

[Dou93] Dougherty, D. (1993), Some *-calculi with categorical sums and products, in ``Proc. Fifth Intl.
Conf. on Rewriting Techniques and Applications,'' Lecture Notes in Computer Science,
Vol. 690, pp. 135�151, Springer-Verlag, Berlin.

[DM79] Dershowitz, N., and Manna, Z. (1979), Proving termination with multiset ordering, Comm.
Assoc. Comput. Mach. 22(8), 465�476.

[Fri75] Friedman, H. (1975), Equality between functionals, in ``Logic Colloquium'73'' (R. Parikh,
Ed.), Lecture Notes in Math., Vol. 453, pp. 22�37, Springer-Verlag, Berlin.

[Hue80] Huet, G. (1980), Confluent reductions: Abstract properties and applications to term rewriting
systems, J. Assoc. Comput. Mach. 27, 797�821.

[LS86] Lambek, J., and Scott, P. (1986), ``Introduction to Higher-order Categorical Logic,''
Cambridge Studies in Advanced Mathematics, Vol. 7, Cambridge University Press,
Cambridge, UK.

[Mit90] Mitchell, J. C. (1990), Type systems for programming languages, in ``Handbook of Theoreti-
cal Computer Science'' (Jan van Leeuwen, Ed.), Vol. B, pp. 365�458, Elsevier, Amsterdam.

82 DOUGHERTY AND SUBRAHMANYAM

[MM91] Mitchell, J. C., and Moggi, E. (1991), Kripke-style models for typed lambda calculus, J. Pure
Appl. Logic 51, 99�124.

[OS91] Okada, M., and Scott, P. (1991), Rewriting theory for uniqueness conditions: coproducts,
Talk presented at First Montreal Workshop on Programming Language Theory, April 1991.

[Plo80] Plotkin, G. D. (1980), Lambda definability in the full type hierarchy, in ``To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism'' (P. Seldin and R. Hindley,
Eds.), pp. 363�373, Academic Press, New York.

[Sta82] Statman, R. (1982), Completeness, invariance, and lambda-definability, J. Symbolic Logic 47,
17�26.

83FUNCTIONALS IN THE PRESENCE OF COPRODUCTS

	1. INTRODUCTION
	2. SYNTAX
	TABLE 1
	TABLE 2

	3. COPRODUCTS CONSIDERED DIFFICULT
	4. THE DISJUNCTION PROPERTY
	5. THE THEORIES ABC AND BCT
	TABLE 3

	6. VALUATIONS AND REDUCTIONS
	7. ANALYZING PROVABILITY
	8. COMPLETENESS
	9. CONCLUSION
	APPENDIX A
	APPENDIX B
	REFERENCES

