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A B S T R A C T

Ascorbic acid and nitric oxide are known to play important roles in epilepsy. The aim of present study

was to identify the involvement of nitric oxide (NO) in the anticonvulsant effects of ascorbic acid on

penicillin-induced epileptiform activity in rats. Intracortical injection of penicillin (500, International

Units (IU)) into the left sensorimotor cortex induced epileptiform activity within 2–5 min. Thirty

minutes after penicillin injection, nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester

(L-NAME, 100 mg/kg), neuronal nitric oxide synthase (nNOS) inhibitor 7-nitroindazole (7-NI, 40 mg/kg),

NO substrate, L-arginine (500 mg/kg) were administered with the most effective dose of ascorbic acid

(100 mg/kg) intraperitoneally (i.p.). The administration of L-arginine significantly decreased the

frequency of epileptiform activity while administration of L-NAME did not influence the mean frequency

of epileptiform activity. Injection of 7-NI decreased the mean frequency of epileptiform activity but did

not influence amplitude. Ascorbic acid decreased both the mean frequency and amplitude of penicillin-

induced epileptiform activity in rats. The application of L-NAME partially and temporarily reversed the

anticonvulsant effects of ascorbic acid. The results support the hypothesis of neuro-protective role for

NO and ascorbic acid. The protective effect of ascorbic acid against epileptiform activity was partially and

temporarily reversed by nonspecific nitric oxide synthase inhibitor L-NAME, but not selective neuronal

nitric oxide synthase inhibitor 7-NI, indicating that ascorbic acid needs endothelial-NOS/NO route to

decrease penicillin-induced epileptiform activity.

� 2009 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Epilepsy is a common chronic neurological disorder character-
ized by recurrent spontaneous seizures that is caused by episodic
abnormal electrical activity in the brain.1 Most epileptic seizures
are due to discharges generated in cortical and hippocampal
structures, although subcortical structures are also involved in
some seizure types.2 It has been proposed that active oxygen free
radicals participate in the mechanisms of epileptic discharges.3,4

Further support for a role of free radicals in seizures, comes from
the successful use of exogenously administered antioxidants in
protecting the brain against seizure-induced brain damage.5,6

Moreover, Arzimanoglou et al.7 suggested that anticonvulsant
treatment of epilepsy has been related to neuro-protection, since it
aims to reduce the duration or totally suppress seizures. Ascorbic
acid is effective antioxidant and it has been shown that ascorbic
acid exert both anticonvulsant and proconvulsant effects in
different models of experimental seizures.8–11 Ascorbate, at the
high dose, produced either no effect, or an opposing effect on these
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behaviors constitutes further evidence for a biphasic effect of
ascorbate on central nervous system (CNS) functions.12,13 In
animals, ascorbic acid was found to be effective against ferrous
chloride seizures, pentylenetetrazol (PTZ)-induced seizures, and
penicillin-induced seizures.8,9,11 Wilson et al.14 also recorded that
systemic administration of ascorbic acid may change neuronal
firing rates during single unit recording.

On the other hand, it has been suggested that nitric oxide plays
a role in variety of physiological processes in the brain.15,16 NO is
an atypical regulatory molecule, which acts both as a second
messenger and as a neurotransmitter.17 NO has unique property as
it can diffuse through cell membranes without using transpor-
ters.18 NO is synthesized from L-arginine by activation of nitric
oxide synthase (NOS) to produce NO through the formation of
citrulline.19 Several studies support the possibility that NO in the
CNS is involved in the pathogenesis of epilepsy.19–22 Although
several reports have suggested the involvement of NO in various
models of epilepsy21,23–25 by using various NOS inhibitors and NO
donors, the results were inconsistent. While some researchers
demonstrate that NO may be an endogenous anticonvul-
sant,20,21,26–29 and the others suggest a proconvulsant role for
NO.30–32 In addition, it was reported that NG-nitro-L-arginine
methyl ester (L-NAME), NOS inhibitor, is able to reduce the
vier Ltd. All rights reserved.
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protective activity of some conventional antiepileptics.33

Homayoun et al.34 also reported that pretreatment with L-NAME
(1 and 10 mg/kg, 4 days) dose-dependently inhibited both
anticonvulsant and proconvulsant effects of morphine. 7-NI is a
selective neuronal nitric oxide synthase (nNOS) inhibitor. Al-
though many reports have supported an anticonvulsant role for 7-
NI in different models of experimental epilepsy,31,35–37 some
studies have demonstrated proconvulsant effects of 7-NI.28,29,38

The effect of 7-NI on epilepsy are unclear and controversial.
However, there are no published data available about on the role of
NO pathway in the anticonvulsant effects of ascorbic acid on
penicillin-induced epileptiform ECoG activity in rats. Thus, we
decided for the first time, to investigate the possible involvement
of NO in the anticonvulsant effect of ascorbic acid on penicillin-
induced epileptiform activity in the rat by using nitric oxide
synthase inhibitors, L-NAME and 7-nitroindazole as well as NO
substrates, L-arginine.

2. Methods

2.1. Animals

Ninety-one male Wistar rats weighing 225–275 g were used.
They were maintained on a 12-h light/dark cycle, with free access
to tap water and standart laboratory food. All experimental
protocols were performed in accordance with governmental
approval according to local guidelines for the care and use of
laboratory animals. Each animal group was composed of seven
rats. Rats were assigned to the following experiments and groups:

(1) Artificial cerebrospinal fluid (2.5 ml, intracortical (i.c.)) (aCSF,
containing (mM): NaCl, 124; KCl, 5; KH2PO4, 1.2; CaCl2, 2.4;
MgSO4, 1.3; NaHCO3, 26; glucose, 10; HEPES, 10; pH 7.4 when
saturated with 95% O2 and 5% CO2);

(2) 100 mg/kg ascorbic acid (i.p.);
(3) 500 international units (IU) penicillin (2.5 ml, i.c.) + physio-

logical saline (i.p.);
(4) 500 IU penicillin (2.5 ml, i.c.) + 100 mg/kg L-NAME (i.p.);
(5) 500 IU penicillin (2.5 ml, i.c.) + 40 mg/kg 7-nitroindazole

(i.p.);
(6) 500 IU penicillin (2.5 ml, i.c.) + 500 mg/kg L-arginine (i.p.);
(7) 500 IU penicillin (2.5 ml, i.c.) + 500 mg/kg D-arginine (i.p.);
(8) 500 IU penicillin (2.5 ml, i.c.) + 100 mg/kg ascorbic acid (i.p.);
(9) 500 IU penicillin (2.5 ml, i.c.) + 100 mg/kg L-NAME

(i.p.) + 100 mg/kg ascorbic acid (i.p.);
(10) 500 IU penicillin (2.5 ml, i.c.) + 100 mg/kg D-NAME

(i.p.) + 100 mg/kg ascorbic acid (i.p.);
(11) 500 IU penicillin (2.5 ml, i.c.) + 40 mg/kg 7-nitroindazole

(i.p.) + 100 mg/kg ascorbic acid (i.p.);
(12) 500 IU penicillin (2.5 ml, i.c.) + 500 mg/kg L-arginine

(i.p.) + 100 mg/kg ascorbic acid (i.p.);
(13) 500 IU penicillin (2.5 ml, i.c.) + 500 mg/kg L-arginine

(i.p.) + 40 mg/kg 7-nitroindazole (i.p.) + 100 mg/kg ascorbic
acid (i.p.).

2.2. Induction of epileptiform activity

The animals were anesthetized with urethane (1.25 g kg�1, i.p.).
The left cerebral cortex was carefully exposed by craniotomy. After
incision of the skull, the head of the animal was placed in a
stereotaxic apparatus (Harvard Instruments, South Natick, MA,
USA). Four different corners of the scalp were stitched by surgical
threads and stretched in order to form a liquid vaseline pool
(37 8C). Rectal temperature was maintained between 36.5 and
37.0 8C using a feedback-controlled heating system (Homeother-
mic Blanket Control Unit, Harvard Apparatus, MA, USA). A
polyethylene cannula was introduced into the right femoral artery
to monitor blood pressure, which was kept above 100 mmHg
during the experiments (mean 115 � 5 mmHg) by drop infusion of
dextran 40 (rheomacrodex) via femoral vein. All contact and incision
points were infiltrated with procaine hydrochloride to minimize
possible sources of pain.

The epileptic focus was produced by 500 international units
penicillin G potassium injection (acute experimental model of
focal epilepsy; 1 mm beneath the brain surface by a Hamilton
microsyringe type 701RN; infusion rate 0.5 ml/min).39,40 Penicillin
was prepared in sterile apyrogen distilled water and administered
intracortically in a volume of 2.5 ml into the left sensorimotor
cortex.

2.3. Drug and drug administration

L-Ascorbic acid, L-arginine, D-arginine, L-NAME, 7-NI and D-
NAME, urethane (Sigma-Aldrich Co. USA), dimethylsulfoxide
(Merck, Germany), Penicillin G potassium (I.E. Ulagay, Turkey)
were used in the experiments. All solutions were prepared freshly
before experiments. L-Arginine, D-arginine, L-NAME and D-NAME
were dissolved in sterile physiological saline solution to such
concentrations that requisite doses were administrated intraperi-
toneally in a volume of 5 ml/kg. 7-NI was dissolved initially in
dimethylsulfoxide to which was added sterile physiological saline
(final solution DMSO/saline 3:7, v/v, respectively) and adminis-
tered intraperitoneally in a volume of 10 ml/kg body weight.
Ascorbic acid, in a dose of 100 mg/kg, was dissolved in sterile
physiological saline solution and administered (i.p.) 30 min after
penicillin (i.c.) application.

The coordinates used for i.c. injection, with the bregma point as
the reference, were AP = � 2 mm, L = 3 mm. In the first set of
experiments, an effective dose of ascorbic acid, L-arginine, D-
arginine, L-NAME and 7-NI was intraperitoneally administered
30 min after penicillin (i.c.) application. In the second set of
experiments, animals received the effective dose of L-arginine, L-
NAME, D-NAME, 7-NI and L-arginine + 7-NI 10 min before ascorbic
acid administration.11,21,33,35,41

2.4. Electrocorticographical (ECoG) recordings

ECoG recordings were made in urethane anesthesized animals.
Two Ag–AgCl ball electrodes were placed over the left neocortex
(electrode coordinates: first electrode; 2 mm lateral to sagittal
suture and 1 mm anterior to bregma; (primary motor cortex),
second electrode; 2 mm lateral to sagittal suture 5 mm posterior to
bregma (secondary visual cortex mediomedial area). These
recording electrodes were stabilized on the cortex surface by
two different electrode holders. The common reference electrode
was fixed on the right pinna. The ECoG activity was continuously
monitored using a four-channel data acquisition system (Power-
Lab, 4/SP, AD Instruments, Australia). All recordings were stored on
a computer. The frequency and amplitude of epileptiform activity
was analyzed off line. Spikes were automatically detected and
counted using amplitude threshold detector and counting module
of Chart software (AD Instruments, Australia) with a variety of
filter options available for EEG signals. It was counted only the
number of spikes with amplitudes greater than three-fold baseline
activity. Spike amplitude was measured automatically as the
voltage change from peak to peak.

2.5. Statistical analysis

All statistical procedures were performed using SPSS (12.0, SPSS
Inc., USA) statistical software package. Statistical analyses were
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carried out by one-way analysis of variance (ANOVA), followed by
post hoc Tamhane test to correct for multiple comparisons of
treatments. Data are expressed as the means � SEM. Statistical
significance was set at p < 0.05.

3. Results

3.1. Effects of nonspecific nitric oxide synthase inhibitor, L-NAME,

selective neuronal nitric oxide synthase inhibitor, 7-NI and NO

substrate, L-arginine on penicillin-induced epileptiform activity

Baseline activities of each animal were recorded before the
administration of intracortical penicillin (Fig. 1A). Intracortical
injection of penicillin (500 IU) induced an epileptiform ECoG
activity characterized by bilateral spikes or spike-wave complexes
(Fig. 1B). This ECoG activity began 2–5 min after penicillin
application and lasted for 3–5 h. It reached a constant level as
to frequency and amplitude in maximally 30 min. The mean spike
frequency and amplitude of ECoG activity in the control group
were 28 � 2 spike/min, 1005 � 159 mV in the 90 min after physio-
logical saline injection (i.p.), respectively. Administration of L-NAME
(100 mg/kg, i.p.) 30 min after penicillin injection did not influence
either the frequency or amplitude of epileptiform ECoG activity
(Figs. 1C and 2). The mean frequency and amplitude of epileptiform
ECoG activity was 29 � 2 spike/min, 998 � 213 mV in the 90 min after
Fig. 1. (A) Baseline ECoG activity before penicillin or the injection of other substances. (B

(C) Nitric oxide synthase inhibitor, L-NAME (100 mg/kg, i.p.) did not influence both of the

Specific neuronal nitric oxide synthase inhibitor, 7-NI (40 mg/kg, i.p.) decreased the fre

arginine (500 mg/kg, i.p.) decreased the mean frequency of penicillin-induced epileptifor

(500 mg/kg, i.p.) did not influence both of the mean frequency or amplitude of penicillin

decreased both the frequency and amplitude of penicillin-induced epileptiform activit

(100 mg/kg, i.p.) injection partially and temporarily reversed the anticonvulsant activity o

on NOS, 10 min before ascorbic acid (100 mg/kg) injection failed to reverse the anticonvu

before ascorbic acid (100 mg/kg, i.p.) injection did not change the anticonvulsant activity

ascorbic acid (100 mg/kg, i.p.) injection caused an earlier anticonvulsant activity. (L) Th

injection did not change the anticonvulsant activity of both 7-NI (40 mg/kg, i.p.) and asco

the administration of above mentioned substances.
L-NAME (100 mg/kg) injection, respectively. Administration of 7-NI
(40 mg/kg, i.p.) significantly decreased the mean frequency of
epileptiform ECoG activity but did not influence amplitude. The
mean frequency and amplitude of epileptiform ECoG activity was
11 � 2 spike/min, 865 � 90 mV in the 90 min after 7-NI (40 mg/kg)
injection, respectively (Figs. 1D and 2). The frequency of epileptiform
ECoG activity was decreased to 15 � 2 spike/min in the 90 min after L-
arginine (500 mg/kg) administration (Figs. 1E and 2). The significant
effects appeared 120 min after L-arginine administration and lasted
for 60 min (Fig. 2). The mean amplitude of epileptiform ECoG activity
did not change after L-arginine administration. The administration of
D-arginine (500 mg/kg, i.p.), which is not a substrate for NO
production, 30 min after penicillin injection did not influence either
the frequency or amplitude of epileptiform ECoG activity compared
with penicillin injected group (Figs. 1F and 2).

3.2. Effects of nonspecific nitric oxide synthase inhibitor, L-NAME,

selective neuronal nitric oxide synthase inhibitor, 7-NI and NO

substrate, L-arginine on anticonvulsant activity of ascorbic acid in

penicillin-induced epileptiform activity

The dose of 100 mg/kg ascorbic acid was administered 30 min
after penicillin injection. Ascorbic acid, in a dose of 100 mg/kg,
significantly decreased both the mean frequency and amplitude of
epileptiform ECoG activity to 8 � 1, spike/min, 556 � 110 mV in the
) Intracortical injection of penicillin (500 IU) induced epileptiform activity on ECoG.

mean frequency or amplitude of penicillin-induced epileptiform ECoG activity. (D)

quency of penicillin-induced epileptiform activity. (E) Precursor of nitric oxide, L-

m ECoG activity without changing amplitude. (F) The inactive enantiomer D-arginine

-induced epileptiform ECoG activity. (G) Ascorbic acid, in a dose of 100 mg/kg (i.p.),

y. (H) The administration of L-NAME (100 mg/kg, i.p.) 10 min before ascorbic acid

f ascorbic acid (I) The administration of D-NAME (100 mg/kg, i.p.), inactive antipode

lsant activity of ascorbic acid. (J) The administration of 7-NI (40 mg/kg, i.p.) 10 min

of ascorbic acid. (K) The administration of L-arginine (500 mg/kg, i.p.) 10 min before

e administration of L-arginine (500 mg/kg, i.p.) 10 min before 7-NI (40 mg/kg, i.p.)

rbic acid (100 mg/kg, i.p.). Representative ECoGs are presented for the 90 min after



Fig. 2. The effects of nonspecific nitric oxide synthase inhibitor, L-NAME (100 mg/kg, i.p.), selective neuronal nitric oxide synthase inhibitor, 7-NI (40 mg/kg, i.p.) as well as NO

substrate, L-arginine (500 mg/kg, i.p.) and its inactive enantiomer D-arginine (500 mg/kg, i.p.) on the mean spike frequency of penicillin-induced epileptiform ECoG activity in

rat. L-NAME (100 mg/kg, i.p.) and D-arginine (500 mg/kg, i.p.) did not influence the mean frequency of penicillin-induced epileptiform ECoG activity. 7-NI (40 mg/kg, i.p.)

decreased the frequency of penicillin-induced epileptiform activity. The frequency of epileptiform ECoG activity was decreased in the 120 min after L-arginine (500 mg/kg,

i.p.) administration. The administration of L-NAME (100 mg/kg, i.p.) 10 min before ascorbic acid injection partially and temporarily reversed the anticonvulsant activity of

ascorbic acid. The same dose of its inactive enantiomer D-NAME failed to reverse the anticonvulsant activity of ascorbic acid. The earlier effect was seen in the L-arginine

(500 mg/kg, i.p.) + ascorbic acid (100 mg/kg, i.p.) administered group compared with L-arginine (500 mg/kg, i.p.) administered group alone. The administration of 7-NI

(40 mg/kg, i.p.), did not change the anticonvulsant activity of ascorbic acid. The administration of L-arginine (500 mg/kg, i.p.) 10 min before 7-NI failed to change the

anticonvulsant activity of both 7-NI (40 mg/kg) and ascorbic acid (100 mg/kg, i.p.). *p < 0.05, **p < 0.01, ***p < 0.001 (when compared with control group). The percentage

frequency of epileptiform ECoG activity value depends on both the frequency of epileptiform ECoG activity before and after the substance administered as it is defined

as:Frequency value % ¼ The mean of spike frequency after substance administered
The mean of spike frequency before substance administered� 100
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90 min after ascorbic acid injection (i.p.), respectively (Figs. 1G and 2).
The significant effects appeared 40 min after 100 mg/kg ascorbic acid
injection and lasted for 140 min (Fig. 2). The administration of L-
NAME (100 mg/kg, i.p.) 10 min before ascorbic acid injection partially
and temporarily reversed the anticonvulsant activity of ascorbic acid
whereas the inactive enantiomer D-NAME (100 mg/kg, i.p.) failed to
affect the anticonvulsant activity of ascorbic acid (Figs. 1H, I and 2).
The frequency of epileptiform ECoG activity became significantly
higher in the 20 min after L-NAME administration compared with
ascorbic acid administered group (Fig. 2). However, the reversal
effects of L-NAME disappeared in the 120 min after L-NAME injection.
L-NAME did not influence the amplitude of epileptiform ECoG activity
during experiments (Fig. 1H). The mean frequency and amplitude of
epileptiform ECoG activity were 18 � 2, 7 � 1 spike/min, 754 � 192,
589 � 144 mV in the L-NAME and D-NAME groups in the 90 min after
injection, respectively (Fig. 1H and I). Administration of 7-NI (40 mg/
kg, i.p.) did not affect the frequency and amplitude of epileptiform
ECoG activity compared with ascorbic acid administered group. The
mean frequency and amplitude of epileptiform ECoG activity were
8 � 1 spike/min, 482 � 170, respectively in the 7-NI + ascorbic acid
group (Figs. 1J and 2). A dose of 500 mg/kg L-arginine (i.p.) was
administered 10 min before ascorbic acid (100 mg/kg, i.p.) injection.
The significant effects appeared 90 min after L-arginine injection and
lasted for 90 min in the L-arginine + ascorbic acid group (Fig. 2).
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Earlier anticonvulsant effect was seen in the L-arginine + ascorbic acid
group compared to L-arginine group alone (Fig. 2). The mean
frequency and amplitude of epileptiform ECoG activity were 10 � 2
spike/min and 944 � 220 mV in the 90 min after L-arginine adminis-
tration, respectively (Fig. 1K). The administration of L-arginine
(500 mg/kg, i.p.) 10 min before 7-NI (40 mg/kg, i.p.) did not affect
the frequency and amplitude of epileptiform ECoG activity compared
ascorbic acid and 7-NI administered groups. The mean frequency and
amplitude of epileptiform ECoG activity were 10 � 2 spike/min,
569 � 206, respectively (Figs. 1L and 2). Intraperitoneal injection of
100 mg/kg ascorbic acid did not cause any change in the frequency or
amplitude of ECoG activity with respect to control base line in non-
penicillin injected animals. There was also no change in the mean of
frequency and amplitude in aCSF injected animals.

4. Discussion

A widely used method for inducing epileptiform activity in rats
is application of penicillin to the cerebral cortex.42 Application of
penicillin to the neocortex results in synchronous discharge of
neurones, which bears an electrophysiological resemblance to
human focal interictal epileptic discharges.43 Interictal epilepti-
form discharges can occur in various forms, such as spikes, poly-
spikes and sharp waves and are believed to be the result of
summated membrane events from abnormally hypersynchronous
neurons within epileptic tissue.44 Therefore, we used penicillin-
induced epilepsy model to determine the role of nitric oxide in the
anticonvulsant effects of ascorbic acid in rats in the present study.

It has been suggested that ascorbic acid has neuro-protective
properties in some experimental epilepsy models such as iron,8

pentylenetetrazol9 and penicillin-induced.11 Oliveira et al.9

reported that ascorbate, at a high dose (300 mg/kg), protected
against PTZ-induced convulsions whereas ascorbate, at a low dose
(30 mg/kg) did not alter PTZ-induced convulsions. They also
indicated that ascorbate, at an intermediate dose (100 mg/kg),
potentiated the duration of convulsive episodes.9 In our previous
study, we clearly showed that ascorbic acid, at doses of 50, 100, 200
and 400 mg/kg, was effective in decreasing the frequency of
penicillin-induced epileptiform activity whereas ascorbic acid, at
doses of 25 and 800 mg/kg, did not alter the mean frequency of
penicillin-induced epileptiform activity in rats.11 Ascorbic acid, at a
dose of 100 mg/kg, was the most effective dose in changing the
frequency and amplitude of penicillin-induced epileptiform
activity.11 Therefore we used a dose of 100 mg/kg ascorbic acid
to have maximum anticonvulsant effect or neuro-protective
activity in this study. It was reported that ascorbate significantly
attenuated trimethyltin-induced seizures as well as the initial
oxidative stress, impaired glutathione homeostasis.45 Moreover,
Oliveira et al.9 reported that the effects of ascorbate are complex,
and other mechanisms, unrelated to its reactive species scavenger
ability, are claimed to explain the neuro-protective actions of
ascorbic acid. Finally, the mechanism of ascorbic acid action still
remains to be determined.

On the other hand, the functional involvement of NO in epilepsy
has been demonstrated by many researchers although data often
are contradictory.19–22,46,47 It has been reported that NO can act as
an anticonvulsant or a proconvulsant depending on the seizure
stimulus, the cellular form of NO and activation of specific NOS
isoforms.34,48 Akula et al.36 reported that L-NAME (2.5 mg/kg, i.p.)
potentiated the anticonvulsant action of sub-effective dose of
adenosine (50 mg/kg, i.p.) in PTZ-induced seizure in mice.
Conversely, in another study it was suggested that L-NAME
(1 mg/kg) reversed the anticonvulsant property of the combination
of melatonin (10 mg/kg) plus morphine (0.5 mg/kg) in mouse
model of PTZ-induced clonic seizures.49 The inhibitors of NO
synthase may produce diverse effects upon seizure susceptibility,
the results of present study revealed that L-NAME (100 mg/kg) did
not influence both of the frequency and amplitude of penicillin-
induced epileptiform activity in rats, which is consistent with the
results of other studies, concerning the effect of NO synthase
inhibition upon the electroconvulsive threshold and kainate-
induced toxicity.33,50,51 On the other hand, L-NAME partially and
temporarily reversed the protective activity of ascorbic acid
against penicillin-induced epileptiform activity whereas the same
dose of D-NAME failed to show significant effects on the protective
activity of ascorbic acid in the present study. This result is
consistent with other studies, concerning the inhibition of L-NAME
upon protective effects of morphine, cyclosporine A, phenobarbital
and alpha-tocopherol.33,34,37,52,53

A large number of published studies have used 7-NI, an indazole
derivative and selective inhibitor of nNOS, to examine the role of
nNOS in epilepsy.36,37,54,55 Proconvulsant effect of 7-NI has been
demonstrated in soman-induced convulsions in rats, where 7-NI
enhanced the severity of clonic convulsions and increased lethality
produced by soman.54 On the other hand, it was reported that 7-NI
inhibited both NOS activity in vivo and glufosinate-induced
convulsions in mice.37 Akula et al.36 explained that 25 mg/kg 7-
NI (i.p.) potentiated the anticonvulsant action of sub-effective dose
of adenosine (50 mg/kg, i.p.) against pentylenetetrazol seizure
threshold in mice. In addition, recent a study indicate that
anticonvulsant effect of levetiracetam was increased when given in
combination with 7-nitroindazole in an experimental model of
partial complex seizures named maximal dentate gyrus activation
in rats.55 In the present study, we demonstrate that specific nNOS
inhibitor 7-NI, at a dose of 40 mg/kg, significantly reduced the
frequency of epileptiform activity without changing amplitude.
These results are in accordance with previous study by our group
that 25 and 50 mg/kg 7-NI has anticonvulsant effect on epilepti-
form activity in rats.35 We also found that 40 mg/kg 7-NI injection
did not chance the anticonvulsant effect of ascorbic acid.35 On the
other hand, the administration of L-arginine before 7-NI injection
did not alter the anticonvulsant effect of 7-NI in the presence of
ascorbic acid. The administration of L-arginine (500 mg/kg, i.p.)
10 min before 7-NI (50 mg/kg) failed to change the anticonvulsant
activity of either ascorbic acid or 7-NI. These results are consistent
with previously reported findings.22,31,35,56 The mechanism of
these contradictory effects of L-NAME and 7-NI on penicillin-
induced epileptiform activity is still unclear. However, these
apparently divergent data do not exclude either NO might play a
different role in various models of epileptic disorders or it may act
as an anticonvulsant or as a proconvulsant agent depending on the
experimental procedures and particular brain structures involved
as suggested by several reports.19–23,46–48

It was demonstrated that L-arginine, as a precursor of NO has an
efficacious action in decreasing the susceptibility to seizure,
comparable to the antiepileptic drugs, suggesting a potential
involvement of NO as an anticonvulsant.24,46

L-Arginine (500 mg/
kg) decreased the frequency of epileptiform activity in penicillin-
treated rats without changing amplitude whereas the administra-
tion D-arginine (500 mg/kg), inactive enantiomer, did not influence
either the frequency or amplitude of epileptiform ECoG activity in
the present study. The significant effects appeared in the 90 and at
120 min after L-arginine administration. The present results clearly
demonstrate that NO may exert anticonvulsant effects in epileptic
seizures which confirm previous studies which show that L-
arginine, at high dose (500 mg/kg, i.p.), has an anticonvulsant effect
in the different model of experimental epilepsy.31,53,56 In contrast,
Czuczwar et al.57 reported that L-arginine, at a dose of 500 mg/kg,
did not affect the convulsive threshold for the clonic phase of PTZ-
induced seizures. Although, the earlier effect was seen in the
L-arginine + ascorbic acid administered group compared with
L-arginine administered group, we may conclude that L-arginine
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(500 mg/kg, i.p.) did not provide an additional anticonvulsant
activity for ascorbic acid in the present study. It would be logical
not to expect an additional anticonvulsant activity in the L-
arginine + ascorbic acid group if ascorbic acid and L-arginine use
the same molecular mechanisms to affect the frequency of
epileptiform activity.

According to GABA hypothesis of epilepsy, both a decrease in
GABAergic inhibition and an increase in glutamatergic excitation
suggested as one of the reasons for the initiation and spread of
epileptic seizures.58–60 Furthermore, Tsuda et al.61 suggested that
penicillin exerts its proconvulsant effect by inhibiting GABA-gated
chloride ion influx. Previous studies revealed a link between NO
and potentiation of synaptic GABA release, which has been
proposed to explain the aggravation of seizure induced by NOS
inhibitors in the experimental model of epilepsy.61–63 Taken
together, the results of present study are consistent with the
hypothesis that the antiaconvulsant effects of ascorbic acid are,
probably, due to the inhibition of GABA reuptake.64

L-NAME, a
nonspecific NOS inhibitor, partially and temporarily reversed the
anticonvulsant effects of ascorbic acid whereas 7-NI, a specific
neuronal NOS inhibitor, failed to influence anticonvulsant activity
of ascorbic acid. The mechanism of these contradictory effects of L-
NAME and 7-NI on the anticonvulsant action of ascorbic acid in
penicillin-induced epileptiform activity is unclear. However, the
possibility of a pharmacokinetic interaction between NO and
anticonvulsant in the present study cannot be ruled out. Further
studies are needed to assess possible molecular mechanisms for
these findings.

In summary, we confirmed that ascorbic acid, in a dose of
100 mg/kg, decreased the mean frequency and amplitude of
penicillin-induced epileptiform ECoG activity in rat. The adminis-
tration of L-arginine resulted in the inhibition of epileptiform activity
whereas D-arginine, inactive enantiomer, did not influence either the
frequency or amplitude of epileptiform activity. Moreover, a non-
effective dose of L-NAME (non-specific NOS inhibitor) partially and
temporarily diminished the anticonvulsant effects of ascorbic acid.
The administration of D-NAME, the inactive antipode on NOS, failed
to show significant effect on the anticonvulsant activity of ascorbic
acid. Specific nNOS inhibitory, 7-NI significantly decreased the
frequency of epileptiform activity but did not alter the anticonvul-
sant effect of ascorbic acid implying that nNOS activity does not
involve in protective effect of ascorbic acid against penicillin-
induced epileptiform activity. Therefore, it can be concluded that
either the endothelial-NOS activity participate in the anticonvulsant
activity of ascorbic acid or partially and temporarily inhibitory effect
of L-NAME on the anticonvulsant activity of ascorbic acid might be its
own nonspecific effect, which is unrelated to endothelial-NOS
activity in the brain.
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